Auctions

Lirong Xia

Sealed-Bid Auction

- One item
- ➤ A set of bidders 1,...,n
 - bidder j's true value v_j
 - bid profile $b = (b_1, \dots, b_n)$
- A sealed-bid auction has two parts
 - allocation rule: $x(b) \in \{0,1\}^n$, $x_j(b)=1$ means agent j gets the item
 - payment rule: $p(b) \in \mathbb{R}^n$, $p_j(b)$ is the payment of agent j
- Preferences: quasi-linear utility function
 - $x_j(b) v_j p_j(b)$

Second-Price Sealed-Bid Auction

 \succ W.I.o.g. $b_1 \ge b_2 \ge \dots \ge b_n$

- Second-Price Sealed-Bid Auction
 - $x_{SP}(b) = (1,0,\ldots,0)$ (item given to the highest bid)
 - $p_{SP}(b) = (b_2, 0, \dots, 0)$ (charged 2nd highest price)

Incentive Compatibility of 2nd Price Auction

- Dominant-strategy Incentive Compatibility (DSIC)
 - reporting true value is the best regardless of other agents' actions
- > Why?
 - underbid ($b \le v$)
 - win \rightarrow win: no difference
 - win \rightarrow lose: utility = 0 \leq truthful bidding
 - overbid ($b \ge v$)
 - win \rightarrow win: no difference
 - lose \rightarrow win: utility $\leq 0 \leq$ truthful bidding
- Nash Equilibrium
 - everyone bids truthfully

First-Price Sealed-Bid Auction

 \succ W.I.o.g. $b_1 \ge b_2 \ge \ldots \ge b_n$

First-Price Sealed-Bid Auction

- $x_{FP}(b) = (1,0,...,0)$ (item given to the highest bid)
- $p_{FP}(b) = (b_1, 0, \dots, 0)$ (charged her reported price)

Nash Equilibrium of 1st Price Auction

Complete information

• max bid = 2^{nd} bid + ϵ

Not sure about other bidders' values?

• winner's curse

Games of Incomplete Information for auctions

- > Bidder j's type = her value θ_i (private)
 - quasi-linear utility functions

Harsanyi

- \succ G: joint distribution of bidders' (true) values (public)
- > Strategy: $s_i : R \rightarrow R$ (from type to bid)

≻_Timing

Ex ante

- 1. Generate $(\theta_1, ..., \theta_n)$ from *G*, bidder *j* receives θ_j
 - 2. Bidder *j* reports $s_j(\theta_j)$

Ex post

• 3. Allocation and payments are announced

Bayes-Nash Equilibrium

A strategy profile (s₁,...,s_n) is a Bayes-Nash Equilibrium (BNE) if for every agent j, all types θ_j, and all potential deviations b_j', we have

other agents' bids unilateral deviation

$$E_{\theta_{-j}} \underbrace{u_j(s_j(\theta_j), s_{-j}(\theta_{-j}) \mid \theta_j)}_{\swarrow} \ge E_{\theta_{-j}} \underbrace{u_j(b_j', s_{-j}(\theta_{-j}) \mid \theta_j)}_{\swarrow}$$
your bids conditioned on *j*'s information

•
$$s_{-j} = (s_1, \dots, s_{j-1}, s_{j+1}, \dots, s_n)$$

BNE of 1st Price Auction

➢ Proposition. When all values are generated i.i.d. from uniform[0,1], under 1st price auction, the strategy profile where for all *j*, *s_j*: θ → $\frac{n-1}{n}\theta$ is a BNE

Proof.

- suppose bidder j's value is θ_j and she decides to bid for $b_j \leq \theta_j$
- Expected payoff

 $(\theta_j - b_j) \times \Pr(b_j \text{ is the highest bid})$

= $(\theta_j - b_j) \times Pr(all other bids \le b_j | s_{-j})$

=
$$(\theta_j - b_j) \times Pr(\text{all other values} \le \frac{n}{n-1} b_j)$$

$$= (\theta_j - b_j)(\frac{n}{n-1}b_j)^{n-1}$$

• maximized at $b_j = \frac{n-1}{n} \theta_j$

BNE of 2nd Price Auction

 $\succ b_j = \theta_j$

Dominant-Strategy Incentive

Compatibility

Desirable Auctions

Efficiency in equilibrium (allocate the item to the agent with the highest value)

- 1st price auction
- 2nd price auction
- Revenue in equilibrium

Expected Revenue in Equilibrium: 1st price auction

Expected revenue for 1st price auctions with i.i.d.

Uniform[0,1] when $b_j = \frac{n-1}{n}v_j$

$$\int_{0}^{\frac{n-1}{n}} b \times \Pr(\text{highest bid is } b) d\theta$$
$$= \int_{0}^{1} \frac{n-1}{n} \theta \times \Pr(\text{highest value is } \theta) d\theta$$
$$= \int_{0}^{1} \frac{n-1}{n} \theta \times n\theta^{n-1} d\theta$$
$$= n^{-1}$$

 $\overline{n+1}$

Expected Revenue in Equilibrium: 2st price auction

Expected revenue for 2^{st} price auctions with i.i.d. Uniform[0,1] when $b_j = v_j$

 $\int_{0}^{1} b \times \Pr(2^{nd} \text{ highest bid is } b) db$ = $n(n-1) \int_{0}^{1} \theta \times (1-\theta) \theta^{n-2} d\theta$ = $n(n-1) \int_{0}^{1} \theta^{n-1} - \theta^{n} d\theta$ = $\frac{n-1}{n+1}$

= expected revenue of 1st price auction in equilibrium

A Revenue Equivalence Theorem

- Theorem. The expected revenue of all auction mechanisms for a single item satisfying the following conditions are the same
 - highest bid wins the items (break ties arbitrarily)
 - there exists an BNE where
 - symmetric: all bidders use the same strategy
 - does not mean that they have the same type
 - increasing: bid increase with the value

► Example: 1st price vs. 2nd price auction

Ad Auction

MacBook - Behind the Mac | Apple

Ad www.apple.com/ Behind the Mac people are making wonderful things and so could you. Shop now. More powerful than ever. Free two-day delivery. Apple Store pickup. Built-in Apps. Compare Mac models · Buy now · Apple GiveBack · Accessories for Mac

Ad Auctions: Setup

$\succ m$ slots

• slot *i* gets s_i clicks

 $\succ n$ bidders

- v_i : value for each user click
- b_i : pay (to service provider) per click
- utility of getting slot $i: (v_j b_j) \times s_i$
- Outcomes: { (allocation, payment) }

Generalized 2nd price Auction (GSP)

- Rank the bids
 - W.I.o.g. $b_1 \ge b_2 \ge \ldots \ge b_n$
- > for i = 1 to m,
 - give slot i to b_i
 - charge bidder *i* to b_{i+1} pay per click
- Example
 - $n=4, m=3; s_1=100, s_2=60, s_3=40; v_1=10, v_2=9, v_3=7, v_4=1.$
 - bidder 1 utility
 - HW: show GSP is not incentive compatible

Google