Economics and Computation

Lirong Xia

(9) Rensselaer

This Course

- Economics: decision making by multiple actors, each with individual preferences, capabilities, and information, and motivated to act in regard to these preferences.
> Computer science: study of representation and processing of information for the purpose of specific calculation tasks.
>Breadth over depth

Mostly a math course

Rules and Suggestions

>"Theater rule": no electronics in class

- Unless explicitly told
- You may printout slides (useful in exams anyway)
- If you insist on using electronic, please sit in the back row
$>$ Take notes if possible
>Questions are very welcome
- If you don't ask me, I may ask you (random quiz)

Tragedy of the commons: Braess' Paradox
 >2000 travelers from 1 to 4

$>$ Centralized goal: minimize max delay

- $10001 \rightarrow 2 \rightarrow 4 ; 10001 \rightarrow 3 \rightarrow 4$;
- minimax delay: 35 min
$>$ No one wants to deviate

Tragedy of the commons: Braess' Paradox

>2000 travelers from 1 to 4

$>$ Centralized goal: minimize max delay

- $10001 \rightarrow 2 \rightarrow 4 ; 10001 \rightarrow 3 \rightarrow 4$;
- minimax delay: 35min

Tragedy of the commons: Braess' Paradox

> 2000 travelers from 1 to 4

$>$ No one wants $1 \rightarrow 3 \rightarrow 4$

- $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ is always better
$>$ No one wants $1 \rightarrow 2 \rightarrow 4$
- $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ is always better
$>$ Everyone goes $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$, delay is 40 min each
$>$ Paradox: worse than the system without $2 \rightarrow 3$
$>$ More in the "game theory" class

Goal of the course

$>$ How to analyze the outcome?

- Social choice, game theory
-How to incentivize people?
- Mechanism design
>Economics + Computation
- Incentives + computational thinking

Brief schedule

> (Algorithmic) Game theory

- 3 days
> Auctions
- 1 day

Myerson
> Mechanism design

- 1 day

> (Computational) Social choice
- 2 days
$>$ Wisdom of the crowd
- 1 day
> Preference modeling
- 1 day
> Bitcoin and blockchain

Hansen

- 1 day

Example: Auctions

$>2^{\text {nd }}$ price auction

- highest bid wins
- charged the $2^{\text {nd }}$ highest price
- more in the "auctions" and "mechanism design" class 10

Example: School choice

Eric

Example: Resource allocation

$6>5>4>3>2>1$

o Sequential allocation

$\operatorname{step} 1$	$\operatorname{step} 2$	$\operatorname{step} 3$	$\operatorname{step} 4$	$\operatorname{step} 5$	$\operatorname{step} 6$
$\mathbf{8 1}$	$\mathbf{6}$	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{2}$
$\mathbf{3}$	$\mathbf{3}$				

Is it a good mechanism?

$>$ Sounds good

- Efficient: if we have different preferences, then we will all (almost) get what we want
- Fair: ($1^{\text {st }}$ pick, last pick), ($2^{\text {nd }}$ pick, $2^{\text {nd }}$ to last pick)...
$>$ How can we formalize these ideas?
- more in "matching and resource alloation"

Example 3: Political elections

Example of Borda

Total scores है: $2+2+0=4$

定: $0+0+2=217$

Other voting rules?

$>$ Many other voting rules beyond Borda will be discussed in the social choice class
$>$ Which one is the best?

- Hard to compare.
- Criteria will be discussed in the social choice class

Example: Crowdsourcing

Optimal way to make a decision

> How can we make an optimal decision by aggregating noisy answers from strategic agents?

- more in "Wisdom of the crowd"

Grading, let's vote

>Final grades:

- Option1: Participation 10\%; Exam 30\%
- Option2: Participation 20\%; Exam 20\%
- Option3: Participation 30\%; Exam 10\%
- Option4: Participation 0\%; Exam 40\%
- Option5: Participation 40\%; Exam 0\%
- https://campusopra.cs.rpi.edu/polls/1072/

Before tomorrow

$>$ Sign up on piazza
$>$ Sign up on OPRA and vote
\Rightarrow Print the slides if you want
$>$ Remember to bring computer/smart
phone for in-class voting (but don't use it in class otherwise)

