Auctions

Lirong Xia

(1). Rensselaer

Sealed-Bid Auction

$>$ One item
$>$ A set of bidders $1, \ldots, n$

- bidder j 's true value v_{j}
- bid profile $b=\left(b_{1}, \ldots, b_{n}\right)$
$>$ A sealed-bid auction has two parts
- allocation rule: $x(b) \in\{0,1\}^{n}, x_{j}(b)=1$ means agent j gets the item
- payment rule: $p(b) \in \mathrm{R}^{n}, p_{j}(b)$ is the payment of agent j
$>$ Preferences: quasi-linear utility function
- $x_{j}(b) v_{j}-p_{j}(b)$

Second-Price Sealed-Bid Auction

$>$ W.I.o.g. $b_{1} \geq b_{2} \geq \ldots \geq b_{n}$

Second-Price Sealed-Bid Auction

- $x_{S P}(b)=(1,0, \ldots, 0)$ (item given to the highest bid)
- $p_{S P}(b)=\left(b_{2}, 0, \ldots, 0\right)$ (charged $2^{\text {nd }}$ highest price)

Example

Kyle

Eric

Incentive Compatibility of $2^{\text {nd }}$ Price Auction

$>$ Dominant-strategy Incentive Compatibility (DSIC)

- reporting true value is the best regardless of other agents' actions
> Why?
- underbid ($b \leq v$)
- win \rightarrow win: no difference
- win \rightarrow lose: utility $=0 \leq$ truthful bidding
- overbid ($b \geq v$)
- win \rightarrow win: no difference
- lose \rightarrow win: utility $\leq 0 \leq$ truthful bidding
> Nash Equilibrium
- everyone bids truthfully

First-Price Sealed-Bid Auction

- W.I.o.g. $b_{1} \geq b_{2} \geq \ldots \geq b_{n}$
$>$ First-Price Sealed-Bid Auction
- $x_{F P}(b)=(1,0, \ldots, 0)$ (item given to the highest bid)
- $p_{F P}(b)=\left(b_{1}, 0, \ldots, 0\right)$ (charged her reported price)

Example

Kyle

\$71?

Nash Equilibrium of $1^{\text {st }}$ Price Auction

$>$ Complete information

- \max bid $=2^{\text {nd }}$ bid $+\varepsilon$
$>$ Not sure about other bidders' values?
- winner's curse

Games of Incomplete Information for auctions

$>$ Bidder j 's type $=$ her value θ_{j} (private)

- quasi-linear utility functions
$>G$: joint distribution of bidders' (true) values (public)
$>$ Strategy: $s_{j}: \mathrm{R} \rightarrow \mathrm{R}$ (from type to bid)
$>$ Timing
Ex ante
- 1. Generate $\left(\theta_{1}, \ldots, \theta_{n}\right)$ from G, bidder j receives θ_{j} Interim
- 2. Bidder j reports $s_{j}\left(\theta_{j}\right)$

Expost

- 3. Allocation and payments are announced

Bayes-Nash Equilibrium

\Rightarrow A strategy profile $\left(s_{1}, \ldots, s_{n}\right)$ is a Bayes-Nash Equilibrium (BNE) if for every agent j, all types θ_{j}, and all potential deviations b_{j}^{\prime}, we have
other agents' bids unilateral deviation

your bids
conditioned on j 's information

$$
\text { - } s_{-j}=\left(s_{1}, \ldots, s_{j-1}, s_{j+1}, \ldots, s_{n}\right)
$$

BNE of $1^{\text {st }}$ Price Auction

$>$ Proposition. When all values are generated i.i.d. from uniform[0,1$]$, under $1^{\text {st }}$ price auction, the strategy profile where for all $j, s_{j}: \theta \rightarrow \frac{n-1}{n} \theta$ is a BNE
$>$ Proof.

- suppose bidder j 's value is θ_{j} and she decides to bid for $b_{j} \leq \theta_{j}$
- Expected payoff
$\left(\theta_{j}-b_{j}\right) \times \operatorname{Pr}\left(b_{j}\right.$ is the highest bid)
$=\left(\theta_{j}-b_{j}\right) \times \operatorname{Pr}\left(\right.$ all other bids $\left.\leq b_{j} \mid s_{-j}\right)$
$=\left(\theta_{j}-b_{j}\right) \times \operatorname{Pr}\left(\right.$ all other values $\left.\leq \frac{n}{n-1} b_{j}\right)$
$=\left(\theta_{j}-b_{j}\right)\left(\frac{n}{n-1} b_{j}\right)^{n-1}$
- maximized at $b_{j}=\frac{n-1}{n} \theta_{j}$

BNE of $2^{\text {nd }}$ Price Auction

$>b_{j}=\theta_{j}$
$>$ Dominant-Strategy Incentive Compatibility

Desirable Auctions

-Efficiency in equilibrium (allocate the item to the agent with the highest value)
(-) $1^{\text {st }}$ price auction
($2^{\text {nd }}$ price auction
$>$ Revenue in equilibrium

Expected Revenue in Equilibrium: $1^{\text {st }}$ price auction

$>$ Expected revenue for $1^{\text {st }}$ price auctions with i.i.d. Uniform $[0,1]$ when $b_{j}=\frac{n-1}{n} v_{j}$

$$
\begin{aligned}
& \int_{0}^{\frac{n-1}{n}} b \times \operatorname{Pr}(\text { highest bid is } b) d \theta \\
= & \int_{0}^{1} \frac{n-1}{n} \theta \times \operatorname{Pr}(\text { highest value is } \theta) d \theta \\
= & \int_{0}^{1} \frac{n-1}{n} \theta \times n \theta^{n-1} d \theta \\
= & \frac{n-1}{n+1}
\end{aligned}
$$

Expected Revenue in Equilibrium: $2{ }^{\text {st }}$ price auction

> Expected revenue for $2^{\text {st }}$ price auctions with i.i.d. Uniform[0,1] when $b_{j}=v_{j}$

$$
\begin{aligned}
& \int_{0}^{1} b \times \operatorname{Pr}\left(2^{\text {nd }} \text { highest bid is } b\right) d b \\
= & n(n-1) \int_{0}^{1} \theta \times(1-\theta) \theta^{n-2} d \theta \\
= & n(n-1) \int_{0}^{1} \theta^{n-1}-\theta^{n} d \theta \\
= & \frac{n-1}{n+1}
\end{aligned}
$$

$=$ expected revenue of $1^{\text {st }}$ price auction in equilibrium

A Revenue Equivalence Theorem

$>$ Theorem. The expected revenue of all auction mechanisms for a single item satisfying the following conditions are the same

- highest bid wins the items (break ties arbitrarily)
- there exists an BNE where
- symmetric: all bidders use the same strategy
- does not mean that they have the same type
- increasing: bid increase with the value
$>$ Example: $1^{\text {st }}$ price vs. $2^{\text {nd }}$ price auction

Ad Auction

macook keyword

\& $\quad 0$
All Shopping News Images Videos More Settings Tools

About 222,000,000 results (0.61 seconds)
Slot 1
See MacBook

13-inch MacBook Pro - Space Gray \$1,299.00
Apple
Free shipping
winner 1

15-inch MacBook Pro - Space Gray \$2,399.00
Apple
Free shipping
Winner 2

Slot 3

13-inch MacBook
Air
$\$ 999.00$
Apple
Free shipping
Winner 3

Slot 4

Apple Air, Silver
\$374.99
Walmart
\times + $+\boldsymbol{*}+(446)$
Winner 4

Slot 5
Sponsored

Refurbished
Apple MacBook...
\$349.20
Refurbished
Walmart
winner 5

MacBook - Behind the Mac | Apple
Ad www.apple.com/
Behind the Mac people are making wonderful things and so could you. Shop now. More powerful than
ever. Free two-day delivery. Apple Store pickup. Built-in Apps.
Compare Mac models • Buy now • Apple GiveBack • Accessories for Mac

Ad Auctions: Setup

> m slots

- slot i gets s_{i} clicks
$>n$ bidders
- v_{j} : value for each user click
- b_{j} : pay (to service provider) per click
- utility of getting slot $i:\left(v_{j}-b_{j}\right) \times s_{i}$
$>$ Outcomes: $\{$ (allocation, payment) \}

Generalized $2^{\text {nd }}$ price Auction (GSP)

> Rank the bids

Google

- W.I.o.g. $b_{1} \geq b_{2} \geq \ldots \geq b_{n}$
$>$ for $i=1$ to m,
- give slot i to b_{i}
- charge bidder i to b_{i+1} pay per click
> Example
- $n=4, m=3 ; s_{1}=100, s_{2}=60, s_{3}=40 ; v_{1}=10, v_{2}=9, v_{3}=7, v_{4}=1$.
- bidder 1 utility
- HW: show GSP is not incentive compatible

