
Light Weight Security for Parallel Access to Multiple Mirror Sites

Bulent Yener *

Abstract
Mirror sites approach has been proposed recently for

reducing the access delay and providing load balancing
in network servers. In the mirror site approach a file,
such as a multimedia book, is replicated and dispersed
over multiple servers and can be requested in paral-
lel. However., to limit the bandwidth waste, each server
maintains not the entire file but only a portion of it.

Current solutions to provide parallel access to multi-
ple servers are based on breaking the file into b "pieces"
using Forward Error Correction (FEC) codes or their
variants. In such techniques any k 5 b pieces are nec-
essary and sufficient to construct the file. Thus, pro-
tection of the file from unauthorized access has to be
based on encryption. As a result, as the degree of paral-
lelism increases a trade off occurs between the security
overhead and access delay.

In this work, we propose new file dispersal and ac-
cess control protocols to reduce the security overhead
significantly. Our protocols are based on the combi-
natorial techniques which break a file into small pieces
in a similar way to FEC code. Thus, at least k pieces
are necessary to construct the file. However, in con-
trast with the previous approaches, not every k pieces
are sufficient. Capitalizing on this property this work
presents secure dispersal and access protocols that aim
to minimize the overhead at the servers.

1 Introduction
Increasing demand for distributed information ser-

vices and applications over the Internet (e.g., software
distribution, World Wide Web (WWW), Distributed
Interactive Simulations (DIS)) requires new algorithms
to reduce server load and access delay. Recently, the
Mirror Site approach is proposed to maintain multiple
copies of a file in the network for (i) load balancing at
the servers, (ii) faster response to a user request, and
(iii) increasing fault-tolerance. In the mirror site a p
proach a client is provided by a number of servers and
chooses a single server for its request. Selection of a
server is not trivial and two approaches are proposed
for improving the performance: (1) static approach
based on statistical information [9], and (2) dynamic
approach based on probing to determine the "closest"
site to direct the request [4].

In the mirror site model, the delay associated with

*Information Sciences Research Center Bell Laboratories, Lu-
cent Technologies 600 Mountain Avenue, Room 2T-314 Mur-
ray Hill, NJ 07974, email: yenerOresearch.bel1-labs.com, phone:
(908) 582 7087 fax: (908) 582 1239.

downloading a file can be further decreased by polling
multiple sites in parallel. However, this approach has
the potential of causing congestion if the servers send
back the entire file. Thus, to prevent congestion, new
mechanism are needed to have a server to send only a
subset of the packets. One solution would be to have
the client instruct each server what a specific subset of
the packets to be sent. Of course this approach would
require negotiations and may not be scalable due to in-
creased overhead. A better solution is to disperse the
file into fixed size pieces at each server in a predeter-
mined way. Some redundancy is introduced during the
dispersal such that a client can recover the file upon
receiving a limited number of pieces. Solutions based
on this approach use erasure or Forward Error Correc-
tion (FEC) codes. For example, in his landmark pa-
per [7] Rabin introduces an Information Dispersal Al-
gorithm (IDA) which represents the common theme in
FEC based approaches. IDA partitions a file of length
F into b pieces such that (i) each piece has length F l m ,
(ii) no m- 1 pieces are sufficient, and (iii) any m pieces
are sufficient to reconstruct the file. Most recently, a
new parallel access scheme is proposed to increase the
download speed from multiple mirror sites [3, 21. Their
work is based on Tornado Codes (TC) [6] which is a re-
laxation of Forward Error Correction codes (FEC) with
reduced complexity.

The FEC based dispersal schemes have the property
that any m pieces would be sufficient to reconstruct
the file. Although it is attractive for high availability,
these schemes present a need to protect the file since as
the Internet becomes commercialized, protection of the
information from unauthorized users is needed. There
are several protocols proposed for secure directory ac-
cess (e.g., X.500 DAP [5] and LDAP [lo]). In the
event of introducing mirror sites, security complexity
increases, since if client polls r servers then P autho-
rizations and authentications must be performed for
a single file. Thus, as the information (file) becomes
redundant, replicated, and distributed the number of
queries (requests) to be processed by the servers will
grow. If each such request comes with a security over-
head, then servers may become bottlenecks.

In this work we investigate a new approach to dis-
persal and parallel access of a file which aims to re-
duce the cryptographic overhead. Similar to the FEC
based approaches, we perceive the file as a collection of
a fixed number of elements. An element of the file is

180
0-7695-0722-O/OO $10.00 0 2000 IEEE

http://yenerOresearch.bel1-labs.com

a logical unit of information. However, our approach
is a combinatorial one and provides the following p r o p
erties: (i) no m - 1 pieces are sufficient and m pieces
are needed, (ii) however, not any m pieces are suffi-
cient to recover the file, (precisely there are only m t 1
combinations which we call configurations that can
reconstruct the file by using m pieces), and finally (iii)
there is no redundancy information within a piece. We
design protocols that capitalize on (ii) to reduce the
security overhead. In a network where each message
is charged a fixed price $ c , a budget-bounded d v e r -
sary which has a finite budget of $B and cannot make
infinite number of attempts is considered. It is shown
that if the adversary (unauthorized user) does not know
the “right” configurations then it has exponentially low
probability in the number of pieces by guessing a com-
bination of the blocks to construct the file. As a result
paralel access protocols which eleminates server-client
authentication are proposed.

This paper is organized as follows: In Section 2 we
introduce our model and assumptions. In Section 3 we
show how to disperse a file into subsets and present two
variants of the combinatorial approach are considered:
(1) cloning-based which uses random permutations of
elements, and (2) bibd-based which uses determinis-
tic permutations of the elements. The main difference
between these two algorithms is that bibd-based algo-
rithm uses Balanced Incomplete Block Design (BIBD)
of combinatorial design theory [l]. BIBD ensures that
each subset (piece) is unique and elements in a piece
have different ordering, while the cloning algorithms al-
lows duplicate pieces. In Section 4 access methods are
presented. In Section 5, we discuss the security prop-
erties of our schemes. Finally the work is concluded in
Section 6.

2 Model and Assumptions
We consider a large network which is composed of

clusters (domains). Each cluster has s servers and there
are total of S servers in the network. Within each clus-
ter, a subset of the servers are associated with a file f
which is composed of I f 1 = v elements. For example, if
the file contains a multi-media book, each element may
correspond to a chapter. In order to provide parallel
access in the network, the file is replicated t . Let r be
the number of copies of file f thus f has a total of v r
elements. We assume that S > vr thus not every server
has a piece of the file.

!The optimal granularity of the information contained in an
elemen, and demand based replication and allocation of the file
over the network is an optimization problem which will not be
address in this paper.

The file is valuable as a whole and obtaining parts
of it has no value due to the Quality of Service (QoS)
requirement of the application requesting this file (e.g.,
obtaining some parts of the 9’th Symphony is consid-
ered to be worthless from QoS point of view). There is
a price (denoted by r) for accessing to the file. Fur-
thermore, it is assumed that there is a usage-based
charging mechanism associated with accessing to the
network. Thus, a network service provider can identify
and charge different user traffic flow (e.g., http or ftp)
a t the network entry points.
2.1 Trusted Authority

Each cluster has a Trusted Authority (TA) which
is responsible from partition and dispersal of the file to
multiple servers. Thus, TA maintains the dispersal and
reconstruction information for each file that it manages.
We assume that each TA is equipped with tools to per-
form (i) user authentication and authorization, and (2)
charging to users for the file access. (We omit the elab-
oration on these cryptographic tools and assume that
they are well understood security mechanism such as
Digital Signatures, MACS [SI).

In order to provide a scalable solution and prevent
TAs becoming bottlenecks, we limit the amount of in-
formation maintained at each TA. However, in order to
increase fault-tolerance, the same file can be managed
by more than one TA. Finally, a cluster leader performs
routing and forwarding operations in a similar way to
a gateway (border router) and can filter out messages.
2.2 Clients and Servers

For a given file f , a client is called honest if it is not
corrupted by the adversary. It is called legitimate if it
has paid for the service. We assume that all legitimate
clients are also perfectly honest. Furthermore, a legiti-
mate client does not give out neither any secret nor the
file itself to any other client. Thus, we do not worry
about second hand sale of the file.

Servers are assumed to be trusted. The identity of
servers is not known to the clients and their knowledge
is limited to the address of their TAs. For file f , a
server is called holder if it keeps a piece of the file. We
assume a generic access mechanism to a server called
polling. As mentioned before each polling message has
a fixed cost $c.

2.3 Adversary
Adversary is assumed to be polynomial time

bounded. We define two variants of the adversary. The
weak adversary can corrupt up to d other clients for
collaboration. However, the adversary cannot change
the set of corrupted clients at each time interval (i.e.,

181

it is not mobile).Adversary tries to “guess” the servers
that keep a copy of the file. We assume that adver-
sary is not adaptive and it makes d guesses a t once
(i.e., not one guess at a time). The strong adversary
has eavesdropping capability to all in-out traffic of any
node in addition to the powers of the weak adversary
explained above.

The adversary has a finite budget B which is the sum
of the budgets of d collaborators. Since each message
has a cost c , the maximum number of tries an adversary
can effort is X for Xc 2 B. We assume that X <
S so that adversary cannot effort trying each server.
Adversary’s objective is to pay less than the price of
the service (i.e., accessing to the file). Adversary tries
to “guess” the servers that keep a copy of the file. We
assume that adversary is not adaptive and it makes d
guesses a t once (i.e., not one guess a t a time). We
assume that this is the only goal of the adversary. Our
objective is to ensure a scheme that adversary will not
obtain the file less than the price of it. However we note
that the adversary is able to obtain partial information
about the file.

3 Combinatorial File Dispersal
In this section we present two combinatorial file dis-

persal algorithms (CFDs): (i) cloning based, and (ii)
bibd-based. These algorithms share the following two
main steps: (1) a permutation of the indices of the
element for reordering of the information, and (2) as-
signment (distribution) of elements to blocks (pieces).

The proposed algorithms differ from each other a t
step 1 where the permutation of the elements of a file is
performed. The cloning-based algorithm permutes the
elements randomly and uses the same random permuta-
tion for each copy of the file. In contrast bibd-based al-
gorihm uses the combinatorial design theory [l] for the
permutation of the elements. It uses a unique permuta-
tion for each copy of the file and maintains well defined
properties between the blocks of different copies.
3.1 Cloning Based Dispersal

Let e l , e 2 , . . . , e , be the set of elements of a given file
f. Let xi be a random permutation of the indices of
the elements to be used for the dispersal of i’th copy of
the file. Since the file is to be replicated to r copies, one
can either use the same permutation A for each copy
or choose a different random permutation ~i for each
copy i = 1 , 2 , . . ., r . In cloning algorithm we use the
same permutation for each copy.

The algorithm first packs the permutation of the in-
dices into k pieces (blocks). We perceive a block as
a one-dimensional array that will contain at least v / k

elements. The choice of parameter k depends on the
file size and number of site. For example consider a file
with 9 elements with indices 0 , 1 , . . ., 8 and set k = 3.
Permutation A I = 0 , 4 , 7 , 2 , 3 , 5 , 1 , 6 , 8 indicates that el-
ements 0, 4, 7 will be packed into the first block. The
next three indices show the elements for the second
block.

Dispersal of file f is an assignment of these k blocks
to k < s servers such that a server can get at most one
block. Next we present a deterministic permutation
technique using combinatorial block designs.
3.2 Block Design to File Dispersal

In this section we consider Balanced Incomplete
Block Designs (BIBD) [l] for permutation of the ele-
ments. A BIBD is a collection of k-element subsets
(called blocks) of a v-element set S , k < v, such that
each pair of elements of S occur together in exactly X
of the blocks. In a (v , b , r , k , X) BIBD with b blocks
and v elements, each element occurs in T blocks where
bk = vr; X(v - 1) = r(k - 1). As a short hand notation
a BIBD can be represented with parameters (v, k, A).

In particular, we use block designs that are resolv-
able. A BIBD is resolvable if its blocks can be arranged
into r groups (called parallel classes) so that = f
blocks of each group are disjoint and contain in their
union each element exactly once. Resolvable BIBDs
considered in this work are the ones with parameters
(n2, n, 1) . For example, in Figure 1 we show a BIBD
with parameters (9,3,1) and its parallel classes t .

Parameter v of a resolvable BIBD is associated with
the number of elements in the file while parameter k of
the BIBD is the minimum number of pieces necessary
to construct the file. Each parallel class of a resolvable
design provides first a permutation of the indices of the
elements and then packing them into blocks k blocks
each with IC elements. The order of the blocks within a
parallel class is significant since it gives a different per-
mutation of the elements. For example in Figure 1 the
second parallel class which has the blocks B3, B4, B11
will induce permutation A I = 0 , 4 , 7 , 2 , 3 , 5 , 1 , 6 , 8 if the
blocks are ordered as B3, Bl l , B4, and permutation
~2 = 1 , 6 , 8 , 0 , 4 , 7 , 2 , 3 , 5 if the ordering is Be, B3, B11.

Block design based dispersal can be perceived as a

:Note that there are standard methods for actual construction
of a BIBD based on finite fields. For example a (13,4,1) design
can be constructed by 0,1,3,9(mod 13), PG(2,3). A resolvablede-
sign with parameters (9,3,1) can be obtained by deleting a block
of the (13,4,1) design. The timecomplexityof such constructions
are linear. There are several methods to scale the block designs
(see [I11 for scaling of BIBDs to achieve networks of arbitrary
size).

182

(9,3,1) desiin based on AG(2,3)

special case of cloning algorithm such that each or the
r copies of the file have a unique permutation of the
elements such that a pair of blocks from two different
copies have exactly one common element. In contrast
cloning ensure that some pair of inter-copy blocks have
empty intersection. If the intersection is not empty
then the cardinality is at least k. We will use a parallel
class (PC) and a copy of the file interchangeably.
Theorem 1 Bibd-based CFD algorithm breaks o file
with n2 elements into n2 + n pieces such that
(a) any n - 1 pieces are not suficient for reconstruction
(ai) there are exactly n + 1 ways for reconstruction by
using only n pieces.

3.3 Combinatorial Key
A combinator ia l key is used for dispersal and con-

struction of each copy of the file. The key includes the
following information: (1) FID, (2) v, (3) IP address
of each mirror site (server), (4) element index in the
block held by this mirror site. For example the follow-
ing combinatorial key: <FID, SYMkey, 9, [S I D l , (0, 4,
7)], [SZDz, (2, 3, S)], [SI&, (1, 6, S)] > indicates that file
identified by FID has 9 elements and the server SIDl
contains a block which has the elements 0, 4, and 7.
SYMkey for symmetric encryption is used only in case
of strong adversary.

Servers have junk blocks which are composed of
random information. For example a junk block my con-
tain text, picked randomly, from several books or video
clips mixed together. A junk block is used to send
”false” information back to the adversary which polls
the server for a file that the server is not a holder. Since
we assume a usage-based charging scheme, the cost of
junk blocks (e.g., increased network load) is billed to
the adversary.

4 Access Protocols
This section considers two problems for obtaining a

copy of the file. First, enough pieces should be ob-
tained. Second, contents of the pieces must be sorted
to obtain correct information.
4.1 Client-TA Communication

Client and TA performs authentication check us-
ing standard methods (i.e., MAC, digital signatures or
appended authenticator) on each message that is ex-
changed between them. This is necessary to ensure
that sender of the message is not the adversary (i.e.,
impersonation attack).

Two messages are exchanged: request (REQ) and
confirm (CONF). The RE& message contains the <
Address(C), K C , FileName, Paymentlnfo > where KC
is the public key of C, and the Paymentlnfo is payment
(e.g., credit card) information. Implicit is the assump-
tion that the client knows the name and the price of the
file. The CONF message contains combinatorial key of
the file. In case of weak adversary (i.e., no eavesdrop-
ping) both messages can be in clear text as long as au-
thentication is ensured. However, to protect against to
a strong adversary, we adapt an asymmetric-key based
scheme in addition to authentication. We assume that
the public key (K T A) of the TA is known to the clients.
Client C sends a REQ (request) message by encrypting
it using the I ~ T A : E K ~ * (R E Q) = eREQ. The TA
decrypts the message using its private key and then
sends back a confirmation (CONF) message which is
encrypted by Ii’c : E K ~ (C O N F) = eCO N F .
4.2 Client-Server Communication

Upon receiving the CONF message, a legitimate
client C contacts with each server in the combinato-
rial key. There are two special messages exchanged
between a server and the client: polling (POLL) and
reply (REP) messages.

The POLL message is sent by the client and contains
the FID, and the client’s return address. The REP mes-
sage is a reply to the polling request by the server. We
assume that the server’s authentication is implicit from
the REP message using appended authentication. The
necessary information can be passed to the client with
the CONF message from the server. REP can contain
either a junk block (if the server is not a holder), or
the block associated with the FID (if the server is a
holder). Thus, a server always returns a reply message
(REP) back to any client request. However, if the re-
quest is made for a file that the server is not a holder
then a “false” reply message is returned. The moti-
vation behind sending junk blocks is to force the ad-
versary to process and to distinguish false replies from

183

Weak Adversary

Clienl-TA

FULL

REP

TA-Server I
TA-TA

Strong Adversary

FULL

REF 0

I Figure 2: The Protocols

the valid ones. Note that the mirror site server does not
perform any authorization and authentication check on
the client POLLS. Furthermore, both POLL and REP
messages are send in the clear for both adversary mod-
els.
4.3

There are two messages used for this communica-
tion: download message (LOAD) and forward message
(F W D) both sent by the T A . The LOAD message is
used to distribute the pieces (block) to the servers.
The FWD message is used to have a server transmit
its blocks to a specified client. Motivation for FWD
is to further reduce the delay by the TA and in this
case the CONF does not contain the addresses of the
servers. Upon sending a CONF message to a legitimate
client, the TA polls each server associated with the re-
quested file. The FWD message includes the following:
(1) client's address, and (2) FID. Each server upon re-
ceiving such a FWD message sends the blocks associ-
ated with the FID. The FWD message is transmitted
in clear in both adversary models while the LOAD mes-
sage is secured using the public key of the server against
to strong adversary in addition to authentication. Fur-
thermore in strong adversary model the pieces in the
LOAD message are encrypted using a symmetric key
which is passes to a honest client by the CONF mes-
sage.

TA- Server C om niunicat i on

4.4 TA-TA Communication
In our model each cluster leader behaves as a TA and

for each file in its cluster it maintains a directory with
the following information: (1) file identifier (FID), (2)
combinatorial key for the file (3) list of servers holding
the blocks of the parallel class. Since not every cluster
has a copy of the requested file, a TA needs to check
with the other TAs to determine which cluster has a
copy of the file. Thus, upon receiving a REQ message,
the TA checks if the file is in the cluster. If the request
is for a remote file then the TA forwards the request hi-
erarchically. We assume that TA-TA communication is
also secure. Upon receiving a forwarded REQ message,
a TA searches its directory using the FID as a key. If
the requested file is found then the combinatorial key
and the list of servers is sent back to the forwarding
TA.
Reconstruction of the File

Reconstruction of a file at the client has two passes.
First, all the blocks specified in the combinatorial key
must be received. Second, the elements within the re-
ceived blocks must be sorted based on again the com-
binatorial key. In case of strong adversary, the blocks
in the REP message will be decrypted using the sym-
metric key sent in the CONF message.

5 Analysis
The security is based on the combinatorial proper-

ties. For a file with v elements, the first challenge is
to obtain enough blocks such that the union of the el-
ements in these blocks is v. Given the set of blocks,
sufficient to construct the file, the second task is to de-
termine the permutation of the elements to obtain the
correct sorting of the information. In this section we
show that achieving the first task by random polling is
too expensive for an adversary with a bounded budged.
This task also requires identifying the valid and false
which is an additional computational overhead. The
second task is a computationally difficult one. The ad-
versary has to determine the permutation a associated
with that copy to construct the information which has
cost O(v!). Furthermore, for some applications adver-
sary cannot be sure which ordering of the elements is
the correct one even if it enumerates all of them.
5.1 Combinatorial Security

Consider the probability of obtaining the blocks of a
file assuming that the adversary's can POLL any server
in any cluster. Since the adversary can corrupt and
collaborate with d nodes it has the power to POLL d
servers in parallel. There are v r pieces of the file and S
servers in the network. The minimum number of blocks

184

to construct f is I C . Elements in each minimumset must
induce one of the r permutations determined by the
dispersal algorithm. Let's now compute the probabil-
ity of obtaining a configuration or a copy of the file by
random polling. We map the problem to the following
combinatorial one. Suppose in a jar there are M balls
such that Ii' of them are green and S - K are blue. We
consider choosing x balls without replacement and con-
sider the probability of getting exactly y greens. That
is given by

C (K , y) is the number of ways of selecting y green
among A' green ones. C (M - I<, x - y) is the number of
ways of selecting x-y red balls and C (M , x) is the num-
ber of ways of selecting x balls out of M . In this map-
ping M = C(S , k) is number of selecting k servers with-
out replacement since the minimum number of servers
needed for constructing the file is k . Out of M (balls)
only r of them are green since there are r k-server com-
binations can construct the file so Ii' = r (i.e., r green
balls). Remark here that for FEC based approaches
A' = C (v r , k) which is much larger than r . Let's define
the bound S 5 N v r so that M = C (N v r , k) and set
k 2 d. It is sufficient to compute the probability of
getting no green balls (i.e., y=O) with x tries which is

C (M - Ii', x) (M - K) e / x M - K
(M e / x)" M (- M 1". C (M , x) P"(0) =

(N v r e / k) k - r k)" M [I - T (-) ~] ~ . (3) P"(o) ((N v r e / k) k Nvre
Bounding x with cx 5 U + ck where u is the price of

the file and c is the cost of each polling message.

(4)

P,(O) M (1 - r (k / N v r e) k) k . (l - r (k / N v r e) k) " (5)
Which will converge to 1 since k 5 v yields always

(k / N v r e) < 1 . Thus, probability of success for the
adversary (i.e., 1 - Px(0)) decreases accordingly.
Strong Adversary
In case of strong adversary, a symmetric-key system
needs to be deployed against to eavesdropping attacks.
First the TA encrypts the blocks using a symmetric
key and LOADS them to the server in encrypted form.
Second the CONF message sent to a honest client con-
tains the above symmetric key. Since CONF is done

using an asymmetric key system and authentication is
performed between TA and the client, the CONF is se-
cured. The client has to first decrypt the blocks and
then use the combinatorial key to construct the file.

6 Summary
Accessing to multiple mirror sites in parallel in-

creases the number of requests per server as a function
of redundancy. If authorization and authentication is
necessary to protect the file then the servers may be-
come bottlenecks. This work presented a combinato-
rial approach to dispersal of the file. In the proposed
scheme at least k pieces are necessary but not any k
pieces are sufficient to construct the file. Capitalizing
on this property we presented access control schemes
with reduced security overhead under two adversary
models.

References
[l] I . Anderson. Combinatorial Designs: Construction

Methods. John Wiley Sons, New York, 1990.

[2] J . W. Byers, M. Luby, and M. Mitzenmacher. Access-
ing multiple mirror sites in parallel using tornado codes
to speed up downloads. Proc. of INFOCOM'99.

[3] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege.
A digital fountain approach to reliable distribution of
bulk data. Proc. of ACM SIGCOMM'98.

[4] R. L. Carter and M. E. Crovella. Dynamic server selec-
tion using bandwidth probing in wide-area networks.
Proc. of IEEE INFOCOM'97, 1997.

[5] International Organization for Standardization. lnfor-
mation technology osi- the directory. ISO/IEC9594-3,
ISO/IE C9594- 8.

[6] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spiel-
man, and V. Stemann. Practical loss-resilient codes.
Proc. of ACM STOC'97, 1997.

[7] M. 0. Rabin. Efficient dispersal of information for se-
curity, load balancing, and fault tolerance. J m . AGM,

[8] Bruce Scheier. Applied Cryptography. John Willey &
Son Inc., 1996.

[9] S. Seshan, M. Stemm, and R. Katz. Spand: Shared
passive network performance discovery. Proc. of Usenix
Symposium on Internet Technologies and Sysyems'97,
December 1997.

[lo] M. Wahl, T. Howes, and S. Kille. Lightweight directory
access protocol (v3). RFC 2251.

[ll] B. Yener, Y. Ofek, and M. Yung. Combinatorial design
of congestion-free networks. IEEE/A CM Transactions
on Networking, 5(6):989-1000, December 1997.

36-2~335-348, 1989.

185

