Dynamic Programming (DP)

All pairs shortest path problem

Used DP: $O(n^3)$

Conceptually: break up the larger problem into smaller "optimal" subproblems

1) Recursive definition
2) Initialization (base case)
3) Recursive function (bigger in terms of smaller) \leftarrow backward
 forward solution (from smaller to larger)

Conceptually: Computational Data implicit

Longest Increasing Subsequence problem (LIS)

Input: sequence of numbers

Positions: \rightarrow 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Values: \rightarrow 9 1 6 4 2 1 5 2 6 2 8 1 5

Subsequence: choose any subset of the positions, but preserve the order

Ordered subset of pos: $<2, 5, 8>$

Subsequence: $1, 2, 3$

Increasing

Talk: What’s the longest increasing subsequence

\Rightarrow length (optimization value)

Actual subsequence (prev)

$<2, 5, 8, 14>$
\[S = <2, 3, 4, 5, 11> \]

Output the algorithm

\[\text{len} = 5 \]

\[|S| = n \]

of elements or seq length

Very large search space

What is the size?

Assume that the max length is \(k \)

\[
\sum_{i=0}^{k} n^i = \frac{n^{k+1} - 1}{n - 1} \approx O(n^k)
\]

\[n = |S| \]

\[k = \text{max subseq length} \]

\[
[1, 2, 3, 4, 5, 7, 8, 9, 10, \ldots, N]
\]

\[O(n^k) \quad k = n \]

\[\text{worst case (factorial at least)} \]

DP for LIS
1) \[L[j] = \text{longest increasing subsequence ending at pos } j \text{ in } S \]

\[S = \{ 8 \text{ start symbol}, 9, 1, 6, 4, 3, 15, 2, 4, 8, 1, 5, \text{ end symbol} \} \]

2) \[\text{base case: add a fake value } \& \]
\[L[0] = 0 \leftarrow \text{always start at pos 0} \]

3) \[\text{Recursive equation:} \]
\[L[j] = \max_{i < j} \begin{cases} L[i], & S[i] < S[j] \text{ (value)} \\ \text{Prev}[j], & \text{otherwise} \end{cases} \]

\[\text{Prev}[j] = \arg \max \{ L[i], \text{ for } i < j \} \]

\[\text{LIS value: } \max_{j=1, \ldots, n} \{ L[j] \} \leftarrow \text{implicit DAG.} \]

\[L[n+1] = \text{optimal value LIS} \leftarrow \text{Subtract 1 to get optimal LIS value} \]

4) \[\text{Forward solution:} \]
\[S = \{ 8, 9, 1, 6, 4, 3, 15, 2, 4, 8, 1, 5, \text{ end symbol} \} \]

\[L = \begin{align*}
0 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 3 & 4 & 5 & 5 & 6 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{align*} \]

\[\text{implies optimal LIS } = 6 - 1 = 5 \]

\[L[3] = \text{LIS upto pos 3} \]

\[|L| = n + 2 \quad (n + 2) \quad \left| S \right| \quad \left| S \right| \quad 0 \]

\(O(n) \text{ elements to compute} \)

\(\alpha(n) \text{ steps to compute} \)

\(L[i]: \)
\[
\frac{1}{|S_1|} \cdot \frac{2}{|S_2|} \leq \alpha \text{ at most } \alpha n^2 \text{ steps to compute } L[i, j]
\]

\[
O(n) \times O(n) = \left(\sum_{i=1}^{n} \text{ independent of } k \right) O(n^2)
\]

\[
O(n^k) \quad \text{dependent on } \quad k
\]

Edit Distance

\[\Rightarrow \text{ global alignment} \]

Input:

\[\text{BRILLIANT, THRILLING} \]

\[S_1, S_2 \]

- two sequences over some alphabet \(\Sigma \)

- task: find the least \(# \text{ of change} \) to convert one sequence to the other

- edit distance

 - 1) substitute one letter for another
 - 2) delete/insert one letter

Alignment/Correspondence

- put the characters in the two sequences in a one-to-one correspondence, allowing for gaps (allow a special character '-')

\[
\begin{array}{c}
\text{alignment} \\
\text{disallowed!}
\end{array}
\]

\[\text{match} \]

\[\text{mismatch} \]

\[\text{indel/gap} \]

\[\text{no-op} \]
\[
\text{edit distance} = \# \text{ mismatches} + \# \text{ gaps} = 2 + 2 = 4
\]

\[S_1 = \text{BRILLIANT} \rightarrow \text{THRILLING} = S_2\]

1. \(B \rightarrow T\)
2. insert \(H\) after pos 1 in \(S_1\)
3. delete \(A\) in \(S_1\)
4. \(T \rightarrow G\)

Task: find the minimum edit distance between \(S_1\) and \(S_2\)

Real-world use case: evolutionary tree (phylogeny)

gene / genome

\[
\text{thrid:} \quad \left[\begin{array}{c}
\text{BRILLIANT} \\
\text{---} \\
\text{THRILLING}
\end{array} \right] \quad \text{also a valid alignment}
\]

\[
\left[\begin{array}{c}
\text{BRILLIANT} \\
\text{THRILLING}
\end{array} \right] \quad \text{edit} = 2
\]

Q: How many alignments are there?

\(|S_1| = n \quad |S_2| = m \quad m \leq n\)

Ans: \(\binom{n+m}{m}\), e.g. \(m = n\)

Choose \((2^n)\) possible \((2^n)\) permutations + \(2^n\)
\[
\binom{N+m}{m} = \frac{(N+m)!}{n! \cdot m!}
\]

\[
\text{Vs}\quad DP = O(mn)
\]

\[
\text{polyomial/quadratic}
\]

\[S_1 = \text{SOAP}, \quad S_2 = \text{SOMA}\]

1) \[L(i, j) = \text{least edit distance between } S_1[i, j, \ldots, i] \text{ and } S_2[1, 2, \ldots, j]\]

\[
\text{final answer} = L(n, m)
\]

\[S_1 \sim \text{SOAP}\]

\[S_2 \sim \text{SOMA}\]

2) base case

\[
\begin{align*}
L(0, 0) &= 0 \\
L(0, j) &= j \\
L(i, 0) &= i
\end{align*}
\]

\[\forall 1 \leq j \leq m, \quad \forall 1 \leq i \leq n\]

3) Recursive equation

\[
L(i, j) = \min \left\{ L(i-1, j-1) + \text{edit cost} (S_1[i], S_2[j]), L(i-1, j), L(i, j-1) \right\}
\]
\[
\begin{align*}
L(i, j) &= \min \left\{ \begin{array}{l}
L(i-1, j-1) + \text{edit cost } (S_1[i], S_2[j]) \\
L(i-1, j) + 1 \quad \text{gap} \\
L(i, j-1) + 1 \quad \text{match/mismatch}
\end{array} \right. \\
\text{prev}(i, j) &= \arg \min \left\{ \\
S_1[i] = \text{SOAP} \\
S_2[j] = \text{SOMA}
\right. \\
\end{align*}
\]

\[\text{case to consider}\]

\[
\begin{align*}
\text{put in correspondence} & \quad \text{in } S_1 \\
\text{insertion at } p & \quad \text{delete } p
\end{align*}
\]