
1

Computing the Unmeasured: An Algebraic
Approach to Internet Mapping

Yuval Shavitt Xiaodong Sun Avishai Wool Bülent Yener

Abstract—
Distance estimation is important to many Internet applications.

It can aid a WWW client when selecting among several potential
candidate servers, or among candidate peer-to-peer servers. It can
also aid in building efficient overlay or peer-to-peer networks that
dynamically react to change in the underlying Internet. One of the
approaches to distance (i.e., time delay) estimation in the Internet
is based on placing Tracer stations in key locations and conduct-
ing measurements between them. The Tracers construct an approxi-
mated map of the Internet after processing the information obtained
from these measurements.

This work presents a novel algorithm, based on Algebraic tools,
that computes additional distances, which are not explicitly mea-
sured. As such, the algorithm extracts more information from the
same amount of measurement data.

Our algorithm has several practical impacts. First, it can reduce
the number of Tracers and measurements without sacrificing infor-
mation. Second, our algorithm is able to compute distance estimates
between locations where Tracers cannot be placed.

To evaluate the algorithm’s performance, we tested it both on ran-
domly generated topologies and on real Internet measurements. Our
results show that the algorithm computes up to 50-200% additional
distances beyond the basic Tracer-to-Tracer measurements.

I. INTRODUCTION

A. Background

The Internet is growing at a remarkable rate. However,
there is no central registry that allows users or planners to
track this growth. The basic characteristics of the Internet
structure are only starting to be revealed [11], [7], [3], [2].
Learning the exact structure of the network seems to be an
unrealistic target.

In many cases, however, an estimate of the distances be-
tween nodes in the network is good enough. The most ob-
vious case is when a client needs to select a service from
one of several servers located in distant locations. The

Yuval Shavitt is with the Dept. of Electrical Engineering
- Systems, Tel Aviv University, Ramat Aviv 69978, Israel.
shavitt@eng.tau.ac.il Research was supported by a grant
from the United States — Israel Bi-national Science Foundation (BSF),
Jerusalem, Israel.

Xiaodong Sun is with the Math Dept., Rutgers Univer-
sity, 110 Frelinghuysen Road, Piscataway, NJ 08854, USA.
sunxd@math.rutgers.edu Research supported by NSF grant
CCR-9700239, by DIMACS, and by NSF STC 91-19999.

Avishai Wool is with the Dept. of Electrical Engineering - Systems, Tel
Aviv University, Ramat Aviv 69978, Israel, and Lumeta Corporation, 220
Davidson Ave, Somerset, NJ 08873, USA. yash@acm.org

Bülent Yener is with the Dept. of Computer Science, Rensselaer Poly-
technic Institute, Troy, NY 12180, USA. yener@cs.rpi.edu

WWW is an example of such a situation, as more and more
popular sites open mirror sites that are geographically scat-
tered. Many methods have been suggested to aid clients in
selecting the best server (e.g., see [6], [10], [23]). All of
them rely on network delay as one of the most important
metrics to consider. In fact, Obraczka and Silva [23] have
found that the single most important measure in server se-
lection is network delay. Currently, however, the selection
is usually done by the server, which directs the client to
a mirror that is expected to serve it with the lowest delay
(possibly also taking the server load into account). A spe-
cial case of the mirror site solution is the well publicized
content delivery network (CDN) [16], which in some cases
replicates information to dozens of mirror sites.

Distance estimation is important also when ones wishes
to optimize overlay networks. Shi and Turner [32] sug-
gested deploying multicast via overlay services, and sug-
gested several algorithms which optimize the end-to-end
delay. Ratnasamy et al. [27] suggested to optimize overlay
networks by binning together nodes whose relative delay is
short. Other overlay applications in which distance estima-
tion is useful for efficient operation include: application-
layer anycasting [36], distributed object repositories, hier-
archical caching, etc.

IDMaps [12] is a project that attempts to solve this prob-
lem by placing measurement stations (Tracers) at key lo-
cations in the Internet. These Tracers periodically mea-
sure the distances among themselves and to other regions
of the network. For simplicity, IDMaps uses each au-
tonomous system (AS) as a region.1 The Tracers advertise
their measurement information to clients such as SONAR
[21] or HOPS [12] servers, and these servers use the mea-
surements to construct an estimated distance map of the
network. Nodes of an overlay network can then query
these topology servers regarding either distances2, or more
likely coordinates [22], [31] to be used in optimizing their
internal routing.

Measuring the distance (delay) between two IDMaps
Tracers can be done in many ways. A seemingly obvious

�
Large ASs such as backbone providers are further divided into smaller

regions.�

It was shown in [12] that while the triangle inequality does not hold in
a large percentage of the Internet triangles, its violation is minuscule and
does not hurt the distance approximation.

2

choice is to use the traceroute program, which returns
the IP addresses of all the routers on the route to the des-
tination and the round-trip time (rtt) to each one of them.
However, this is approach suffers from two limitations:
1. The rtt estimates returned by traceroute are not ac-
curate and are regarded only as very gross estimates of the
real rtts.3

2. The overhead of performing traceroute is signifi-
cantly higher than that of the obvious alternative, which is
ping.

A simple and effective way to measure delay between
two end points is to use ping. A few time spaced trains
of ping probes or application level probes can be used to
measure the delay between end points quite accurately. For
example, Zeitoun et al. [37] found that taking the minimum
among the rtt of 4-5 probes is sufficient to achieve a good
propagation delay estimate (for a wide range of inter-probe
distances). More sophisticated tools such as pathchar
(see [5] for a list) can map the delay, loss and other char-
acteristics of an entire path between two points. However,
these tools typically require hundreds of probes and sev-
eral minutes to map a single multi-hop path with accept-
able accuracy [19], and are thus not practical for massive
usage.

Because of the above-mentioned reasons, the design-
ers of the IDMaps system chose to use ping trains as its
main measurement tool, coupled with a low frequency of
traceroute usage to discover the routes. We refer the
reader to [12], [37] for further discussions regarding the
design of IDMaps. In turn, our algorithms are designed to
extract as much distance information as possible from this
combination of ping and traceroute data.

B. Contributions

In this paper, we present an algorithm that increases the
effectiveness of end-to-end distance measurements at no
additional overhead. Given end-to-end distance measure-
ments (e.g., using ping) and the routes along which the
measurements were conducted (e.g., using traceroute)
our algorithm computes additional distances, to and be-
tween intermediate nodes. The result is a more detailed
distance map, which provides better distance estimation.
For example, consider the situation depicted in Figure 1.
We have three Tracers, T1, T2, and T3, a client, C, and
two possible servers, S1 and S2. Using Tracer-to-Tracer
measurements and Tracer-to-AS measurements, we esti-
mate the distance between the client and the servers by the
length of the concatenated measured paths C-T1-T2-S1 =
40+160+50=250 and C-T1-T3-S2 = 40+200+40=280. As

�

Van Jacobson, the developer of traceroute, also acknowledged
this point at his April 1997 talk at the Mathematical Sciences Research In-
stitute, Berkeley, CA, and thus motivated the introduction of pathchar.

a result we will wrongly identify S1 as the closest server to
C. However, if we can discover the additional distance T1-
S2=150, we can better estimate the distance from the client
C to the server S2 over the path C-T1-S2=40+150=190,
and identify S2 as the closest server.

T1

T2

S2

T3

S1

C

Fig. 1. A motivation for discovering extra distances.

An alternative way to look at the above is to notice that
our algorithm discovers distances to new nodes in the net-
work which can be used as dummy Tracers in the approx-
imated map. It was shown [12], [9] that the accuracy of
pointing a client to the closest mirror increases with the
number of Tracers, and that one can select the number of
deployed Tracers based on the network size and a target ac-
curacy. Given that our algorithm discovers dummy Tracers
one can deploy less Tracers to get the same accuracy.

The main idea behind our approach is that using the
measurement routes, one can identify nodes through which
routes between several Tracers pass. We refer to these
nodes as crossing points. A favorable arrangement of these
points may enable us to calculate from the end-to-end mea-
surements the distances to the crossing points and between
them. In the worst case, the number of crossing points can
be zero or they can be arranged in a way where no addi-
tional delay can be calculated. However, we show that in
the Internet this is not the case, using both simulated net-
works and Internet traces (from Oct. 1999).

Our algorithm is computationally efficient, and can han-
dle noisy measurements. It is adapted to handle two types
of noise. Two-sided noise appears when we are interested
in the average delay: in this case, a noisy measurement
may be either higher or lower than the true value. To deal
with two-sided noise, we use a least-squares approxima-
tion algorithm (cf. [8, Ch. 31]). One-sided noise appears
when we are interested in measuring the minimal propaga-
tion delay: in this case, a noisy measurement cannot fall
below the true value. To deal with one-sided noise we use
linear programming with additional slack variables.

To evaluate our algorithm, we studied its performance
against two varieties of synthetic randomly generated net-
works and also against data we collected from the Internet.

3

In all cases, our algorithm succeeded in computing a sig-
nificant number of distances between Tracers and crossing
points, and between different crossing points. For the In-
ternet data, the algorithm discovered additional distances
to as many crossing points as the original Tracers, a 100%
gain. For randomly generated networks, the gain was over
200% when we used the Waxman method [35], and about
50% when we used networks generated according to the
recently discovered power-law on the node connectivity
[11], [18].

C. Related work

Francis et al. described the IDMaps architecture and phi-
losophy of operation in [13]. This paper did not focus
on optimizing the measurement overhead, and made only
some simple observations about situations in which mea-
surements can be saved. Theilmann and Rothermel [34]
suggested to use hierarchical Tracer structure to reduce
the measurement overhead. A different approach was sug-
gested by Francis et al. [12] that showed how spanners [26]
can effectively reduce the amount of measurement without
sacrificing too much of the estimation effectiveness. Our
algorithm complements all of these approaches, by extract-
ing more information from the same data that is collected
by the various tracing strategies.

The MINC project (cf. [20]) aims at using multicast
inference to characterize network loss and queuing delay
(rather than propagation delay). To the best of our knowl-
edge, all their published results are for a single multi-
cast tree, where they succeed, like us, in calculating non
measured parameters (queuing delay and loss) in tree seg-
ments. Rubenstein et al. [28] suggested techniques to iden-
tify link sharing among measurements, their techniques
were later improved by Harfoush et al. [15].

In a recent work, published after the early versions
of this paper [29], [30], Bradford et al. [4] suggested to
use traceroute for network discovery and looked at the
marginal utility of ’tracerouting’ to an increasing number
of destinations from a limited number of origins. They
claim success in revealing large portions of the Internet
core, while they fail to reveal much of the ’horizontal’ links
outside of the core. Their result can explain why the nodes
we revealed in our Internet experiment were mostly core
nodes.

The accuracy of using distance maps such as the ones
generated by IDMaps for the mirror selection and related
problems was studied by Jamin et al. [9]. They found that
in about 85% of the cases the end to end measurements
where sufficient to locate the closest server to the client.
Our algorithm can potentially increase this number.

Organization The rest of the paper is organized as fol-
lows. In the next section we present the model and a simple

example of the idea behind the algorithm. In Section III,
we prove that on a network with a tree topology one can
compute the distances between all the crossing points. In
Section IV we present the details of algorithm itself. In
Sections V and VI we describe the evaluation of the al-
gorithm using Internet data, and using synthetic data. We
conclude with Section VII.

II. THE MODEL

A. Definitions

For simplicity of presentation, the network is modeled
as an undirected graph. The directed case is similar, and is
discussed in Section IV-A. The graph structure or size is
unknown to the algorithm, and is used only for the purpose
of analysis. We assume that measurement stations (Trac-
ers) are placed at some nodes of the graph. The routes
between Tracers are assumed to be quasi-static, i.e., they
change slowly enough to make their knowledge valuable.
On the other hand, the distance between nodes is assumed
to be dynamic. The distance may be the propagation delay
[17], [13], the average delay [34], hop count, or any other
measurable route characteristics. Since delay is the most
commonly pursued characteristic, we interchangeably use
the terms distance, length, and delay.

We make no assumptions about the routing in the net-
work. The algorithm is easier to explain when the routing
is symmetric (and we assume this for the generated net-
works), but it works just as well for asymmetric routing.

Definition II.1: A measurement path is the route (list
of nodes) between two different Tracers as defined by the
network topology and the underlying routing protocol.4

Definition II.2: The measurement graph is the union
of all the measurement paths. I.e., the graph nodes are the
union of all the nodes along the measurement paths, and
the graph edges are the union of all the links comprising
the measurement paths.

Definition II.3: A non-Tracer node whose degree in the
measurement graph is greater than two is called a crossing
point.

Definition II.4: A segment is a maximal sub-path of a
measurement path, whose end-points are either Tracers or
crossing points, that does not include an internal crossing
point.

Definition II.5: The segment graph is a graph whose
nodes are the Tracers and crossing points, and has a link
between two nodes if there is a segment between these two
nodes in the measurement graph.

�

If we assume rtt measurement and undirected variables for delay, a
measurement path between Tracer A and Tracer B is simply the route
from A to B. We can also use variables for each direction of every link and
then a measurement path is the concatenation of the two unidirectional
paths between A and B.

4

The problem: Given a set of end-to-end delays between
Tracers with their associated routes, find all the possible
segments or groups of consecutive segments whose lengths
can be derived.

B. An example

The following simple example explains the terms de-
fined above, and the problem statement. For simplicity,
we assume that the routing is symmetric, and that the mea-
surements are for the round trip delay. Thus all the delays
are expressed as round trip times.

C DBA

E

Fig. 2. A five node network example.

Consider the five node network of Figure 2, where Trac-
ers are placed at nodes A, D, and E. Suppose that the fol-
lowing three (round trip) distances are measured: A-D,
E-D, and A-E. Using traceroute we obtain the three
routes, A-B-C-D, E-B-C-D, and A-B-E.

Note that it is clearly impossible to compute the distance
on the link B-C separately from the distance on the link C-
D, since every end-to-end measurement path that contains
one of these links also contains the other. This is the moti-
vation for the definitions of segments and crossing points.

In the example, only node B is identified as a crossing
point. This defines three segments: ��� =A-B, ��� =B-C-D,
and ��� =E-B. Suppose that, using ping, the distances A-
D, E-D, and A-E were measured to be 4, 7, and 5, respec-
tively.

The following three equations express the ping mea-
surement data, using the segments identified from the
traceroute information as variables:

����� ��� 	�

����� � � 	�

��� � � � 	��
(1)

In this case, we have three linearly independent equations
with three variables, which we can solve to obtain the de-
lay in each of the three segments: ����	���������	������ � 	�
 .
Thus, we are able to compute all the distances to the cross-
ing point B, even though no Tracer was placed in it. The
gain for this example is 100%: from 3 measurements we
were able to compute 3 additional distances, and discover
distances to one additional non-Tracer node (a 33% gain).

III. THE TREE CASE

Suppose initially that each Tracer measures the dis-
tances to all other Tracers (we will show later that this
assumption is stronger than necessary). Suppose, further,
that the resulting measurement graph is a tree, and let �
denote the number of Tracers. We prove that in this case,
one can find the delay on all the segments using a simple
linear algorithm. For simplicity, we assume that there is no
noise in the measurements. The noise is easily treated by
using least-squares approximation to obtain a solution that
is the closest to all measurement points (more on this issue
in Section IV).

We first note that, with no loss of generality, all the Trac-
ers can be assumed to be placed in leaves of the tree, and
not in internal nodes. Otherwise, the tree can be cut at
the internal node which is a Tracer (with this node dupli-
cated to all the resulting sub-trees) and each sub-tree can
be treated independently. An internal node in the tree with
degree greater than 2 is a cross point, and must be part of,
at least, two measurement routes by its definition. How-
ever, the existence of two routes indicates that, at least, a
third route passes through the internal node, as stated in
the following lemma.

Lemma III.1: The number of measurement routes pass-
ing through a crossing point is at least three in a measure-
ment graph with tree topology.
Proof: Consider a crossing point � . By its definition there
are, at least, three sub-trees connected to it. Let ��� , ��� ,
and � � be three leaves each in a different sub tree. Obvi-
ously the routes between any pair of these leaves must pass
through � .

Fact III.2: If the measurement graph is a tree, then the
segment graph derived from the measurements is also a
tree, which we call the segment tree. By definition of a
segment, internal nodes of the segment tree cannot have
degree 2.

Fact III.3: In every segment tree with more than two
nodes there exists at least one internal node with degree "! � that is connected directly to, at least,

 $# � leaves.
We refer to such an internal node as an outpost.

Theorem III.4: The lengths of all the segments in the
segment tree can be computed.
Proof: Consider a crossing point, � , with degree

that

is an outpost. By Fact III.3, at least one such a crossing
point exists, and it is connected directly to

 %# � leaves
� � �'&(&'&(�)�+* . Let � � be some leaf node in the part of the tree
other than ,��+���(&'&'&'�)� * �)�.- . The routes between every pair
of the leaves �/�.�'&(&'&(�)� * passes through � . Let �.0 be the
length of the route between � and � 0 , 1%	2�3��45���6�(&'&'&7� ;
and let the measurements between � 0 and � 098:� be ; 0 for
1<	=���>45���6�'&(&'&7� ?# � , and the measurements between ���
and � * be ; * . Obviously we can solve the following linear

5

system and obtain the length of � � �������'&'&(&'�>��* , which are
the segments that connect � to the leaves � ����� � �'&(&'&(�)� * .

��� � ��� 	�;'�
����� � � 	�;7�

. . .
� � � �.*�	�; *

This way one can obtain the length of all the segments that
connect all the leave nodes to the crossing point � .

Removing nodes � � �'&(&'& ���+* from the tree does not
change the degree of any internal node (except for the out-
post) and thus Fact III.3 holds for this tree, as well, if it
contains more than 2 nodes, enabling the repetitive appli-
cation of the above procedure.

After the leaves � � �'&(&'& ���+* are removed, we are left with
a tree with a leaf node (�) which is not a Tracer. How-
ever, we can use any of its (removed) leaves, say �/� , as a
measurement proxy. The distance between some Tracer �
and � can be computed by subtracting the newly computed
distance between � and � � from the distance between the
Tracers � and �+� .

In the final stage of the algorithm we are left with a star,
and there all the star segments can be easily calculated with
the same equation.

Theorem III.5: All the segment lengths in the tree can
be found using

��� ��� measurements.
Proof: In the proof of Theorem III.4 we used

measure-

ments to obtain the length of every
 $# � segments itera-

tively. The binary tree is the case that maximizes the num-
ber of measurements we need due to two reasons. First, it
maximizes the number of segments in a tree with � leaves,
which is 4�� . Second, the binary tree gives us the worst
measurement to gain ratio, i.e.,

 �� � ?# �	� 	 � � 4 . Thus,
we need no more than ��� measurements.

Note, of course, that not every set of
��� ��� measurements

is sufficient for finding all the segment lengths.

IV. THE ALGORITHM

In this section we describe our algorithm for general net-
works. We reiterate that the only information available to
the algorithm is the set of end-to-end measurements. We
do not make any assumptions about the structure, connec-
tivity, or size of the network. The algorithm comprises of
several phases, which we describe in the following sec-
tions.

A. Interpreting the measurements

Before the algorithm itself can begin its work, we need
to decide how we wish to interpret the measurements. In
particular, we need to define our variables, so that we can
write equations that correspond to the measurements. For

a link (A,B), two choices exist. We can either define two
unidirectional variables, one for the delay from A to B and
one for the delay from B to A; or we can define a single
bidirectional variable, for the round-trip delay A-B-A.

The decision depends on the nature of the measure-
ments available to us. If the measurements are truly uni-
directional, then we should clearly use unidirectional vari-
ables. If the measurements are round-trip measurements,
and the routing is symmetric, then we can use bidirec-
tional variables. For round trip measurements with asym-
metric routing, which is the situation most appropriate for
traceroute and ping Internet measurements, we can
use either unidirectional or bidirectional variables. Both
possibilities have pros and cons. In Section V we describe
how we interpreted the measurements in our experimenta-
tion.

Another point to consider is the interpretation of the de-
lay values that are measured. The simplest and least in-
formative case is when a measurement value is simply the
result of a single ping. In this case our algorithm would
compute a “snapshot” of the delays in the system. How-
ever, as discussed in [13], it is more likely that a set of
measurements will be taken between every two Tracers.
Then the delay value that appears on the right-hand-side
of our equations can be either the average delay in the set,
or the minimal delay in the set (the latter is appropriate
when we are trying to estimate the propagation delay and
to ignore the queuing delays). Our algorithm is essentially
indifferent to the meaning of the delay value, however this
issue has some implications when dealing with noisy data
(see Section IV-D).

B. Segmentation, and writing the equations

Once we decided upon the definitions of our basic vari-
ables, in principle, we can write a linear system of equa-
tions that describes the measurements. The left-hand-side
of each equation is the sum of all the variables (uni- or
bidirectional) corresponding to the links that appear in a
particular measurement path. The right-hand-side of each
equation is the measured delay for this path.

However, as we remarked in the discussion of the ex-
ample in Section II-B, there are variables that clearly can-
not be solved. Thus, we need to switch from dealing with
individual links to dealing with segments (recall Defini-
tion II.4). For this, we need to identify all the crossing
points (Definition II.3). Once we identify the crossing
points, we define our variables per segment, and write the
equations in terms of these segment variables. As we dis-
cussed in the previous section, the segment variables can
be either uni- or bidirectional.

Notation: Let
 denote the number of measurements,
and let � denote the number of segments that remain af-

6

ter the crossing points have been identified. We use ���
for � 	 �3�'&'&(& ��� to denote the variables representing the
lengths of the � segments, and ;'0 for 1 	 �3�'&'&(& ��
 to de-
note the lengths of the given measurement. Let �60 � for
1 	 ���(&'&'&'��
 and � 	 �3�'&(&'& � � be coefficients such that� 0 � 	 � if the � th segment appears on the 1 th measure-
ment path, and � 0 � 	�� otherwise. The general form of the
equations obtained after segmentation is as follows:

�6�)��� � � �6� ��� � �	�
����� �5�
����� 	�;'�� �>��� � � � ����� � �	�
����� � ������� 	�;7�
...

...
. . .

...
...��� � � � � ��� � � � �	�
����� ��� � � � 	�;��

(2)

Let � 	 ,�� 0 ��- be the
�� � matrix induced by the
equations, let � 	 � � ���'&'&(& �
��� � be the vector of variables,
and let � 	 � ;'���'&'&(&'�>; � � be the vector of measurements.
Then we can rewrite Equation (2) in matrix form as

��� 	�� & (3)

C. Solving as much as possible

It is highly unlikely that the linear system of Equa-
tion (3) is solvable. Typically, it is under-defined for some
variables and over-defined for others. Our goal is to extract
as much information as possible from the given measure-
ments (we show no one can do better in Section IV-F).
Therefore, rather than trying (and failing) to solve Equa-
tion (3), we transform the system of equations into a new
system that isolates all that is solvable.

The transformation is performed as follows. We per-
form Gauss-elimination steps on the columns of � , until
we to transform � into the matrix ��� of the following form:

� � 	

�����������

�!� �����"�#� �
���$�% �&�����"�#� �
���$�%#% . . . �#� �
���$�%#% % �!� �
���$�%#% % % � �
���$�
...

...
...

...
...

...
...%#% % % � �
���$�

'�((((((((((
)

(‘ % ’ means ‘any number’). Note that the rows of � may
also need to be permuted to reach this structure. Permuting
rows of � is equivalent to reordering the measurements.
Let �*�,+ � denote the number of non-zero columns in��� . Clearly, the leftmost �-� columns of ��� are linearly
independent.

Note that performing Gauss-elimination on the columns
of � is equivalent to multiplying � on the right by a regular
�.� � transformation matrix. Let / be this transformation
matrix. Furthermore, / can be computed incrementally,

as the Gauss elimination progresses, using standard linear
algebra. In matrix notation, we have

� � 	���/ & (4)

We now define a new vector of unknowns, 0 	�21 ���'&(&'& � 1 � � using the same transformation, i.e.,

�"	3/�0 & (5)

Then, plugging (4) and (5), and using Equation (3), we can
write � � 0"	���/40"	���� 	�� & (6)

We end with
 equations in the
1 � variables, that are de-

fined by the matrix ��� . Clearly, the
1 � ’s with �5+6�7+ �*�

are solvable from the new equations: The top left �-�����*�
sub-matrix of ��� is lower triangular and of rank �-� . How-
ever, these are the only

1 � variables that can be solved:
columns �8�:9;�<+ � in ��� are all zero.

D. Dealing with noise

It is highly unlikely that �8� 	
 and that the new system
of equations defined by

� � 0 	�� (7)

is solvable. Typically, �-�,9
 , and the system of equa-
tions is over-defined. In an ideal situation, when the data
contains no measurement noise, all
 equations would be
mutually consistent. In reality, however, noisy data would
make the over-defined system algebraically unsolvable.
To deal with the measurement noise, we solve (7) for vari-
ables

1 � � �=+>�;+ �*� � using least-squares approximation
(cf. [8, Ch. 31]).

In the absence of a detailed characterization of the noise,
using least-squares is the standard noise elimination tech-
nique. In our case, the noise is dominated by the delays
injected by each router along the path. If the router delays
are independent and the path is long enough, the Central
Limit Theorem tells us that their sum approximates a nor-
mal distribution, i.e., the noise is Gaussian. For Gaussian
noise it is known that the least-squares method provides
the Maximum Likelihood Estimator (MLE). Therefore, we
believe that the least-squares method is a reasonable noise
elimination method for the problem at hand.

Using the least-squares method we find the values of1 � � �?+@�A+ �*� � that minimize the functionB
0�C 0 �

B
� � �0 � 1 � # ;70 � � � (8)

where C 0 ’s are some positive weights. In our implemen-
tation we used C 0 	 � for all 1 . Other choices of C 0 are

7

also possible, e.g., using C 0 	 � � ; �0 , but using them would
make sense only if we had a more detailed model of the
origin of noise. We leave this issue for future work.

Note that the least-squares approximation inherently as-
sumes that the error in the equations is two-sided: the mea-
sured delay could be either too high (positive noise) or too
low (negative noise). Whether this assumption is appro-
priate depends on the meaning of the ;'0 values (recall Sec-
tion IV-A). In particular, if ; 0 is the minimal value selected
from a set of measurements, then allowing for negative er-
ror may be an invalid choice. In such a case, we can solve
(7) using linear programming. Let �"	 ��� �.�(&'&'&'� � � � be a
vector of error (or slack) variables. We can rewrite (7) as
an error minimization problem:

�������
	�����
�	����
0 , � 0 -��(& ��&

� ��� 0%���$	3� �0 ! �6��� ! � &
This is a linear program, which allows only positive noise.
It can be solved using any LP solver. Exploring this
method of dealing with noise is also left for future re-
search.

We emphasize, though, that our algorithm introduces no
additional errors. This is the case regardless of the method
we use for dealing with noise. In an ideal case where mea-
surements contain no noise, solving equations ���(&'&(&'��� � in
(7) suffices to compute the exact values of

1 � .
E. Back to sub-paths

At this point, we have solved (7), which gives us the val-
ues of the

1 � variables for 1 	 ���(&'&(& ���8� . However, these1 � ’s do not directly correspond to lengths we are actually
interested in. Recall that our original � � variables, that
represent segment lengths, are related to the

1 � ’s via Equa-
tion (5): � 	 /40 . The elements of matrix / are not nec-
essarily positive or even integral, since it is the byproduct
of the Gauss elimination. Therefore, we need to translate
the solution from the y domain back to the x domain.

It is not immediately obvious how to perform this re-
verse translation. Clearly, not every segment length � � can
be computed, since only �-� 9 � of the

1 � ’s were solved.
However, in many cases we can bypass this problem, us-
ing the following observation. Suppose � � and ��� rep-
resent consecutive segments on some measurement path,
between A-B and B-C, respectively. Even if we are unable
to compute � � and � � separately, we may well be able to
compute their sum � � �.� � , which represents the delay
on the concatenated sub-path A-C. The same observation
holds for any sub-path of a measurement path.

Consider a sub-path of one of the measurement paths,
which consists of several consecutive segments. Let these
segments correspond to variables � ��� �(&'&(& �
� ��� . Then the
delay on this sub-path can be expressed as the sum

of � � � �'&'&(&'� � � � (which is a 0-1 linear combination of� ���'&'&(&'� ���). We can write this combination as a prod-
uct of a 0-1 row vector ! and the column vector � , where
� �#" 	 � for $?	 ���'&(&'& ��% and �&�<	>� elsewhere. Formally,

 %	'!?��� 	 �B
�)(� ����� ��&

Note that this representation works for individual segments
as well: variable � � can be expressed using a vector c
which is zero everywhere and has a 1 in coordinate � .

We would like to check whether the delay on the sub-
path is solvable. Using Equation (5), we can write

 %	*!��
�"	'! /40"	 B 0 � � 0 / 0 � 1 ��	
B
� � B

0 � 0 / 0 �	� 1 ��& (9)

Thus, can be solved if and only if the coefficients of
1 �

for �,+ �8� are all 0, since these are the
1 � variables we

were unable to solve. In other words, the delay on a
sub-path can be computed if and only ifB

0 � 0 / 0 � 	��6��- ��+ � � & (10)

If the condition in Equation (10) holds, the solution for is obtained by plugging in the already solved
1 � � ��+� + �8� � values in Equation (9). In summary, we need

to perform the following procedure after solving variables1 �.�(&'&'&(� 1 �/. in Equation (7):

Procedure compute-sub-paths:
Foreach measurement path 021 , 3547698;:�:�:;8=<

Foreach sub-path > of 0?1 consisting of segments @&A � 8�:;:):;8�@&A �
Set B=A#"C476 for D�4E698�:�:�:;8GF and B�H�4JI elsewhere.
If K 1 B�1MLN1 A�4JIO8QPOR�S�TVU Then

Compute > using (9)
Else > cannot be solved.

F. Completeness

A distance, by the metric definition (delay), is a linear
combination of end-to-end distances. Using linear algebra,
since / is non-singular, a sub path can be expressed as
linear combination of the given distances if and only if it
can be expressed as linear combination of entries of �,� 1 .
Since the rank of � � is � � and only the first � � columns
of ��� are nonzero, a sub path can be expressed as linear
combination of the given distances if and only if it can be
expressed as linear combination of

1 0 ’s � 1 	 ���(&'&(& ���8� � ,
which can be solved by our algorithm.

G. An example of the algorithm operation

To get a better understanding of our algorithm, we in-
clude an annotated run of the algorithm on the network
shown in Figure 3. The network has 4 Tracers at A,B,C,E.

8

D E

A

C B

Fig. 3. An example of a network with asymmetric routing.

The routes between the Tracers A, B, and C are symmetric
and pass through node D. These three Tracers measure the
three round-trip delays among themselves. Tracer E only
measures its round-trip delay to A. However, the routing
between E and A is asymmetric; the route from E to A
passes through B, while the route from A to E uses the
direct link A-E.

For simplicity, we assume no measurement errors in the
delay. Assume that the four round trip measurements
yield the following numbers: A � B=7, A � C=8, B � C=9,
and A � E=11. There are eight directional links that ap-
pear in the measurement graph: � � ��� � ��� � � � � � � � �� � ����� ����� . Let � 	 � � � �	� � ��� � � � � � � � � � � �
��� � ��� � , and � 	 �
5�	
��	�6�(��� � . Then we can write the
following matrix equation:���

� �!� � �!�&�#�
� � � �!� � �#�� � � � � � �#�� �!� �!�#� � �

' ((
) � 	

���

�
���

' ((
) (11)

It is easy to see that two column pairs are identical.
Columns 3 and 6 correspond to links CD and DC, and are
united to a segment representing C-D-C (which is bidirec-
tional). The other identical pair, columns 7 and 8, corre-
sponds to links EB and AE. The fact that they are identical
means that these two links always appear together in the
equations, and are united to a (unidirectional) segment A-
E-B. The result is a smaller linear equation system:���

� � � �!� �
� �#� � � �� � � � � ��&� � �!� �

' ((
) � � 	

���

�
���

' ((
) (12)

where � � 	 � � � � � � ��� � � � � ��� � � � � �	��� � ��� � .
Next the matrix (�) in Equation 12 is triangulated using

Gauss elimination. The result is the matrix

� � 	
���

� � �#� �#�
� # � �#� �#�� � 4&� �#�� � � � �#�

' ((
) (13)

with the transformation matrix

/ 	
�������

� # � # � # � � �� � � � # � �� � � � � �� � � � # � # �� � � � � �� � � � � �

'�((((((
) & (14)

Solving the equation � � 0 	 � we get 0 	�
5� # ���>�5�(����� % � % � , where ’ % ’ means an arbitrary value.
Now we can check the solvability of the various seg-

ments. For example, for the unidirectional segment AD
� 	 � �3� ��� �6���6���6� � � and thus ! / 	 � ��� # �3� # �3� # ���(���(�	� ,
which shows that we cannot compute the length of the uni-
directional link AD by itself; the last two entries of ! /
are non zero. However, checking for the bidirectional seg-
ment pair AD+DA, for which !$	 � �����6� ���'�3� �6��� � , we get! / 	 � ��� # �3� # �3� �6���6��� � , which is solvable since the last
two entries are zero. We get AD+DA 	 1
� # 1 � # 1 ��	�� .
In the same way, we also get: BD+DB 	 1 � � 1 � 	�
 and
CD+DC 	 1 � 	 � . These are all the additional segments
we can obtain beyond the original 4 measurements, a 75%
gain, with one additional non-Tracer node (D) discovered.
Note that the single measurement E � A did not provide
us with any extra information beyond it’s own round trip
delay.

H. The algorithm complexity

Starting with � Tracers one may reveal � nodes. As-
suming that the equivalence list is kept in a hash table, con-
verting the � nodes to their equivalent is a linear process.
Using different hash tables one can identify the crossing
points and the segments in

��� � � . Writing the
 	 ��� � � �
equations is

��� �
 � where � is the number of segments.
Triangulating the equations with the Gaussian elimina-

tion requires
���
 � �8� � , where �8� is the number of solv-

able segments. Each column triangulation requires
���
 � �

operation, and the process stops when no more lines can be
triangulated, i.e., after �-� iterations.

Checking which of the segments or segment groups
are solvable requires less than

���
 � � � . Next we give
a more precise analysis. Under the assumption that the
same segment are not shared by too many traces, there are��� � � � segments in a trace on average. This is a small
number since

��� � � 	 ��� � � � 	 ���
 � , thus the aver-
age cannot be much different from the maximum num-
ber of segments per path. Since we check whether any
possible consecutive combination of segments in a path
can be solved, we perform

��� � � � � examinations of the
condition in Equation (10), where � �

is the number of
segments in a path. As a result, the cost of perform-

9

ing this stage is
����� � ��� � � � � � # �8� ��� , per path, and

� �
 � � � � � � � � � # �*� � � 	 � � �	��
 �
��� .��� � in total.

Calculating the length of a segment or a segment group
(using Equation 9) is

��� �-� � per solvable segment, and��� �8� � � in total. If the routing does not change and new
delay measurements arrive the complexity of recalculating
the delays of all the solvable segments is only

��� � � � � .
V. INTERNET MEASUREMENTS

In this section we describe the experimentation we
did with real Internet measurements. We used publicly-
accessible traceroute-ing machines as our Tracers,
collected data, and then applied our algorithm to this data.

A. Preliminary issues

A.1 Node identification

When faced with multiple traceroutes from differ-
ent nodes on the Internet, the first thing we need to address
is node identification. The output of traceroute is nor-
mally a list of IP addresses that were encountered along the
path between the end-points. However, using these IP ad-
dresses directly as node identifiers creates two problems:
1. IP address are allocated to interfaces rather than to
routers, so the same router shows up with many different
IP addresses in the traceroute data, depending on the
direction in which the traceroute request packet ar-
rived at the router. Typically (but not always) a router will
report back the IP address of its interface which is closest
to the traceroute originator. For our algorithm to give
meaningful results, we need to be able to identify all these
different IP addresses as belonging to the same router.
2. Many backbone carriers have clusters of routers in their
major hubs. A cluster is a collection of several routers,
in very close proximity (usually in the same building),
connected by a very fast network (e.g., an FDDI ring
or ATM mesh). From our perspective, every individual
router in the cluster may show up in the traceroute
data, with its (many) IP addresses, and often consecutive
traceroutes between the same end-points go through
different members of the cluster. Since our measurements
are inherently inaccurate, and the members of the cluster
are so close to each other, we argue that dealing with indi-
vidual cluster-routers is too fine a granularity. The results
are much more meaningful if we treat all the members of
a cluster as one virtual node.

To deal with the first problem, we relied on DNS
queries. Our assumption was that a router usually has
many IP addresses but only one DNS name. Thus, we
translated all the IP addresses to their DNS names, and
used the names as node identifiers. We found that 94%

of the IP addresses that our traceroute data discov-
ered are registered in DNS. For the remaining 6% of IP
addresses we used the IP address itself as the node identi-
fier. Our experiments showed this DNS-based node iden-
tification to be an effective heuristic. Govidan and Tang-
munarunkit [14] suggest other methods for alias resolution
based on probing routers with UDP packets destined to a
non-existent port. Using their method in the context of our
algorithms is left as a topic for further research.

We remark that, originally, we planned to use our algo-
rithms on the traceroute data from datasets D1 and D2
of [24]. Unfortunately, we were unable to reliably iden-
tify which IP addresses belonged to the same router from
the stored datasets. The datasets do not include the DNS
names of the routers, and querying today’s DNS failed on
61% of the IP addresses that were discovered in the 1994
and 1995 traceroutes. Apparently, most of the routers
have been replaced or reconfigured with different IP ad-
dresses over the last five years. Our inability to use this
data was the main motivation for our own data collection
effort.

Our solution to the second problem, of identifying and
unifying cluster-routers into virtual nodes is partly mech-
anized, and partly art. We relied on two sources of in-
formation. One source is that backbone carriers typi-
cally use a clear naming convention (e.g., all the routers
in AlterNet’s Chicago hub have DNS names ending with
chi.alter.net). The other source is that some carri-
ers actually make their network structure and router nam-
ing conventions publicly available, (e.g., Sprintlink [33],
AboveNet [1]). Combining these sources, we were able to
unify all the major hubs that showed up in our data into
virtual nodes. Similar solutions were use by Paxson in his
Ph.D. dissertation [25].

A.2 Unidirectional or bidirectional variables?

As we discussed in Section IV-A, we needed to decide
whether to use uni- or bidirectional variables. The routing
in the Internet is sometimes asymmetrical, i.e., the return
path from B to A may be totally or partially disjoint from
the route from A to B. Unfortunately, traceroute only
provides the list of routers on one direction of the round
trip.

Using unidirectional variables with this data would have
required us to take the traceroute from A to B and
splice it with the traceroute from B to A to create the
full round-trip path. Using bidirectional variables was sim-
pler, but we would effectively be assuming that Internet
routing is symmetric.

Our main goal was to explore the power of our algo-
rithm, rather than to compute highly accurate distances.
Furthermore, we wanted to be able to compare the al-

10

bungi.com
fmp.com
getnet.com
his.com
io.com
iserver.com
maps.vix.com
wvi.com
public.yahoo.com
telcom.arizona.edu
berkeley.edu
nd.edu
sdsc.edu
wisc.edu
above.net
abs.net
acadia.net
comnetcom.net
thor.csu.net
odyssesy.cwis.net
www.denver.net
erie.net
gem.net
gip.net
jet.net
fudge.nortel.net
ntrnet.net
stealth.net
structured.net
tp.net
uen.net
vineyard.net
beacon.webtv.net

Fig. 4. The list of domains/hosts where Tracers resided.

gorithm’s performance on Internet measurements with its
performance on synthetic networks (see Section VI), and
the routing was assumed to be symmetric on the synthetic
networks. Therefore, we chose to use bidirectional vari-
ables.

B. Data collection

In this experiment we selected a set of machines (Trac-
ers) and conducted traceroute measurements between
all pairs of machines in this set. We used 33 publicly avail-
able traceroute servers (see list in Figure 4), out of the
96 US sites available at www.traceroute.org.

Using 33 Tracers, we conducted 33 � 32=1056
traceroutes. Eight of them were not usable, e.g., one
measurement had a routing loop, and were discarded. The
traceroutes revealed the IP addresses of 2115 inter-
faces which we identified using DNS queries. Of these,
122 IP addresses where not in the DNS database. Using
the DNS names, we unified the IP addresses into 652 vir-
tual nodes (as described in the previous section). We then
proceeded to identify crossing points and segmentize the
paths. The result was a segment graph connected by 846
segments.

sjc.above.com
bos.alter.net
chi.alter.net
dca.alter.net
dfw.alter.net
ewr.alter.net
hou.alter.net
lax.alter.net
nyc.alter.net
pao.alter.net
chicago.bbnplanet.net
nyc.bbnplanet.net
paloalto.bbnplanet.net
sanjose.bbnplanet.net
vienna.bbnplanet.net
sfo-bb.cerf.net
sanfrancisco.cw.net
westorange.cw.net
nchicago-core.nap.net
sl-bb*-ana-*.sprintlink.net
sl-bb*-chi-*.sprintlink.net
sl-bb*-nyc-*.sprintlink.net
sl-bb*-pen-*.sprintlink.net
sl-bb*-rly-*.sprintlink.net
sl-bb*-stk-*.sprintlink.net
sl-gw*-che-*.sprintlink.net
iad.verio.net
or.nw.verio.net
nyc.verio.net
pao.verio.net
phl.verio.net
pvu.verio.net
sjc.verio.net

Fig. 5. The list of domains/sites to which distances were successfully
computed.

C. The algorithm’s performance

The system we fed our algorithm with had 1048 equa-
tions (�
� ��� #
) and 846 variables. The algorithm solved
593 of the y variables (recall Equation (6)). Using pro-
cedure compute-sub-paths (Section IV-E) our algo-
rithm successfully computed 499 new distances (in addi-
tion to the original 1048 measurements).

Despite the fact that the 33 Tracer sites were selected
arbitrarily, without any attempt to spread them out in any
particular way, we were able to compute the distances to an
additional 33 nodes. The list of these discovered “virtual-
Tracer” nodes is given in Figure 5. It includes nine out of
the fifteen major hub sites of AlterNet (UUNET) in North
America (in Boston, MA, Chicago, IL, Washington, DC,
Dallas, TX, Newark, NJ, Houston, TX, Los-Angles, CA,
New-York, NY, and Palo-Alto, CA), and seven of Sprint-
link’s fourteen sites (in Anaheim, CA, Chicago, IL, New-
York, NY, Pennsauken, NJ, Relay, MD, Stockton, CA, and
Cheyenne, WY).

To give a taste of the power of our method, and also
to demonstrate how rich the calculated topology is, we
describe the details of the computed distances for a par-

11

ticular virtual Tracer that our algorithm discovered: the
AlterNet site in Los-Angles, CA (lax.alter.net).
For this site, our algorithm calculated distances to 11
other virtual Tracers: chi.alter.net, dca.alter.
net, nyc.alter.net, ewr.alter.net, dfw.
alter.net, hou.alter.net, pao.alter.net,
sfo-bb.cerf.net, pao.verio.net, nw.verio.
net, sjc.above.net; Our algorithm also computed
distances from the same site to 17 of the original Tracers:
thor.csu.net, trojan.neta.com, sdsc.edu,
wvi.com, yahoo.com, www.denver.net, maps.
vix.com, beacon.webtv.net, berkeley.edu,
xenon.gem.net, odyssesy.cwis.net, telcom.
arizona.edu, bungi.com, donjon.fmp.com,
uen.net, abs.net, and jet.net. Overall, we man-
aged to compute distances to 28 other nodes from this
node. This is about the average for the data we collected.

VI. SYNTHETIC NETWORKS

A. Network generation models

We used two different network generators, to generate
synthetic networks with different characteristics. One gen-
erator was based on work by Waxman [35], the other one
is the Inet simulator from U. of Michigan [18] which is
based on work by Faloutsos et al. [11]. The generation
algorithms use the following models.
EX model [35] — In the EX model, nodes are placed on a
plane, and the probability for two nodes to be connected by
a link decreases exponentially with the Euclidean distance
between them. This nicely models intranets, but it is now
debatable how well it models the Internet structure.
PL model [11] — In the PL model the node connectivity
follows a power-law rule: very few nodes have high con-
nectivity, and the number of nodes with lower connectivity
increases exponentially as the connectivity decreases. This
model is based on Internet measurements, where a node is
an autonomous system (AS).

We generated synthetic networks comprised of 600 and
1000 nodes for each of the network generation models. In
these networks, we assigned Tracers randomly to the net-
work nodes. We varied the number of Tracers, and re-
randomized their locations in the network.

We assumed that routing is symmetric on the synthetic
networks, and that the routes followed the shortest paths
between Tracers. Thus, for each generated network and
each random choice of Tracer locations, we solved the all-
pairs-shortest-path problem (limited to pairs of Tracers).

In order to compare the results on the synthetic networks
with the Internet measurements, we needed to vary the
number of real Tracers. We did this by taking our origi-
nal 33 Tracers, and choosing a random subset of them. We

took the shortest paths between the selected Tracers, and
used those as the simulated measurement paths.

To demonstrate the robustness of our algorithm, we in-
jected noise into the simulated delay measurements along
each path. We first chose a random delay

 ��
for every link�

in the network. The delay
 �

served as the true (ideal) de-
lay, that is not known to the algorithm. We quantified the
amount of injected noise by a parameter �-+ � 9 � . For
a given measurement path, we assigned a measured delay
value � � to every link

�
along the path, and � � was chosen

uniformly at random from the range � � � � #�� ��� � � ��� � �	� ,
and the measurement along the path was then K � � � . Note
that the same link

�
may get different values of � � for dif-

ferent paths it belongs to.

B. Results and interpretation

Figure 6 shows our algorithm’s performance on the syn-
thetic networks together with the results on the Internet
measurements.

Figure 6(A) shows the number of non-Tracer nodes our
algorithm was able to discover (i.e., compute at least one
distance to). Figure 6(B) shows the same data as a percent-
age of the number of Tracers. We can clearly see that in
all cases, as more Tracers are added, the algorithm discov-
ers more non-Tracers—in both absolute and relative num-
bers. The gains are substantial in all cases, ranging be-
tween 70%-214%. We can also see that the network gen-
eration model makes a big difference: for 30 Tracers, on
the EX-generated networks our algorithm found 59 and 64
additional nodes on average (198% and 214%), while on
PL-generated networks the algorithm discovered 21 and 28
nodes on average.

Figure 6(C) shows the number of new distances that
our algorithm succeed to calculate. Figure 6(D) shows
the same data as a percentage of the number of measure-
ments

��
� � . We see from Figure 6(C) that, again, as more
Tracers are added, the algorithm computes more distances.
Surprisingly, the algorithm did significantly better on the
Internet measurements than on any of the synthetic net-
works, computing 415 additional distances (for 30 Tracers)
—more than double the number of additional distances
computed for the closest synthetic network, which is an
EX network. The number of computed distances grows
roughly linearly with the number of Tracers � , however,
Figure 6(D) shows that the growth rate is slower than the
number of measurements, which is quadratic in � .

Finally, Figure 7 shows the effects of the injected noise
on our algorithm. Since we know the “true” distance for
each link, we can compare it to the computed distance. The
figure shows how the root of the mean square error in the
computed distance varies with the rate of injected noise

�
.

For each instance, we calculated the standard deviation of

12

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

E
rr

or
 in

 r
es

ul
ts

 (
pe

rc
en

t)

Error in measurememts (percent)

PL 1000

Fig. 7. The root mean square error as a function of the injected noise.
Each point represents the average of ten experiments each on a 1000
node network with 30 Tracers.

the error. The length of the vertical bars are the average of
the standard deviations over all the simulation conducted
with the same injected noise

�
. We can see clearly that on

average, our algorithm slightly reduces the measurement
noise: e.g., for 30% injected noise, we found an average
of 27% error in the results. The significance here is that
despite its algebraic components, the algorithm does not
amplify measurement noise. Roughly speaking, the com-
puted distances are as noisy as the inputs.

VII. CONCLUDING REMARKS

We presented an algorithm that extracts as much dis-
tance information as possible from end-to-end measure-
ment data. The algorithm performed well on real and on
synthetic network measurements. These strong results are
achieved with a practical and reasonable computational
complexity. We believe our results can be readily used to
improve mirror placement.

There are several research directions we intend to study.
First, one must understand the best way to handle noise and
different assumptions and noise models. Another impor-
tant research direction is to understand how to place Trac-
ers in the network in a way that will enable maximal gain
from our algorithm. It is also very interesting to study the
inter-relations between our algorithm and spanners [17] in
order to achieve an optimal data-to-overhead ratio.

REFERENCES

[1] Abovenet—global one-hop network. http://www.above.
net/network/network.html.

[2] Réka Albert and Albert-László Barabási. Topology of evolving
networks: local events and universality. Physcal Review Letters,
85:5234, 2000.

[3] Albert-László Barabási and Réka Albert. Emergence of scaling in
random networks. SCIENCE, 286:509 – 512, 15 October 1999.

[4] Paul Barford, Azer Bestavros, John Byers, and Mark Crovella. On
the marginal utility of network topology measurements. In ACM
SIGCOMM Internet Measurement Workshop, San Francisco, CA,
USA, November 2001.

[5] CAIDA. Tools. URL: http://www.caida.org/tools.
[6] Robert L. Carter and Mark E. Crovella. Server selection using dy-

namic path characterization in wide-area networks. In IEEE Info-
com 1997, Kobe, Japan, April 1997.

[7] W. Cheswick, J. Nonnenmacher, Cenk Sahinalp, R. Sinha, and
K. Varadhan. Modeling internet topology. Technical Report Tech-
nical Memorandum 113410-991116-18TM, Lucent Technologies,
1999.

[8] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Al-
gorithms. Cambridge, MA: MIT Press, 1990.

[9] E. Cronin, S. Jamin, C. Jin, A. Kurc, D. Raz, and Y. Shavitt. Con-
strained mirror placement on the internet. IEEE Journal on Selected
Areas in Communications, 20(7):1369–1382, September 2002.

[10] Sandra G. Dykes, Clinton L. Jeffery, and Kay A. Robbins. An em-
pirical evaluation of client-side server selection algorithms. In IEEE
Infocom 2000, Tel-Aviv, Israel, March 2000.

[11] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On
power-law relationships of the internet topology. In ACM SIG-
COMM, August 1999.

[12] Paul Francis, Sugih Jamin, Cheng Jin, Yixin Jin, Danny Raz, Yu-
val Shavitt, and Lixia Zhang. IDMaps: a global internet host dis-
tance estimation service. IEEE/ACM Transactions on Networking,
9(5):525–540, October 2001.

[13] Paul Francis, Sugih Jamin, Vern Paxson, Lixia Zhang, Daniel
Gryniewicz, and Yixin Jin. An architecture for a global internet
host distance estimation service. In IEEE Infocom’99, New-York,
NY, USA, March 1999.

[14] Ramesh Govindan and Hongsuda Tangmunarunki. Heuristics for
internet map discovery. In IEEE Infocom 2000, pages 1371–1380,
Tel-Aviv, Israel, March 2000.

[15] Khaled Harfoush, Azer Bestavros, and John Byers. Robust identifi-
cation of shared losses using end-to-end unicast probes. In The 6th
IEEE International Conference on Network Protocols (ICNP’00),
Osaka, Japan, October 2000.

[16] Akamai Inc. Freeflow. URL: http://www.akamai.com/, 1998.
[17] Sugih Jamin, Cheng Jin, Yixin Jin, Danny Raz, Yuval Shavitt, and

Lixia Zhang. On the placement of internet instrumentation. In IEEE
Infocom 2000, Tel-Aviv, Israel, March 2000.

[18] Cheng Jin, Qian Chen, and Sugih Jamin. Inet topology genera-
tor. Technical Report CSE-TR-433-00, University of Michigan,
July 2000.

[19] Kevin Lai and Mary Baker. Measuring link bandwidths using a de-
terministic model of packet delay. In ACM SIGCOMM, Stockholm,
Sweden, August 2000.

[20] F. LoPresti, N.G. Duffield, J. Horowitz, and D. Towsley. Multicast-
based inference of network-internal delay distributions. UMass
Computer Science Technical Report TR99-55, November 1999.

[21] K. Moore, J. Cox, and S. Green. Sonar - a network proxim-
ity service. Internet-Draft, http://www.netlib.org/utk/
projects/sonar/, February 1996.

[22] T. S. Eugene Ng and Hui Zhang. Predicting internet network dis-
tance with coordinates based approaches. In IEEE Infocom 2002,
New York, NY, USA, June 2002.

[23] Katia Obraczka and Fabio Silva. Network latency metrics for server
proximity. In Globecom, December 2000.

[24] V. Paxson. End-to-End Routing Behavior in the Internet.
IEEE/ACM Transactions on Networking, 5(5):601–615, 1997.

[25] Vern Paxson. Measurements and Analysis of End-to-End Internet
Dynamics. PhD thesis, UC Berkeley, Computer Science Devision,
April 1997.

[26] David Peleg and Alejandro A. Schäffer. Graph spanners. Journal
of Graph Theory, 13(1):99 – 116, 1989.

[27] Sylvia Ratnasamy, Mark Handley, Richard Karp, and Scott

13

0 10 20 30
0

20

40

60

80

Tracers
(A)

D
is

co
ve

re
d

N
od

es

0 10 20 30
0

50

100

150

200

250

Tracers
(B)

D
is

co
ve

re
d

N
od

es
 (

pe
rc

en
t)

0 10 20 30
0

100

200

300

400

500

Tracers
(C)

N
ew

 D
is

ta
nc

es

EX 600
PL 600
Internet
EX 1000
PL 1000

0 10 20 30
0

20

40

60

80

Tracers
(D)

N
ew

 D
is

ta
nc

es
 (

pe
rc

en
t)

Fig. 6. Results of the algorithm testing on real and simulated data: (A) The number of virtual Tracers our algorithm discovered, as a function of the
number of Tracers. (B) The percentage (out of the number of Tracers) of virtual Tracers our algorithm discovered, as a function of the number of
Tracers. (C) The number of new distances that were calculated, as a function of the number of Tracers. (D) The ratio between the number of new
distances that were calculated and the number of measurements, as a function of the number of Tracers.

Shenker. Topologically-aware overlay construction and server se-
lection. In IEEE INFOCOM’02, New York, NY, USA, June 2002.

[28] D. Rubenstein, J. Kurose, and D. Towsley. Detecting shared con-
gestion of flows via end-to-end measurement. In ACM SIGMET-
RICS’00, Santa Clara, CA, USA, June 2000.

[29] Yuval Shavitt, Xiaodong Sun, Avishai Wool, and Bülent Yener.
Computing the unmeasured: An algebraic approach to Internet
mapping. DIMACS TR 2000-15, June 2000.

[30] Yuval Shavitt, Xiaodong Sun, Avishai Wool, and Bülent Yener.
Computing the unmeasured: An algebraic approach to Internet
mapping. In IEEE INFOCOM’01, Anchorage, AK, USA, April
2001.

[31] Yuval Shavitt and Tomer Tankel. Using simulation of particle me-
chanics for calculating coordinates of distance maps. In IEEE Info-
com 2003, San Francisco, CA, USA, March 2003.

[32] Sherlia Shi and Jonathan Turner. Routing in overlay multicast net-
works. In IEEE INFOCOM’02, New York, NY, USA, June 2002.

[33] Sprint internet services. http://www.sprintlink.net/
maint/.

[34] Wolfgang Theilmann and Kurt Rothermel. Dynamic distance maps
of the internet. In IEEE Infocom 2000, pages 275–284, Tel-Aviv,
Israel, March 2000.

[35] Bernard M. Waxman. Routing of multipoint connections. IEEE
Journal on Selected Areas in Communications, 6(9):1617–1622,
December 1988.

[36] Ellen W. Zegura, Mostafa H. Ammar, Zongming Fei, and Samrat

Bhattacharjee. Application-layer anycasting: A server selection ar-
chitecture and use in a replicated web service. IEEE/ACM Trans-
actions on Networking, 8(4):455–466, August 2000.

[37] Amgad Assaad Zeitoun, Zhiheng Wang, and Sugih Jamin. Propa-
gation delay measurement and its application in nearest mirror se-
lection. unpublished manuscript, 2000.

