Economics and Computation

Lirong Xia

This Course

- Economics: decision making by multiple actors, each with individual preferences, capabilities, and information, and motivated to act in regard to these preferences.
- Computer science: study of representation and processing of information for the purpose of specific calculation tasks.
- Breadth over depth

Mostly a math course

Rules and Suggestions

➤ "Theater rule": no electronics in class

- Unless explicitly told
- You may printout slides (useful in exams anyway)
- If you insist on using electronic, please sit in the back row
- Take notes if possible
- ➢Questions are very welcome
 - If you don't ask me, I may ask you (random quiz)

Tragedy of the commons: Braess' Paradox

➢ 2000 travelers from 1 to 4

Centralized goal: minimize max delay

- 1000 $1 \rightarrow 2 \rightarrow 4$; 1000 $1 \rightarrow 3 \rightarrow 4$;
- minimax delay: 35min
- ➢ No one wants to deviate

Tragedy of the commons: Braess' Paradox ≥ 2000 travelers from 1 to 4

Centralized goal: minimize max delay

- 1000 $1 \rightarrow 2 \rightarrow 4$; 1000 $1 \rightarrow 3 \rightarrow 4$;
- minimax delay: 35min

Tragedy of the commons: Braess' Paradox

2000 travelers from 1 to 4

- > No one wants $1 \rightarrow 3 \rightarrow 4$
 - $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ is always better
- > No one wants $1 \rightarrow 2 \rightarrow 4$
 - $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ is always better
- ➤ Everyone goes $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$, delay is 40min each
- > Paradox: worse than the system without $2 \rightarrow 3$
- More in the "game theory" class

Goal of the course

- How to analyze the outcome?
 - Social choice, game theory
- ➤How to incentivize people?
 - Mechanism design
- Economics + Computation
 - Incentives + computational thinking

Brief schedule

Von Neumann

- (Algorithmic) Game theory
 - 3 days •
- > Auctions

- 1 day •
- Mechanism design
 - 1 day •

Vickrey

- (Computational) Social choice
 - 2 days
- Wisdom of the crowd
 - 1 day •
- Preference modeling
 - 1 day ٠
- Bitcoin and blockchain
 - 1 day ٠

Kahneman

Arrow

McFadden

Roth

Hansen

Nash

Aumann Harsanyi

Shapley

Example: Auctions

ebay

➤ 2nd price auction

- highest bid wins
- charged the 2nd highest price
- more in the "auctions" and "mechanism design" class¹⁰

Example: School choice

Example: Resource allocation

Step 1	Step 2	Step 3	Step 4	Step 5	Step 6
	6	5		2	3

Is it a good mechanism?

Sounds good

- Efficient: if we have different preferences, then we will all (almost) get what we want
- Fair: (1st pick, last pick), (2nd pick, 2nd to last pick)...
- ➤How can we formalize these ideas?
 - more in "matching and resource alloation"

Example 3: Political elections

Example of Borda

Other voting rules?

- Many other voting rules beyond Borda will be discussed in the social choice class
- >Which one is the best?
 - Hard to compare.
 - Criteria will be discussed in the social choice class

Example: Crowdsourcing

Optimal way to make a decision

- How can we make an optimal decision by aggregating noisy answers from strategic agents?
 - more in "Wisdom of the crowd"

Grading, let's vote

➤Final grades:

- Option1: Participation 10%; Exam 30%
- Option2: Participation 20%; Exam 20%
- Option3: Participation 30%; Exam 10%
- Option4: Participation 0%; Exam 40%
- Option5: Participation 40%; Exam 0%
- https://campusopra.cs.rpi.edu/polls/1072/

Before tomorrow

- ➢Sign up on piazza
- ➢Sign up on OPRA and vote
- Print the slides if you want
- Remember to bring computer/smart phone for in-class voting (but don't use it in class otherwise)