Transformer

Self-attention: multi-headed

- Residual
- Layer Norm
- FNN (element-wise)
 - Input: \(X \)
 - Output:
 - \(W_i \) for \(i = 1 \ldots 9 \) heads
 - \(d_k = 64 \)
 - \(d_q = d_k \)
 - \(d_v = 64 \)
 - \(V'_i = \text{Softmax} \left(\frac{Q_i K_i^T}{\sqrt{d_k}} \right) \cdot V_i \)
 - Concat \(V'_i \to V' \) (\(h \cdot d_v \))
 - Weight matrix \(W^o \)

Layer Norm

- Input: \(x_1 \)
- Output: \(x'_1 \)
- After SA

Scaler

- Input: \(x \)
- Output: \(\mu \), \(\sigma \)
Transformer block

$d_{model} = 512$

Number of layers of transformer blocks

Final output embeddings

Pretraining

Word2vec: 1 token/word → 1 embedding

9 was sitting by the river bank →

9 went to the bank and sat on the bench →

Transformer:

1 token/word → multiple embeddings (as many blocks/occurrences)
Pos embedding: 1) Cos/sin based
2) preserve relative pos info
Input block

\[\begin{bmatrix} x_1 & x_2 \end{bmatrix} \to \begin{bmatrix} x_N \end{bmatrix} \]

512 dim

for \(n = 1 \) to \(N \)

\(p_{r, 2^j n} \) = \sin \left(\frac{r_{os} (10000)^{2^j/d_{w1}}} {\text{dim}} \right) \)

\(p_{w, 2^j n} \) = \cos \left(\frac{r_{os} (10000)^{2^j/d_{w1}}} {\text{dim}} \right) \)

Continuous version of binary encoding

0 → 0000
1 → 0001
2 → 0010
3 → 0011
4 → 0100
BERT: pre-trained model to generate contextual embeddings

- bare model
 - $d_{\text{model}} = 768$
 - block size = 512 = n \(x_1, \ldots, x_n \)
 - \# of layers = 12
 - (transformer layers)
 - \# of heads = \(q/12 \) ?
 - \(d_k = d_v = d_{q=6} \)

30k vocab of tokens
(word-piece)

MLM: Masked Language Model
(self-supervised)

The quick brown fox jumped -

N = 572
I) MLM ← loss CE over 30k vocab per masked position

II) NSP ← next sentence prediction

\[
\begin{align*}
\text{NSP} \quad &\quad S_1 | \text{sep} | S_2 \quad \rightarrow \quad 1 \\
\text{NSP} \quad &\quad S_1 | \text{sep} | S_2 \quad \rightarrow \quad 0
\end{align*}
\]

\[
L = \text{MLM loss} + \text{NSP loss}
\]

\[
X_i + p_i + e_{A/\theta}\]

\[
\text{BERT}
\]

\[
\text{segment embeddings}
\]

\[
2 \times 768
\]

\[
\text{CPLN}
\]

\[
\text{binary CE}
\]
\[T = \text{nn. Embedding}(V, d) \]

\[T(100) \rightarrow C([5, 6, 3, 4]) \]

\[\text{logits} = \text{torch.sum}(T' \times C', \text{dim}=1) \]
\[\text{Np. search sorted } (\ldots) \]
\[(0.1, 0.5, \ldots) \]
\[\text{Np. random choice } \left(\frac{\text{vec1, vec2, vec3}}{1000} \right) \]
\[\text{Randen } = 0.1 \quad \text{Pxx 2} \]
\[0.5 \quad \text{Pxx 1810} \]