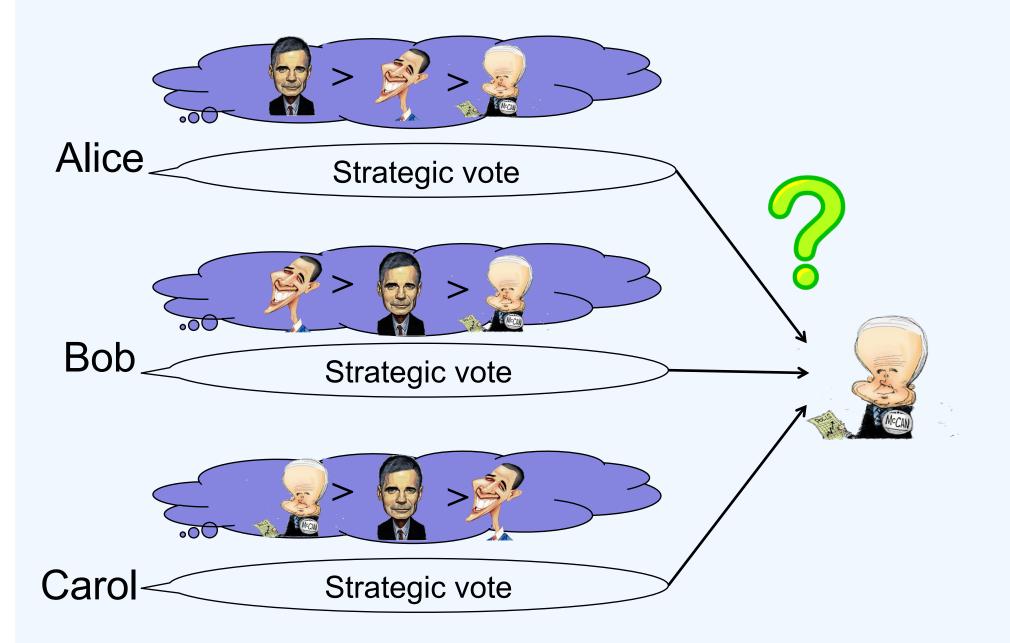
Introduction to Mechanism Design

Lirong Xia

Voting game of strategic voters



Game theory is predictive

➢ How to design the "rule of the game"?

- so that when agents are strategic, we can achieve a given outcome w.r.t. their true preferences?
- "reverse" game theory

➢ Example

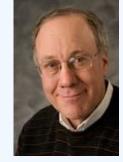
- Lirong's goal of this course: students learned economics and computation
- Lirong can change the rule of the course
 - grade calculation, curving, homework and exam difficulty, free food, etc.
- Students' incentives (you tell me)

Today's schedule: mechanism design

Mechanism design: Nobel prize in economics 2007

Leonid Hurwicz 1917-2008

Eric Maskin



Roger Myerson

VCG Mechanism: Vickrey won Nobel prize in economics 1996

William Vickrey 1914-1996

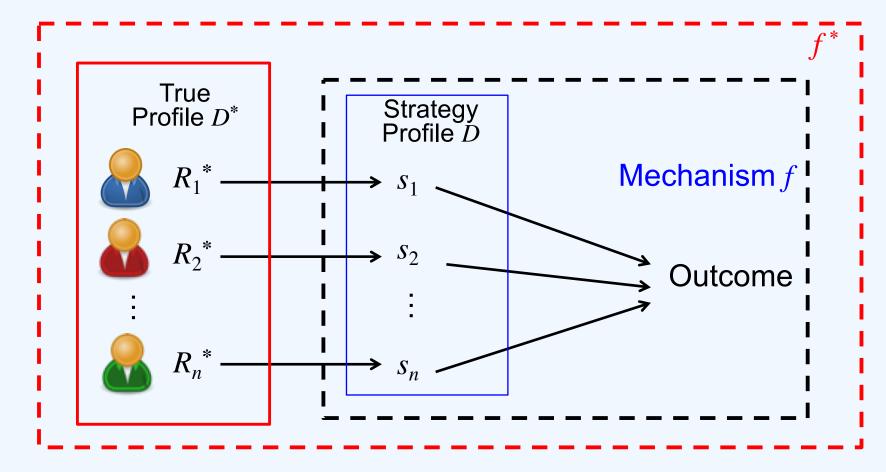
Mechanism design with money

- With monetary transfers
- Set of alternatives: A
 - e.g. allocations of goods
- Outcomes: { (alternative, payments) }
- Preferences: represented by a quasi-linear utility function
 - every agent *j* has a private value v_j^{*} (a) for every a∈A. Her utility is

 $u_{j}^{*}(a, p) = v_{j}^{*}(a) - p_{j}$

• It suffices to report a value function v_i

Implementation



- > A game and a solution concept implement a function f^* , if
 - for every true preference profile D^*
 - $f^*(D^*) = OutcomeOfGame(f, D^*)$
- \succ f^* is defined w.r.t. the true preferences
- \succ *f* is defined w.r.t. the reported preferences

Can we adjust the payments to maximize social welfare?

 \succ Social welfare of *a*

• SW(a)= $\Sigma_j v_j^*(a)$

Can any (argmax_a SW(a), payments) be implemented w.r.t. dominant strategy NE? The Vickrey-Clarke-Groves mechanism (VCG)

- The Vickrey-Clarke-Groves mechanism (VCG) is defined by
 - Alterative in outcome: $a^* = \operatorname{argmax}_a SW(a)$
 - Payments in outcome: for agent *j*

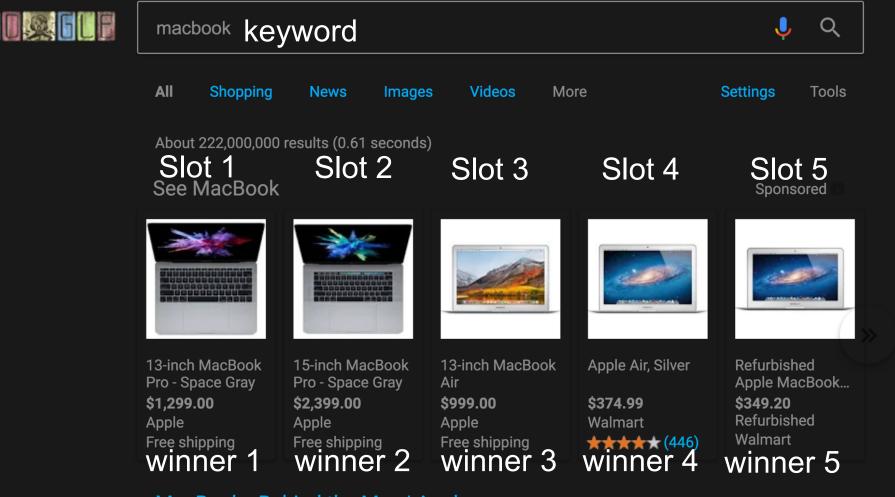
$$p_j = \max_a \Sigma_{i \neq j} v_i(a) - \Sigma_{i \neq j} v_i(a^*)$$

- negative externality of agent *j* of its presence on other agents
- ➤Truthful, efficient

Example: auction of one item

Alternatives = (give to K, give to S, give to E)

Example: Ad Auction



MacBook - Behind the Mac | Apple

Ad www.apple.com/ Behind the Mac people are making wonderful things and so could you. Shop now. More powerful than ever. Free two-day delivery. Apple Store pickup. Built-in Apps. Compare Mac models · Buy now · Apple GiveBack · Accessories for Mac

Ad Auctions: Setup

$\succ m$ slots

- slot *i* gets s_i clicks
- \succ *n* bidders
 - v_i : value for each user click
 - b_j : pay (to service provider) per click
 - utility of getting slot $i: (v_j b_j) \times s_i$
- Outcomes: { (allocation, payment) }

Ad Auctions: VCG Payment

- ➤ 3 slots
 - $s_1 = 100, s_2 = 60, s_3 = 40$
- ➤ 4 bidders
 - true values $v_1^* = 10$, $v_2^* = 9$, $v_3^* = 7$, $v_4^* = 1$,
- > VCG allocation: OPT = (1, 2, 3)
 - slot 1->bidder 1; slot 2->bidder 2; slot 3->bidder 3;
- VCG Payment
 - Bidder 1
 - not in the game, utility of others = 100*9 + 60*7 + 40*1
 - in the game, utility of others = 60*9 + 40*7
 - negative externality = 540, pay per click = 5.4
 - Bidder 2: 3 per click, Bidder 3: 1 per click

VCG is DSIC

proof. Suppose for the sake of contradiction that VCG is not DSIC, then there exist j, v_i , v_{-i} , and v'_i such that $u_i(v_i, v_{-i}) < u_i(v'_i, v_{-i})$ \succ Let a' denote the alternative when agent j reports v'_{i} $\Leftrightarrow v_i(a^*) - (\max_a \sum_{k \neq i} v_i(a) - \sum_{k \neq i} v_i(a^*))$ < $v_i(a') - (\max_a \sum_{k \neq i} v_i(a) - \sum_{k \neq i} v_i(a'))$ $\Leftrightarrow v_i(a^*) + \sum_{k \neq i} v_i(a^*) < v_i(a^i) + \sum_{k \neq i} v_i(a^i)$ Contradiction to the maximality of a^*