P: problem with a polynomial time algorithm

NP: polynomial time verification

\[\Rightarrow \text{given a solution, verify that it is correct in polynomial time} \]

Class of decision problems \(\exists y \in \text{NP} \Rightarrow \) does there exist an optimal solution \(\leq y \)?

\[
\text{opt} - x \equiv \begin{cases} \text{d} - x \equiv \text{TSP} \\ \text{TSP} \end{cases}
\]

NP-complete \(\subseteq \) subset of NP

A problem \(L \) is NP-complete if

1) \(L \in \text{NP} \)

2) all other problems in NP, say \(L' \), can be reduced to \(L \)

\[L' \Rightarrow L \quad \forall L' \in \text{NP} \]

("If \(L \) can be solved in \(P \) time then \(P = NP \)"

Q: how to show that a problem \(L \) is NPC/NS-complete?

[Approach 1]

look at all \(L' \in \text{NP} \)

and then show that \(L' \Rightarrow L \)

\[g(I) \rightarrow x \rightarrow f(x) \rightarrow \text{poly time} \]

\[\exists \text{a function } f, \text{ computable in polynomial time such that} \]

\(f(x) \) is a solution to \(L' \) if \(x \) is a solution to \(L \)

on an instance \(I \), there can also be
P \subseteq \text{NP} \checkmark

\text{P } \cap \text{NP C} = \varnothing \text{?} \ \text{do not know}

\text{P \neq \text{NP}}

\text{Approach 2: Is } L \text{ NP-complete?}

\text{Start from some known } \text{NP-complete} \text{ problem, say } L'

\text{Just show that } L' \rightarrow L \text{ and } L \text{ is in NP}

\forall L'' \in \text{NP}

\text{(NP-complete)}

\text{Just show this from the definition of NP-complete}

1^{st} \text{ NP-complete problem}

\text{Circuit SAT: circuit satisfiability}

\text{SAT problem: satisfiability problem}

\text{Input: a Boolean expression comprising of three logical operations (AND, OR, NOT)}
Input: a Boolean expression comprising of three logical operations (AND, OR, NOT)

Task: check whether there exists a satisfying assignment or not.

What is a Boolean formula/expression?

1) Variables: \(x, y, z \), etc.
 can be either 0 or 1

2) Literal: either a variable \(x \)
 or its negation \(\overline{x} \)

3) Clause: OR of literals (disjunction)
 \((x \lor \overline{y} \lor z) \equiv x \lor (\neg y) \lor z \)

4) Expression: AND of clauses (conjunction)
 \((x \lor \overline{y} \lor z) \land (y \lor w) \equiv \text{CNF} \)
 2 clauses
 length: sum of all the clause lengths
 \(3 + 2 = 5 \)

Satisfying assignment

An assignment of \(0 \) or \(1 \) to each variable so that the Boolean expression is true

\[I : (x \lor \overline{y} \lor z) \land (\overline{x} \lor \overline{y}) \land (y \lor z) \equiv \text{CNF} \]
AND \implies \text{ every clause has to be true}

OR

at least one literal

has to be true

\[\text{Algorithm 1 for SAT (try all possible assignments)}\]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(z)</th>
<th>(\bar{x})</th>
<th>(\bar{y})</th>
<th>(\bar{z})</th>
<th>(x,y,z)</th>
<th>(\bar{x},\bar{y},\bar{z})</th>
<th>(x,y,\bar{z})</th>
<th>(\bar{x},\bar{y},z)</th>
<th>(x,\bar{y},\bar{z})</th>
<th>(\bar{x},y,z)</th>
<th>(xy,z)</th>
<th>(\bar{x},y,\bar{z})</th>
<th>(x,\bar{y},z)</th>
<th>(\bar{x},y,z)</th>
<th>(\text{Full expression})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

\[2^N \text{ where } n = \#\text{ variables}\]

\[L: \ \text{length of expression}\]

\[O(L \cdot 2^N) \text{ complexity of naive / brute-force method}\]

\[\text{Exponential}\]

\[\text{Circuit SAT}\]

\[\Rightarrow \text{hardware version of SAT}\]

Any problem in \(\text{NP}\) has a \text{digital circuit} that encodes it.

Sure, if a solution to the \text{NP} problem \(y\) circuit \text{SAT} has a solution

\text{digital circuit must have a size polynomial in the input } I
digital circuit must have a size polynomial in the input \(I \)

Circuit SAT = NP complete

1) Circuit SAT \(\leq_{	ext{pol}} \text{ poly time} \) SAT
2) \(\forall L' \in \text{NP} \quad L' \rightarrow L \)

Hamilton Path: given a graph, does there exist a path that visits each vertex only once starting from \(s \) and ending at \(t \)

Hamilton Cycle/Rudreka Cycle: given a graph, does there exist a path starting from \(s \) that visits all other vertices only one and ends at \(s \)

It is known that Rudreka path \(\in \text{NPC} \), show that Rudreka cycle is also NPC

Show that \(\text{Rudreka Path} \rightarrow \text{Rudreka Cycle} \)

1) Rudreka cycle \(\in \text{NP} \)
 \[O(1+V) \] time to verify that a solution is correct.
 a) length has to be \(n \), \(|V| = n \)
 \[\text{given a solution} \]
 b) count all vertices \(\rightarrow O(n) \) time
2) a solution to path \(y \) solution to cycle

1) \(y \) is a \(s-t \) path that visits all vertices exactly once

\(y \) path then cycle

\(\Rightarrow \) show \(\exists \) a cycle that visits each vertex only once

2) show \(\exists \) a path \(\iff \Rightarrow \) a cycle

\[\text{delete } x \]
\[\text{then the remaining portion of the cycle is a path in } G \]

Show that TSP is \(NP \)-Complete

1) \(TSP \in NP \quad (\equiv TSP) \)

Given a solution \(s \), and a bound \(b \),

\[O(|V|^3) \] to verify the cycle the tour, then check \(y \) if \(i \leq b \).

\[
\begin{bmatrix}
G: \text{complete graph, undirected, weighted} \\
\vdots \\
d_{ij} \text{ is the weight on edge } (i,j)
\end{bmatrix}
\]

\[
\begin{bmatrix}
y_0 \\
\vdots \\
y_n
\end{bmatrix}
\]
2) Hamilton/Rudra cycle \Rightarrow TSP

\[\subseteq \text{ NPC} \]

Rudra cycle (G)

\[a \quad \rightarrow \quad b \quad \rightarrow \quad c \quad \rightarrow \quad d \]

\[\Gamma_{SP}(G') \quad \rightarrow \]

\[\begin{aligned}
& \text{original edge} \\
& \text{dij} = 1 \\
& \text{new edge} \\
& \text{dij} = 1 + c \\
& c \geq 1
\end{aligned} \]

\[a) \text{ transformation is } O(n^2) \text{ in the worst case} \\
\text{with case} \]

\[\text{a TSP tour in } G' \leq b = |V| = n \]

1) Rudra cycle \Rightarrow TSP with $\text{cor} \leq n$

\[s \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_{n-1} \rightarrow s \]

\[\text{Rudra cycle in } G \]

\[\Rightarrow \text{ tour in } G', \text{ cor } n \text{ exactly n} \]

2) If there is no Rudra cycle, then \exists a tour in G' with $\text{cor} \leq n$ in G

\[\downarrow \]

we cannot visit all nodes in G, exactly once, however \exists tour in G', but

the tour will have to use at least one of the new edges

\Rightarrow cor of the tour is at least
Any tour has cost \(\leq n + c \) or cost \(\geq n + c \) \\
\[\text{we can choose } c \text{ to be as large as we want} \]

\[\text{gap} = c \]

Show that TSP has no polynomial time approximation.

\[\text{opt} - \text{TSP} : \text{ minimization problem} \]

\[\text{least cost on min cost tour} \]

Given \(G \), \(\text{opt}(G) \) is the value of the optimal tour on \(G \).

\[\text{Given } A, \text{ approximation algo for TSP (polytime, greedy algo \to always pick the closest unvisited city)} \]

\[A(G) \] is the cost of the solution using \(A \) on \(G \).

\[\frac{\text{approx ratio for } A}{\text{opt}} \leq \frac{10^2}{10} = 10 \]

Connect Karp reducible problem to the gap \(c \).
Connect Rudraik cycle problem to the gap C

G

\[C = ? \]

Assume that \exists an approx algo with approx ratio α

\[\alpha = \max_{G} \frac{A(\ell)}{\text{opt}(\ell)} \]

Choose $C = n \cdot \alpha$

1) If $\alpha \in$ a Rudraik path, try tour of size n

\[\Rightarrow \alpha = \frac{A(\ell)}{\text{opt}(\ell)} \Rightarrow A(\ell) = n \alpha \]

2) Then \neg a Rudraik path, try $\ell + C = n + n \alpha$

\[= n(1 + \alpha) \]

\[\Rightarrow \alpha = \frac{A(\ell)}{n(1 + \alpha)} = A(\ell) \leq n \alpha (1 + \alpha) > n \alpha \]

$A(\ell)$ run in poly time

Contradiction unless $\ell = n \alpha$

\[\Rightarrow \] poly time approx algo cannot exist