
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the
12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 653–664

November 20–23, 2022. ©2022 Association for Computational Linguistics

653

Food Knowledge Representation Learning with Adversarial Substitution

Diya Li∗, Mohammed J. Zaki
Computer Science Department, Rensselaer Polytechnic Institute

916lidiya@gmail.com, zaki@cs.rpi.edu

Abstract

Knowledge graph embedding (KGE) has been
well-studied in general domains, but has not
been examined for food computing. To fill
this gap, we perform knowledge representation
learning over a food knowledge graph (KG).
We employ a pre-trained language model to
encode entities and relations, thus emphasiz-
ing contextual information in food KGs. The
model is trained on two tasks – predicting a
masked entity from a given triple from the
KG and predicting the plausibility of a triple.
Analysis of food substitutions helps in dietary
choices for enabling healthier eating behaviors.
Previous work in food substitutions mainly fo-
cuses on semantic similarity while ignoring the
context. It is also hard to evaluate the sub-
stitutions due to the lack of an adequate vali-
dation set, and further, the evaluation is sub-
jective based on perceived purpose. To tackle
this problem, we propose a collection of adver-
sarial sample generation strategies for different
food substitutions over our learnt KGE. We pro-
pose multiple strategies to generate high quality
context-aware recipe and ingredient substitu-
tions and also provide generalized ingredient
substitutions to meet different user needs. The
effectiveness and efficiency of the proposed
knowledge graph learning method and the fol-
lowing attack strategies are verified by exten-
sive evaluations on a large-scale food KG.

1 Introduction

Structured knowledge furnishes an in-depth under-
standing of the world. Knowledge graph embed-
ding (KGE) maps entities and relations into vectors
while retaining their semantics (Wang et al., 2017;
Lin et al., 2018). KGE has been well-studied and
applied in general KGs with common ontological
knowledge (i.e., WordNet (Miller, 1995), DBpe-
dia (Auer et al., 2007), and Freebase (Bollacker
et al., 2008)). Only a few works have targeted
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domain-specific KGs (Mohamed et al., 2021; Bon-
ner et al., 2021) and to the best of our knowledge,
there is no work for KGE in the food domain. Even
though previous work (Li and Zaki, 2020) trains
recipe embeddings on a large-scale dataset, KG
information is utilized only as side information
to assist embedding learning and only recipes get
represented, and other node types in the food KG,
such as ingredients are ignored. To fill this gap, we
aim to conduct knowledge representation learning
over the entire food KG to get high-dimensional
vectors of nodes and relations while capturing their
semantic meanings.

As for encoding models in KGE, most deep
learning-based methods like convolutional neural
networks (CNN) (Dettmers et al., 2018), recur-
rent neural networks (RNN) (Guo et al., 2019) and
graph neural networks (GNN) (Schlichtkrull et al.,
2018; Shang et al., 2019) allow a single static em-
bedding for each entity or relation to describe its
global meaning in a given KG. However, their in-
trinsic contextual nature is ignored, i.e., entities
and relations may appear in different graph con-
texts and exhibit different properties. Transformer-
based models (Vaswani et al., 2017) have boosted
contextualized text representation learning. Thus,
to emphasize the contextual information in knowl-
edge graphs, we employ Transformers to encode
entities and relations. Specifically, we adopt BERT
(Devlin et al., 2019) to encode the triples in the food
KG as paths. The model is trained with two typical
tasks in pretrained language models and knowledge
graph embedding: to predict a masked entity from
a given path, and to predict the plausibility of a
triple in the KG.

Large-scale food data offers rich knowledge that
can help many issues related to healthy eating be-
haviors. Among various food related research, the
food substitution problem is gaining increasing at-
tention owing to its applicability in tasks like food
question answering (Yagcioglu et al., 2018; Chen
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et al., 2021) and personalized dietary recommenda-
tion (Min et al., 2019). In practice, there is a rising
demand for people seeking food substitutions due
to health concerns, ingredient shortage, or personal
preferences (Epstein et al., 2010). For instance,
there are numerous posts on reddit asking for food
alternatives like “substitutes for tomatoes in pizza”.

Previous work discovers suitable substitution op-
tions based on semantic similarity via explicit sub-
stitution rules and additional context (Akkoyunlu
et al., 2017; Pan et al., 2020; Shirai et al., 2020).
They require many handcrafted features and there
is no formal evaluation. Efforts to apply machine
learning methods to efficiently select substitutions
have been limited due to the lack of public datasets
with valid substitutions. Moreover, evaluating the
quality of ingredient substitutions is difficult since
the validity of an ingredient substitution may be
influenced by personal preference and perceived
purpose of the substitution.

Massive food KGs have become good sources
for suggesting substitutions, since they provide uni-
fied and standardized concepts and their relation-
ships in structured form, which is very valuable for
food related studies. However, KGs often suffer
from sparseness if one only uses structure informa-
tion in observed triple facts (Shirai et al., 2020).
We notice that the degree of nodes in Food KGs are
mostly small (Qin et al., 2019; Haussmann et al.,
2019), and therefore contextual information will
be ignored if we model food substitution directly
on the KG. Besides, we observe that the food sub-
stitutions should be distinct from context or be
generalized according to different user query sce-
narios. For the first case, people often ask for in-
gredient substitutions with reference to a particular
food or recipe. For example, “applesauce” can
be a good substitute for “sugar” in “carrot cake”,
while “honey” is better for “sugar” in “brown sugar
meatloaf ”. Thus, context is important in such sce-
narios. The second case refers to the huge number
of queries on search engines asking for food sub-
stitutions for general purpose. For instance, “what
can be substituted for heavy cream”.

To tackle the above issues, we conduct textual
adversarial attack on our learnt KGE model. We
utilize a masked language model to generate high
quality adversarial samples which finds substitu-
tions that maximize the risk of making wrong as-
sertions on KG triple plausibility prediction. We
employ the generated adversarial samples as food

substitutions. Furthermore, to meet the different
food substitution purposes, we design a collection
of attack strategies to generate three types of food
substitutions: context-aware recipe substitutions,
context-aware ingredient substitutions and general-
ized ingredient substitutions. In order to generate
context-aware recipe substitutions, we first find the
vulnerable tokens in recipes, defined as those that
trigger an error in a target prediction model. Next,
we apply a masked language model in a semantic-
preserving way to generate substitutes, with flexi-
bility to replace, add, or delete vulnerable tokens.
The generation of context-aware ingredient substi-
tutions is similar to recipe substitutions but only
valid ingredients are selected as substitutions. The
two types of substitutions are naturally aware of
context since they are generated from a pre-trained
language model, taking advantage of its superiority
in contextualized information and rich linguistic
knowledge. For the generalized ingredient substi-
tutions, the adversarial attack is conducted among
triples formed from all the ingredient’s neighbors in
the KG. A successful attack is achieved only when
the adversarial sample fools most of its neighbors,
preventing it to be contextualized to any specific
neighbor.

The contribution of our work is twofold: First,
we address the sparseness problem in food KG and
enrich its representation through the retraining of a
pre-trained language model on two tasks – masked
entity and triple plausibility prediction. Second,
we conduct the food substitution work over KGs to
leverage the structured and large-scale knowledge.
We propose a novel collection of attack strategies to
create different types of food substitutions. We are
the first to deeply generate food substitutions in an
adversarial attack manner, thus avoiding the prob-
lem of substitutions ground truth shortage. Both
automatic and human evaluations show the high
quality of our food substitutions.

2 Related Work

2.1 Knowledge Graph Embeddings

The models that encode the interactions of enti-
ties and relations in knowledge graphs can be cate-
gorized into: linear/bilinear models, factorization
models, and neural networks. Among the neural
networks-based models, Convolutional Neural Net-
works (CNNs) are utilized for learning deep expres-
sive features (Dettmers et al., 2018; Nguyen et al.,
2018). Graph Neural Networks (GNNs) are intro-



655

duced for learning connectivity structure under an
encoder-decoder framework (Schlichtkrull et al.,
2018; Shang et al., 2019). Transformer-based mod-
els have boosted contextualized text representation
learning. Wang et al. (2019) employed Transform-
ers to encode edges and path sequences. Simi-
larly, Yao et al. (2019) borrowed ideas from the
BERT (Devlin et al., 2019) model as an encoder
for entities and relations. Our proposed method
for knowledge representation learning also utilizes
transformers as the encoding model while two sub-
tasks are considered for training. It is important to
note that while there are many KGE works in the
general domain, we are the first to propose effective
KG embeddings for a large-scale food KG.

2.2 Food Substitution
Previous work on food substitutions is mainly
based on semantic similarity with explicit sub-
stitution rules such as food taxonomy and food
subclass information (Gaillard et al., 2015; Skjold
et al., 2017), but it is not applicable for general use.
Akkoyunlu et al. (2017) proposed a rule-based ap-
proach to extract food substitution if the two foods
are consumed in a similar context. Pan et al. (2020)
explored substitution of ingredients via simple em-
bedding similarity while the quality of substitutes
was not examined. Shirai et al. (2020) suggested
substitutes based on user context, by leveraging
explicit and implicit semantic information about
ingredients from various sources. Without needing
the effort for feature design and external rules, our
work focuses on contextualized and generalized
food substitutions. It can automatically suggest dif-
ferent ingredients according to the recipe context
and also generalized ones.

2.3 Textual Adversarial Attack
An increasing amount of effort is being devoted to
generating better textual adversarial examples with
various attack methods. There are a lot of attack
models to explore synonym substitution rules to
enhance semantic meaning preservation (Jin et al.,
2020; Li et al., 2020; Wang et al., 2021; Li et al.,
2021; Garg and Ramakrishnan, 2020). Among
them, Jin et al. (2020) replace tokens with their
synonyms derived from counter-fitting word em-
beddings (Mrkšić et al., 2016). The mask-then-
infill approaches are widely adopted to greedily
replace tokens with the predictions from BERT
(Li et al., 2020; Garg and Ramakrishnan, 2020;
Li et al., 2021). Unlike the above works focusing

on textual perturbation, we design a collection of
attack strategies particularly for KG triples, with
regards to entity property and substitution query
purpose.

3 Methodology

In this section, we first encode a food KG into a pre-
trained language model (BERT) to learn entity and
relation representations. Then, we conduct attacks
on BERT to generate different types of adversarial
samples as food substitutions.

3.1 Contextualized KG Embedding
Given a KG G composed of head-relation-tail
triples {(h, r, t)}. Each triple indicates a relation
r ∈ R between two entities h, t ∈ E , where E and
R are the entity and relation sets. The entities in
food KG are recipes and ingredients. Here we for-
mulate the triple (h, r, t) as a path h → r → t, e.g.,
banana bread → consist_of → all purpose flour.

The input to the model can be one triple or
multiple triples of the form h → r → t. The
first token of every input path is always a spe-
cial classification token [CLS]. The head entity
is represented as a tokens xh1 , . . . , x

h
a , and sim-

ilarly for the relation and tail entities. The in-
put tokens can therefore be represented as X =
{xh1 , . . . , xha, xr1, . . . , xrb , xt1, . . . , xtc}, where a, b, c
are the lengths of head, relation, and tail entities.
Additionally, the entities and relations are separated
by a special token [SEP].

Note that different elements separated by
[SEP] have different segment embeddings: the
tokens head and tail entities share the same seg-
ment embedding eA, while the tokens in relation
have another segment embedding eB . For token xhi
in head entity, we construct its input representation
as Eh

i = xh
i + ph

i + eA, where xh
i and ph

i are the
token and position embeddings. After constructing
all input representations, we feed them into a stack
of L Transformer encoders (Vaswani et al., 2017)
to encode the path and obtain:

wTh
i = Transformer(Eh

i )

The final hidden states Th
i ∈ RH are taken as

the desired representations for entities and relations
within X , where H is the hidden state size. These
representations are naturally contextualized, and
automatically adaptive to the input.

Afterwards, the encoding model is retrained with
two tasks: predicting a masked ingredient entity
and predicting the plausibility of a triple.
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Predicting a masked ingredient entity
During training, for each input path X =
{xh1 , . . . , xha, xr1, . . . , x

r
b , x

t
1, . . . , x

t
c}, we create

the training instance by replacing the head entity or
tail entity with a special token [MASK] if it is an
ingredient. Then, the masked sequence is fed into
the Transformer encoding blocks. The final hidden
state corresponding to [MASK] is used to predict
the target entity:

ut = softmax(W2 · Feedforward(Tt))

where W2 ∈ RV×H is a trainable parameter, V is
the entity vocabulary size, ut is the predicted dis-
tribution of t = {xt1, · · · , xtc} over all ingredients.
Here we only do masked ingredient entity predic-
tion because the vocabulary size of recipes is too
large for training. We compute a cross-entropy loss
over the one-hot label yt and the prediction ut:

L1 = −
V∑
i

yti log(uti)

Predicting the plausibility of a triple
Given triples that reveal rich graph structures, simi-
lar to knowledge graph embeddings (Ji et al., 2021),
the second training task is to predict the plausibility
of the triples. The final hidden state of T[CLS] is
used as the aggregate path representation for com-
puting triple scores. The scoring function fr(h, t)
for a triple τ = (h, r, t) is defined as:

sτ = fr(h, t) = sigmoid(T[CLS]W
T )

where W ∈ R1×H is a trainable parameter and
sτ ∈ [0, 1] is the triple plausibility score. Given
the positive triple set D+ and a negative triple set
D−, we compute the cross-entropy loss with sτ and
triple labels:

L2 = −
∑

τ∈D+∪D−

(yτ log(sτ )+(1−yτ )log(1−sτ ))

where yτ ∈ {0, 1} is the triple label. The nega-
tive triple set D− is simply generated by replacing
head entity h or tail entity t in a positive triple
(h, r, t) ∈ D+ with a random entity, that is, via
negative sampling.

3.2 Generating Food Substitutions
After training the knowledge graph embedding
model, we conduct attacks to generate feasible ad-
versarial samples as recipe, ingredient and gener-
alized ingredient substitutions, respectively, with
three different attack strategies.

3.2.1 Problem Formulation
We utilize an attack model to find vulnerable tokens
in KG triples τ = (h, r, t) and replace them with
generated substitutions that maximize the risk of
making wrong assertions on a target model. Here
we assume it is a KG triple plausibility classifier
fr(h, t) since we have used it in our preceding
KGE model.

An adversarial entity t′ is supposed to modify
the text in t to trigger an error in the target model
fr(h, t). For simplicity, we assume the tail entity t
(it can also be the head entity h and recipe entities
are always in the head of triples) is formatted as
t = {x1, . . . , xi, . . . , xc}. At the same time, per-
turbations on t should be minimal, such that t′ is
close to t.

There are lots of efforts being devoted to gen-
erating adversarial examples with various textual
attack models on BERT (Jin et al., 2020; Li et al.,
2020; Wang et al., 2021; Li et al., 2021; Garg and
Ramakrishnan, 2020). The mask-then-infill per-
turbation approach (Li et al., 2020, 2021; Garg and
Ramakrishnan, 2020) is widely-adopted. The ap-
proach usually chooses a masked language model
as the attack model to find the vulnerable tokens
in entities and replace them with adversarial sam-
ple. Specifically, we replace xi in t with [MASK],
thus having t̂ = {x1, . . . , [MASK], . . . , xc}. We
then select a token z to fill in, obtaining t′ =
{x1, . . . , z, . . . , xc}. Intuitively, the substitute to-
ken z is often constrained by three conditions:

i) z receives a high probability from the masked
language model so it can smoothly fit into the
original context; we regulate it by adding a
condition pMLM (z|(h, r, t̂)) > k.

ii) t′ should be semantically similar to t,
sim(t′, t) > d, where sim(t′, t) denotes the
cosine similarity between representations of
t′ and t.

iii) When placing t′ in the retrained BERT
model for KG triple plausibility classification,
fr(h, t

′) yields low probability for the gold
label yτ which indicates that t′ can trigger an
error in the target model.

Under the attack theory, it might seem contradic-
tory to treat t′ as a food substitution, given that the
triple (h, r, t′) is less plausible in the KG. However,
our assumption is the food KG is sparse (which
it is in practice). The plausibility of the triple
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formed from food substitution cannot be a stan-
dard to judge the quality of the substitution, since
it can be a potential triple missed in the KG. Thus,
a better gauge of the plausibility is based on the
semantic similarity of the substitution or human
evaluation, as done in our experiments.

3.2.2 Recipe Substitution Generation
Since recipes are usually short phrases, instead of
mask-then-infill permutation, we consider more
flexible actions to generate adversarial samples by
replacing, adding, and deleting tokens. Given t =
{x1, . . . , xi, . . . , xc}, for the replace action, we
have t̂ = {x1, . . . , xi−1,[MASK], xi+1, . . . , xc}
by replacing xi with [MASK]. For the add action,
we have t̂ = {x1, . . . , xi−1,[MASK], xi, . . . , xc}
by adding [MASK] before xi. For the delete action,
we have t̂= {x1,. . . ,xi−2,[MASK], xi+1, . . . ,xc}
by replacing xi−1xi with [MASK]. For example,
given a recipe entity “blue cheese-stuffed potatoes
with buffalo chicken tenders”, it can be formu-
lated as “blue cheese-stuffed potatoes with buffalo
[MASK] tenders”, “blue cheese-stuffed potatoes
with buffalo [MASK] chicken tenders”, and “blue
cheese-stuffed potatoes with [MASK] tenders” ac-
cording to the replace, add, and delete actions.

For every t̂ obtained from the above three ac-
tions, we estimate the action score by computing
the decrease in probability of predicting the correct
label yτ . The action score Ii is defined as:

Ii = oyτ ((h, r, t))− oyτ ((h, r, t̂))

where oyτ (·) denotes the logit output by the target
model for correct label yτ .

To conduct the attack on BERT, we sequentially
apply this attack strategy over t until an adversarial
example t′ is found or a limit of permutation action
M is reached. We filter the set of top K tokens (K
is a pre-defined constant) predicted by the masked
language model for the masked token according to
condition ii). To represent t and t′, previous work
in textual adversarial attack often uses the universal
sentence encoder (Cer et al., 2018). Here we adopt
pretrained recipe embeddings (Li and Zaki, 2020)
to calculate sim(t′, t) because it is trained on recipe
corpus, preserving stronger representational ability
for recipe data.

3.2.3 Ingredient and Generalized Ingredient
Substitution Generation

Different from recipes, most ingredients only con-
sist of 1-3 words. The plausibility of generated in-

gredient substitutions is vital in our task. Therefore,
we conduct entity-level perturbation on KG triples.
We reuse the masked BERT model in Section 3.1
to detect vulnerable entities and suggest candidate
ingredients. The attack process is similar to the
attack on recipes. For instance, “mozzarella cheese”
can be substituted with “cream cheese” in triple
(Philly cheese steak pizza, consist_of, mozzarella
cheese), where “cream cheese” is picked from the
ingredient vocabulary. The ingredient generated
in such a way can provide reasonable substitution
for a particular recipe when recipe and ingredient
make up the head and tail entities in a KG triple
(h, r, t).

Moreover, we introduce a new attack strategy to
produce more generalized ingredient substitutions
since there are also many scenarios asking for in-
gredient substitution for general purpose without
any context. Given an ingredient entity t, we re-
trieve its neighbors N t in KG and form N triples
{(h, r, t)|h ∈ N t}, note that a neighbor entity can
also be a tail entity t in this triple set, we denote
it as h for simplicity. Then, we obtain a candidate
ingredient set Z via our pretrained masked BERT
model. For every ingredient candidate z in Z , we
iteratively apply attack over fr(h, t) and record the
attack success rate α until it reaches a threshold
determined by βN (β is a pre-defined constant).
Since the adversarial attack is conducted among all
t’s neighbor, a successful attack is achieved only
when the adversarial sample t′ fools most of its
neighbors N t. Therefore, the t′ is regulated by N t,
preventing it to be contextualized to any specific
neighbor.

An an example of generalized substitution, given
an ingredient entity “couscous”, we first retrieve all
its neighbors in the food KG, forming a triple set
{(h, r, t)|h ∈ N t}. The masked language model
suggests {“quinoa”, “sorghum”, “millet”, · · · } as
the candidate substitution set. When conducting
the adversarial attack, “quinoa” successfully at-
tacks the target model fr(h, t′) over βN times,
thus we take “quinoa” as the generalized substi-
tution of “couscous”. Comparing to other candi-
dates, triple (pesto chicken wrap with sun dried
tomatoes, consist_of, quinoa) triggers an error in
triple plausibility prediction, whereas triples (pesto
chicken wrap with sun dried tomatoes, consist_of,
sorghum) and (pesto chicken wrap with sun dried
tomatoes, consist_of, millet) are predicted as true.
Engaging more entity neighbors from the KG to
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conduct attacks makes the final substitution more
generic.

4 Experiments

4.1 Dataset and Experimental Setup

We use the FoodKG (Haussmann et al., 2019)
knowledge graph as the main source for KGE
and food substitutions due to its rich structured
knowledge of recipes with ingredients. The
FoodKG contains food-relevant instances includ-
ing recipe and ingredient information extracted
from Recipe1M (Marin et al., 2019). We ex-
tract 4 million triples from FoodKG and ran-
domly divide them into training, validation, and
test datasets according to the ratio of 8:1:1. The
BERT-base model is used to the encode the KG
and generate substitutions, which is implemented
with Hugging Face transformers (github.com/
huggingface/transformers). More exper-
imental details are given in Appendix A.1. Our
code is publicly available at https://github.
com/DiyaLI916/FoodKGE.

4.2 Knowledge Graph Embedding Results

We compare our BERT-based KGE model with
some typical KGE methods with regards to encod-
ing models, including:

• Linear models: TransE (Bordes et al., 2013) and
TransR (Lin et al., 2015). TransE learns vector
representations of h, t, and r following the trans-
lational principal h + r ≈ t. TransR further
introduces separated spaces for entities and rela-
tions to tackle the problem of insufficiency of a
single latent space for both entities and relations.

• CNN/GNN models: ConvE (Dettmers et al.,
2018) and R-GCN (Schlichtkrull et al., 2018).
ConvE uses 2-D convolution over embeddings
and multiple layers of nonlinear features to model
the interactions between entities and relations.
R-GCN encodes KGs with graph convolutional
networks and addresses the multi-relational data
characteristic of KG by reshaping head entity and
relation into a 2-D matrix.

• Transformer-based models: KG-BERT (Yao
et al., 2019) and CoKE (Wang et al., 2019). KG-
BERT borrows the idea from language model
pre-training and takes the BERT model as an en-
coder for entities and relations. Similarly, CoKE
employs a stack of transformer blocks to encode

edges and path sequences. In contrast, our KGE
model has a multi-task training setting.

Metrics
Following the evaluation protocol of KGE models
described in the previous works like Bordes et al.
(2013), the performance of the KG representations
are typically evaluated by two tasks: triple plau-
sibility classification and entity linking prediction.
Triple classification aims to judge whether a given
triple (h, r, t) is correct or not, thus accuracy is
reported in this task. It is in the same form as our
training task of predicting the plausibility of a triple
with negative sampling. The link prediction task
aims to predict the head entity h given (?, r, t)
or the tail entity t given (h, r, ?), where ? means
the missing entity. Here, we only do prediction
of ingredient entity. It is in the same form as our
training task of predicting masked ingredient en-
tities. For entity linking, we report MRR (Mean
Reciprocal Rank of all the ground truth triples) and
Hits@10 (the proportion of correct entities ranked
in top 10, for all the ground truth entities) as our
evaluation metrics. We only report results under
the filtered setting (Bordes et al., 2013) which re-
moves all corrupted triples that appear in training,
validation, and test set before getting the ranking
lists.

Table 1: Knowledge graph embedding results on triple
plausibility classification and link prediction tasks.
Higher is better. All scores are statistically significant
at p < .01 employing a two-sample t-test.

Triple Plausibility Link Prediction
Accuracy MRR Hits@10

TransE 0.730 0.318 0.441
TransR 0.758 0.322 0.469
ConvE 0.836 0.402 0.517
R-GCN 0.814 0.350 0.482
KG-BERT 0.893 0.417 0.521
CoKE 0.872 0.451 0.540
Our model 0.916 0.460 0.549

Results and Analysis
The results of the two tasks on FoodKG are shown
in Table 1. The linear models (TransE/TransR) do
not achieve high scores in triple classification and
link prediction tasks. Even though TransR allevi-
ates the problem of TransE in dealing with multiple
relations, the improvement in TransR is slight be-
cause the relation types in FoodKG is very small.
TransR projects head and tail entities into relation
space by a projection matrix. However, for most

github.com/huggingface/transformers
github.com/huggingface/transformers
https://github.com/DiyaLI916/FoodKGE
https://github.com/DiyaLI916/FoodKGE
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triples in FoodKG, head and tail entities are of dif-
ferent types. ConvE shows decent results, which
suggests that CNN models can capture global inter-
actions among the entity and relation embeddings
by nonlinear feature learning through multiple lay-
ers. Though R-GCN emphasizes the graph struc-
ture and the multi-relational data characteristic of
KG, R-GCN performs worse than ConvE due to
the scarce relation types in FoodKG.

For the two transformer-based models, KG-
BERT is particularly trained on the triple classi-
fication task, thus achieving a higher score in triple
plausibility prediction. The CoKE model formu-
lates multi-hop paths in the KG into sequences
consisting of entities and relations. The model
is trained to predict masked entities and relations
and improves the multi-hop reasoning ability in
KG, resulting in higher scores in link prediction
task. Our model outperforms all the competitive
baselines in these two evaluation tasks, and the im-
provements are statistically significant (p < 0.01).
This demonstrates the superiority of our two-stage
training strategy which explicitly captures the con-
textual information to help the triple fact assertion
and is also powerful in single-hop reasoning.

4.3 Adversarial Attack Results on BERT
We compare our method with recent state-of-the-
art adversarial attack methods against pre-trained
language models as follows:

• BERT-Attack (Li et al., 2020): This model pro-
poses a typical mask-then-infill approach which
greedily replaces tokens with the predictions
from BERT.

• BAE (Garg and Ramakrishnan, 2020): Similar to
BERT-Attack, while BAE allows adding a token
via perturbation.

• CLARE (Li et al., 2021): This model proposes
three contextualized perturbations – Replace, In-
sert and Merge – that allow for generating differ-
ent lengths of adversarial samples.

Metrics
We follow previous work on textual adversarial at-
tack (Jin et al., 2020; Li et al., 2020), and adopt
three metrics to automatically evaluate the attack-
ing results: i) the attack success rate, representing
the percentage of adversarial examples that can
successfully attack the target model, ii) the pertur-
bation rate, denoting the percentage of modified

tokens, and iii) the textual similarity, computed as
the cosine similarity between the representations
of original entity and the alternative, as described
in Section 3.2.

Table 2: Adversarial example generation performance
in attack success rate (Attack), perturbation rate (Per-
turb), and textual similarity (Similarity). Best results
are marked in bold. For Attack and Similarity, higher
is better; for Perturb lower is better. All scores are sta-
tistically significant at p < .01 employing a two-sample
t-test.

Recipe Substitution
Attack Perturb ↓ Similarity

BERT-attack 77.5 69.5 0.74
BAE 78.3 69.0 0.75
CLARE 80.6 67.3 0.82
Our model 80.9 67.7 0.83

Ingredient Substitution
Attack Perturb ↓ Similarity

BERT-attack 75.1 93.1 0.79
BAE 74.8 90.7 0.81
CLARE 81.3 94.3 0.82
Our model 84.4 100 0.85

Generalized Ingredient Substitution
Attack Perturb ↓ Similarity

Our model 67.8 100 0.86

Results and Analysis
We perform adversarial attacks on our KGE model
and summarize the results in Table 2. Across mod-
els, our attack strategies are almost always more
effective than the three baseline attack methods,
achieving the highest average attack success rate
and textual semantic similarities. Though the per-
turbation rate is widely-used to evaluate textual
attack methods, where a lower perturbation rate
is better; our goal is to generate high quality food
substitutions, thus perturbation rate is not as impor-
tant in our task. We do entity-level replacement for
ingredient substitutions, therefore the perturbation
rate is 100% in our cases.

We observe that BERT-attack and BAE mod-
els have close performance. BERT-attack only re-
places tokens. BAE allows adding a token while
it inserts only near the replaced token, thus lim-
iting its attacking capability. CLARE uses three
different perturbations (Replace, Insert and Merge),
each allowing efficient attacking against any posi-
tion of the input, and can produce outputs of varied
lengths. Our model’s attack strategy is similar to
CLARE for recipe substitution, with a different ac-
tion scoring function. It is reasonable that CLARE
performs close to our model.

For ingredient substitution, the three baselines
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Table 3: Human evaluation performance. Scores are
based on a 5-point scale.

Recipe Substitution
Original CLARE Ours

Appropriateness 4.37 4.18 4.22
Grammar 4.76 4.30 4.36
Semantic - 3.51 3.65

Ingredient Substitution
Original CLARE Ours

Appropriateness 4.67 4.52 4.60
Semantic - 4.50 4.55

Generalized Ingredient Substitution
Shirai et al. (2020) Ours

Semantic 4.53 4.46

focus on token-level perturbation since they are
proposed for textual adversarial attack. In contrast,
we aim to generate different kinds of food substitu-
tions over KG. Our model directly does entity-level
perturbation for ingredient substitution, and outper-
forms all the baselines by a big margin. Besides, we
also create an additional strategy to do generalized
ingredient substitution by employing ingredient’s
neighbors in the KG to regulate its contextualiza-
tion property. The new attack strategy achieves a
high score of 0.86 in textual similarity.

Human Evaluation

It is important to note that our main focus is not
purely on successful attacks, but rather on the qual-
ity of generated samples. Therefore, to further ex-
amine the quality of the food substitutions and com-
pare with previous adversarial attack work CLARE
(Li et al., 2021) and food substitution work (Shirai
et al., 2020), we conduct a human evaluation study
on 150 food substitutions. Specifically, we ran-
domly selected 50 recipe substitutions and 50 ingre-
dient substitutions which our model and CLARE
successfully attack on the test dataset, and 100 gen-
eralized ingredient substitutions which our model
successfully attacks (note that previous attack mod-
els cannot produce generalized ingredient substitu-
tions). We recruited 10 annotators to evaluate the
three types of food substitutions. For recipe sub-
stitutions, the recipe along with its ingredients are
presented to the evaluators, who are requested to
give scores on a 5-point scale (1-bad, 2-poor, 3-fair,
4-good, 5-excellent) in terms of three aspects: i)
Appropriateness: recipe substitution appropriate-
ness with regards to its ingredients; ii) Grammar:
grammatical correctness of the substitute; and iii)
Semantic: semantic similarity between the original
recipe and its substitute as there is no ground truth

for recipe substitution. The human evaluation for
ingredient substitutions has a similar setting, but we
do not assess the grammatical aspect because we
do entity-level substitutions with new ingredients
picked directly from the vocabulary. Shirai et al.
(2020) has created a ground truth dataset for gener-
alized ingredient substitutions. Thus, we evaluate
the semantic similarity between the ground truth
ingredient substitution and the substitutes provided
in Shirai et al. (2020)’s work and the generalized
substitute generated from our adversarial model.

We compute the Fleiss’s kappa coefficient to
measure the agreement among evaluators, and the
agreement score is 0.61, indicating moderate agree-
ment. As shown in Table 3, for recipe substitu-
tion, the appropriateness and grammar scores of
the adversarial samples are close to the original
ones, indicating the high quality of these substi-
tutions. The appropriateness score for ingredient
substitution is very close to the original ingredi-
ents (4.67 vs. 4.73). This implies that the gener-
ated ingredient samples can be good substitutes
with regards to their corresponding recipes. Our
generated recipe and ingredient substitutions also
achieve higher scores across all the three aspects
when compared to CLARE. The semantic score of
our generalized ingredient substitutions is close to
Shirai et al. (2020)’s work which leverages various
semantic sources and rules (4.46 vs. 4.53). In con-
trast with Shirai et al. (2020)’s work, our model
automatically suggests generalized ingredient sub-
stitutions without the need for human-crafted fea-
tures and rules.

Qualitative Analysis
In order to have a deep understanding of the adver-
sarial samples, we conduct qualitative analysis over
the three types of food substitutions. We observe
the following:

• Recipe substitution: i) We have three perturba-
tion actions during recipe substitution generation
process. We calculate the action scores of these
three and do perturbation according to the action
with the highest score. In our final results, the re-
place action occurs most, accounting for 74.5%
of the entire recipe substitutions. The noun token
in recipes has a higher chance to be detected as
a vulnerable token. The delete action often re-
sults in merging two noun tokens into one and
the add action tend to insert tokens into noun
phrase bi-grams. Table 4 lists some examples of
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Table 4: Recipe substitution examples produced by our attack model. The token marked in red and blue are the
vulnerable and generated ones, respectively.

Recipe Action Recipe Substitution
the sweetest blueberry muffins replace the sweetest cranberry muffins
spicy shrimp in coconut milk delete spicy shrimp in milk

banana cream muffins add tropical banana cream muffins
monterey jack chicken: bursting with flavor replace gouda jack chicken: bursting with flavor

Table 5: Ingredient substitution examples.

KG Triple Ingredient Substitution
(chicken salad roll-ups appetizer, consist_of, poppy seed dressing) sesame seed dressing

(beetroot yogurt, consist_of, beet) carrot
(authentic Russian borscht, consist_of, beet) turnip

Table 6: Generalized ingredient substitution examples.

Ingredient Generalized Substitutions
milk soy milk
kale broccoli

grapefruit lime
currant cranberry
nutmeg cinnamon
walnut almond

green onion garlic
arugula lettuce

the three actions. For example, the token “blue-
berry” in recipe “the sweetest blueberry muffins”
listed in Table 4 is replaced by “cranberry”. ii)
Semantic and grammatical errors often occur in
recipe substitutions with long text. For instance,
the token “monterey” in “monterey jack chicken:
bursting with flavor” is replaced by “gouda” in
Table 4. “Monterey jack” refers to the American
cheese Monterey Jack, while “gouda jack” does
not make sense in this substitution.

• Ingredient substitution: i) Rare ingredients with
low frequency in the ingredient vocabulary (oc-
curring less than 50 times in all triples) tend to
be detected as vulnerable and are replaced by
more common ones. As demonstrated in Ta-
ble 5, “poppy seed dressing” is substituted by
“sesame seed dressing” in “chicken salad roll-
ups appetizer”. This can be useful in practice,
since people often ask for a substitute when an
ingredient is not at hand. ii) Most ingredients
are suggested different substitutions in different
recipes. As shown in Table 5, “beet” is substi-
tuted by “carrot” in dessert “beetroot yogurt”,
whereas “turnip” is suggested to replace “beet”
in main dish “authentic Russian borscht”.

• Generalized ingredient substitution: We report
some generalized ingredient substitutions that
have successfully attacked the KGE model over

100 times. The results are listed in Appendix,
Table 6. The substitutions are in line with hu-
man common sense. For example, “milk” may be
substituted by “soy milk” in general over several
recipes. Likewise, “almond” can be a substitute
for “walnut”. Thus, our generalized substitution
approach can serve as a reasonable reference in
applications where users seek ingredient substi-
tutions for general purposes.

5 Conclusion and Future Work

In this work, we proposed a novel framework to
learn food KG embeddings via a pre-trained lan-
guage model and generate high quality food sub-
stitutions by conducting attacks in the language
model. Specifically, we addressed the sparseness
problem in food KG and enriched its contextualized
representation via the retraining of BERT model
on two tasks. We then employed a masked lan-
guage model to iteratively generate feasible food
substitutions via adversarial attacks on KGE. We
further invented a collection of attack strategies to
generate three types of food substitutions to meet
different user needs: namely, contextualized recipe
and ingredient substitutions for substitution queries
with a given context, and generalized ingredient
substitutions for general substitution purpose. For
future work, we aim to take the health or nutrition
information into consideration during adversarial
sample generation, thus guiding healthier dietary
choices for people.
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A Appendix

A.1 Experimental Setup
We use the following configuration for KG encod-
ing: the number of Transformer layers: 12, number
of self-attention heads: 12, and hidden size: 256.
We choose BERT-base model instead of BERT-
large because it achieves better results in triple
plausibility classification, and the former is less
sensitive to hyper-parameter choices. We employ
dropout on all layers, with a 0.1 dropout rate.

Table 7: Parameter settings in BERT attack.

Parameter Value
Recipe and Ingredient Substitution

k 1e-2
d 0.6
M 30
K 20

Generalized Ingredient Substitution
k 1e-2
d 0.75
K 10
β 0.2

We retrain the BERT model with batch size of 64
for at most 20 epochs, and use the Adam optimizer
(Kingma and Ba, 2014) with a learning rate of 5e-5.
The best hyper-parameter setting is determined by
the validation set. For triple plausibility classifi-
cation training, we sample one negative triple for
every positive triple, which ensures class balance in
binary classification. The parameter choices of the
adversarial attacks on BERT are listed in Table 7.
k is the learning rate and d is the dropout rate. For
recipe and ingredient substitution generation, M is
the maximum permutation actions to try for each
attack and K is the filtered top K tokens predicted
by the masked language model. β is the threshold
rate to determine a successful attack in generalized
ingredient substitution generation.
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