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Abstract. This work investigates the accuracy and efficiency tradeoffs
between centralized and collective (distributed) algorithms for (i) sam-
pling, and (ii) n-way data analysis techniques in multidimensional stream
data, such as Internet chatroom communications. Its contributions are
threefold. First, we use the Kolmogorov-Smirnov goodness-of-fit test to
show that statistical differences between real data obtained by collective
sampling in time dimension from multiple servers and that of obtained
from a single server are insignificant. Second, we show using the real
data that collective data analysis of 3-way data arrays (users x keywords
x time) known as high order tensors is more efficient than centralized
algorithms with respect to both space and computational cost. Further-
more, we show that this gain is obtained without loss of accuracy. Third,
we examine the sensitivity of collective constructions and analysis of high
order data tensors to the choice of server selection and sampling window
size. We construct 4-way tensors (users x keywords x time x servers) and
analyze them to show the impact of server and window size selections on
the results.

1 Introduction and Background

Chatroom communications are attractive sources of information since they are
in public domain and real identities are decoupled from the virtual identities
(i.e., nicknames). However, chatroom communications generate real-time stream
data that may have nonlinear structure [1] which is difficult to extract without
semantic interpretation of the messages. Thus, data analysis techniques, such as
Singular Value Decomposition (SVD) [2] that rely on linear relationships in a
matrix representation of data, may fail to capture important structure informa-
tion [1]. In particular, we showed that constructing multiway data arrays known
as high order tensors such as data cubes with (users x keywords x time) modes
can discover the subgroups that cannot be detected by SVD [1].

In this work, we extend centralized data collection and analysis of multiway
data arrays to collective sampling and analysis. In particular, we consider how to
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build and analyze three-way and four-way data arrays from chatroom communi-
cations collected by sampling the data from multiple servers in time dimension.
We discuss and compare collective sampling and analysis approach to a central-
ized one. Our motivations are twofold. First, a distributed (collective) approach
would be more suitable to real-time data streams. Furthermore, it can eliminate
the drawbacks of a centralized approach including being a single point of failure
and becoming a performance bottleneck. Second, collective n-way data analysis
may reduce the time and space complexity of a centralized one. In this work,
we verify by using the real data that collective n-way data analysis provides
significant saving with respect to space and computational cost.

1.1 Our Contributions

In this paper we report following contributions:

i. We present a simple distributed sampling approach, and analyze the statis-
tical properties of data obtained by this approach. Sampling is done in time
domain. Statistical comparison, based on Kolmogorov-Smirnov goodness-of-
fit test, between data collected from multiple servers and data collected from
a single server is provided. Thus we report that collective sampling method
can produce chatroom logs which are statistically good fit to centralized
ones.

ii. We construct 3-way tensors with modes of (users x keywords x time) at each
server, and employ Tucker3 model to analyze them. We collect summaries
of data generated by Tucker3 analysis at different servers and analyze them
collectively using SVD at a central location.

iii. We compare the performance of collective tensor analysis approach with cen-
tral tensor analysis in terms of space complexity, ease of determining model
parameters and computation cost. We emphasize that same user clusters are
identified by using both collective and central analysis of chatroom tensors.

iv. We rearrange 3-way tensors from multiple servers into a 4-way tensor with
modes of (users x keywords x time x servers) to inspect the sensitivity of
Tucker3 analysis with respect to server selection.

Organization of the paper This paper is organized as follows. Section 2
discusses data collection and the statistical comparisons of data obtained from a
single server with data constructed from multiple servers. Section 3 explains the
methodology for collective 3-way data analysis. In this section we also provide a
cost comparison between centralized analysis and collective one with respect to
space and computations cost. In Section 4 we present a sensitivity study for the
collective data analysis. Finally, we conclude in Section 5.

2 Collective Sampling of Chatroom Data

In this work, we collected philosophy chatroom data from eight Undernet IRC
servers located in USA, Canada, Netherland, Austria, and Croatia. We used
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Fig. 1. (A) Centralized collection of philosophy chatroom data from eight Undernet
IRC servers (S1, S2, . . ., S8) which are located in USA, Canada, Netherland, Austria,
and Croatia. Eight copies of IRC clients running on two computers connected to servers
and generated individual log files for 17 days (Jan 4th - 20th, 2006). (B) Collective
sampling of philosophy chatroom data from eight Undernet IRC servers. Time is divided
into time windows (150, 180, 210, 240, 270 and 300 seconds), and at each time window
chatroom data coming from a specific server are accepted; at time window Ti, chatroom
data coming from server Sj where j = ((i − 1) mod 8) + 1 are accepted.

eight copies of IRC clients running on two computers as described in Figure
1-A. There are several challenges for collecting data from multiple servers. First
of all, chatroom operators don’t like silent listeners. Therefore, they frequently
disconnect such users. They can ban IP addresses of such users, even sometimes
whole IP domain. Use of public proxy servers or any other anonymity networks
may sometimes be useless because of two reasons: (i) most of the servers permit
only three or four connections from each IP address, (ii) a proxy or anonymity
server may get banned because of the offensive acts of another IRC client sharing
the same proxy. It is also possible that one or more servers are disconnected from
the remaining IRC servers in which case views of the same chatroom will be
completely different in terms of users and their messages. Due to these reasons,
data collected from each server are different then the others. Table 1 lists number
of messages collected from each server for 17 days (Jan 4th - 20th, 2006). We
collected 23530 messages from the server S7 while we collected 59320 messages
from the server S4. In a centralized approach, where chatroom data are collected
only from server S7, it would not be possible to obtain a good view of chatroom
data. Instead of centralized data collection where an IRC client connects one IRC
server, we use collective sampling technique where chatroom data are collected
from multiple IRC servers.

In Figure 1-B, collective sampling technique is illustrated. In this work, we
use several different time window values to analyze effectiveness of collective
sampling. We first use centralized data collection technique to collect chatroom
logs from eight servers for 17 days as illustrated in Figure 1-A. We simulate
collective sampling on these chatroom logs to obtain collective chatroom data
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for different time windows (150, 180, 210, 240, 270 and 300 seconds). Number
of messages for both centralized and collective chatroom data are given in Table
1. In the next section, we statistically compare centralized chatroom data with
collective ones.

2.1 Statistical Comparison of Collective v.s. Centralized Data
Collection

We first try to find suitable upper and lower bounds on time windows for collec-
tive sampling of chatroom data. Interarrival time distribution, as given in Table
1, states that 99% of the interarrival times are less than 150 seconds. When cha-
troom data are divided into time windows larger than 150 seconds, we expect
more than one message in each time window with high probability. For the upper
bound of 300 seconds, we consider the gaps in the centralized chatroom data due
to connection problems. When we use collective sampling, too big time windows
may cause such gaps to be transferred to collective chatroom data. Therefore we
use time windows of 150, 180, 210, 240, 270 and 300 seconds. As shown in Table
1, collective data provide similar percentages as centralized data for these time
windows.

Table 2 provides interarrival time and message size (in word count) statistics
for centralized and collective data. Mean, median, standard deviation, skewness
and kurtosis statistics for centralized and collective data are provided. Our first
observation is that in both data sets, mean and standard deviation values are
very close; this highlights distributions such as exponential where mean and
standard deviation are the same. Positive skewness values for both data sets
indicate a distribution with an asymmetric tail extending towards more positive
values. Positive kurtosis values indicate a distribution with a peak. As the kurto-
sis statistic gets larger with a positive value, it indicates the possibility of a tall
distribution. These statistics support findings in [1] that interarrival and message
size fit to exponential distributions. Table 3 provides results of statistical com-
parison between collective and centralized data based on Kolmogorov-Smirnov
goodness-of-fit test (kstest). Centralized data are compared to collective data in
terms of interarrival time and message size distributions.

2.2 Collective Construction of Chatroom Tensors

3-way (users × keywords × time) and 4-way (users × keywords × time × servers)
tensors of Figure 3 are generated from centralized and collective data for 2-hour
interval from 17 : 00 to 19 : 00 on Jan 07, 2006. For tensor generation, first step
is to generate list of keywords and users active in 2-hour time interval. We used a
dictionary of 5000 most frequent words to eliminate frequently used words (i.e.
the, they, etc.). Next, simple forms of the irregular verbs and verbs with -ed,
-ing, -s are found by using online webster dictionary. Webster is also used to
fix simple typos. Once the list of keywords is obtained, a user list is generated.
Finally, 2-hour data are divided into time window intervals. Each time window
corresponds to a time slot in time dimension of (user × keywords × time) tensor.
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Centralized Chatroom Data Collective Chatroom Data

Server # Mess. < 150 < 180 < 240 < 300 Time Win. # Mess. < 150 < 180 < 240 < 300

S1 49179 0.995 0.996 0.997 0.998 150 sec. 45497 0.965 0.976 0.983 0.985

S2 48626 0.994 0.995 0.997 0.997 180 sec. 45340 0.970 0.971 0.985 0.987

S3 41862 0.994 0.995 0.997 0.997 210 sec. 45057 0.973 0.974 0.982 0.987

S4 59320 0.994 0.996 0.997 0.998 240 sec. 44982 0.976 0.977 0.978 0.987

S5 46679 0.994 0.995 0.996 0.997 270 sec. 45233 0.979 0.980 0.981 0.987

S6 42728 0.994 0.995 0.996 0.997 300 sec. 45076 0.981 0.981 0.983 0.983

S7 23530 0.995 0.996 0.997 0.998

S8 49630 0.995 0.996 0.997 0.998

Table 1. Number of messages and percentage of interarrival times smaller than 150,
180, 240, and 300 seconds for centralized and collective data. Analysis made over 17
days of data (Jan 4th - 20th, 2006).

Entry (i,j,k) of the tensor indicates the number of times keyword j is used in time
slot k by user i. Once 3-way tensors for centralized data (chatroom logs from
eight IRC servers) and collective data are generated, 4-way tensor is obtained
by the join of these nine tensors.

Collective chatroom data are obtained by receiving data from server Sj in
time window Ti if j = ((i− 1) mod 8)+ 1. When 3-way tensor is generated from
the collective data, values for time slot Ti in the tensor corresponds to messages
coming from the server Sj. We used the same time window value for collective
sampling chatroom data and tensor generation. Matrix slice for collective data
tensor for time slot Ti will be equivalent to matrix slice for centralized data
tensor of server Sj for time slot Ti. Thus, the server Sj may send its matrix slice
for time slot Ti instead of messages, and collective chatroom data tensor can be
collectively constructed.

3 Collective 3-way Analysis of Chatroom Data

3.1 Methodology

Tucker Model/ HOSVD: We employ one of the most common multiway
analysis models, i.e. Tucker [9], in chatroom data analysis. For a 3-way tensor T
of size I x J x K, Tucker3 model decomposes the tensor in the following form:

T ijk =
∑R1

r1=1

∑R2

r2=1

∑R3

r3=1 Gr1r2r3
Air1

Bjr2
Ckr3

+ Eijk

where A ∈ RIxR1 , B ∈ RJxR2 , C ∈ RKxR3 are component matrices for
first, second and third mode, respectively, G ∈ RR1xR2xR3 is the core tensor
and E ∈ RIxJxK represents the error term. Tucker model is not limited to 3-
way arrays and can be generalized to high-order datasets. Different constraints
such as non-negativity, unimodality or orthogonality can also be enforced on
the component matrices. We constrain component matrices to be orthogonal.
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Inter-
arrival
Time

Centralized Chatroom Data Collective Chatroom Data
Server Mean Med Std Skew Kurt Time Win. Mean Med Std Skew Kurt

S1 15 10 17 3 13 150 sec. 17 11 21 3 17
S2 16 11 19 2 11 180 sec. 16 11 19 3 14
S3 18 12 20 2 11 210 sec. 17 11 19 2 11
S4 16 11 18 2 11 240 sec. 16 11 18 2 12
S5 17 12 20 2 9 270 sec. 17 11 19 2 11
S6 20 13 22 2 8 300 sec. 17 11 19 3 13
S7 18 12 20 3 13
S8 17 11 19 2 12

Message
Size
in word
counts

S1 11 9 10 2 6 150 sec. 11 8 10 2 5
S2 11 9 10 2 5 180 sec. 11 8 10 2 6
S3 11 8 10 1 5 210 sec. 11 8 9 1 5
S4 11 8 10 1 5 240 sec. 11 8 10 1 5
S5 10 8 9 1 5 270 sec. 11 8 10 1 5
S6 11 8 10 2 5 300 sec. 11 8 10 1 5
S7 10 8 10 2 7
S8 11 8 10 2 6

Table 2. Interarrival time and message size (in word count) statistics (mean, median,
standard deviation, skewness and kurtosis) for centralized and collective data. Analysis
made over 17 days of data (Jan 4th - 20th, 2006). Only the messages in time interval
17 : 00 and 19 : 00 of each day is considered for the analysis because these are the times
when eight Undernet IRC servers have minimum connectivity problem throughout 17
days of data.

Tucker3 model with orthogonality constraints is rather referred as High-Order
Singular Value Decomposition (HOSVD) or multilinear SVD [6].

Collective Tensor Analysis: Collective Tensor Analysis approach analyzes
multiple tensors simultaneously and then transfers summaries of data from each
tensor to a central location. Those summaries are combined together to capture
the structure in the mode, which we want to explore. In the context of chatroom
communications, collective method assumes that data are sampled by different
servers and arranged as a tensor at each sampling site. These tensors are lo-
cally analyzed at each sampling site by fitting a multiway model, i.e. Tucker3.
Summaries of data representing the user space are collected at a central loca-
tion. Matrix formed by gathering user space summaries from each server is then
analyzed using SVD to capture the structure in the whole user space.

Let Ti be an n-way tensor constructed at the ith server by rearranging sam-
pled data as a tensor. Each Ti, for i = 1, 2, ...s, is decomposed by Tucker3, whose
structural model can also be represented as Ti = AiGi(Ci ⊗Bi)

T . Ti and Gi

are matrices, which are matricized forms of tensors Ti and Gi in the first mode
and Ai, Bi and Ci are the component matrices corresponding to first, second
and third mode, respectively. We are interested in extracting the structure of
first (user) mode so we collect Ai’s, the singular vectors for the first mode and
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Interarrival Time Message Size (in word counts)

150 s. 180 s. 210 s. 240 s. 270 s. 300 s. 150 s. 180 s. 210 s. 240 s. 270 s. 300 s.

S1 0.12 0.4 0.09 0.23 0.09 0.05 S1 0.9 0.94 0.88 1 0.96 0.99

S2 0.99 0.96 1 0.99 0.99 0.7 S2 0.79 0.67 0.56 0.96 0.73 0.65

S3 0.17 0.03 0.13 0.04 0.22 0.18 S3 0.99 1 0.91 1 0.99 0.99

S4 0.8 1 0.9 0.99 0.92 0.49 S4 1 1 1 0.99 1 1

S5 0.29 0.03 0.25 0.09 0.34 0.33 S5 0.97 0.96 0.99 0.71 0.96 0.97

S6 0.01 2e-4 0.01 6e-4 0.02 0.04 S6 0.99 0.99 0.99 0.98 0.99 0.99

S7 0.1 0.01 0.09 0.03 0.1 0.12 S7 0.63 0.65 0.71 0.32 0.46 0.75

S8 0.90 0.23 0.89 0.44 0.82 0.97 S8 0.92 0.97 0.99 0.71 0.91 0.95

Table 3. Centralized data are compared to collective data with time windows 150, 180,
210, 240, 270 and 300 seconds. Table lists resulting P values of Kolmogorov-Smirnov
Goodness-of-fit tests (kstest) for interarrival time and message size (in word count). P
values: (i) > 0.05 mean difference between two data sets is statistically insignificant,
(ii) 0.01 to 0.05 mean difference is significant, (iii) 0.001 to 0.01 mean difference is very
significant, and (iv) < 0.001 mean difference is extremely significant. P values should
be > 0.05 to be able to conclude that there is no sufficient evidence to reject the
hypothesis that two data sets are coming from the same distribution. For interarrival
time, P values > 0.05 for the servers S1, S2, S4 and S8 which have highest message
counts as given in Table 1. There is no sufficient evidence to reject that interarrival
time distributions of these pairs of data sets are the same. For message size, all P values
are > 0.05, meaning that, difference between two data sets is statistically insignificant
and there is no sufficient evidence to reject that message size distributions of these
pairs of data sets are the same.

Σi
n, the singular values corresponding to first mode (n = 1) to construct matrix

M [6]. This matrix is then analyzed using SVD and significant left singular vec-
tors, U, and corresponding singular values, S, are used to extract the structure
in user space.

Ti = AiGi(Ci ⊗ Bi)
T where i=1,2,...s

Σi
n = diag(σ1

n
, σ2

n
, ..., σR

n) where R is the rank of nth mode (1)

M = [A1 ∗ Σ1|A2 ∗Σ2|...|As ∗ Σs] = U ∗ S ∗ VT

Steps of collective analysis of multiple tensors are listed in Equation 1. This
approach is a generalized version of Collective Principal Component Analysis
(CPCA)[3] to high-order datasets. Collective tensor analysis employs the same
approach used in multiway multiblock component models [8] except for the min-
imization of a common objective function. The objective function is defined to
be the sum of the residuals in multiple tensor decompositions and residual of
the final step: 2-way component analysis in [8]. We, on the other hand, handle
modeling of each tensor independently at each sampling site.
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Fig. 2. Collective and Central Analysis of Tensors. In collective analysis of a tensor,
partitions of the tensor are decomposed by tensor decomposition locally at different
servers. User clusters are found by analyzing the collection of data summaries. On
the other hand, central analysis decomposes one large tensor and user groups are
determined using data summaries obtained from tensor analysis.

3.2 Collective Analysis of Chatroom Data Cubes

Tensors constructed at different servers contain only a specific portion of the data
depending on the sampling scheme. Therefore, these tensors may not contain
information regarding to every user. Table 4 shows how many users are logged
as active users by different servers. We decompose these small tensors, sizes of
which are given in Table 4 using Tucker3 model. Around 85 − 90% percent of
the data fits the model at each sampling site.

Tensor decomposition at each sampling site provides component matrices
and singular values corresponding to the singular vectors in the user mode.
Since different sets of users are logged at different servers, we pad the rows of
A∗

i
Σi with zeros for the users which are not in the set of users logged by server

i. Matrix M, is then formed as in Equation 1 and decomposed by SVD.
An alternative analysis approach is to collect the tensors constructed by dif-

ferent servers at a central location and then decompose one large tensor contain-
ing data for the logs of all users during whole period of conversation. We apply
Tucker3 analysis on the large tensor and determine the component numbers such
that Tucker model fits around 80% of the data compatible with the percent of
the data modeled using reduced SVD of matrix M. Let A be the component
matrix for the user mode obtained by the decomposition of large tensor. We also
find the singular values corresponding to the singular vectors in this component
matrix (Σ) as we have done in small tensor analysis and compute A∗Σ.

Last step of the analysis is to cluster user groups. We use U∗S from SVD
of matrix M and A∗Σ from Tucker3 decomposition of the large tensor to find
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Server Id # Users # Keywords # Time # Tucker3 # Entries
(m1) (m2) Samples (m3) Models

1 12 77 3 350 2772

2 13 91 3 406 3549

3 16 99 3 601 4752

4 11 100 3 297 3300

5 14 80 3 467 3360

6 15 68 3 532 3060

7 13 61 3 406 2379

8 14 79 3 467 3318

Total 3526 26490

Complete Tensor 28 501 24 117847 336672

Table 4. Size of the tensors collected at each server for time window = 300 seconds.
Maximum number of possible Tucker3 models that can be fit in collective tensor analy-
sis is much smaller than maximum number of Tucker3 models for the complete tensor.
Maximum number of Tucker3 models for tensor X is the number of all possible com-
ponent number combinations [R1R2R3] such that R1 ≤ R2 ∗ R3, R2 ≤ R1 ∗ R3 and
R3 ≤ R1 ∗R2. Total number of entries in collective tensors are around 8% of the entries
in complete tensor.

and compare the user groups identified by collective and central analysis of
chatroom tensors. We apply K-means algorithm [7] with different number of
clusters, k = 1, 2, ..6 and observe that both central and collective analysis of
2-hour chatroom data for time windows 150 and 300 seconds identify the same
user clusters. Complete procedure for central and collective tensor analysis is
summarized in Figure 2.

3.3 Performance Comparison

Collective analysis of chatroom tensors has several advantages over central anal-
ysis of one large tensor. First of all, small tensors do not store the user entries if
users do not speak in sampled time windows. Keywords, which are not used dur-
ing those time windows, are not stored, either. Since most of the zero-entries in
complete tensor are omitted, total number of entries shrinks in collective tensor
analysis. Table 4 demonstrates that number of entries we keep track of in col-
lective tensor analysis is approximately 8 % of the entries we use in centralized
analysis.

Second, determining number of components for Tucker3 model is much easier
compared to the central case. Techniques such as residual analysis, DIFFIT [4, 5]
etc. determine the right number of components in Tucker3 model based on model
fit values. For a 3-way tensor of size I x J x K, model fit should be computed
only for the component number combinations, where IJ ≥ K and IK ≥ J

and JK ≥ I. For the cases, when IJ < K, we obtain the same model fit as
IJ = K [10]. Number of components are easily determined in collective tensor
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Fig. 3. Chatroom Tensors. 3-way tensors with modes of users, keywords and time
samples are constructed at each server. 4-way tensors with modes of users, keywords,
time samples and servers are used in sensitivity analysis of chatroom data with respect
to different servers.

analysis because total number of Tucker3 models that can be fit to small tensors
drops dramatically compared to the number of possible Tucker models for the
central tensor. In Table 4, we show that total number of possible models for
collective analysis is around 3% of the models that can be fit to the large tensor.
Third, tensor analysis of multiple tensors is computationally more efficient than
multiway analysis of one large tensor. Computational cost of Tucker3 model
using ALS (Alternating Least Square) algorithm is

∏n

j=1 mj ∗ 3R2 per iteration,

where mj is the number of dimensions in the jth mode, n is the number of modes
and R is the maximum of the component numbers used in Tucker3 analysis. We
clearly observe:

# of servers∑

i=1

((

3∏

j=1

mij ∗ 3r
2

i ) ∗ (# of iterations)) <

3∏

j=1

Mj ∗ 3R
2 ∗ (# of iterations)

where mij is the dimension of the jth mode of the tensor constructed in
server i, Mj is the dimensionality of the jth mode in the complete tensor and ri

is the maximum of component numbers in Tucker3 analysis in server i. Iteration
numbers are observed to be approximately the same in both central and collective
analysis of tensors.

4 4-way Analysis of Chatroom Data for Sensitivity

4.1 Impact of Server Selection

We construct 3-way tensors with users, keywords and time samples using the
chatroom data logged during a specific time period at different servers. Our goal
is to explore how tensors formed by different servers compare to each other.
At this step, unlike collective tensor analysis, each server logs total chatroom
conversation for a specific time period.

Data collected by different servers are arranged into a 4-way tensor, where
first, second, third and fourth modes are users, keywords, time samples and
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servers, respectively (Figure 3 B). We are particularly interested in extracting
the structure in the server mode. Therefore, after fitting Tucker model to 4-way
tensor, we examine the component matrix corresponding to server mode.

2-hour chatlog is arranged into a 3-way tensor for each server and these
are used to construct a 4-way dataset. Server mode also contains the tensor
formed by combining partial data from several servers. It is essential to compare
this tensor formed from data samples from different servers to all other tensors
collected at a single server in order to show the validity of collective partial
chatroom analysis.

We fit Tucker model to the 4-way data such that model explains around 95%
of the data. This fit value can be achieved by extracting only one component
from the server mode. Singular value corresponding to that single singular vector
captures 96.97%, 99.88%, 97.40% and 96.36% of the variation for time window
sizes of 150 sec., 180 sec., 240 sec. and 300 sec., respectively. Explained vari-
ations demonstrate that rank-one reduction in the server mode is enough and
coefficients in the extracted singular vector reveal that each server contributes
almost equally to the first component. The results also indicate that collection
of chatroom data at different servers does not make any difference in terms of
the analysis of chatroom tensors.

4.2 Impact of Sampling Window Size

In order to inspect the effect of time window size in the comparison of tensors
constructed at different servers, 2-hour chatroom log is arranged as a 4-way
tensor using different time window sizes. Our analyses with different time window
sizes give the same strong rank-one reduction in the server mode as we have
indicated in the previous section. Therefore, we demonstrate that collection of
chatroom data at different servers with the given time window sizes does not
make any difference in terms of constructed chatroom tensors.

5 Conclusions

In this paper we consider how to collect and analyze multilinear stream data
from multiple servers in a distributed way. As an example of such data we con-
sider Internet chatroom communications as our case study to demonstrate the
results. We show that sampling in time domain by multiple servers can be used
to obtain data with no statistical difference from the data obtained by a central-
ized approach. Consequently, we discuss how to construct 3-way data arrays and
how to analyze the structure of multilinear data represented as high order ten-
sors. Our collective analysis algorithm is based on constructing smaller tensors
at each server (sampling site) and applying a tensor decomposition technique
to obtain component matrices. The component matrix of interest (e.g., corre-
sponding user groups) from each site is combined into a one larger component
matrix which is then analyzed using SVD. We show that this approach com-
pared to constructing a single tensor with full information and analyzing it with
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the same tensor decomposition technique gives the same structural information
for the data. Since we establish the accuracy of the collective approach, we also
compare the space and computation cost of collective analysis to the centralized
one. We show that on our chatroom communication data, collective analysis pro-
vides significant savings. We define an equation that shows the computational
cost relationship between centralized and collective analysis approach.
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