Directed Graphs

- Detecting cycles:
 - Linear time $O(|V|+|E|)$
 - Pre-pair numbers

Topological Sorting

1. Acyclic directed graph $O(|V|+|E|)$
2. Order the nodes of the DAG in dependence order

Scheduling
\[B \rightarrow D \rightarrow A \rightarrow C = e \quad \text{sorted order} \]

Alg 1 (6)

1. DFS pre-pour numbering \(O(1V_1 + 1E_1) \)
2. If cycle detected, return not sortable
3. Output the nodes in decreasing order of pour numbers \(O(1V_1, 1V_1) \)

- For any node \(u \), its pour number must be greater than all other nodes reachable/descendants.
- \(u \) must come before all such nodes in the topological sort.

b) If \(u \) has an incoming edge, it must be a cross edge from \(x \) since there are no cycles.

\[\text{pour}_x > \text{pre}_x \Rightarrow \text{pour}_u \]

\(x \) has a higher pour number than \(u \)

\(O(1V_1 + 1E_1) \) time

\(\Rightarrow \) What about sorting by pour numbers \(O(1V_1 \log 1V_1) \) time?

- Add the node to a list as we determine the pour number

Post Order List

\(A [0, 3] \quad B [8, 11] \quad C [1, 6] \quad D [7, 10] \quad E \quad F \quad C \quad A \)
Strongly Connected Components (SCCs)

- Directed graph: 1) a path must exist between every pair of nodes in a SCC
- 2) it must be a maximal set of nodes
 - All mutually reachable nodes must be in SCC

Approach to list the SCCs

1. Find a sink SCC in G
2. Delete that SCC
3. Repeat.
Finding sink components is not obvious.

Any source in the reverse graph G^R is a sink in G.

1. $O(|V|+|E|)$: given G, compute reverse graph G^R do DFS numbering on G^R
2. $O(|V|+|E|)$: do connected components from the next unvisited vertex in reverse order G^R post-numbering

Overall $O(|V|+|E|)$ linear.

G^R (reverse graph)

G
Identify sink in G; not clear how to do.

Apply regular connected components since we cannot escape a sink.

Breadth first search (BFS)
- weighted graphs
- shorter paths

Task: find the shortest path from E to all other nodes.

DFS is not good for shorter paths; go deep first.

$O(1+v+e)$

BFS (G, s) queue (FIFO)

$d(s) = 0 < distance$

$Q = [s]$

while Q not empty

$u = eject Q$

DFS (G, s): stack (FIFO)

C, C, C,
DFS

\[u = \text{enqueue } Q \]
\[
\text{for all } v \in \text{N}(u) : \\
\text{if not visited}(v) : \\
\quad \text{add } v \text{ to } Q ; \text{ set visited}(v) \\
\quad d(v) = d(v) + 1
\]

Finding shortest paths in weighted graphs

\[G = (V, E) \]
\[\omega((u, v)) = \text{weight on edge} \]

Weight function

\[A^3 - B^3 = 6 \]
\[A^1 - C^1 = 5 \]

Keep the DFS frontier with shortest distance.