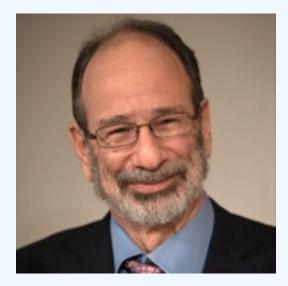
Matching and Resource Allocation

Lirong Xia

Nobel prize in Economics 2013



Alvin E. Roth

Lloyd Shapley

 "for the theory of stable allocations and the practice of market design."

Two-sided one-one matching

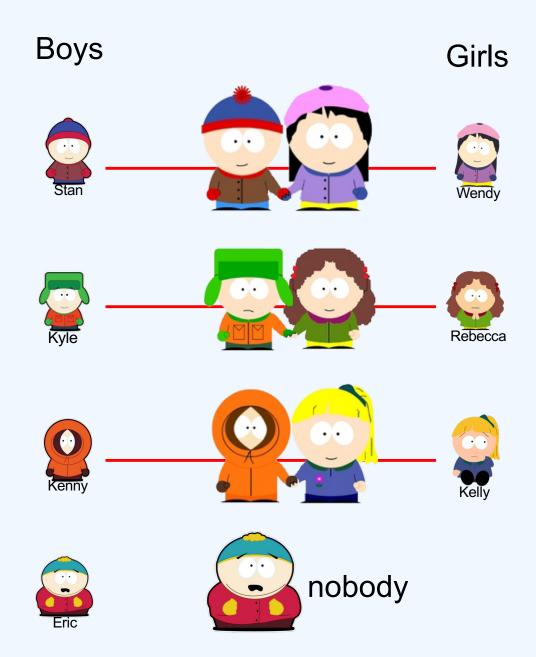
Boys Girls Wend Rebecca Kenn

Applications: student/hospital, National Resident Matching Program

Formal setting

- Two groups: *B* and *G*
- Preferences:
 - members in *B*: full ranking over $G \cup \{nobody\}$
 - members in *G*: full ranking over *B*∪{nobody}
- Outcomes: a matching M: $B \cup G \rightarrow B \cup G \cup \{nobody\}$
 - $M(B) \subseteq G \cup \{nobody\}$
 - $\mathsf{M}(G) \subseteq B \cup \{\mathsf{nobody}\}$
 - [M(*a*)=M(*b*)≠nobody] \Rightarrow [*a*=*b*]
 - $[\mathsf{M}(a)=b] \Rightarrow [\mathsf{M}(b)=a]$

Example of a matching



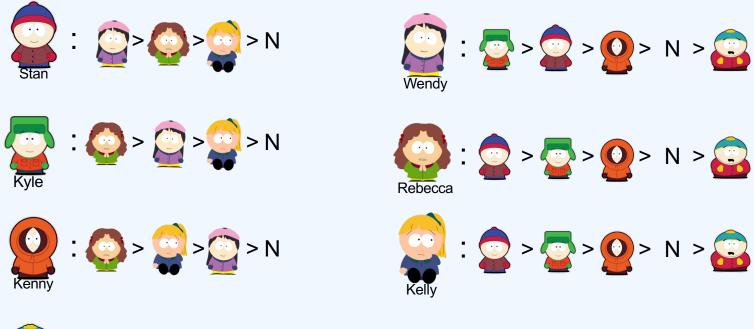
Good matching?

- Does a matching always exist?
 apparently yes
- Which matching is the best?
 - utilitarian: maximizes "total satisfaction"
 - egalitarian: maximizes minimum satisfaction
 - but how to define utility?

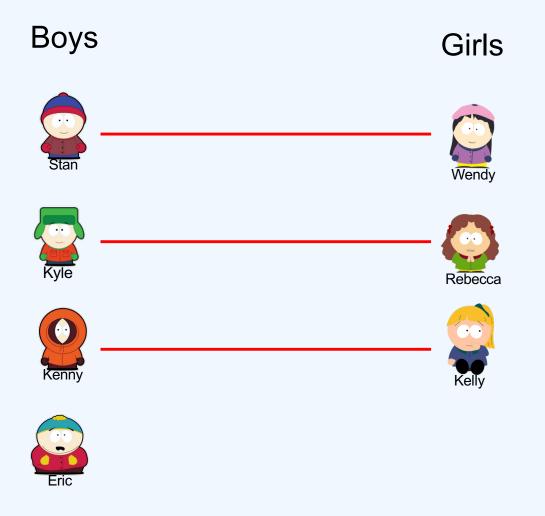
Stable matchings

- Given a matching M, (b,g) is a blocking pair if
 - $-g >_b \mathsf{M}(b)$
 - $-b>_{g}\mathsf{M}(g)$
 - ignore the condition for nobody
- A matching is stable, if there is no blocking pair
 - no (boy,girl) pair wants to deviate from their currently matches

Example

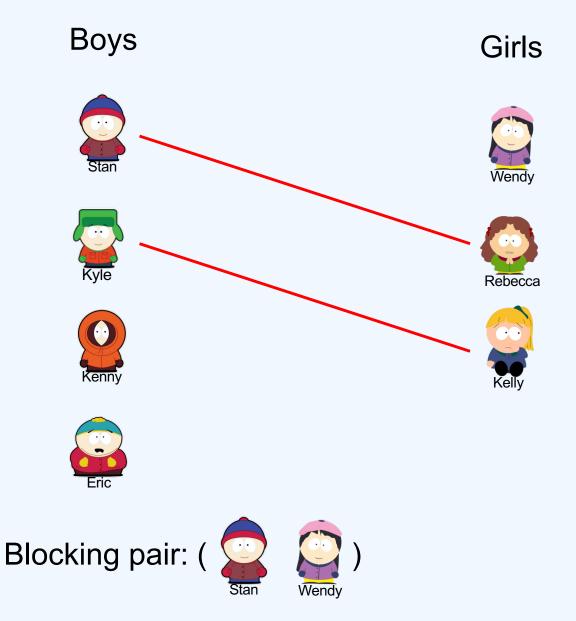


A stable matching



no link = matched to "nobody"

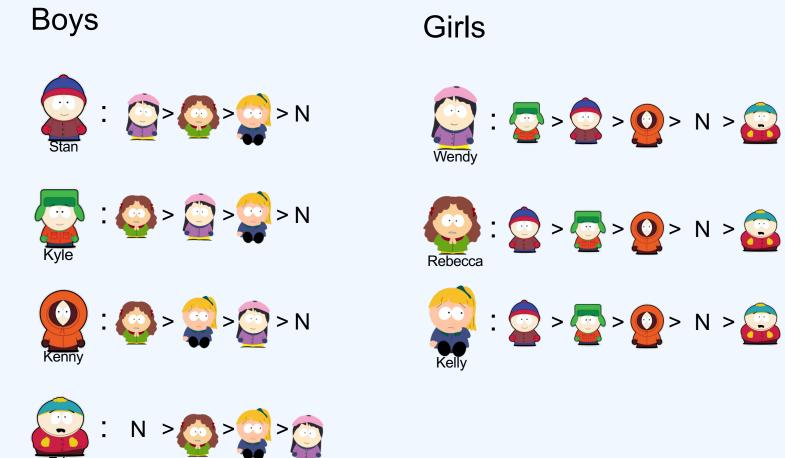
An unstable matching

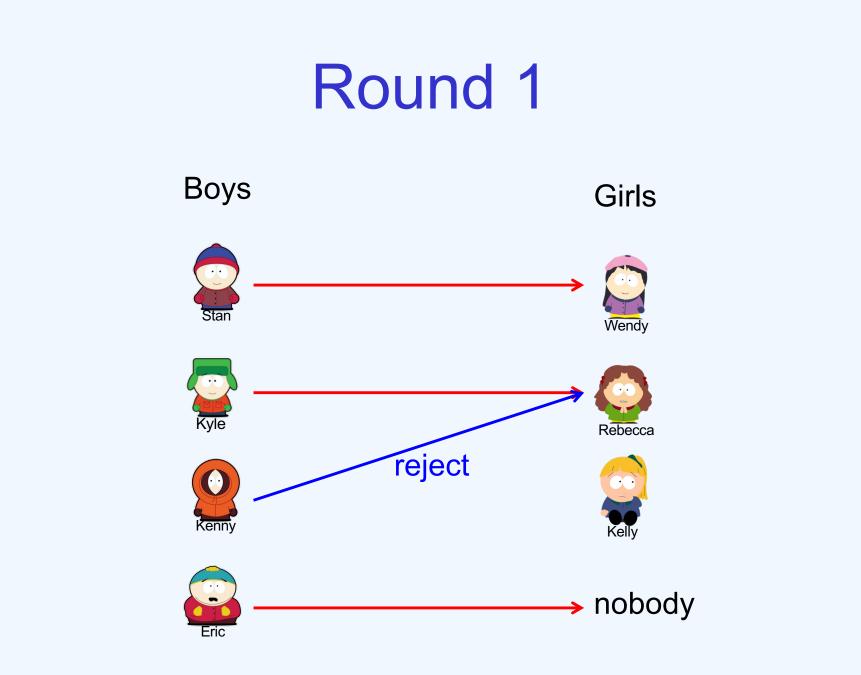


Does a stable matching always exist?

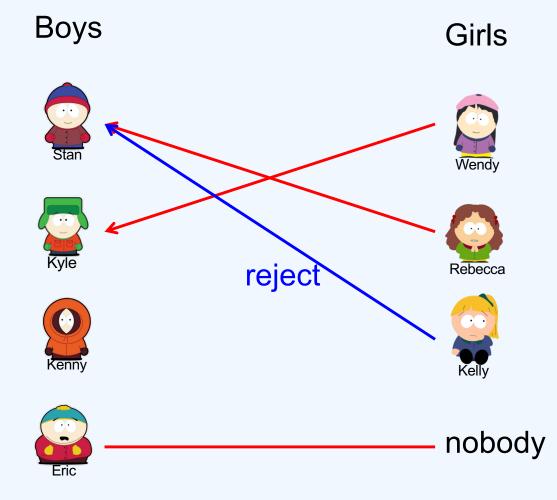
- Yes: Gale-Shapley's deferred acceptance algorithm (DA)
- Men-proposing DA: each girl starts with being matched to "nobody"
 - each boy proposes to his top-ranked girl (or "nobody") who has not rejected him before
 - each girl rejects all but her most-preferred proposal
 - until no boy can make more proposals
- In the algorithm
 - Boys are getting worse
 - Girls are getting better

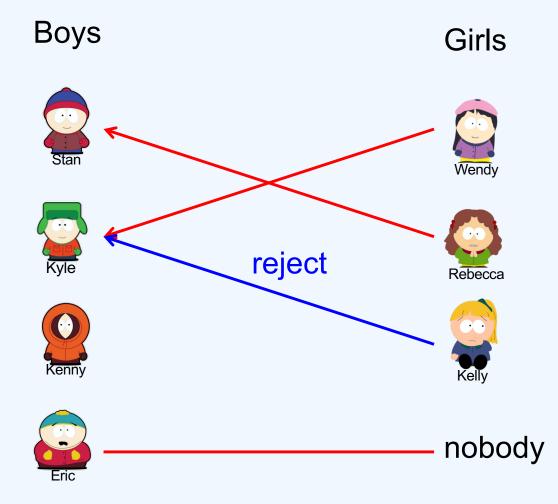
Men-proposing DA (on blackboard)

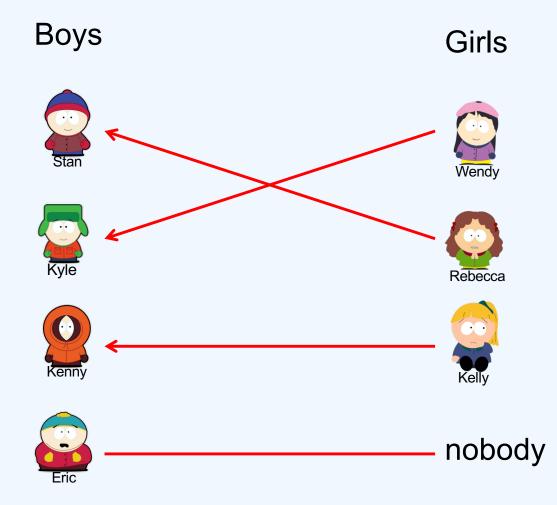




Women-proposing DA (on blackboard)

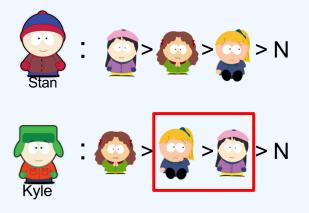


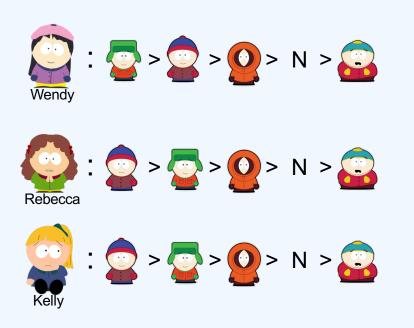


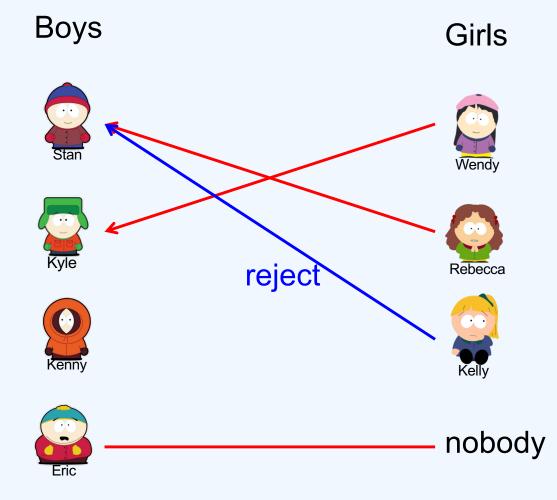


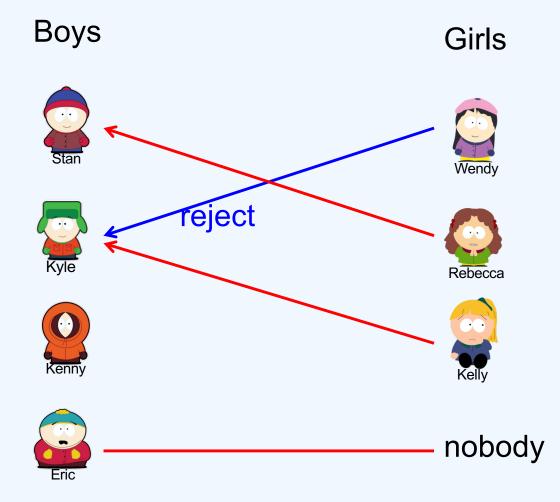
Women-proposing DA with slightly different preferences

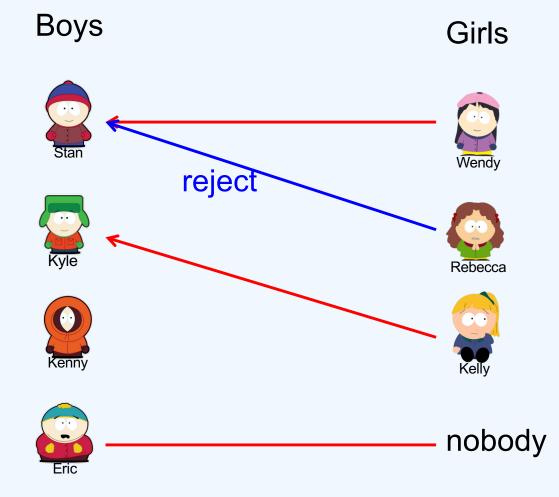
Boys

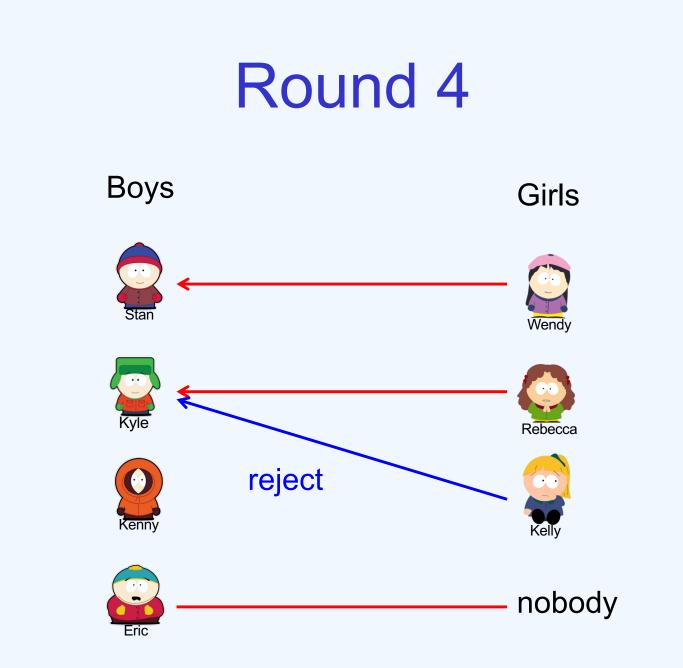


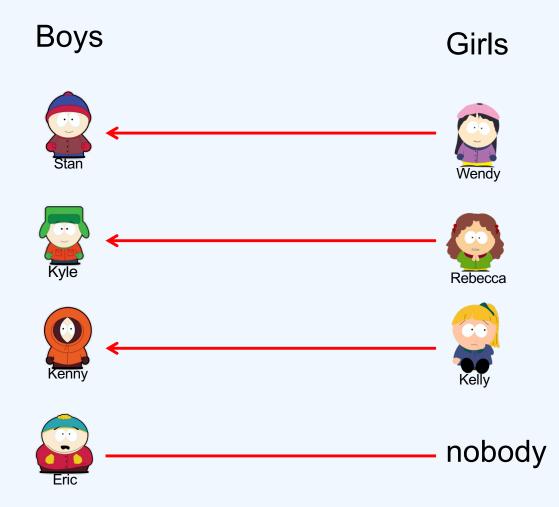












Properties of men-proposing DA

- Can be computed efficiently
- Outputs a stable matching
 - The best stable matching for boys, called men-optimal matching
 - and the worst stable matching for girls
- Strategy-proof for boys

The men-optimal matching

- For each boy b, let gb denote his most favorable girl matched to him in any stable matching
- A matching is men-optimal if each boy b is matched to g_b
- Seems too strong, but...

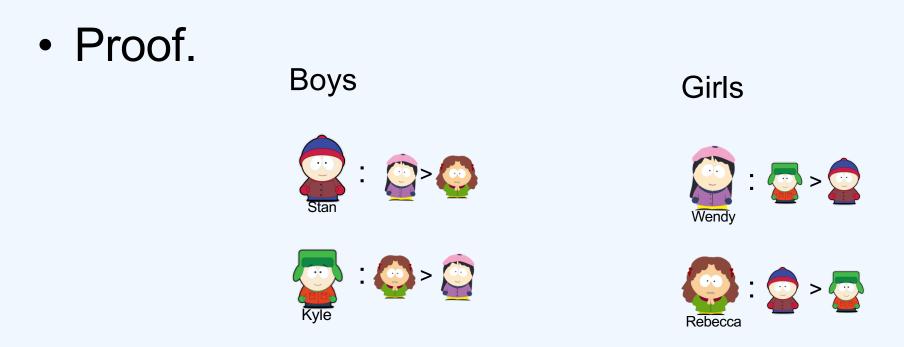
Men-proposing DA is men-optimal

- Theorem. The output of men-proposing DA is menoptimal
- Proof: by contradiction
 - suppose *b* is the first boy not matched to $g \neq g_b$ in the execution of DA,
 - let M be an arbitrary matching where b is matched to g_b
 - Suppose b' is the boy whom gb chose to reject b, and M(b')=g'
 - $g' >_{b'} g_{b}$, which means that g' rejected b' in a previous round g' $b' \checkmark g_{b}$ $b' \checkmark g$ DA M g' $b' \checkmark g$ $b' \land g'$ $b' \land g'$ $b' \land$

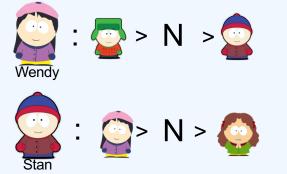
Strategy-proofness for boys

 Theorem. Truth-reporting is a dominant strategy for boys in men-proposing DA

No matching mechanism is strategy-proof and stable



- If (S,W) and (K,R) then
 If (S,W) and (K,R) then
- If (S,R) and (K,W) then 2: 2 N > 0



Recap: two-sided 1-1 matching

- Men-proposing deferred acceptance algorithm (DA)
 - outputs the men-optimal stable matching
 - runs in polynomial time
 - strategy-proof on men's side

Example

Agents

Houses

Formal setting

- Agents $A = \{1, ..., n\}$
- Goods *G*: finite or infinite
- Preferences: represented by utility functions
 - agent *j*, u_j : $G \rightarrow \mathbb{R}$
- Outcomes = Allocations
 - $-g: G \rightarrow A$
 - $-g^{-1}: A \rightarrow 2^G$
- Difference with matching in the last class
 - 1-1 vs 1-many
 - Goods do not have preferences

Efficiency criteria

- Pareto dominance: an allocation g Pareto dominates another allocation g', if
 - all agents are not worse off under g
 - some agents are strictly better off
- Pareto optimality
 - allocations that are not Pareto dominated
- Maximizes social welfare
 - utilitarian
 - egalitarian

Fairness criteria

- Given an allocation g, agent j_1 envies agent j_2 if $u_{j_1}(g^{-1}(j_2)) > u_{j_1}(g^{-1}(j_1))$
- An allocation satisfies envy-freeness, if
 - no agent envies another agent
 - c.f. stable matching
- An allocation satisfies proportionality, if

- for all j, $u_j(g^{-1}(j)) \ge u_j(G)/n$

- Envy-freeness implies proportionality
 - proportionality does not imply envy-freeness

Why not...

- Consider fairness in other social choice problems
 - voting: does not apply
 - matching: when all agents have the same preferences
 - auction: satisfied by the 2nd price auction
- Use the agent-proposing DA in resource allocation (creating random preferences for the goods)
 - stableness is no longer necessary
 - sometimes not 1-1
 - for 1-1 cases, other mechanisms may have better properties

Allocation of indivisible goods

- House allocation
 - 1 agent 1 good
- Housing market
 - 1 agent 1 good
 - each agent originally owns a good
- 1 agent multiple goods (not discussed)

House allocation

- The same as two sided 1-1 matching except that the houses do not have preferences
- The serial dictatorship (SD) mechanism
 - given an order over the agents, w.l.o.g.

 $a_1 \rightarrow \dots \rightarrow a_n$

- in step j, let agent j choose her favorite good that is still available
- can be either centralized or distributed
- computation is easy

Characterization of SD

- Theorem. Serial dictatorships are the only deterministic mechanisms that satisfy
 - strategy-proofness
 - Pareto optimality
 - neutrality
 - non-bossy
 - An agent cannot change the assignment selected by a mechanism by changing his report without changing his own assigned item
- Random serial dictatorship

Why not agent-proposing DA

- Agent-proposing DA satisfies
 - strategy-proofness
 - Pareto optimality
- May fail neutrality

• How about non-bossy?

Agent-proposing DA when all goods have the same preferences
 = serial dictatorship

[–] No

Housing market

- Agent *j* initially owns h_j
- Agents cannot misreport h_j , but can misreport her preferences
- A mechanism *f* satisfies participation
 if no agent *j* prefers *h_j* to her currently assigned item
- An assignment is in the core
 - if no subset of agents can do better by trading the goods that they own in the beginning among themselves
 - stronger than Pareto-optimality

Example: core allocation

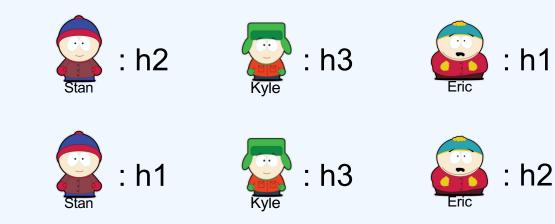
: h1>h2>h3, owns h3

: h3>h2>h1, owns h1

: h3>h1>h2, owns h2

Not in the core

In the core



40

The top trading cycles (TTC) mechanism

- Start with: agent j owns h_j
- In each round
 - built a graph where there is an edge from each available agent to the owner of her mostpreferred house
 - identify all cycles; in each cycle, let the agent j gets the house of the next agent in the cycle; these will be their final allocation
 - remove all agents in these cycles

Example

$$a_{1}:h_{2}>\dots a_{2}:h_{1}>\dots a_{3}:h_{4}>\dots a_{4}:h_{5}>\dots a_{5}:h_{3}>\dots a_{6}:h_{4}>h_{3}>h_{6}>\dots$$

$$a_{7}:h_{4}>h_{5}>h_{6}>h_{3}>h_{8}>\dots a_{8}:h_{7}>\dots a_{9}:h_{6}>h_{4}>h_{7}>h_{3}>h_{9}>\dots$$

$$a_{1} \qquad a_{2} \qquad a_{6}$$

$$a_{3} \qquad a_{4} \qquad a_{9}$$

$$a_{7} \qquad a_{8}$$

Properties of TTC

- Theorem. The TTC mechanism
 - is strategy-proof
 - is Pareto optimal
 - satisfies participation
 - selects an assignment in the core
 - · the core has a unique assignment
 - can be computed in $O(n^2)$ time
- Why not using TTC in 1-1 matching?
 - not stable
- Why not using TTC in house allocation (using random initial allocation)?
 - not neutral

DA vs SD vs TTC

- All satisfy
 - strategy-proofness
 - Pareto optimality
 - easy-to-compute
- DA
 - stableness
- SD
 - neutrality
- TTC
 - chooses the core assignment

Multi-type resource allocation

- Each good is characterized by multiple issues
 - e.g. each presentation is characterized by topic and time
- Paper allocation
 - we have used SD to allocate the topic
 - we will use SD with reverse order for time
- Potential research project