Introduction to computation

Lirong Xia

Today's schedule

➤Computation

Linear programming: a useful and generic technic to solve optimization problems

Basic computational complexity theorem

- how can we formally measure computational efficiency?
- how can we say a problem is harder than another?

The last battle

	Strength	minerals	🥪 gas	🔊 supply
Zealot	1	100	0	2
Stalker	2	125	50	2
Archon	10	100	300	4

> Available resource:

M ineral	🥌 gas	supply
2000	1500	30

How to maximize the total strength of your troop?

Computing the optimal solution

➤ Variables

- x_z: number of Zealots
- *x*_s: number of Stalkers
- x_A: number of Archons
- Objective: maximize total strength
- $> \max 1x_{Z} + 2x_{S} + 10x_{A}$
- Constraints
 - $mineral: 100x_{Z} + 125x_{S} + 100x_{A} \le 2000$
 - $agas: 0x_{Z} + 50x_{S} + 300x_{A} \le 1500$
 - $supply: 2x_{Z} + 2x_{S} + 4x_{A} \le 30$
 - $x_{\mathbb{Z}}$, $x_{\mathbb{S}}$, $x_{\mathbb{A}} \ge 0$, integers

	str	🕷 m	🧉 g	🔊 S
Z 🎇	1	100	0	2
S 🍂	2	125	50	2
A	10	100	300	4

2000

Resource

1500	30
------	----

Linear programming (LP)

➢ Given

- Variables x: a row vector of *m* positive real numbers
- Parameters (fixed)
 - c: a row vector of *m* real numbers
 - b: a column vector of *n* real numbers
 - A: an $n \times m$ real matrix
- \succ Solve max cx^T

s.t. $Ax^{T} \le b, x \ge 0$

Solutions

- x is a feasible solution, if it satisfies all constraints
- x is an optimal solution, if it maximizes the objective function among all feasible solutions

General tricks

- \succ Possibly negative variable x
 - x = y y'
- ➤ Minimizing cx^T
 - max -cx^T
- ≻ Greater equals to $ax^T \ge b$
 - $-ax^{\mathsf{T}} \leq -b$
- \succ Equation ax^T = b
 - $ax^T \ge b$ and $ax^T \le b$
- > Strict inequality $ax^T < b$
 - no "theoretically perfect" solution
 - $ax^{\mathsf{T}} \leq b \varepsilon$

Integrality constraints

Integer programming (IP): all variables are integers

Mixed integer programming (MIP): some variables are integers

Efficient solvers

>LP: can be solved efficiently

- if there are not too many variables and constraints
- IP/MIP: some instances might be hard to solve
 - practical solver: CPLEX free for academic use!

Q & A time