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Abstract—A Virtual Private Network (VPN) aims to emulate the services
provided by a private network over the shared Internet. The endpoints of
a VPN are connected using abstractions such as Virtual Channels (VCs) of
ATM or Label Switching Paths (LSPs) of MPLS technologies. Reliability
of an end-to-end VPN connection depends on the reliability of the links and
nodes in the fixed path that it traverses in the network. In order to ensure
service quality and availability in a VPN, seamless recovery from failures is
essential. This work considers the problem of fast recovery in the recently
proposed VPN hose model. In the hose model bandwidth is reserved for
traffic aggregates instead of pairwise specifications to allow any traffic pat-
tern among the VPN endpoints. This work assumes that the VPN endpoints
are connected using a tree structure and at any time, at most one tree link
can fail (i.e., single link failure model). A restoration algorithm must select
a set of backup edges and allocate necessary bandwidth on them in advance,
so that the traffic disrupted by failure of a primary edge can be re-routed
via backup paths. We aim at designing an optimal restoration algorithm to
minimize the total bandwidth reserved on the backup edges. This problem
is a variant of optimal graph augmentation problem which is NP-Complete.
Thus, we present a polynomial-time approximation algorithm that guaran-
tees a solution which is at most 16 times of the optimum. The algorithm is
based on designing two reductions to convert the original problem to one
of adding minimum cost edges to the VPN tree so that the resulting graph
is 2-connected, which can be solved in polynomial time using known algo-
rithms. The two reductions introduce approximation factors of 8 and 2,
respectively, thus resulting in a 16-approximation algorithm with polyno-
mial time complexity.

I. INTRODUCTION

Traditionally, a private network (PN) is established by leased-
lines connecting the PN sites (e.g., campuses or branch offices
of an enterprise) over a WAN. Since the lines are dedicated,
security and bandwidth guarantees are ensured. As the Inter-
net becomes a commercial infrastructure, not only the number
of endpoints of a PN gets increased but also the endpoints get
geographically dispersed. Thus, connecting a large number of
dispersed PN sites with dedicated lines becomes expensive. As
a result, in recent years there has been much interest in offering
Virtual Private Network (VPN) services over the public Internet.
The main challenge has been to provide performance guarantees
comparable to private WANs without dedicated leased-lines.
The first generation IP-based VPNs technology has mainly fo-
cused on security (e.g., IPSEC [1], and tunneling based routing
(e.g., L2TP [2]) and fell short of providing any Quality of Ser-
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vice (QoS) guarantees. However, the recent emergence of IP
technologies like MPLS [3], Diffserv and RSVP enhances the
Internet infrastructure to provide services beyond the traditional
best effort. Thus the problem of provisioning VPN services with
QoS guarantees has become an active area of research.

There are two popular models for providing QoS in the con-
text of VPNs - the “pipe” model and the “hose” model [3], [4].
In the pipe model, the VPN customer specifies QoS require-
ments between every pair of VPN endpoints. Thus, the pipe
model requires the customer to know the complete traffic ma-
trix, that is, the load between every pair of endpoints.

However, as the number of endpoints grow and as the con-
nectivity dynamics increase, it may be difficult to obtain pair-
wise statistical bandwidth requirements between the endpoints.
Thus, algorithms for establishing VPNs must resort to models
with aggregate bandwidth demands such as the “hose” model
proposed in [4]. In the hose model each VPN site specifies its
aggregate ingress and egress bandwidth requests. The ingress
bandwidth for an endpoint specifies the incoming traffic from
all the other VPN endpoints into the endpoint, while the egress
bandwidth is the amount of traffic the endpoint can send to the
other VPN endpoints. The hose model is scalable since the cus-
tomer manages the allocated bandwidth at per flow basis at the
network edge while the VPN provider is concerned with only the
flow aggregates inside the network. Several provisioning algo-
rithms for VPNs in the hose model have been proposed [3], [4],
[5], [6]. Provisioning a VPN requires identifying a subgraph to
connect the VPN endpoints, and reserving the necessary band-
width on the physical links that are used by this subgraph. It is
shown that a tree is the optimum topology when the ingress and
egress bandwidth requests are symmetrical [5].

Failure of any edge in a VPN tree would disrupt the ser-
vice unless a backup path was established to reconnect tree. A
restoration algorithm selects a set of backup paths and allocates
necessary bandwidth on them in advance, so that the traffic dis-
rupted by failure of a primary edge can be re-routed via backup
paths.

This work presents restoration algorithms for maintaining a
VPN tree in the hose model with symmetric bandwidth requests
under transient link failures. Namely, we assume that a link fail-
ure in the network is repaired before the next one is presented,
which seems realistic in many situations. A naive approach for
restoration would be to build a pair of edge-disjoint VPN trees
so that if the primary tree gets disconnected then the backup tree
would be used. However, this approach would be wasteful un-
der a single link failure model since a backup path can be used
to recover from the failure of multiple primary links. Thus a
restoration algorithm must consider sharing of the backup paths.
However, as we show later bandwidth reservation on the backup
paths complicates the problem further than simply minimizing

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.



the number of links used in the backup paths.
There are several relevant results on the restoration problem

in MPLS capable networks. In [7] restoration algorithms for k
link failures, based on concatenation of k+1 shortest paths, are
presented. In [8], [9], [10] authors present restoration algorithms
for LSPs in MPLS enabled networks. Motivated by the single
link failure model their restoration objective is based on backup
path sharing.

This work complements and advances these results. First, we
introduce several cost functions and show the trade-offs among
them. The cost functions include minimizing the total band-
width reserved on the backup paths, minimizing the disrup-
tion in the tree links, minimizing the total additional bandwidth
reservation needed in the network. Next, we focus on the objec-
tive function to minimize total bandwidth on the backup paths.
We call this problem optimal augmentation of a VPN tree and
note that it is a variant of the optimal graph augmentation prob-
lem which is NP-Complete. Thus we present a polynomial time
approximation algorithm which gives solutions that are provably
at most 16 times the optimum.

Our approach is based on reducing the optimal augmentation
problem to the edge connectivity augmentation problem [11],
[12] in two phases. In the first reduction, we start from the origi-
nal graphG and produce a graphG0 which has no complications
arising from path sharing. G0 is obtained from G by replacing
entire backup paths with disjoint backup “edges”: this costs us
an approximation factor of 8. Finding an optimal augmentation
for G0 is still difficult. We then reduce G0 to another graph Ĝ
containing only certain types of non-tree links, and such that the
cost of each backup link can be computed more easily: this costs
us another approximation factor of 2.

The remainder of the paper is organized as follows. In Section
2, we define our model and the basic properties of the augmen-
tation problem. In Section 3, we introduce the restoration algo-
rithm and its approximation factor via a sequence of reductions.
In Section 4 we conclude by summarizing the results.

II. MODEL AND DEFINITIONS

We are given an undirected graph G = (V;E) with a set
of terminals W � V that wish to establish communication
among each other. Let n and m denote the number of nodes
and links in G. We assume that each terminal i 2 W has an
upper bound Bi on the amount of traffic that can be either sent
(egress bandwidth) or received (ingress bandwidth) by i at any
point, i.e., for each terminal the ingress bandwidth equals the
egress bandwidth. A valid traffic matrix D on W is an assign-
ment of a demand di;j to each pair of terminals that respects the
upper bounds: i.e., for any i we have that

P
j di;j � Bi andP

j dj;i � Bi. We are also given a VPN tree T � G that is
able to support any set of traffic demands respecting those upper
bounds. Namely, each tree edge e 2 T has a bandwidth reserva-
tion be such that the demands corresponding to any valid traffic
matrix D can be routed along T . In other words, let �i;j be the
tree path between terminals i and j: then

X

i;j:e2�i;j

di;j � be:

Edges in the VPN tree are called primary edges and their re-
served bandwidth is called primary bandwidth.

In this paper, we address the problem of maintaining a VPN
tree in the transient link failure model. Namely, we assume that
network links can fail, but a link failure is repaired before the
next one is presented. Our approach is based on choosing a set
of backup paths to cope with the failure of any primary link.
Namely, we wish to select a set of backup paths, and allocate
backup bandwidth on those paths, so that when a primary link
e fails, the traffic demands routed on e can be re-routed on the
backup paths.

Before defining our objectives in more detail, we need a few
more definitions. For the sake of clarity, Table 1 summarizes the
notation used throughout the paper.

Definition 1: Given a tree T , and an edge e = (u; v) 2 T ,
let Tu and Tv be the two trees obtained after deleting e, with
u 2 Tu and v 2 Tv. Let BTu and BTv be the sums of
(ingress) bandwidths for the terminals in the two trees, i.e.,
BTu =

P
i2W\Tu

Bi and BTv =
P

i2W\Tv
Bi. Then the

bandwidth requirement for edge e is be = minfBTu ; BTvg.
Consider Figure 2, which depicts a VPN tree having three

subtrees (shown as triangles) containing the VPN nodes in W .
The subtree rooted at node x has total 10 units 1 of ingress and
10 units of egress aggregate bandwidth requirements. The band-
width requirement for edge e = (x; a) in this figure is 20 which
is the minimum of f20; 22g. Similarly the bandwidth needed on
edge (b; c) is 14 which is the minimum of f28; 14g.

Let f = (u; v) be an edge in G � T such that u; v 2 T .
Inserting f into T will create a fundamental cycle which will
include a set P (f) of primary edges. Note that deleting an edge
e in P (f) will still induce a new tree T 0 = T �e+f connecting
nodes in W . Thus, if edge e is deleted from T , then the new
tree T 0 = T � e+ f could be used to route the traffic demands,
provided that there is enough bandwidth reservation in T 0. We
call f as a candidate backup edge for the links in P (f). Since
a primary edge can occur in multiple fundamental cycles, it may
have multiple candidate backup edges. Thus, an edge f 2 G�T
becomes a backup edge to cover only a subset P(f) � P (f)
of the edges. For example edge (c; y), shown with a dashed
line, is a backup edge for the tree edges (c; d) and (d; y). In the
more general case a backup path �e 2 G � T can be used to
obtain such a cycle and each edge in the backup path will be a
candidate backup edge. In this work we consider how to choose
minimum cost backup paths �e 2 G� T for each e 2 T , and to
reserve backup bandwidth such that T 0(�e) = (T [ �e) � feg
is able to route the demands corresponding to any valid traffic
matrix D. Next we define this requirement precisely:

Definition 2: Let G = (V;E) be a graph and let T � G be a
tree. An augmentation for T in G is a set of edges AT � E(G)
such that the following is true:
� T [ AT is 2-edge-connected.
� if f 2 AT covers e 2 T (i.e., e 2 P(f)), then edges of
T 0 = T � e + f have enough bandwidth reservation so that
the demands corresponding to any valid traffic matrix D can be
routed along T 0.

1Without loss of generality, the unit of bandwidth is considered to be Mbps
and omitted henceforth.
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Symbol Description
G =< V;E > Graph with nodes V and bidirectional edges E
V (G); E(G) node and edge set of graph G, respectively
e = (u; v) edge e that connects nodes u and v
W � V set of VPN nodes

DjW j�jW j pairwise traffic matrix such that 8i 2W
P

j
di;j � Bi and

P
j
dj;i � Bi

T � G a VPN tree that connects the nodes in set W
Tu; Tv subtrees obtained from deleting primary edge e = (u; v) 2 T
Bi bound on the aggregate bandwidth request of node i 2W

BTu , BTv total bandwidth in Tu and Tv : BTu =
P

i2W\Tu
Bi and BTv =

P
i2W\Tv

Bi

be amount of bandwidth reserved on e 2 E(T ): be = minfBTu ; BTvg
�T (i; j) the unique path on T between nodes i and j
�(i; j) the backup path to connect i and j if any link e 2 �T (i; j) fails

�e 2 G� T backup path for a primary edge e 2 T
B(�e) bandwidth reservation on the backup path �e
T 0(�e) (T [ �e)� feg

P (f) set of edges in T for which f 2 G� T is a candidate backup edge
P(f) set of edges in T for which f 2 G� T is a backup edge (i.e., f 2 �e for e 2 T )
B(f) required bandwidth reservation on f : B(f) = maxe2P(f)fB(e)g
B(e) new bandwidth reservation needed on edge e 2 T \ T 0(�e)
Æbe jB(e)� bej for e 2 T \ T 0(�e)

A an augmentation of T in G: A = ff 2 G� T j9P(f)8e 2 Tg
A� optimal augmentation of T

w(�e) cost of backup path �e
w(A) cost of A (i.e., total bandwidth needed by A) : w(A) =

P
f2A

B(f)

Fig. 1. Notation Used in the Paper

For the sake of notational simplicity, we will omit the subscript
in AT whenever there is no danger of ambiguity.
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Fig. 2. The bandwidth requirement of a backup edge is the maximum band-
width of the edges that it covers.

Fact 1: Let T be a tree, and let G be a graph such that
V (T ) � V (G) and E(T ) � E(G). Let A be an augmentation
for T in G. Let f be an edge in A, let B(f) be the bandwidth
requirement of f (i.e., the bandwidth reservation needed for f ),
and let P(f) be the set of tree edges for which f is a backup

edge. Then
B(f) = max

e2P(f)
fbeg

For example consider the backup path PATH2 between nodes
x and c in Figure 2 that covers the links (x; a); (a; b); (b; c). To
meet the traffic demands, any link f in this path will require
bandwidth reservation equal to the maximum of the edges in set
P(f) which is 20.

A. Cost Function for Augmentation and its Variants

We now list several cost measures that can be considered for
an optimal augmentation.

A.1 Cost Function CF 1

One simple special case is to consider an augmentation using
the minimum number of links. Then, our optimization problem
is an instance of the unweighted 2-edge-connectivity problem
which is known to be NP-Complete. Khuller and Vishkin [13]
provide an algorithm with approximation factor of 1.5.

A.2 Cost Function CF 2

In this case, we wish to find an augmentation such that the
backup bandwidth reserved on edges in the augmentation is
minimum. In other words, we are interested in the optimal aug-
mentation A which minimizes the quantity

w(A) =
X

f2A

B(f)

Note that this is more difficult than weighted 2-edge-
connectivity (see Frederickson and Ja’Ja’ [14] and Khuller and
Thurimella [11]). Indeed, in weighted 2-edge-connectivity, the
cost of a non-tree edge f is given, while here it depends on
which edges are covered by f , i.e., on P(f).
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Fig. 3. Cost alternatives

A.3 Cost Function CF 3

We define a more precise cost function for a backup path
which has two components:
(1) the total bandwidth required on the links of the backup

path (backup edge costs);
(2) the total additional bandwidth required on the primary

edges (primary edge costs).
We denote the new total bandwidth reservation needed on a pri-
mary edge e by B(e). Let Æbe = jB(e)�bej be the primary edge
cost (i.e., additional bandwidth required) for e 2 T . Essentially,
B(e) is the maximum bandwidth reserved on primary edge e in
all the trees T 0(�e0 ) = (T [ �e0) � fe0g, for primary edges e0.
(Note that �e0 denotes the backup path for edge e0).

For example, there are two choices in Figure 2 to cover the
links on the tree path between x and y. We can choose PATH1,
or PATH2 and PATH3 together. If we choose the former, each
f 2 PATH1 will have B(f) = 20 yielding a total cost of 6 �
20 = 120 in the backup path. The choice of a backup path
may require increasing the bandwidth on the primary edges as
well. For example suppose that link e = (a; b) 2 T fails. The
maximum bandwidth on this link is set to 20 which is the total
traffic to and from subtree rooted under x. The new path to x in
T 0(�e) = (T [�e)�feg is via the tree links (b; c); (c; d; ); (d; y)
each of which needs additional 20-14 =6 units of bandwidth.
Thus the total bandwidth is 120+18= 138. If PATH2 and PATH3
are used the total cost would be 20 � 4 + 14 � 3 + 6 = 128.
Thus we can define a cost measure for a backup path as a linear
combination of the two components explained above.

Definition 3: The cost of an augmentation A taking into ac-
count bandwidth reservations on both primary as well as backup
edges is given by:

w(A) =
X

f2A

B(f) +
X

e2T

Æbe

We remark that there are several trade-offs between these
two components, depending on the problem considered. For
instance, consider the example in Figure 3 which shows two

augmentation (dashed lines) of the same VPN tree (solid lines)
with VPN nodes and their bandwidth requests shown in the
parenthesis. Backup path PATH1 in Figure 3.a creates a cycle
that includes the links (A; u); (u; v); (v; r); (r; x); (x; y); (y; F ).
However, the backup links in this path are used to cover the links
(A; u) and (y; F ) (i.e., 8f 2 PATH1,P(f) = f(A; u); (y; F )g).
The cost of the first augmentation is 4� 5+ 3� 15+ 2� 20+
(5 + 15 + 15 + 5) = 145 where the term in parenthesis is the
additional bandwidth required for the tree links. The second
augmentation shown in Figure 3.b uses one less link by shar-
ing (i; j) among all the augmentation paths and has the same
total cost of 145. However suppose that VPN nodes C and D
increase their bandwidth request to 10 then the cost of augmen-
tation without sharing a backup edge would be 155 while for
the augmentation with sharing it would be 160. Thus, it is not
always desirable to share the backup links to obtain an optimal
augmentation of a VPN tree.

For the sake of succinctness, in the remainder of the paper we
will focus primarily on cost function CF 2: i.e., an augmentation
for which w(A) =

P
f2AB(f) is minimum over all augmen-

tations AT of T . Our algorithm for cost function CF 2 can be
extended with more sophisticated techniques to the case of cost
function CF 3. Details of these extensions will be presented in
the full version of the paper.

III. APPROXIMATION ALGORITHMS FOR AN OPTIMAL

AUGMENTATION

In this section, we present an algorithm to find a 16-
approximation to the optimal augmentation problem for cost
function CF 2. Our algorithm is based on a sequence of re-
ductions. The high-level ideas behind those reductions are as
follows. In the first reduction, we start from G and produce a
graph G0 which has no complications arising from path shar-
ing. G0 is obtained from G by replacing entire backup paths
with disjoint backup “edges”: this will cost us an approxima-
tion factor of 8. Finding an optimal augmentation for G0 will
still be difficult: in particular, as we discussed above, the cost of
a backup edge f in G0 still depends on the tree edges that are
covered by f . We will reduce G0 to another graph Ĝ, such that
the cost of each backup edge is fixed and can be computed more
easily: this will cost us another approximation factor of 2. In
order to compute the optimal augmentation for T in Ĝ, we will
use the 2-edge-connectivity augmentation algorithm of Khuller
and Thurimella [11]. We will now see those reductions more in
detail.

A. Constructing graph G0

We will start by showing that an optimal augmentation is
given by a forest of trees:

Lemma 1: Let T be a tree, and let G be a graph such that
V (T ) � V (G) and E(T ) � E(G). Then an optimal augmenta-
tion for T in G is acyclic.

Proof: Let A� be an optimal augmentation for T in G.
Assume by contradiction that there is a cycle � in A�. Without
loss of generality, � is a simple cycle. For each edge f 2 A�,
let B(f) be its bandwidth requirement, and let P(f) be the set
of tree edges for which f is a backup edge. Let f 0 2 A�, be the
edge with minimum bandwidth requirement in �, i.e., B(f 0) =
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Fig. 4. Constructing G0 from G. The graph G is depicted in (a) and the
corresponding graph G0 is shown in (b).

minf2�fB(f)g. We claim that if f 0 is deleted fromA�, then the
other edges of � can be used as backup paths for P(f 0) without
having their bandwidth requirements increased. Indeed, let e
be any tree edge in P(f 0), and let �(e) � � be the maximal
subpath of � containing f 0 used by the backup path �e of e in
A�: note that �(e) is always nonempty as f 0 2 �(e). Then,
after deleting f 0, we can replace �(e) by ���(e) in the backup
path of e. Since B(f 0) � B(f) for each f 2 �, the bandwidth
requirement of edges in � � �(e) will not be affected by this
change. In summary, A0 = A�=ff 0g is still an augmentation
for T in G, having w(A0) = w(A�) � B(f 0) < w(A�). This
contradicts the optimality of A�.

Lemma 1 states that the edges in the optimal augmentation
induce a forest. Next, we show how to exploit this property for
our first reduction.

Definition 4: Let T be a tree, and let G be a graph such that
V (T ) � V (G) and E(T ) � E(G). Let X be defined as fol-
lows: V (X) = V (T ) and there is an edge (u; v) inX if and only
if there is a path from u to v in G�T (i.e., a path in G avoiding
edges of T ). Let G0 = T [X be such that V (G0) = V (T ) and
E(G0) = E(T ) [ E(X). Thus, G0 only contains vertices from
T . Further, each non-tree edge f 0 = (u; v) in G0 has a weight
wf 0 which is the number of edges in �(u; v), the shortest path
(i.e., the path with minimum number of edges) between vertices
u and v in G� T .

Figure 4.b illustrates the graph G0 constructed for the graph
G depicted in Figure 4.a. In the figure, the vertices of T are
shaded and tree edges are drawn using dotted lines. As shown
in Figure 4.b, G0 only contains vertices from T ; the weights of
non-tree edges in G0 are used to label the edges.

An augmentation A0 in G0 consists of non-tree edges that
cover all the tree edges; each non-tree edge f 0 = (u; v) in A0

can serve as a backup edge for any tree edge e in the unique
path between u and v in T . Thus, the cost (for CF 2) of an
augmentation A0 in G0 is given as

w(A0) =
X

f 02A

wf 0 � B(f 0)

where A0 is a set of non-tree edges in G0 and B(f 0) =
maxe2P(f 0)fbeg. In the remainder of this subsection, we show
that there is an augmentationA0 for T in G0 whose cost is within
a factor of 8 of the optimal augmentation for T in G.

Let A� be an optimal augmentation for T in G. Suppose we
assign each edge e in T to bins as follows. If the bandwidth be
reserved on e satisfies 2l�1 < be � 2l, then edge e is assigned
to bin l. Let �l denote the set of tree edges assigned to bin l.
Also, let L denote the maximum index for a bin to which a tree
edge is assigned; that is, for all tree edges e, be � 2L. We define
A�l to be the augmentation consisting of edges in A� that protect
a tree edge in bin l. In other words, if for an edge f 2 A�, there
exists a tree edge e 2 P(f)\�l, then f 2 A�l . Furthermore, the
bandwidth reserved on each backup edge f in augmentation A�l
is 2l. Clearly, for a tree edge e 2 �l, since A� contains a backup
path for e, augmentation A�l must also contain the same backup
path for e. Also, since be � 2l and the bandwidth reserved
on each edge of A�l is 2l, the backup path in A�l has sufficient
bandwidth to protect e. Thus, each A�l covers all the edges in
�l, and the augmentationsA�0; : : : ; A

�
L protect all the tree edges.

Note that the cost of A�l is given by w(A�l ) = 2l � jA�l j.
Lemma 2: Let A�l be the edges of an optimal augmentation

A� that protect a tree edge in �l. Then
P

l w(A
�
l ) � 4 � w(A�).

Proof: Consider an edge f 2 A�. Let e be the edge
in P(f) with the maximum value of be. Thus, B(f) = be.
Suppose that e 2 �i. Then 2i�1 < be � 2i and f can be
present only in augmentationsA�0; : : : ; A

�
i (since f does not pro-

tect edges in �i+1; : : : ; �L, it does not belong to A�i+1; : : : ; A
�
L).

In each augmentation A�l , 0 � l � i, the bandwidth reserved
on edge f is 2l. Thus, the total bandwidth reserved on f in
augmentations A�0; : : : ; A

�
L is given by

Pi
l=0 2

l � 2i+1. Since
2i�1 < B(f) = be � 2i, it follows that the bandwidth reserved
on f in A�0; : : : ; A

�
L is � 4 � B(f). The lemma follows since

the total bandwidth reserved on the edges in augmentations
A�0; : : : ; A

�
L is � 4 �

P
f2A� B(f) and w(A�) =

P
f2A� B(f).

From the above lemma, it follows that the sum of the costs of
augmentations A�0; : : : ; A

�
L is at most 4 � w(A�). In the follow-

ing lemma, we show that for each augmentation A�l in G, there
exists an augmentation A0l in G0 that protects all the tree edges
in �l and whose cost is within a factor of 2 of w(A�l ).

Lemma 3: Let A�l be the edges of an optimal augmentation
A� in G that protect a tree edge in �l. Let G0 be the graph
of Definition 4: then there is an augmentation A0l that protects
edges in �l in G0 such that w(A0l) � 2 � w(A�l ).

Proof: We show how to use the edges of A�l to identify a
collection of edges in G0 � T that form an augmentation A0l for
�l in G0, such that w(A0l) � 2 � w(A�l ).

By Lemma 1, A�l is a collection of trees (see e.g., the ex-
ample in Figure 5.a). Perform a Euler tour on each tree and
partition each tour into segments between two nodes in T (see
Figure 5.b). Let �(u; v) be a segment in the Euler tour between
vertices u and v in T . Note that �(u; v) corresponds to a path
in G that does not include any tree edges. Thus, replacing seg-
ment �(u; v) with a copy of the shortest path �(u; v) between
its endpoints does not affect the 2-edge-connectivity between
the terminals. So replacing each segment with a copy of the
corresponding shortest path in G0 � T leaves the terminals still
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Segments:

(a) (b)

(A-B) (A-D) (A-E) (B-D) (B-E) (D-E)

FEDCBA

FE
DCBA

j
i

Fig. 5. Example for the first reduction. The forest of A� is shown in (a) and
the Euler tours to identify the segments are shown in (b)

2-edge-connected. Furthermore, if we reserve a bandwidth of 2l

on each edge of every shortest path segment, the sum of band-
width requirements on all those segments is at most 2 � w(A�l ),
since each edge of A�l appears twice in the Euler tours and the
bandwidth reserved on each edge of A�l is 2l. Observe that be-
cause augmentation A�l covers all the tree edges in �l, the col-
lection of shortest path segments also protect all the edges in
�l.

Replacing one segment with an edge between its endpoints
is equivalent to shrinking a path of degree-two vertices into one
edge: once again, this does not affect the 2-edge-connectivity
between the terminals. So replacing each segment �(u; v) be-
tween nodes u; v in T with the corresponding edge f 0 = (u; v)
of G0 � T leaves the terminals still 2-edge-connected. Due to
Definition 4, we know that wf 0 , the weight of f 0 in G0 is equal
to the number of edges in �(u; v). Also, P(f 0), the set of tree
edges for which f 0 is a backup edge, consists of all the edges in
�l in the unique path between u and v in T . Thus, the bandwidth
requirement of edge f 0 in A0l, B(f 0) = maxe2P(f 0)fbeg, which
can be at most 2l. As a result, wf 0 � B(f 0), the contribution of
edge f 0 to w(A0l) is at most the bandwidth requirement of seg-
ment �(u; v), which is equal to 2l times the number of edges
in �(u; v). This yields an augmentation A0l for �l in G0, whose
total cost is at most 2 � w(A�l ).

From Lemmas 2 and 3 above, it follows that there exist aug-
mentationsA00; A

0
1; : : : ; A

0
L in G0 that protect all edges of T and

such that
P

l w(A
0
l) � 8 � w(A�). Thus, A0 = [lA

0
l is an aug-

mentation for T in G0 whose cost is within a factor of 8 of the
optimal augmentation for T in G. Note that, each edge f 0 2 A0

serves as a backup edge for a tree edge e if and only if it serves
as a backup edge for e in someA0l. Thus, the bandwidth reserved
on f 0 in A0 is no more than the sum of the bandwidths reserved
on it in A00; A

0
1; : : : ; A

0
L, and w(A0) �

P
l w(A

0
l).

We have thus reduced the problem of finding an augmentation
for T in G to that of finding one in G0, which is the problem we
address in the following subsection. Using the algorithm from
the next subsection, we will first find an approximate solution
for an augmentation A0 of T in the graph G0 defined as in Defi-

nition 4. We expect this augmentation problem to be easier than
the original problem, since the edges in G0 between vertices of
T are disjoint, and thus there are no complications arising from
path sharing. Let � be the approximation factor for this (we will
show later that � = 2).

Next, we will use this augmentation A0 for G0 to construct an
augmentation of T in G (the original problem). Basically, we
will replace each edge f 0 = (u; v) in A0 with the corresponding
shortest path �(u; v) between nodes u and v in G� T . Further,
each edge in �(u; v) will be a backup edge for all tree edges in
P(f 0), the set of edges protected by f 0 in A0. With the help of
Lemmas 2 and 3, this will give us an approximation factor of
8 � � = 16.

B. Finding an augmentation for G0

In this section we will show how to obtain a near-optimal
solution to the augmentation problem on G0. For the sake of
brevity, we will only sketch here the main ideas underlying the
algorithm. Recall that, according to Definition 4, G0 consists of
tree T plus a set of non-tree edges between pairs of vertices in
T . Further, each non-tree edge f 0 = (u; v) has an associated
weight wf 0 , which is essentially the number of edges in �(u; v).
A non-tree edge f 0 = (u; v) can serve as a backup edge for any
tree edge e in the unique path between u and v in T . Thus, the
cost (for CF 2) of an augmentation A0 in G0 is given as

w(A0) =
X

f 02A

wf 0 � B(f 0)

where A0 is a set of non-tree edges in G0 and B(f 0) =
maxe2P(f 0)fbeg. Our goal is to compute the augmentation with
the minimum cost.

B.1 Choosing root for tree T

Before presenting our algorithm for computing a near-optimal
augmentation for G0, we show that T contains a vertex r(T ) that
satisfies the following property: let e1; : : : ; ek be the sequence
of edges in T from r(T ) to any vertex v in T . Then, be1 �
be2 � � � � bek . We choose r(T ) as the root for T .

Recall from Definition 1 that the bandwidth requirement for
an edge e = (u; v) 2 T is given by be = minfBTu ; BTvg. In
order to show the above property for node r(T ), we construct
a directed tree Tdir from T by giving a direction to each edge
e = (u; v) of T as follows:
� If BTu < BTv , then direct the edge towards u.
� If BTv < BTu , then direct the edge towards v.
� If BTv = BTu , then direct the edge towards the component
which contains a particular leaf, say, x̂.
Clearly, Tdir must contain a node whose indegree is 0 (other-
wise, T would contain a cycle) — we choose this node in Tdir
with no incoming edges as r(T ). We show that r(T ) is indeed
unique and satisfies the above-mentioned property using the fol-
lowing property of Tdir in the lemma below [5].

Lemma 4: Every edge e in Tdir is directed away from r(T ).
Proof: Let e = (x; y) be an edge in tree T such that x is

closer to r(T ) than y in T . We show that e is directed from x
to y in Tdir. Consider the path in T from r(T ) to x. We know
that the first edge (u; v) along the path is directed away from

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.



u = r(T ). So, BTv � BTu . Since (u; v) is the first edge of the
path from r(T ) to x, Tu � Tx and also, Ty � Tv. Thus, we
get, BTy � BTv � BTu � BTx . If BTy < BTx , then edge e is
directed from x to y and we are done. The only other possibility
is BTy = BTx . But then, it must be the case that Tu = Tx,
Tv = Ty and BTu = BTv . As a result, it follows that u = x and
v = y, and since edge (u; v) is directed from u to v, edge (x; y)
must also be directed from x to y.

Note that from the above lemma, one can easily show that
r(T ) is unique since every other node in Tdir has an edge di-
rected into it (and consequently, an indegree of 1). Further,
if r(T ) = x0; x1 : : : ; xk = v is a tree path from r(T ) to v
in T involving edges e1 = (x0; x1); e2 = (x1; x2); : : : ; ek =
(xk�1; v), then, BTx1

� BTx2
� � � �BTxk

. Since bei = BTxi
,

it follows that be1 � be2 � � � � bek . We choose r(T ) as the root
of T .

B.2 Constructing graph Ĝ

Next, we will form a graph Ĝ from G0 as follows. The ratio-
nale for transforming G0 to Ĝ is that in an augmentation A0 for
T in G0, the cost of a backup edge f 0 2 A0 varies depending on
the tree edges covered by f 0. This makes computing the optimal
augmentation in G0 difficult. In order to address this problem,
each backup edge f̂ = (u; v) in the new graph Ĝ has a fixed cost
cf̂ , and protects all the tree edges along the unique path between
u and v. This makes it possible to devise efficient algorithms for
computing the optimal augmentation in Ĝ.

In Ĝ, the tree edges in G0 are retained without any modifica-
tions. However, each non-tree edge in G0 � T , is replaced by
a different set of edges in Ĝ. Consider any edge f 0 = (u; v)
in G0 � T between two vertices u and v in T , and let lca(u; v)
denote the least common ancestor of u and v in T . Also, let
u = u0; u1; : : : ; up = lca(u; v) be the sequence of nodes in T
from u to lca(u; v), and v = v0; v1; : : : ; vq = lca(u; v) be the
sequence of nodes in T from v to lca(u; v). Then, we perform
the following actions for each edge f 0 = (u; v) in G0 � T 0 to
derive Ĝ from G0.
� Delete edge f 0 from G0.
� Add edges f̂i = (u; ui) for i = 1; : : : ; p. Further, assign each
edge f̂i a cost cf̂i = wf 0 �max1�j�ifb(ui�1;ui)g.
� Add edges ĝi = (v; vi) for i = 1; : : : ; q. Further, assign each
edge ĝi a cost cĝi = wf 0 �max1�j�ifb(vi�1;vi)g.

In the above set of actions, wf 0 is the weight of edge f 0 in G0

and b(ui�1;ui) is the bandwidth reserved on tree edge (ui�1; ui).
Note that it is possible that multiple edges may be added be-
tween a pair of vertices u and v in Ĝ – in this case, we only
retain the edge (u; v) with the minimum cost, and delete the re-
maining edges between the vertices.

Figure 6 illustrates the actions for non-tree edge f 0 = (u; v)
shown in bold and having weight wf 0 = 2. In the figure, tree
edges are drawn using dotted lines and the bandwidth reser-
vation for each tree edge is placed next to the edge. Thus,
b(u;u1) = 1 and b(v;v1) = 2. Constructing Ĝ from G0 involves
replacing edge f 0 = (u; v) with four edges (shown using solid
lines), two from u to u1 and lca(u; v), and another two from v
to v1 and lca(u; v). Adjacent to the four new edges in the figure,
are depicted their respective costs.

r(T)

lca(u,v)

u v

2

1

3

2

4

62 8 4
v1u1

Fig. 6. Constructing Ĝ from G0 .

The above actions produce a graph Ĝ for which T is a span-
ning tree, and such that non-tree edges can only be back edges:
i.e., if (u; v) is a non-tree edge then either u is an ancestor of v
or v is an ancestor of u in T . Further, the cost cf̂ of a non-tree

edge f̂ = (u; x) in Ĝ (generated due to edge f 0 = (u; v) in G0)
is essentially the product of wf 0 and the maximum bandwidth of
tree edges between u and x. Thus selecting edge f̂ in Ĝ is ba-
sically equivalent to selecting edge f 0 in G0 as the backup edge
for all the tree edges between u and x. Furthermore, since the
bandwidth reserved on tree edges is higher for edges closer to
the root, the effect of picking any edge f 0 in G0 as a backup edge
can be achieved by selecting at most two edges in Ĝ.

An augmentation Â for T in Ĝ is a subset of Ĝ � T and has
the property that T [ Â is 2-edge-connected; thus, for every tree
edge, Â contains a backup edge. Further, we define the cost of Â
in Ĝ to be w(Â) =

P
f̂2Â cf̂ . We can show that the minimum

cost augmentation for T in the graph Ĝ will yield a solution of
cost at most twice the optimal in G0.

Lemma 5: Let A0 be an augmentation for T in G0 with cost
w(A0). Then, there is an augmentation Â for T in Ĝ such that
w(Â) � 2 � w(A0).

Proof: We will construct from A0 an augmentation Â for
T in Ĝ whose cost is less than or equal to 2 � w(A0). Sup-
pose that f 0 = (u; v) 2 A0 serves as the backup edge for tree
edges in P(f 0). Note that P(f 0) can only contain tree edges
along the path between u and lca(u; v), and v and lca(u; v).
Let u = u0; u1; : : : ; up = lca(u; v) be the sequence of nodes
in T from u to lca(u; v), and v = v0; v1; : : : ; vq = lca(u; v)
be the sequence of nodes in T from v to lca(u; v). Further,
let (ui�1; ui) be the edge in P(f 0) with the highest index i
along the path from u to lca(u; v), and (vj�1; vj) be the edge
in P(f 0) with the highest index j along the path from v to
lca(u; v). Then, we add to Â the pair of edges f̂ = (u; ui)

and ĝ = (v; vj), both of which are contained in Ĝ. Clearly, f̂ is
the backup edge for edges in P(f 0) contained in the path from u
to lca(u; v), while ĝ is the backup edge for edges in P(f 0) con-
tained in the path from u to lca(u; v). Also, cf̂ � wf 0 �b(ui�1;ui)

since as we showed earlier, with r(T ) as the root of T , it is the
case that b(ui�1;ui) � b(ui�2;ui�1) � � � � � b(u0;u1). (Note
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r(T)

Fig. 7. Computing minimum cost augmentation for T in
Ĝ.

that if f̂ is generated due to an edge different from f 0, then
c
f̂
� wf 0 � b(ui�1;ui) since the edge added to Ĝ due to f 0 must

have been deleted due to its higher cost). Similarly, it can be
shown that cĝ � wf 0 � b(vj�1;vj). Furthermore, since P(f 0)
contains both (ui�1; ui) and (vj�1; vj), B(f 0) � b(ui�1;ui)

and B(f 0) � b(vj�1;vj). Thus, it follows that cf̂ + cĝ �

wf 0 � (b(ui�1;ui) + b(vj�1;vj)) � 2 � wf 0 � B(f 0), and as a re-

sult, w(Â) � 2 � w(A0).
We can use the above lemma to compute an augmentation for

T inG0 whose cost is at most 2 times the cost of the optimal aug-
mentation forG0. We achieve this by first computing a minimum
cost augmentation for T in Ĝ using the 2-edge-connectivity aug-
mentation algorithm of Khuller and Thurimella [11] (described
in the following subsection). Let Â denote this optimal aug-
mentation. Clearly, due to Lemma 5, w(Â) is within a factor
of 2 of the cost of the optimal augmentation for G0. We now
show how we can construct an augmentationA0 for G0 such that
w(A0) � w(Â). For each edge f̂ = (u; v) in Â that was added
to Ĝ because of edge f 0 in G0, we simply add f 0 to A0. Edge f 0

serves as the backup edge in A0 for all tree edges between ver-
tices u and v. Thus, f 0’s contribution to w(A0) is the product of
wf 0 and the maximum bandwidth of tree edges between u and
v, which is essentially cf̂ . Thus, w(A0) � w(Â), and A0 has a
cost that is at most 2 times the cost of the optimal augmentation
for G0.

B.3 Finding Optimal augmentation for Ĝ

We can compute the minimum cost augmentation for T in Ĝ
using the algorithm of Khuller and Thurimella [11], which is as
follows.

1. Direct all edges of T in Ĝ towards r(T ), the root of T . Set
their cost to zero.
2. For every other edge f̂ = (u; v) in Ĝ � T such that u is an
ancestor of v, direct the edge from u to v, and set its cost to cf̂ .
3. Find a minimum weight branching in the directed graph
rooted at r(T ). For each directed edge f̂ 2 Ĝ � T that is
picked as part of the branching, add the (corresponding undi-
rected) edge in Ĝ to Â.

Figure 7 illustrates Steps 1 and 2 of the algorithm with tree
edges depicted using dotted lines and non-tree edges drawn us-
ing solid lines. In [11], [12], it is shown that the minimum
weight branching from r(T ) in the directed graph yields the
minimum cost augmentation for T in Ĝ. Thus, putting all the
pieces together (Lemmas 2, 3 and 5), yields the following theo-
rem.

Theorem 1: A near-optimal augmentation for VPN tree T in
G can be computed with a performance guarantee of 16.

C. Time Complexity

Our overall algorithm for computing a 16-approximation for
the optimal augmentation consists of the following three steps:
1. Construct graph G0 from G by introducing a single edge be-
tween vertices u; v 2 T if they are connected in G� T .
2. Construct graph Ĝ from G0 by introducing for every edge
(u; v) 2 G0, edges between u=v and nodes on the path from
u=v to lca(u; v).
3. Find the optimal augmentation for T in Ĝ.

Suppose that G has n vertices and m edges. The worst-case
time complexity of our algorithm is dominated by the first step
which requires shortest paths to be computed in G� T between
every pair of tree nodes – this takes O(n � (m + n � logn))
time. The second step can be achieved in time O(n2) time since
lca(u; v) for n2 pair of vertices can be found in O(n2) time us-
ing the algorithm of Harel and Tarjan [15]. Finally, the optimal
augmentation for T in Ĝ can be found in O(n2) time using the
minimum weight branching algorithm from [16].

Theorem 2: The worst-case time complexity of our algorithm
for computing a 16-approximation for the optimal augmentation
for VPN tree T in G is O(m � n+ n2 � logn).

IV. CONCLUSIONS

Given a VPN tree with a bandwidth reservation based on the
hose model, we developed novel restoration algorithms for cop-
ing with single link failure in the tree. Our approach is based
on identifying a set of backup edges and reserving bandwidth
on them such that service quality is ensured in case of any pri-
mary edge failure in the tree. We introduced several cost func-
tions in the selection of backup edges and chose the one that
aims to minimize the total bandwidth reserved in the backup
edges. This problem is a variant of optimal graph augmentation
which is known to be NP-Complete. Thus, our main result is
an approximation algorithm for minimum cost restoration with
a performance guarantee of 16. Since the bound on the approxi-
mation ratio is provable, we omit the experimental performance
study in this version.
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REFERENCES

[1] S. Kent and R. Atkinson, “Security architecture for the internet protocol,”
RFC 2401, nov 1998.

[2] W. Townsley, A. Valencia, A. Rubens, G. Pall, G. Zorn, and B. Palter,
“Layer two tunneling protocol,” RFC 2661, August 1999.

[3] B. Davie and Y. Rekhter, “MPLS Technology and Applications”, Morgan
Kaufmann Publishers, 2000.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.



[4] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramakrishnan,
and J. E. van der Merwe, “A flexible model for resource management in
virtual private networks,” Proceedings ACM SIGCOMM, 1998.

[5] A. Kumar, R. Rastogi, A. Silberschatz, and B. Yener, “Algorithms for
provisioning virtual private networks in the hose model,” in Proceedings
ACM SIGCOMM, 2001.

[6] A. Gupta, A. Kumar, J. Kleinberg R. Rastogi, and B. Yener, “Provisioning
a virtual private network: A network design problem for multicommodity
flow,” in Proceedings ACM STOC, 2001.

[7] A. Bremler-Barr, Y. Afek, H. Kaplan, E. Cohen, and M. Merritt, “Restora-
tion by path concatenation: Fast recovery of mpls paths,” Proceedings of
ACM SIGMETRICS, 2001.

[8] M. Kodialam and T. V. Lakshman, “Dynamic routing bandwidth guaran-
teed tunnels with restoration,” Proceedings IEEE INFOCOM, 2000.

[9] M. Kodialam and T. V. Lakshman, “Dynamic routing of locally restorable
bandwidth guaranteed tunnels using aggregated link usage information,”
Proceedings IEEE INFOCOM, 2001.

[10] S. Kini, M. Kodialam, T. Lakshman, and C. Villamizar, “Shared backup
label switched path restoration,” IETF Internet draft, draft-kinirestoration
-shared-backup-00.txt, November 2000.

[11] S. Khuller and R. Thurimella, “Approximation algorithms for graph aug-
mentation,” Journal of Algorithms, vol. 14-2, pp. 214–225, 1993.

[12] D. S. Hochbaum, “Approximation Algorithms for NP-Hard Problems”,
PWS Publishing Company, 1997.

[13] S. Khuller and U. Vishkin, “Biconnectivity approximations and graph
carvings,” Journal of the ACM, vol. 41(2), pp. 214–235, 1994.

[14] G. N. Frederickson and J. Ja.Ja, “Approximation algorithms for several
graph augmentation problems,” SIAM Journal of Computing, vol. 10-2,
pp. 270–283, 1981.

[15] D. Harel and R. E. Tarjan, “Fast algorithms for finding nearest common
ancestors,” SIAM Journal on Computing, vol. 13-2, pp. 338–355, 1984.

[16] H. N Gabow, Z. Galil, T. Spencer, and R. E. Tarjan, “Efficient algorithms
for finding minimum spanning trees in undirected and directed graphs,”
Combinatorica, vol. 6-2, pp. 109–122, 1986.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.


