
1

Modeling and Detection of Complex Attacks
Seyit Ahmet Çamtepe and Bülent Yener

Computer Science Department, Rensselaer Polytechnic Institute
{camtes, yener}@cs.rpi.edu

Abstract—A complex attack is a sequence of temporally and
spatially separated legal and illegal actions each of which can
be detected by various IDS but as a whole they constitute a
powerful attack. IDS fall short of detecting and modeling complex
attacks therefore new methods are required. This paper presents
a formal methodology for modeling and detection of complex
attacks in three phases: (1) we extend basic attack tree (AT)
approach to capture temporal dependencies between components
and expiration of an attack, (2) using enhanced AT we build a
tree automaton which accepts a sequence of actions from input
message streams from various sources if there is a traversal of
an AT from leaves to root, and (3) we show how to construct an
enhanced parallel automaton that has each tree automaton as a
subroutine. We use simulation to test our methods, and provide
a case study of representing attacks in WLANs.

I. INTRODUCTION

As the paradigm shifts toward pervasive networking, secu-
rity challenges get harder. One of the most important aspects
of network security is to detect and prevent attacks in realtime.
There are several types of Intrusion Detection Systems (IDS)
designed to detect attacks [1]. Network Intrusion Detection
Systems (NIDS) are used to detect attacks against a number
of networked systems within their particular network environ-
ment. Network Node Intrusion Detection Systems (NNIDS)
are located on critical systems such as database and backup
servers. Host-Based Intrusion Detection Systems (HIDS) look
for suspicious activities at system logs, critical system files
and other resources on a host. Signature-based IDS look for
attributes of known malicious threats. Anomaly-based IDS
define normal activities for a user and look for any deviation
from them.

A complex attack is a multi-agent, multi-step and multi-
stage attack. It is multi-agent because the attack may come
from collaborating adversaries or an adversary with multiple
identities. Adversary might be a legitimate user, as in insider
attacks, or might be a legitimate or illegitimate user hiding
behind innocent users as in stealth attacks [2]. It is multi-step
because it is a sequence of temporally and spatially separated
legal and illegal actions. Finally, it is multi-stage since each
of these actions can be a complex attack itself. While useful
to detect illegal actions, IDS fall short of complex attacks
such as insider and stealth attacks which may not violate any
rules explicitly. There are several characteristics of complex
attacks which make IDS insufficient. First, a complex attack
is a combination of legal and illegal actions each of which
can be detected or prevented by various IDS but as a whole
they constitute a powerful attack. For example, “bypassing

This work was supported by Air Force Research Laboratory, Rome/NY.

802.1x authentication” in WLAN requires an adversary to ei-
ther “hijack an 802.1x authenticated session” or “man-in-the-
middle (MiM) an 802.1x session”. These actions can further be
defined as proper combinations of other smaller actions. For
“hijack an 802.1x authenticated session”, an adversary has
to first “disconnect the client”, then “impersonate the client”.
“Disconnecting the client” in turn can be achieved first by
“using MAC address (impersonate) of the access point (AP)”
then by “sending MAC disassociate message” to the client.
Second, the order of these actions is also critical. Adversary
has to “impersonate the AP” before “sending MAC disassoci-
ate message” to the client. Thus, there exists partial or total
order of the actions. Third, timing is another factor because
some of the actions have a limited lifetime, and attacks which
involve such actions must be completed within a time window.
There is also more than one way of performing certain attacks,
and an adversary may be trying a subset or all of them
simultaneously. Thus, there is a need to model complex attacks
with these properties. Efficient mechanisms are required to
detect them in realtime within multiple streams of live network
activity data collected by various IDS. Detection of completed
attacks only helps us to understand them; it is required to
detect attacks before they are completed. Furthermore, a partial
attack may be reported to system administrators with the level
of attack completed and the actions necessary to complete it.

In this paper, we propose a formal methodology for model-
ing and detection of complex attacks such as insider attacks.
Our approach has three phases. First, we extend the basic
attack tree approach [3] to capture the temporal dependencies
between components and the expiration of an attack. Second,
using the enhanced attack trees (EAT) we build a tree au-
tomaton. In this step, we build upon a Nondeterministic Finite
Tree Automaton (NFTA) [4] and extend it to design a new
automaton that accepts a sequence of actions within an input
stream if there is a traversal of an attack tree from leaves to
root. Intermediate report states in the automaton are used to
generate reports for partial attacks which include: (i) level of
completion, (ii) sequences of actions required to complete the
attack, (iii) sequence of contributor actions along with their
arrival times, and (iv) source information of contributor actions
where more than one identity means collaborating adversaries
or an adversary with multiple identities. Finally, we show
how to construct an enhanced parallel automaton (EPA) that
has each tree automaton as a subroutine, and can process
the input stream by considering multiple trees simultaneously.
Our approach does not consider interactions between hosts
and network equipments. Only information about the hosts
contributing to the attack and the victims is stored, therefore
it is a scalable solution. As a case study, we show how to

2

represent and detect complex attacks in IEEE 802.11 WLANs.
We use simulation to test and evaluate our methods. Proposed
solution is implemented in perl for a testbed as our part
of a WLAN security project supported by the Air Force
Research Laboratory (Rome/NY). In this implementation, live
messages from a variety of sensors are processed for detecting
complex attacks in WLANs. Generated attack reports are used
in dynamically adjusting users’ access rights and privileges.

This paper is organized as follows. In Section II we briefly
explain other approaches to attack modeling. In Section III
we introduce background information on attack trees and
nondeterministic finite tree automata. In Sections IV and V we
present our main results. In Section VI we provide a case study
which demonstrates application of proposed techniques to
IEEE 802.11 WLANs. In Section VII we test and evaluate our
solution by simulation. Finally, in Section VIII we conclude.

II. RELATED WORK

Attack tree (AT) representation originates from fault trees
which have been used in analyzing failing conditions of
complex systems [5]. Attack trees are first used by Schneier
[3] to provide a formal way of describing the security of a
system. Schneier proposes to represent attacks against a system
in a tree structure where a goal is the root node and different
ways of achieving the goal are leaf nodes. Convery et al.
[6] use attack trees to analyze potential threats to and using
Border Gateway Protocol (BGP) from adversaries’ perspective.
In [7] and [8], attack tree is enhanced by assigning context
to attack nodes to provide a framework for modeling multi-
stage network attacks. Attack trees can capture atomic steps
of an attack where it is possible to assign cost and weight like
parameters to these atomic steps. There is always a chance
of missing an attack or an atomic step while forming such
attack trees. But, attack trees grow incrementally by time and
they capture knowledge in a reusable form. Attack trees have
simple hierarchical structure where navigation in bottom-up or
top-down manner is quite simple. It is also possible to process
reusable branches or subtrees of an attack tree in a parallel
fashion. There are some disadvantages of attack trees which
should be addressed to improve their efficiency. Problem arises
on preconditioning and timing. An attack may require its
atomic actions happen in a strict time order. Moreover, some
of the atomic actions can be valid during a certain period of
time. Attack trees only have AND and OR types of children
which restricts their expressive power.

Preconditioning is addressed in [9] and [5] by use of petri
nets. A petri net consists of places, transitions and arcs con-
necting them. Places include tokens. A transition occurs when
its preconditions are met, then tokens are moved from their
input places to output places. Attack Graph (AG) is another
attack modeling technique which is used in analyzing effects
of local vulnerabilities on attacks [10], [11], [12] and [13]. In
the basic scheme [10], scanning tools are used to determine
vulnerabilities in a network. This vulnerability information is
used along with host and connectivity information to generate
attack graphs. Nodes in the graph are states of the network and
arcs are the atomic attacks. Each path from start state to attack

state is a series of exploits which leads to the attack. Attack
graphs are mainly used to gather information about types of
attacks the network is vulnerable to, and to make decisions
such as the set of actions required to stop adversary. Finding
minimal set of actions to stop adversary is shown to be an
NP-complete problem [13]. Structure of attack graphs handles
AND kind of relation among its atomic attacks by connecting
them in serial and OR kind of relation by connecting them
in parallel. Problem is to enforce an AND relation among the
atomic attacks which can come in any order to reach the attack
state. Such an unordered AND relation among n atomic attacks
can be handled by parallel connection of all n! permutations
of these attacks. Another problem is that, attack graphs don’t
consider expiration of atomic attacks. When an atomic attack
expires, attack state should be rolled back.

Attack languages are used to encode atomic actions of
an attack into a suitable format [14]. In State Transition
Analysis Technique (STAT) [15], attack languages are used
to represent attack scenarios as a sequence of actions causing
transition between security states of a computer system. In
this work, we provide a link between attack languages and
graph based attack representations. Namely, we enhance attack
tree representation and propose a tree automaton technique to
recognize attack trees within an input sequence of actions.
Sequences of actions accepted by this automaton are actually
words of an attack language.

In [16], a pattern matching approach is used to represent
and detect intrusions. In [17] and [18], multi-stage attacks
are detected based on their statistical characteristics. In [19],
correlated attack modeling language is proposed to model
multi-step attacks. A module is the basic unit with activity, pre-
condition and post-condition sections, and modules are linked
together to express a multi-step attack scenario. The purpose of
this language is to provide an abstract attack model that can
be shared among developers. In [20], attacks are classified
in three dimensions: incidents, response and consequences.
These dimensions then branch into new nodes and those nodes
branch into new nodes until they can no longer be classified.
This approach characterizes all possible incidents similar to
an attack tree structure given in [3]. Magklaras et al. [21]
refer to human factor as the reason of incidents. Their model
classifies people into three dimensions: system role, reason
of misuse, and system consequences. All of these models are
based on prediction of attacks. Phyo et al. [22] propose a
detection oriented approach to classify insider misuse based
on the level of the system at which they might be detected.
The main idea is that different types of misuses appear at
different layers of a system. They classify attacks into three
layers: (i) network-level misuses, (ii) system-level misuses and
(iii) application and data-level misuses.

III. BACKGROUND

Attack trees are a formal method for modeling attacks. More
specifically, an attack is represented in a tree structure where
the root node is the main goal, intermediate nodes are the
subgoals, and leaf nodes are the ways to reach to the subgoals
and finally to the main goal in turn. Root and intermediate

3

nodes can have AND and OR types of children. The goal is
reached when all of its AND children or at least one of its OR
children are accomplished. This is same for all subgoals down
to leaves of the tree. It is quite easy to construct attack trees.
First, possible attack goals must be identified. Each attack
goal becomes root of its own attack tree. Then, construction
continues by considering all possible actions required for the
given goal. These actions form AND and OR children of the
goal. Next, each action becomes a goal and its children are
generated. This process recursively goes down to the leaves.
In such a tree structure, an attack scenario to reach the goal
is a subtree which includes the root node and all of its AND
along with at least one of its OR children. Same selection is
made for all selected children (subgoals) recursively down to
the leaves. These selections form subtree of the given attack
tree. An attack tree is complete if it contains a subtree for
all possible attack scenarios. It is possible to assign different
attributes to the nodes such as time-to-live (TTL), cost, etc.
By using such attributes, attacks with certain properties can be
extracted which can be very useful in defining possible and
feasible threats and in investing for countermeasures.

Tree automaton [4] has been initially designed in the late
50’s in the context of circuit verification and found itself other
application areas later on. In its basic form, it processes an
input tree in bottom up manner starting from leaves up to the
root.

Definition 1: A Nondeterministic Finite Tree Automaton
(NFTA) [4] is a tuple A = (Q,F,Qf , ∆) where:

• Q is a set of states,
• Qf ⊆ Q is a set of final states,
• F is a set of n−ary symbols (such as constant symbol a

representing a leaf node, unary symbol f() representing
a node with one child, binary symbol g(,) representing
a node with two children, etc.),

• ∆ is a set of transition functions in the form of:
f(q1(x1), . . . , qn(xn)) → q(f(x1, . . . , xn)).

where f ∈ F , q, q1, . . . , qn ∈ Q and x1, . . . , xn are all
variables which can take on values from the input alphabet
F .

Input to a NFTA is a tree which is expressed by a sequence
of n − ary symbols from the input alphabet F . Automaton
processes tree in bottom-up fashion from leaves to the root.
When the root is processed, automaton accepts the input tree
if it has reached to one of the final states in Qf .

Example 1: ([4]) Let F = {or(,), and(,), not(), 0, 1}
where or(,) and and(,) are binary symbols and not() is a
unary symbol. Consider the automaton A = (Q,F, Qf ,∆)
where Q = {q0, q1}, Qf = {q1}, and ∆ is:

∆ for A = (Q,F, Qf ,∆)
0 → q0 1 → q1

not(q0) → q1 not(q1) → q0

and(q0, q0) → q0 and(q0, q1) → q0

and(q1, q0) → q0 and(q1, q1) → q1

or(q0, q0) → q0 or(q0, q1) → q1

or(q1, q0) → q1 or(q1, q1) → q1

Fig. 1. Input tree and(not(0), or(1, 0)) for the NFTA of Example 1. Step
(1) shows the tree. During step (2), leaves are processed. Next in step (3),
internal nodes not(,) and or(,) are processed. Finally in step (4), root is
processed and final state is reached.

Fig. 1 illustrates how and(not(0), or(1, 0)) is processed by
automaton A. The automaton accepts this tree because when
binary and(,) symbol at the root is processed, automaton
reaches to final state q1. This automaton actually accepts all
true boolean equations over F .

In the next section, first we will show how to enhance attack
trees [3] to obtain Enhanced Attack Trees (EAT) which sup-
ports temporal dependencies between components and attack
expiration. Then, we will enhance tree automaton [4] and
show how to construct an Enhanced Tree Automaton (ETA)
for a given enhanced attack tree. Finally, we will design a
new Enhanced Parallel Automaton (EPA) which is union of
the enhanced tree automata, and which can search more than
one enhanced attack tree in parallel within input stream.

IV. ENHANCED PARALLEL AUTOMATON

A. Enhanced Attack Tree

In this work, we contribute several enhancements over
attack tree [3] to increase its expressive power. First of all,
there can be cases where goals or subgoals can be reachable
only if all of their AND children are accomplished in a
given time order. It is not possible to use AND (∧) or OR
(∨) type of children to enforce such an order. For example,
“disconnecting a client” in WLAN can be done by performing
“eavesdrop MAC address of the AP”, “impersonate AP” and
“send MAC disassociate message to the victim” actions in this
order. We call these types of children as type O − AND
(Ordered-AND) and denote with symbol −→∧ .

Our second contribution is time and attack level attributes
of the nodes. TTL (Time-To-Live) attribute defines a lifetime
for actions at leaf nodes and for subgoals at interior nodes
of the attack tree. In the example of “disconnecting a client”,
a client receiving a “disassociate” message disconnects from
the AP but tries to reconnect again soon. Client restarts a well
defined sequence of operations to reconnect. These operations
include probing the network to find the best AP, open mode or
WEP authentication and finally associating with the selected
AP. Adversary has limited amount of time to finalize his attack
before the victim reconnects. Thus, if more than TTL time has
elapsed since the action or the subgoal accomplished, it must
be expired. TTL attribute helps decrease number of False+

which is one of the basic problems in IDS.
Attack Level (AL) attribute defines amount or level of attack

completed when a subgoal is accomplished. It is possible to
report an attack (percent of the attack completed so far) before

4

Subgoal Attack Scenarios AL Boolean Expr.
A - - (a−→∧ b−→∧ c−→∧ d)

∨(e−→∧ (f ∧ g))
B A(B(C(D(a), b, c), d)) 1 a−→∧ b−→∧ c−→∧ d
C A(B(C(D(a), b, c), d)) 0.75 a−→∧ b−→∧ c
D A(B(C(D(a), b, c), d)) 0.25 a
E A(E(F (e), f, g)) 1 e−→∧ (f ∧ g)
F A(E(F (e), f, g)) 0.33 e

TABLE I
ATTACK LEVEL (AL) ATTRIBUTES AND ATTACK BOOLEAN EXPRESSIONS

FOR GOALS/SUBGOALS IN ENHANCED ATTACK TREE OF FIG. 2

it is completed. There can be different mechanisms to define
AL attribute. In this work, we consider all possible attack
scenarios which include the subgoal. A separate AL of the
subgoal for each attack scenario is calculated and maximum
among all is selected. AL is the ratio of all accomplished
actions before the subgoal over all actions of the scenario. This
attribute can be used to establish an early warning system and
can help take precautions such as restricting access and user
privileges before possible damages of the attack. In Section
V we introduce Attack Probability (AP) attributes of subgoals
and actions for probabilistic attack reporting where each action
or subgoal may have different weight.

Definition 2: An Enhanced Attack Tree (EAT) is an attack
tree [3] where children of a node in the tree can be of types:
AND (∧), O-AND (−→∧) and OR (∨), and where each node has
TTL and AL attributes.

Definition 3: An attack path starts from the goal and selects
either one of OR children or all of AND and O-AND children
recursively until reaching actions on the leaves. Each such
attack path is also called as an attack scenario.

Fig. 2 presents a sample enhanced attack tree for “By-
passing 802.1x”. 802.1x authentication mechanism can be
bypassed by either hijacking an authenticated session, or by
playing Man-in-the-Middle (MiM) to steal credentials from
a legitimate user [23]. Each action on the leaves has a TTL
attribute, each subgoal has an AL and a TTL attribute, and
edges are types of AND, O-AND and OR. Table I lists AL
attributes for all subgoals. Root of the tree is the goal “A -
Bypassing 802.1x”. Adversary has to perform either one of
the subgoals “B - Hijack 802.1x Authenticated Session” or
“E - MiM 802.1x Session” to accomplish the goal. Subgoal
“B - Hijack 802.1x Authenticated Session” in turn can be
accomplished by reaching subgoal “C - Disconnect Client”
and performing action “d - Impersonate 802.1x Authenticated
Client” in this order (O-AND). Construction of the tree
continues in this manner until all leaves are all actions. This
tree has two possible attack paths, meaning two possible
attack scenarios to reach the goal: (i) A(B(C(D(a), b, c), d)),
and (ii) A(E(F (e), f, g)). Table I lists all attack scenarios
involving each subgoal.

As another enhancement, we use an attack tree as a self
verifying system. Attack trees are generated so as to divide
subgoals into as much detectable actions as possible. But,
existing network monitoring systems, sensors and IDS may
be reporting actions as well as subgoals used in attack trees.
When an occurrence of a subgoal is received while some of

Fig. 2. Enhanced Attack Tree for “Bypassing 802.1x”. Capital letters [A
.. Z] within circles are used to represent the goals and subgoals. Actions
at leaf nodes are represented with small letters [a .. z] within squares.
Node descriptions are as follows: A - Bypass 802.1x, B - Hijack 802.1x
Authenticated Session, C - Disconnect Client, D - Find 802.1x Authenticated
Victim, E - MiM 802.1x Session, F - Find Unauthenticated Victim, a -
Eavesdrop on 802.1x Authenticated Client, b - Use MAC Address of AP,
c - Send MAC Disassociate, d - Impersonate 802.1x Authenticated Client,
e - Eavesdrop on New Unauthenticated Client, f - Impersonate AP, g -
Impersonate New Unauthenticated Client.

the children are not yet accomplished, we may consider that
there are some other ways to realize that subgoal therefore
attack tree is not complete. Once an incomplete attack tree
is detected, it can be reported to the system administrator
to redesign the corresponding attack tree. Thus, attack trees
can grow incrementally by time. As an example, for the
enhanced attack tree in Fig. 2, it may be possible to receive a
message indicating that a client is disconnected but action “c
- Send MAC Disassociate” has not been seen. In this case, we
may suspect existence of some other mechanisms which can
disconnect a client to hijack an 802.1x authenticated session.

As another example, consider the case where a user is
passing through an 802.1x authentication process by using
credentials of an existing active user. In this situation, we
may conclude that attack tree is not complete because either an
adversary hijacked a session and the legitimate user is trying to
reconnect or the adversary has already recovered credentials of
the legitimate user with a mechanism other than MiM type of
attack (i.e., guessing or dictionary attack for easy passwords,
using spyware to steal passwords from the client computer, so-
cial engineering, breaking in configuration files). Thus, attack
trees provide not only an effective model for attacks but also
a self verifying system. Once the attack tree is detected to be
incomplete, it needs to be updated by examining the message
history from a variety of sensors and IDS. Detecting unknown
attack scenarios within such a huge message history can be
automated by using unsupervised learning and data analysis
techniques such as PCA (Principle Component Analysis) and
SVD (Singular Value Decomposition) [24]. These techniques
can help us remove noise in message history to reach important
actions. In [25] and [26], similar techniques are shown to be
useful in extracting structure in large data sets.

B. Enhanced Tree Automaton
There are several deficiencies of the Nondeterministic Finite

Tree Automaton (NFTA) [4] therefore it is not suitable for

5

use with enhanced attack trees. First of all, NFTA assumes a
tree as input, accepts it when input is consumed and a final
state is reached. In our system, input is a stream of messages
coming from various sources such as IDS, sensors, firewalls
and network packet analyzers. Specific trees are searched
within such a live stream of messages.

The most important issue with enhanced attack trees is that
input stream may only include actions on the leaves and some
of the subgoals may never appear in input stream therefore
NFTA may never reach to a final state. As an enhancement
to NFTA, we propose to use derivation rules which require a
boolean variable to be associated with each action.

Definition 4: A boolean variable x takes on value true if
the corresponding action(x) appears within the input stream at
most TTL(x) time ago, false otherwise.

Example 2: In Fig. 2, assume that “C - Disconnect client” is
not in input stream but actions a, b and c are. Instead of waiting
for “C - Disconnect client” which may never appear, we may
use derivation rule for C = D−→∧ b−→∧ c = a−→∧ b−→∧ c where−→∧ represents O-AND operation. We name this expression as
attack boolean expression. Boolean expression C evaluates to
true, if all boolean variables are true and corresponding actions
a, b and c arrive in this order. If expression C evaluates to
true, we assume arrival of subgoal C. Subgoal C assumes both
arrival time of action a (first arrival) and that of action c (last
arrival). This is required because subgoal C itself may be a
child of type O-AND of another subgoal or the goal. Table
I lists attack boolean expressions for remaining subgoals and
the goal in enhanced attack tree of Fig. 2.

In this work, we propose a new automaton technique and
show how it can be used for detecting enhanced attack trees
in a stream of messages. Our enhanced tree automaton design
provides three basic functionality: (i) detecting attacks, (ii)
detecting partial attacks and (iii) verifying completeness of the
attack trees. Enhanced tree automaton is primarily based on
the NFTA [4] but we improve it by introducing: (i) reporting
states (called partial attack states) in addition to final states
(called attack states), (ii) derivation rules for subgoals, and
(iii) backward transition rules to roll back the automaton when
actions and subgoals expire.

Definition 5: A Nondeterministic Finite Enhanced Tree Au-
tomaton (NFETA) is a tuple A = (Q, F, QPA, QA, D, ∆F ,
∆B) where:
• Q is a set of states,
• QPA ⊆ Q is a set of partial attack states,
• QA ⊆ Q is a set of attack states,
• F is the input alphabet which is a set of n−ary symbols,
• D is a set of derivation rules for the goal and subgoals

in the form of boolean expressions,
• ∆F is a set of forward transition rules of the form:

f(q1(x1), . . . , qn(xn)) → q(f(x1, . . . , xn)),
• ∆B is a set of backward transition rules of the form:

q(f(x1, . . . , xn)) → q1(x1), . . . , qn(xn).
where f ∈ F , q, q1, . . . , qn ∈ Q and x1, . . . , xn are all
variables which can take any value from symbol set F . Input
to this automaton is a stream of symbols from F . When
automaton reaches one of the partial attack states in QPA, it

reports the attack with level AL. When automaton reaches one
of the attack states in QA, it reports the attack along with the
sequence of input actions which caused this attack. We also
report source information of input actions where more than
one identity mean collaborating adversaries or an adversary
with multiple identities.

Similar to NFTA [4], NFETA uses an input alphabet F
with n-ary symbols where a constant symbol (i.e., a, b, . . .)
represents a leaf node, an unary symbol f() represents a goal
or a subgoal with one child, a binary symbol g(,) represents
a goal or a subgoal with two children etc.

Some of the subgoals in enhanced attack trees may not
appear in the input stream. But, we can use attack boolean
expressions to evaluate subgoals and assume their arrival. For
this purpose NFETA includes derivation rules for each subgoal
as in Table I. When an action arrives, all boolean expressions
which include the action is evaluated. If the boolean expression
corresponding to a subgoal evaluates to true, we conclude
arrival of the subgoal even though it may not be in the input
stream.

Forward transition rules are similar to transition rules of
NFTA [4]. When an action or a subgoal arrives or when a
subgoal is derived by derivation rules, corresponding symbol
is used with forward transition rules to proceed on the tree
and to update the states.

Each action and subgoal has a lifetime which is defined with
TTL attribute. If an action or a subgoal expires, derivation
rules are reevaluated to check whether any other subgoal
expires. Next, for the expired subgoals and actions, backward
transition rules are executed to roll back from current states.
Backward transition rules are simply the reverse of forward
transition rules: given the set of current states and the symbol
to be removed, the set of states before arrival of the symbol
is reinstated. Fig. 5 step (5) provides a sample backward
transition on action c.

Definition 6: Given an enhanced attack tree, an NFETA
with A = (Q, F, QPA, QA, D, ∆F , ∆B) can be generated
as follows:
• Q: Set of states are obtained by assigning a separate state

qi for each edge in the tree along with an extra state for
the goal.

• F : Set of symbols are associated with the actions at leaves
and n− ary symbols with the goal and subgoals where
n is the number of children.

• QPA: Partial attack states. Set of states which are associ-
ated with the edge connecting subgoals to their parents.

• QA: Attack state is the one associated with the goal at
the root.

• D: Derivation rule for each subgoal is obtained starting
from leaves up to the root. Each action is associated
with a boolean variable as defined in Definition 4, and
each subgoal is expressed as a boolean expression of its
children with operators AND (∧), O − AND (−→∧) and
OR (∨).

• ∆F : For each action at leaf node x, add x → qx forward
transition rule where qx is the state associated with the
edge connecting node x to its parent. For each subgoal
X , add X(qx1 , . . . , qxn) → qX forward transition rule

6

Fig. 3. NFETA of Example 3 on input a, f, f, g, b, c, e, c, d. In step (1),
input symbol a is processed. Based on transition rules, state qa is reached.
At the same time derivation rules realize that subgoal D has been reached.
Therefore transition rules advance state qa to state qD . At subgoal D, attack
A is reported with level 25% . In step (2), input symbols f , f and g are
processed and states qf and qg are added among current states. Fig. 4 presents
remaining steps.

where qX is the state associated with the edge connecting
the subgoal to its parent, and qx1 , . . . , qxn

are the states
associated with its children.

• ∆B : backward transition rules are the reverse of forward
transition rules: qX(X−(qx1 , . . . , qxn)) → qx1 , . . . , qxn .

Example 3: For the enhanced attack tree in Fig. 2, we
obtain following NFETA with A802.1x = (Q, F, QPA, QA,
D, ∆F , ∆B):
• Q = {qa, qb, qc, qd, qe, qf , qg, qA, qB , qC , qD, qE , qF },
• F = {a, b, c, d, e, f, g, A(,), B(,), C(, ,), D(), E(, ,),

F ()},
• QPA = {qB , qC , qD, qE , qF } with AL attributes as in

Table I,
• QA = {qA},
• D: boolean expressions as provided in Table I,
• ∆F :

a → qa; b → qb; c → qc; d → qd;
e → qe; f → qf ; g → qg;
A(qB , qE) → qA; B(qC , qd) → qB ;
C(qD, qb, qc) → qC ; D(qa) → qD;
E(qF , qf , qg) → qE ; F (qe) → qF ,

• ∆B :
qA(A−(qB , qE)) → qB , qE ;
qB(B−(qC , qd)) → qC , qd;
qC(C−(qD, qb, qc)) → qD, qb, qc;
qD(D−(qa)) → qa;
qE(E(qF , qf , qg)) → qF , qf , qg;
qF (F−(qe)) → qe.

Fig. 3, 4 and 5 present how this NFETA operates on sample
input stream a, f, f, g, b, c, e, c, d.

C. Enhanced Parallel Automaton

Enhanced tree automaton is obtained from an enhanced
attack tree, therefore it is designed to detect a single tree
coded within stream of input data. More complex attacks
which are combinations of the several enhanced attack trees

Fig. 4. NFETA of Example 3 on input a, f, f, g, b, c, e, c, d. In step (3),
input symbol b is processed and qb is added among current states. In step
(4), input symbol c is processed and qc is added among current states. At the
same time derivation rules realize that subgoal C has been reached. Therefore
transition rules advance states qD , qb and qc to state qC . At subgoal C, attack
A is reported with level 75%. Fig. 5 presents remaining steps.

Fig. 5. NFETA of Example 3 on input a, f, f, g, b, c, e, c, d. In step (5),
input symbol e is processed and qe is added among current states. At the
same time c expires and backward transition rules roll states qc and qC back
to states qD and qb. Derivation rules realize that subgoal F has been reached.
Therefore transition rules advance state qe to state qF . Attack A is reported
with level 25%. Since subgoal F is accomplished after arrival of symbols f
and g, derivation rules fail to realize subgoal E. In step (6), input symbols c
and d are processed and qc and qd are added among current states. Derivation
rules first realize subgoal C and advance states qD , qb and qc to state qC .
Then realize subgoal B and advance states qC and qd to state qB . At subgoal
B, attack A is reported with level 100%. Next, derivation rules realize goal
A and advance state qB to qA which is the final state.

can be handled in two ways. First way is to design a separate
enhanced tree automaton for each enhanced attack tree and
feed a copy of the input stream to each independent automaton.
Second way is to build an Enhanced Parallel Automaton (EPA)
which is the combination of enhanced attack trees and uses
single input stream to search several attacks in parallel.

Constructing an Enhanced Parallel Automaton for n trees
T = {T1, T2, . . . , Tn} is straightforward and consists of
following two steps:

1) For each tree Ti ∈ T , generate its Nondeterministic
Finite Enhanced Tree Automaton (NFETA) as in Defi-
nition 6 from a common input alphabet F as:

Ai = (Qi, F, Qi
PA, Qi

A, Di,∆i
F , ∆i

B)
where Q1 ∩Q2 ∩ . . . ∩Qn = ∅.

2) Enhanced Parallel Automaton is defined as:

7

A = A1 ∪A2 ∪ . . . ∪An

where
Q = Q1 ∪Q2 ∪ . . . ∪Qn,

QPA = Q1
PA ∪Q2

PA ∪ . . . ∪Qn
PA,

QA = Q1
A ∪Q2

A ∪ . . . ∪Qn
A,

D = D1 ∪D2 ∪ . . . ∪Dn,
∆F = ∆1

F ∪∆2
F ∪ . . . ∪∆n

F ,
∆B = ∆1

B ∪∆2
B ∪ . . . ∪∆n

B .

V. PROBABILISTIC ATTACK REPORTING

We assign AL (attack level) attribute to each subgoal in
our enhanced attack trees. AL for a subgoal is the ratio of
all accomplished actions of the subgoal to all actions of the
attack scenario that involve the subgoal. There might be more
than one such attack scenarios towards the attack goal thus
a separate AL is calculated for each attack scenario and the
maximum among all is selected. Once the subgoal is accom-
plished, the attack is reported with level AL. One problem
here is that AL calculation for a subgoal considers each attack
action with equal difficulty and weight. Consider the enhanced
attack tree for “A - bypassing 802.1x authentication” in Fig.
2. Assume that the subgoal “C - disconnect the client” is
accomplished, meaning that actions “a - eavesdrop on 802.1x
authenticated client”, “b - use MAC address of AP” and “c -
send MAC disassociate” are seen. Then attack A is reported
with an AL of 75% because only the action “d - impersonate
802.1x authenticated client” is missing out of four actions (a,
b, c, d) which are sufficient for the attack A. But, performing
action d is quite easier than performing action b, thus much
more than 75% of the attack A is completed actually.

We introduce a new AP (attack probability) attribute for the
actions and subgoals in enhanced attack trees. AP attributes
describe the difficulty of performing actions or subgoals,
and they are generated based on a simple statistical analysis
on message history. Difficulty of an action or a subgoal is
related to its frequency in message history, in other words,
actions generated more often are assumed as easier to be
accomplished. Let AP(x) be the AP attribute of an action x
which is located on a leaf of an enhanced attack tree and let
H be the message history, then AP(x) is the number of x in H
divided by the total number of messages in H. For a subgoal
X , AP(X) = MAX{APH(X), APG(X)} where APH(X) is
the number of X in H divided by the total number of messages
in H and APG(X) is generated from the AP attributes of
children of subgoal X . Let ∧(X), −→∧ (X) and ∨(X) be AND,
O −AND and OR children of subgoal X respectively:

APG(X) =
∏

x∈∧(X), x∈−→∧ (X)

AP (x)

APG(X) =
∑

x∈∨(X)

AP (x)

For the actions which can not be detected by any sensors,
IDS or network analysis tools security administrators may set
AP values manually. For example, AP value for the action
“a - eavesdrop on 802.1x authenticated client” can be set as
1 because anybody can download and install a sniffer and

Fig. 6. Probabilistic attack reporting. Figure provides three enhanced attack
trees for attacks R1, R2 and R3. Subtree (a.k.a. subgoal) X is reused by
these three trees. When subgoal X is accomplished, attacks R1, R2 and
R3 can be reported and ranked based on the probabilities Pr(R1|X) =
Pr(A|X) = AP (A), Pr(R2|X) = Pr(B, C|X) = AP (B) × AP (C)
and Pr(R3|X) = Pr(D|X) = AP (D) if subtrees A, B, C, D and X are
distinct and corresponding actions are independent.

passively eavesdrop the wireless traffic without being detected.
Once the AP attributes for the actions and subgoals are set, we
may provide the probability of an attack under the condition
that a set of subgoals and actions are accomplished. Consider
the enhanced attack tree of Fig. 2 and assume AP values for
actions a, b, c and d be 1, 0.1, 0.5 and 0.2 respectively due to
their easiness and frequency of appearance in the message his-
tory. Once actions a, b, c are seen, subgoal C is accomplished
with AP (C) = 1×0.1×0.5 = 0.05. We may report attack A
with conditional probability Pr(A|C) = Pr(d|C) = AP (d)
where AP (d) = 0.2 and action d is independent from actions
of subgoal C. If we normalize the probabilities to 1 (i.e.,
AP (d) → 0.8 and AP (C) → 0.2), we may report attack
A as being completed 80%.

It is possible that a subgoal (a.k.a. subtree) may be reused
by more than one enhanced attack trees. In that case, when a
subgoal is accomplished, all the attacks at the roots of these
enhanced attack trees can be reported as partial attacks. AP
(attack probability) attribute here can help us assign a proba-
bility for each; rank and report them to security administrators.
Fig. 6 illustrates a sample scenario.

VI. CASE STUDY: MODELING AND DETECTION OF
COMPLEX ATTACKS FOR 802.11 WLAN

WLANs [27] are well accepted and brought a great flexi-
bility to office and home networks. Mobility and portability
provided by WLANs help adversaries to better hide their
malicious activity while providing them great access opportu-
nities. WLAN standards were developed without public review
on security measures. This approach resulted in foundations
of many different ways to crack WLAN security. Today,
Internet is a good source of efficient tools for eavesdropping
wireless traffic, launching DoS types of attacks or cracking
the encryption systems on use. It doesn’t require any deep
knowledge about the technology to use these tools to launch
wide range of active and passive wireless attacks.

Wireless Access Points (AP) provide physical and MAC
layer security. Physical security consists of limiting RF sig-

8

nal availability within a particular perimeter by controlling
direction and power of the antenna. There are five MAC layer
security mechanisms: (i) hiding SSID (Service Set Identifier)
information (SSID close mode of operation), (ii) MAC address
based filters , (iii) WEP authentication and privacy mecha-
nisms, (iv) 802.1x authentication mechanism, and (v) 802.11i
privacy, integrity and key management mechanisms.

IDS (e.g. attack graphs, attack languages, basic attack trees
and pattern matching techniques) fail to detect complex attacks
since they aren’t capable of processing multiple facets of a
complex attack (i.e., timing, temporal separation and ordering
such as O-AND, AND and OR properties) concurrently. For
example, consider insider attacks in 802.11 WLANs in which
an attacker can “hijack or MiM a session”, “disconnect a
client”, “impersonate a client or an AP”, etc. Although some
of these actions can be detected by IDS, they can’t combine
the pieces to obtain a macroscopic view which indicates a
complex attack. In this case study, we first provide enhanced
attack trees and enhanced tree automata for complex attacks
to bypass 802.11 security mechanisms: (i) SSID close mode
of operation, (ii) MAC address based filters, (iii) WEP pri-
vacy, (iv) 802.1x authentication. Then, we build an Enhanced
Parallel Automaton which can detect these attacks in parallel.

SSID beacon messages sent by Access Points (AP) can
be disabled so that only a client possessing correct SSID
information can probe and connect. An adversary can only
obtain SSID information by listening client probe messages.
Adversary can either wait for a new client to arrive, or
can disconnect a client forcing him to reconnect. Fig. 7
provides enhanced attack tree for the attack. Nondeterministic
Finite Enhanced Tree Automaton (NFETA) for this tree is
ASSID = (Q,F,QPA, QA, D, ∆F ,∆B) where:
• Q = {qh, qb, qi, qj , qG, qH , qI},
• F = {h, b, i, j, G(),H(, ,), I(,)},
• QPA = {qG, qH} with AL attributes 0.25 and 0.75

respectively,
• QA = {qI},
• D: G = h; H = h−→∧ b−→∧ i; I = h−→∧ b−→∧ i−→∧ j,
• ∆F : h → qh; b → qb; i → qi; j → qj ; G(qh) → qG;

H(qG, qb, qi) → qH ; I(qH , qj) → qI ,
• ∆B : qG(G−(qh)) → qh; qI(I−(qH , qj)) → qH , qj ;

qH(H−(qG, qb, qi)) → qG, qb, qi.
MAC filters are used to filter clients based on their MAC

addresses. An adversary can passively monitor network for
active clients and impersonate one as soon as it gets discon-
nected. Fig. 7 provides enhanced attack tree for the attack.
Nondeterministic Finite Enhanced Tree Automaton (NFETA)
for this tree is AMAC = (Q,F, QPA, QA, D, ∆F , ∆B) where:
• Q = {qk, ql, qJ , qK},
• F = {k, l, J(),K(,)},
• QPA = {qJ} with AL attribute 0.5,
• QA = {qK},
• D: J = k; K = k−→∧ l,
• ∆F : k → qk; l → ql; J(qk) → qJ ; K(qJ , ql) → qK ,
• ∆B : qJ(J−(qk)) → qk; qK(K−(qJ , ql)) → qJ , ql.
WEP privacy is basically provided by the stream cipher

RC4 with a 64 or 128 bit shared secret and an Initialization

Fig. 7. Enhanced Attack Trees: (I) “Finding SSID in close mode”, (II)
“Bypassing MAC filters”, and (III) “Finding WEP key”. Capital letters [A ..
Z] within circles are used to represent the goals and subgoals. Actions at
leaf nodes are represented with small letters [a .. z] within squares. Node
descriptions are as follows: G - Find an active SSID victim, H - Disconnect
SSID victim, I - Find SSID in close mode, J - Find a MAC which is not
blocked, K - Bypass MAC Filter, L - Collect WLAN traffic, M - Cryptanalysis
WEP key, N - Finding WEP key, b - Use MAC Address of AP, h - Eavesdrop
on an active client, i - Send MAC disassociate to SSID victim, j - Eavesdrop
on victims probe messages, k - Eavesdrop on unblocked MAC, l - Impersonate
unblocked client, m - Eavesdrop WLAN traffic, n - Crack WEP key.

Vector (IV). Shared secret is also used to authenticate clients
where clients simply encrypt and send back the challenge
provided by AP. WEP privacy is provided by xor operation
of cleartext data with a key stream. Key stream is generated
by RC4 algorithm using the shared secret and IV. WEP
is secure as soon as key stream is not repeated. But with
24 bit IV, it is not rare to see key stream reuses. This
problem of WEP is used to crack WEP key [28], [29]. An
adversary can passively collect enough WEP traffic to use
with WEP crack tools which are publicly available [30]. Fig. 7
provides enhanced attack tree for the attack. Nondeterministic
Finite Enhanced Tree Automaton (NFETA) for this tree is
AWEP = (Q, F, QPA, QA, D, ∆F , ∆B) where:

• Q = {qm, qn, qL, qM , qN},
• F = {m,n, L(),M(,), N()},
• QPA = {qL, qM} with AL attributes 0.5 and 1 respec-

tively,
• QA = {qN},
• D: L = m; M = m−→∧n; N = m−→∧n,
• ∆F : m → qm; n → qn; L(qm) → qL; M(qL, qn) → qM ;

N(qM) → qN ,
• ∆B : qL(L−(qm)) → qm; qM (M−(qL, qn)) → qL, qn;

qN (N−(qM)) → qM .

802.1x provides authentication mechanism for 802.11. Ab-
sence of mutual authentication within 802.1x with EAP-MD5
(RFC 2284) helps an adversary to play Man-in-the-Middle
(MiM) attack, or to hijack session of an authenticated client. In
MiM, adversary simply impersonates the client to the AP and
impersonates the AP to the client. Since all the communication
among client and AP is made through adversary, adversary
can collect security credentials of the client. These credentials
can be used to bypass 802.1x authentication. Fig. 2 provides
enhanced attack tree for the attack. Nondeterministic Finite
Enhanced Tree Automaton (NFETA) for this tree is given in
Example 3.

Enhanced Parallel Automaton which detects 802.11 attacks
can be constructed by union of individual enhanced tree

9

Fig. 8. Enhanced Parallel Automaton (EPA) for attacks against 802.11
security. EPA is A802.11 = ASSID ∪AMAC ∪AWEP ∪A802.1x.

automata as defined in Section IV-C:

A802.11 = ASSID ∪AMAC ∪AWEP ∪A802.1x

Fig. 8 provides overall view of the Enhanced Parallel Automa-
ton A802.11 for complex attacks against 802.11 WLAN.

VII. SIMULATION AND RESULTS

We have implemented our enhanced parallel automaton
technique. We use enhanced parallel automaton generated by
the case study of complex attacks for 802.11 WLAN. Our
implementation has a structure similar to system design given
in Fig. 9 and 10.

A perl program, named as action generator, simulates
detection and monitoring systems such as IDS and generates
a random sequence of actions (input messages in Fig. 9). Both
interarrival time and lifetime assignments for the actions are
decided based on our observations and protocol expectations
in 802.11 WLANs. Basically, action set of action generator is
divided into two parts. First part consists of normal actions:
actions which are not included in any enhanced attack trees,
and actions which are in enhanced attack trees but can also
be generated as a result of normal WLAN operations (i.e.,
“MAC Disassociate” message). Second part consists of attack
actions which are the remaining actions in enhanced attack
trees. Before generating a random action, action generator
makes a decision between sending a random action or an
attack sequence. If attack sequence is selected, then one of
the predefined attack sequences is sent. Attack sequences are
attack paths (Definition 3) which are generated from enhanced
attack trees of Fig. 2 and 7 (i.e., the sequence (a, b, c, d) of
Fig. 2 which is enough to conclude attack A and subattacks
B, C, D). Other example sequences, such as (D, b, c, d), are
inserted for attack tree verifier to create alarm since subgoal D
arrives before its children which means there may be another
way of performing subgoal D and attack tree is incomplete.
If random action is selected, then a second selection is made
between normal and attack actions. Ratio of attack actions in
random actions defines amount of noise in the log. Because,
these actions simulate the cases where there is no attack but
some of attack actions appear in input messages and create

Fig. 9. Enhanced Tree Automaton System Design. States about the goals and
actions are stored in a table. When a message arrives, time is updated, and
actions are checked against expiration. Next, derivation, forward and backward
transitions rules are applied. Achieved goals and subgoals are reported. If an
attack tree is detected as being incomplete, it is reported for further analysis
as in Fig. 10.

Fig. 10. Enhanced Tree Automaton System Design. If an attack tree is de-
tected as being incomplete, it is reported for further analysis. An offline PCA
(Principle Component Analysis) or SVD (Singular Value Decomposition) [24]
on history of messages is used to update incomplete attack trees.

false alarms. Thus, ratio of attack actions to random actions
is a simulation parameter.

While action generator generates a log file for a given
number of actions and given ratio of noise, output sequence is
processed by our processing module which is implemented
in perl for a testbed as a part of WLAN security project
supported by Air Force Research Laboratory (Rome/NY). On
receiving an action, processing module updates its table where
states about the goals and actions are stored. Arrival times are
updated and actions are checked against expiration. Derivation,
forward and backward transition rules are performed. If a
goal or a subgoal is reached, attack or partial attack alarm
is generated. If a goal or subgoal arrives before its children,
meaning that our enhanced attack tree is incomplete, an “attack
tree is incomplete” alarm is generated. Since attack sequences
are predefined, expected alarms are compared against detected
ones to decide on True and False alarms. In this work, we
are interested in amount of False+ which means an alarm is
generated while there is no attack. False+ are due to noise
in input messages. Higher noise ratio means more False+.
In terms of security, False+ are preferred to False− which
mean an alarm is not generated while there is an attack.

10

Fig. 11. Number of False+ for changing noise ratios over 10,000 actions.
A False+ means an alarm is generated while there is no attack, partial attack
or incomplete attack tree. False+ are due to noise in input messages. Noise
ratio is the ratio of attack actions to random actions.

Although preferred, False+ limit the efficiency of the system.
False− in turn are generated when attack trees are incomplete.
False− require offline PC (Principle Component) or SVD
(Singular Value Decomposition) like analysis on history of
messages along with human interaction and feedback since
there may not be any evidence of attack in the system.

Fig. 11 presents the result of the simulation. For each noise
ratio (ratio of attack actions to random actions - probability
that a randomly selected action belongs to an attack), we
have calculated number of False+ for a sequence of 10,000
actions. We have made multiple runs and take average of
the results. Processing module successfully detects the correct
attacks, subattacks and incomplete attack tree cases for the
attack sequences randomly planted into input stream. Fig. 11
shows False+ results of attack, partial attack and incomplete
tree alarms for noise ratios 0.5, 0.45, 0.40, . . . , 0.0. As the
noise ratio increases in the message log, number of False+

increases as expected.

VIII. CONCLUSION

In this paper, we introduce a powerful technique to represent
and detect complex attacks. The contribution of this work is
threefold. First, we introduce the notion of complex attacks.
Second, we model complex attacks using formal methods.
Third, we show how to detect them. Our technique advances
the IDS approaches to capture complex attacks such as insider
and stealth attacks. We discuss how to realize the proposed
technique in the context of IEEE 802.11 WLAN security.
Simulation results show that it successfully detects attack
sequences in large noisy input message streams.

REFERENCES

[1] N. Einwechter, “Preventing and detecting insider attacks
using ids,” SecurityFocus, March 2002. [Online]. Available:
http://www.securityfocus.com/infocus/1558

[2] M. Jakobsson, S. Wetzel, and B. Yener, “Stealth attacks on ad-hoc
wireless networks,” in IEEE Vehicular Technology Conf., 2003, pp.
2103–2111.

[3] B. Schneier, “Attack trees: Modeling security threats,” Dr. Dobb’s
Journal, December 1999.

[4] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez,
S. Tison, and M. Tommasi, “Tree automata techniques and
applications,” April 2005, a book under construction. [Online].
Available: http://www.grappa.univ-lille3.fr/tata/

[5] J. Steffan and M. Schumacher, “Collaborative attack modeling,” in ACM
Symposium on Applied Computing, 2002.

[6] S. Convery, D. Cook, and M. Franz, “Bgp attack tree,” The Internet
Engineering Task Force, 2001.

[7] K. Daley, R. Larson, and J. Dawkins, “A structural framework for
modeling multi-stage network attacks,” in International Conference on
Parallel Processing Workshops, 2002.

[8] J. Dawkins and J. Hale, “A systematic approach to multi-stage network
attack analysis,” in IEEE International Information Assurance Workshop,
2004.

[9] J. McDermott, “Attack net penetration testing,” in New security
paradigms workshop, 2000.

[10] C. Phillips and L. P. Swiler, “A graph-based system for network-
vulnerability analysis,” in New Security Paradigms Workshop, 1998.

[11] S. Noel, E. Robertson, and S. Jajodia, “Correlating intrusion events and
building attack scenarios through attack graph distances,” in 20th Annual
Computer Security Applications Conference, 2004.

[12] S. Jha, O. Sheyner, and J. Wing, “Two formal analyses of attack graphs,”
in Computer Security Foundations Workshop, 2002.

[13] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing, “Automated
generation and analysis of attack graphs,” in IEEE Symposium on
Secuirty and Privacy, 2002.

[14] G. Vigna, S. Eckmann, and R. Kemmerer, “Attack languages,” in IEEE
Information Survivability Workshop, 2000.

[15] G. Vigna, S. T. Eckmann, and R. A. Kemmerer, “The stat tool suite,”
in DARPA Information Survivability Conference and Exposition, 2000.

[16] S. Kumar, “Classification and detection of computer intrusions,” Ph.D.
dissertation, Purdue University, August 1995.

[17] J. May, J. Peterson, and J. Bauman, “Attack detection in large networks,”
in DARPA Information Survivability Conference and Exposition, 2001.

[18] W. Li, L. Zhi-tang, and W. Qi-hong, “A novel technique of recognizing
multi-stage attack behaviour,” in Networking, Architecture, and Storages,
2006.

[19] S. Cheung, U. Lindqvist, and M. W. Fong, “Modeling multi-step cyber
attacks for scenario recognition,” in DARPA Information Survivability
Conference and Exposition, 2003.

[20] T. Tuglular, “A preliminary structural approach to insider computer
misuse incidents,” in 1st European Anti-Malware Conference (EICAR
2000), 2000, Best paper.

[21] G. Magklaras and S. Furnell, “Insider threat prediction tool: Evaluating
the probability of it misuse,” Computers and Security, vol. 21, no. 1,
December 2002.

[22] A. Phyo and S. Furnell, “A detection-oriented classification of insider it
misuse,” in Third Security Conference, April 2004.

[23] A. Mishra and W. A. Arbaugh, “An initial security analysis of the
ieee 802.1x standard,” University of Maryland, Tech. Rep. CS-TR-4328,
2002.

[24] G. Golub and C. Loan, Matrix Computations. Baltimore, MD: The
Johns Hopkins University Press, 1996.

[25] S. A. Camtepe, M. Krishnamoorthy, and B. Yener, “A tool for inter-
net chatroom surveillance,” in Second Symposium on Intelligence and
Security Informatics, 2004.

[26] E. Acar, S. A. Camtepe, M. Krishnamoorthy, and B. Yener, “Modeling
and multiway analysis of chatroom tensors,” in IEEE International
Conference on Intelligence and Security Informatics, 2005.

[27] W. G. IEEE, “802.11,” IEEE 802.11, 2005. [Online]. Available:
http://grouper.ieee.org/groups/802/11/

[28] N. Borisov, I. Goldberg, and D. Wagner, “Intercepting mobile communi-
cations: the insecurity of 802.11,” in 7th annual international conference
on Mobile computing and networking, 2001.

[29] S. Fluhrer, I. Mantin, and A. Shamir, “Weaknesses in the key scheduling
algorithm of rc4,” in 8th Annual International Workshop on Selected
Areas in Cryptography, 2001.

[30] A. T. Rager, “Wep crack and airsnort,” SourceForge, 2005. [Online].
Available: http://wepcrack.sourceforge.net/

