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Abstract

The robustness of a model for real-world de-
ployment is decided by how well it performs
on unseen data and distinguishes between
in-domain and out-of-domain samples. Vi-
sual document classifiers have shown impres-
sive performance on in-distribution test sets.
However, they tend to have a hard time cor-
rectly classifying and differentiating out-of-
distribution examples. Image-based classi-
fiers lack the text component, whereas multi-
modality transformer-based models face the to-
ken serialization problem in visual documents
due to their diverse layouts. They also require a
lot of computing power during inference, mak-
ing them impractical for many real-world ap-
plications. We propose, GVdoc, a graph-based
document classification model that addresses
both of these challenges. Our approach gener-
ates a document graph based on its layout, and
then trains a graph neural network to learn node
and graph embeddings. Through experiments,
we show that our model, even with fewer pa-
rameters, outperforms state-of-the-art models
on out-of-distribution data while retaining com-
parable performance on the in-distribution test
set.

1 Introduction

Documents digitization and their intelligent pro-
cessing in various industries such as finance, insur-
ance, and medicines has resulted in the rapid de-
velopment of structured document understanding
methods, a.k.a. document AI. Document classifi-
cation is one of the essential tasks in document AI
for labeling documents. A number of deep convo-
lutional neural network (CNN) and Transformer-
based models have achieved superior performance
on many document-AI tasks (Xu et al., 2021; Lee
et al., 2021, 2022). However, they tend to employ
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bigger models with hundreds of millions of pa-
rameters, subsequently increasing computational
demand that can be a challenge in real-world ap-
plications. Yet many of them fail to perform well
on out-of-distribution (OOD) data (Larson et al.,
2021, 2022). This is because, in many cases, train-
ing and testing examples are from a fixed distribu-
tion − such as a particular language, time frame,
and industry. However, the layout of the docu-
ments evolves over time, and the model should per-
form well on such out-of-distribution data. Further,
the model is expected to be able to differentiate
between known and unknown categories of docu-
ments, thus minimizing false-positive predictions
during testing.

Initial work on document classification em-
ployed off-the-shelf image classifiers (Jain and
Wigington, 2019; Bakkali et al., 2020) and mod-
els pre-trained on ImageNet (Deng et al., 2009)
or similar datasets. These methods struggle to la-
bel documents having similar layouts but different
text contexts. Later, focus shifted towards language
models (Li et al., 2021a; Lee et al., 2022) and multi-
modality models (Bakkali et al., 2020; Xu et al.,
2021; Lee et al., 2021; Wang et al., 2022a). These
models also incorporated layout information ob-
tained from optical character recognition (OCR).
Therefore, the performance of these methods, par-
ticularly transformer-like models, degrades due to
the imperfection of the OCR engine, such as errors
in parsed text or the order of tokens sequence. Al-
most all of these methods tried to improve the per-
formance on the in-distribution test set, neglecting
the generalization for real-world applications. To
confirm, recently (Larson et al., 2022) collected an
OOD version of RVLCDIP dataset (Harley et al.,
2015) and evaluated several image and multi-modal
classifiers. However, none of them performed well
on the OOD dataset.

Our method, called GVdoc (for Graph-based
Visual DOcument Classification), studies docu-



Figure 1: Sample document graph where the bounding
boxes of words are shown by black boxes, and para-
graphs by blue boxes. Left side figure shows β skeleton
edges with red lines and right side shows OCR-based
paragraph-level edges with green color. The edges from
left top corner connect the super node to some represen-
tative nodes. The final graph is combination of both of
these graphs (see Figure 11 in Appendix).

ment classification as a graph classification prob-
lem, where we take text words as nodes and the
relationship between words as edges in a graph. We
generate a document-level graph using that layout
information from OCR (see Figure 1) and learn the
embedding using graph neural networks (GNNs).
GVdoc is more robust to changes in the test set;
hence it shows improved performance on out-of-
distribution data. We make the following contribu-
tions:

• We introduce graph-based document mod-
eling that leverages both (potentially noisy)
reading order and spatial layout in graph con-
struction, and learns embeddings using GNNs.

• We empirically show that compared with other
systems, our model is better able to generalize
to test data drawn from a different distribution
than the training data.

2 Related Work

Visual Document Classification CNNs have
achieved excellent performance on natural scene
images, so they became the first obvious choice
for visual document classification (Das et al., 2018;
Jain and Wigington, 2019; Bakkali et al., 2020).
However, documents have overlapping intra-class
visual and structural characteristics (Bakkali et al.,
2020), which makes visual features less discrimina-
tive for classification. The semantics of text in the
document and the layout are essential to understand
the visual documents.

A second line of work studies document classi-
fication as a sequence classification problem (Lee
et al., 2022; Li et al., 2021a; Wang et al., 2022a).

They follow language modeling strategies, but
aside from text, they also incorporate layout in-
formation. Such approaches parse text and lay-
out information by applying OCR on document
images. Then, they train transformer-like models.
StructuralLM (Li et al., 2021a) adds text and layout
embeddings and trains a transformer model (similar
to BERT (Devlin et al., 2018)) on specialized pre-
training tasks. Some of the recent works employ
multi-modal features including visual, text and lay-
out (Xu et al., 2021; Peng et al., 2022; Lee et al.,
2021). These models train a single transformer on
concatenations of text and visual tokens (Xu et al.,
2021) or train a separate transformer branch for
both text and visual modalities (Peng et al., 2022).
The methods that utilize text consider serialized
tokens from OCR as an input, so their performance
varies with the correctness of the OCR engine. For
examples, if we replace the proprietary Microsoft
Azure OCR in LayoutLMv2 (Xu et al., 2021) with
Tesseract 1, an open source OCR, its performance
drops for visual document classification (Larson
et al., 2022).

Transformer-based models consider input se-
quence based on OCR reading order (Xu et al.,
2021; Li et al., 2021a), which may not reflect to-
kens in their actual reading order (Lee et al., 2021,
2022). Therefore, a few recent studies model the
document as a graph by suggesting several pos-
sible edge types. Zhang et al. (2020) proposed
k-Nearest Neighbors graphs, but these may con-
tain connections with isolated tokens. Fully con-
nected graphs employed by (Liu et al., 2019; Yu
et al., 2021) do not leverage the sparsity of the
document, hence their approach is similar to trans-
formers. On the other hand, (Cheng et al., 2020)
relied on a proprietary OCR technology to identify
“text fields”, then utilized a 360-degree line-of-sight
(LoS) graph. We initially used LoS graphs but
that did not show very good performance. Form-
Net (Lee et al., 2022) models a document as a graph
using a β-skeleton graph (Kirkpatrick and Radke,
1985) and tries to minimize the serialization error
by learning localized Super-Token embeddings us-
ing graph convolutions before a transformer. How-
ever, they used ETC Transformer (Ainslie et al.,
2020) for schema learning from GCN-encoded
structure-aware Super-Tokens.

Our approach differs from prior graph-based
work in two important ways: graph generation and

1https://github.com/tesseract-ocr/tesseract



learning embeddings. Our unique document-level
sparse graph incorporates both spatial layout and
OCR reading order, leveraging the document’s spar-
sity and making our model less sensitive to com-
mon mistakes in OCR reading order. Moreover, we
solely use a GNN to learn embeddings. Thus, we
do not require a transformer component, making
our approach more memory-efficient than models
that incorporate a transformer (Lee et al., 2022;
Wei et al., 2020; Yu et al., 2021). Our approach
also uses more expressive edge embeddings than
that of Liu et al. (2019).

Feature fusion Initial research simply added to-
gether the text and layout embedding (Xu et al.,
2021; Hong et al., 2022), incorporated position bias
in attention mechanism (Garncarek et al., 2021;
Powalski et al., 2021), designed cross-modality
attention layers (Wang et al., 2022a; Peng et al.,
2022; Li et al., 2021b), and explored 1D position
and 2D layout aware attention weights using a dis-
entangled matrix (Peng et al., 2022). LiLT (Wang
et al., 2022a) adds attention weights from layout
and text embeddings and updates both types of em-
beddings through two separate transformers. How-
ever, adding attention weights does not fully lever-
age the cross-domain features. SelfDoc (Li et al.,
2021b) took the Value (V) of one modality as Key
(K) for the other modality while computing cross-
attention in transformer layers to learn dependency
between language and vision features. Finally, it
added features of both text and visual modalities.

3 GVdoc Document Graph

We now describe our approach for representing
document using both textual and layout features.
We represent a document D as a graph where each
token is a node and edges reflect the spatial rela-
tionship between them.

Nodes We define vertices for all tokens as V =
{v1, v2, ..., vN} where features of vi are a fusion
of the text and layout embeddings defined later
in Equation (5). In addition, we define a virtual
super node that summarizes the graph, similar to
the CLS token in BERT.

Edges Token sequence can be important in un-
derstanding text, but this information provided by
OCR is often noisy. We therefore generate edges in
the document graph reflecting two types of relation-
ships between vertices: (a) “ball-of-sight” using

β-skeleton graph (Kirkpatrick and Radke, 1985)
and (b) paragraph-based neighborhood.

A β-skeleton graph (Kirkpatrick and Radke,
1985) defines an edge between two bounding boxes
if both intersect a circle that does not intersect
any other bounding box; the resulting “ball-of-
sight” graph is sparser than one using line-of-sight
edges (Wang et al., 2022b). Lee et al. (2021, 2022)
found this useful for message passing in GNNs.

The paragraph-based neighborhood connects
tokens within the same paragraph and connects
paragraphs based on OCR’s reading order predic-
tions. While we could fully connect all tokens in
the same paragraph, we aim to reduce computation
by increasing sparsity; therefore, we add edges for
each token with the k nearest neighbors within the
same paragraph. Then, for each pair of paragraphs
that are adjacent in the OCR’s reading order, we
define an edge between the last token of the prior
paragraph and the first token of the following para-
graph. Finally, we define a super-node and connect
it with the first and last token of each paragraph,
considering them as representative tokens of the
paragraph.

To construct the final graph, we take the union
of the edges from the β-skeleton graph and the
paragraph-based neighborhood as shown in Fig-
ure 1. Thus, we generate a graph that is sparse
but also has enough connections for learning node
embeddings through message passing in the GNN
(as evident in Table 7). For the edge between con-
nected vertices vi and vj , we define edge features
by concatenating (a) distance between all four cor-
ners and centers of token bounding boxes of vi and
vj , (b) absolute distance on horizontal and vertical
axes, and (c) ratio of height and width.

4 GVdoc Model

Our GVdoc model, shown in Figure 2, consists of
input embeddings, feature fusion, and task-specific
prediction modules. We learn node embeddings
in an end-to-end fashion through various unsuper-
vised pre-training tasks. Then, we fine-tune the
model for downstream tasks.

4.1 Input embedding

Text embedding: Our text embedding module
is similar to BERT’s (Devlin et al., 2018). To get
embeddings of text (T), we add token embeddings,
token type embeddings, and position embeddings,



Figure 2: GVdoc overview: OCR returns text tokens,
their bounding boxes, and paragraph-level bounding
boxes, which are then fed into respective embedding
layers. Token and paragraph bounding box embeddings
are merged by a fully connected layer and fused with
token embeddings through a fusion module. The model
is pre-trained on Masked Language Modeling (MLM),
Masked Position Modeling (MPM), and Cell Position
Prediction (CPP) tasks. Finally, the pre-trained model
is fine-tuned for the classification task.

given as

et = etoken(T ) + etype(T ) + e1p(T ) (1)

where, etoken, etype, e1p are token, token type and
position embedding layers, respectively, and et ∈
Rd are text embeddings.

Layout embedding: OCR provides text tokens
(T), their bounding boxes Tbox, and paragraph-level
bounding boxes Pbox. A bounding box contains co-
ordinates of top left corner and bottom right corner,
given as [(x1, y1), (x2, y2)], of a box that covers the
token or paragraph. Most document AI models em-
ploy token-level bounding boxes for layout embed-
ding that allows the models to localize the text in
the layout. StructuralLM (Li et al., 2021a) divides
the images into fixed-size grids and uses cell bound-
ing boxes instead of token bounding boxes. They
show that the model can encode better contextual
information using cell bounding boxes. However,
dividing the image into cells might put irrelevant
tokens in the same cell or might put a token in
two cells. To improve reading order in layout-rich
documents, some of the recent approaches (Peng
et al., 2022) first detect different text components
in the document image and then serialize the to-
kens from OCR per text component. Motivated
by (Peng et al., 2022), we employ text component
(paragraph) level layout information for learning
layout embeddings. We concatenate the embed-
dings of paragraph level bounding boxes and token
level bounding boxes. Then, we use one fully con-
nected layer to map back to the hidden dimension,

given as:

el = fc(etl(Tbox) || epl(Pbox), θ) (2)

where || denotes concatenation, etl is a layout em-
bedding layer that encodes token bounding boxes in
dimension Rd, epl is a layout embedding layer that
encodes paragraph bounding boxes in dimension
Rd. Finally, both layout embeddings are concate-
nated to yield a R2d embedding which is mapped
into Rd through a fully connected layer. Thus,
our layout embeddings el contain the coarse and
fine-grained location of the tokens based on the
document layout.

Figure 3: Feature fusion module: Computes cross atten-
tion between text embeddings and layout embeddings.

4.2 Feature Fusion Module
Our cross-attention module is similar to the cross-
attention layer in (Li et al., 2021b), except that we
explicitly compute the value representation (V) for
both modalities (text and layout) by linear map-
pings, as shown in Figure 3. Thus, our cross-
attention module tries to find the most relevant lay-
out embeddings based on text attention weights and
vice versa. Formally we define our cross-attention
module in Equation (5).

αij
t = (eitW

hQ
t )(ejtW

hK
t )

/√
dk (3)

αij
l = (eilW

hQ
l )(ejlW

hK
l )

/√
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∑
j∈Ni

αij
t (e

i
lW

hV
l ) + αij

l (e
i
tW

hV
t ) (5)

where the superscript h represents an attention
head, dk = d/H is the projection dimension (with
H being the number of the attention heads), eit and



eil are text and layout embedding vectors fused into
node embeddings vhi ∈ Rdk for head h. W hQ,
W hK , and W hV are Rd×dk learnable weights that
linearly transform embeddings into queries (Q),
keys (K) and values (V), respectively. Node em-
beddings from all attention heads are concatenated
to yield final node embeddings of dimension d.

4.3 Graph Learning

The generation of document graph results in node
features, adjacency matrix and edge features as
discussed in Section 3. We chose Graph Atten-
tion Network (GAT) (Veličković et al., 2017) as a
message passing network for learning node embed-
dings. The super-node is used to predict the graph
(document) label. Our model is first pre-trained in
a similar fashion to most of the transformer-based
document AI models. We pre-train the model on
the following three tasks.

4.3.1 Masked Language Modeling (MLM)
Mask Language Modeling (MLM) is a widely
adopted pre-training task in language modeling,
involving the masking of random tokens in a text
with the special token MASK, which the model
then aims to predict. Consistent with previous stud-
ies (Xu et al., 2021; Li et al., 2021a; Lee et al.,
2022), we adopt a masking strategy in which 15%
of the tokens are masked. Subsequently, the model
learns to estimate the masked tokens based on the
information provided by their neighboring tokens.

4.3.2 Masked Position Modeling (MPM)
Each token in the document has its associated lo-
cation information, represented by a bounding box,
which aids in understanding the document’s lay-
out. Inspired by the approach presented in Saha
et al. (Saha et al., 2021), we randomly replace
15% of the bounding boxes with a fixed bounding
box [0, 0, 0, 0]. Subsequently, the model is tasked
with predicting the masked token-level bounding
boxes through a regression task. It is important to
note that we do not mask the bounding boxes at
the paragraph level, allowing the model to retain
access to coarse-grained layout information. As
a result, the model’s predictions focus solely on
the fine-grained layout details while utilizing the
provided coarse-grained layout information.

4.3.3 Cell Position Prediction (CPP)
Motivated by (Li et al., 2021a), we divide the docu-
ment image into a K×K grid. A token is assigned

a cell number in which the center of its bounding
box lies. Then, for each token, the model is trained
to predict the specific cell within the grid to which
it belongs. This task helps the model to narrow
down location of tokens within the layout.

5 Experiments

We hypothesize that our GVdoc model will be more
robust to changes in the test distribution than other
models. We therefore designed experiments to mea-
sure how our model performed on two tasks: (a)
classifying in-domain but out-of-distribution docu-
ments, and (b) distinguishing out-of-domain docu-
ments from in-domain documents.

5.1 Baseline methods

For baseline comparison, we chose models that
cover different architectures including CNNs
(VGG-16 (Simonyan and Zisserman, 2015),
GoogLeNet (Szegedy et al., 2015)), image trans-
formers (DiT) (Li et al., 2022), and models that
use language modeling (LayoutLMv2 (Xu et al.,
2021), LayoutLMv3 (Huang et al., 2022)). Fol-
lowing (Larson et al., 2022), we compare GVdoc
with above mentioned models.

5.2 Datasets

We use the RVLCDIP (Harley et al., 2015) dataset
as our in-distribution and in-domain data, then use
RN and RO (Larson et al., 2022) as our out-of-
distribution and out-of-domain datasets, respec-
tively.

RVLCDIP (Harley et al., 2015) is a subset of IIT-
CDIP (Lewis et al., 2006), consisting of scanned
and noisy document images from litigation involv-
ing the American tobacco industry. The images are
labeled for 16 categories including forms, newspa-
per, scientific publication and so on. The dataset
has 320, 000 training samples, and 40, 000 valida-
tion and testing examples, each. We fine-tune all
models in this work on RVLCDIP’s training set.
We will use RT to refer to RVLCDIP’s test set.

RVLCDIP-N (RN) (Larson et al., 2022) is an
out-of-distribution but in-domain set. It contains
1, 002 documents belonging to the 12 categories of
RVLCDIP dataset, making it in-domain. However,
they not taken from the American tobacco industry
or IIT-CDIP, so the samples are from a different
distribution.



RVLCDIP-O (RO) (Larson et al., 2022) was
collected from Google and Bing searches and the
public Document Cloud 2 repository. It has 3, 415
samples, and those documents do not match with
any class in RVLCDIP, i.e., they are both out-of-
distribution and out-of-domain.

5.3 Metrics

Robustness to out-of-distribution data. To test
how robust each model is to a change in distribu-
tion, we compare the model’s accuracy on the RVL-
CDIP test set (RT) and the OOD but in-domain RN.
We report both micro-accuracy, calculated as ratio
of true positives to total number of samples, and
macro-accuracy, calculated by averaging per-class
accuracy. A robust model will maintain micro- and
macro- accuracy on RN that is close to what it
achieved on RT.

Identifying out-of-domain data. To test models’
effectiveness at identifying out-of-domain data, we
follow Larson et al. (2022) in using metrics that
describe the separability of confidence scores for
in- and out-of- domain examples. A classifier that
is good at identifying out-of-domain data should
assign high confidence scores to its predictions for
in-domain data and low confidence scores to its
predictions for out-of-domain data. If we chose
a confidence threshold t, we could make a binary
classifier that labels all examples with confidence
≥ t in-domain and all examples with confidence
< t out-of-domain; we could then calculate its ac-
curacy, but that accuracy would depend upon our
choice of t. False positive rate at 95% true positive
rate (FPR95) sets t at a level that gives 95% true
positives and then measures how many negative
examples (out-of-distribution) are classified as pos-
itive (in-distribution). A model with a lower FPR95
value model is better at differentiating in- versus
out-of-distribution data.

Area under the ROC curve (AUC), similarly, de-
scribes how different the confidences are for the in-
and out-of-domain examples, but, as a threshold-
free measure, is considered as a better option (Lar-
son et al., 2022). A high AUC score (close to 1.0)
means the model assigns a higher confidence score
to in-domain data and a lower confidence score to
out-of-domain data. An AUC score of 0.5 means
the model assigns similar confidence scores to in-
and out-of-domain samples.

2https://www.documentcloud.org

We calculate FPR95 and AUC using two con-
fidence measures: maximum softmax probability
and energy score.

Maximum Softmax Probability (MSP): Given
a model, we compute logits for an example x as
z = f(x) and then apply softmax to compute the
confidence score per class. For ith class, the confi-
dence score ci can be calculated as: ci = ezi∑C

j ezj
,

where C is total number of classes. MSP is the
maximum confidence score out of these C scores
as: MSP = max{ci}.

Energy Score: Energy score (Liu et al., 2020)
is defined as: E(z, T ) = −T log

∑C
j=1 e

(zj/T )

where T is a temperature parameter. For fairness,
following (Larson et al., 2022), we use T = 1.

5.4 Experimental Setup

Given a document, we use OCR to extract text to-
kens, their bounding boxes, and paragraph (text
entity) level bounding boxes. Proprietary OCR en-
gines such as Microsoft Azure OCR used by Lay-
outLMv2 (Xu et al., 2021), or CLOVA OCR API3

used by BROS (Hong et al., 2022) are meticulous,
but not all users have access to these tools. Thus,
following (Larson et al., 2022), we use Tesseract 4,
an open source OCR engine, for parsing words and
their locations from document images, and then
tokenized them using BERT tokenizer. For a better
start of training, we initialize text embedding layers
with weights from pre-trained BERT.

GVdoc uses an embedding dimension d = 768.
That is, the dimension for our token embeddings,
token bounding-box embeddings and paragraph
bounding-box embeddings is d = 768. Token and
paragraph bounding-box embeddings are concate-
nated and mapped to final layout embeddings of
dimension d = 768. Similarly, text and layout
embeddings are fused using feature fusion mod-
ule to result in node embeddings of dimension
d = 768. Our feature fusion module contains 4
attention heads. We use input edge features of di-
mension 21, which are also linearly transformed
to d = 768. We use Graph Attention Network
(GAT) (Veličković et al., 2017) with 4 layers and
4 heads. We normalized edge features and input
them to GAT.

In our implementation of the β-skeleton
graph (Kirkpatrick and Radke, 1985), we set β = 1

3https://clova.ai/ocr
4https://github.com/tesseract-ocr/tesseract



Model # param
RT RN

∆ RT-RN
Reported Achieved Micro Macro

VGG-16 138M 91.0 90.5* 66.8 69.1 -23.7
GoogLeNet 60 M 88.4 87.1* 60.2 61.3 -26.9
DiT 87 M 92.1 93.3* 78.6 80.5 -14.7
LayoutLMv2 200 M 95.3 88.7* 55.6 60.0 -33.1
LayoutLMv3 133 M 95.93 93.11 82.45 83.85 -10.66
GVdoc 34 M - 87.6 89.90 89.12 + 2.3

Table 1: Classification accuracy scores on RT (Test data)
reported by original papers, achieved by (Larson et al.,
2022) (indicated by *) compared to RN. ∆ RT-RN is
the difference in accuracy between RT and RN.

and consider a maximum of 25 neighbors. For
the paragraph-level graph, we connect each node
to a maximum of 10 nearest neighbors within the
same paragraph or text entity, utilizing OCR read-
ing order as the distance metric. We experimented
with different numbers of neighbors per text entity,
including 5, 10, 15, and 20, but found that select-
ing 10 neighbors yielded the best performance in
terms of accuracy and computational efficiency.
Therefore, for all our experiments, we randomly
select between 2 to 10 neighbors for each token
during training, while during testing, we fix the
number of neighbors to 10. The code for GVdoc is
publicly available at https://github.com/
mohbattharani/GVdoc.

5.5 OOD but in-domain performance on RN

Table 1 compares the number of parameters, ac-
curacy on RT reported by their original papers
achieved by (Larson et al., 2022), and accuracy
on RN (the OOD but in-domain) dataset. Based
on the analysis of different models shown in Ta-
ble 1, almost all previous works reported more
than 90% accuracy on the RT except GoogLeNet.
More importantly, when these models were tested
on the out-of-distribution, in-domain dataset (RN),
all the models substantially dropped in accuracy.
The original LayoutLMv2 (Xu et al., 2021) utilized
the proprietary Microsoft Azur OCR. As a result,
when it was evaluated on text parsed using Tesser-
act OCR, its accuracy on the test set decreased
by almost 7%. Furthermore, it performed poorly
on the out-of-distribution (OOD) dataset, experi-
encing a drop of 33% on RN. Notably, the more
recent LayoutLMv3 (Huang et al., 2022) exhibited
improved performance compared to LayoutLMv2,
but it still experienced a drop of nearly 10% on
the OOD dataset. DiT appears to have the highest
accuracy than the rest on the RT, yet failed to gener-
alize. The drop in accuracy on RN by these models
imply that these models might be over-fitting on

in-distribution data.
Compared to the top-performing models on the

test set, our GVdoc model demonstrates robust
performance on RN, indicating its ability to gen-
eralize well to out-of-distribution data. Table 2
showcases the per-class accuracy on RN, where
GVdoc consistently achieves higher accuracy and
accurately categorizes the majority of examples.
Notably, our model exhibits high consistency, out-
performing or matching the leading results across
all classes. In contrast, the other models shows
inconsistency, with accuracy dropping below 50%
on at least one class. Specifically, for the “Speci-
fication” class, our model outperforms all models
except LayoutLMv3 (Huang et al., 2022). More-
over, our model achieves nearly 20% higher accu-
racy than DiT, despite DiT having almost twice the
number of parameters as GVdoc. This highlights
the effectiveness and efficiency of our model in
achieving superior performance.

5.6 OOD and out-of-domain results on RO

Here, we compare AUC scores on RT versus RO
(T-O), and RN versus RO (N-O) using three met-
rics: (a) AUC using Maximum Softmax Probabil-
ity (MSP), (2) AUC using Energy function, and
(3) FPR95. These metrics investigate the ability
of a model to differentiate between in- and out-
distribution data.

RN vs RO (N-O): Table 3 compares AUC scores
on the out-of-distribution dataset RN versus RO
using MSP and energy metrics. The models are
trained on the RVLCDIP training set and tested on
out-of-distribution datasets − RN and RO. Then
their maximum soft-max probability (MSP) and
energy function based AUC scores are compared.
Ideally, N-O should be more challenging as it
compares in-distribution and out-of-distribution
datasets (Larson et al., 2022). Among previous
approaches, DiT (Li et al., 2022) has the high-
est test accuracy, and its micro and macro AUC
scores using MSP are higher than those of VGG-
16, GoogLeNet, and LayoutLMv2. However, our
GVdoc model outperforms DiT by 24 points on mi-
cro AUC and almost 17 points on macro AUC with
MSP. Furthermore, although LayoutLMv3 (Huang
et al., 2022) exhibits a test accuracy similar to that
of DiT, our model surpasses it. Specifically, GVdoc
outperforms LayoutLMv3 by almost 13 points on
micro AUC and 9 points on macro AUC with MSP.

Micro- and macro-AUC scores using the En-

https://github.com/mohbattharani/GVdoc
https://github.com/mohbattharani/GVdoc


Model Micro Macro Budget Email Form Handwritten Invoice Letter memo News Article Questionnaire resume Scientific Pub Specification
VGG-16 66.8 69.1 79.3 84.8 74.3 40.3 73.7 90.1 55.3 68.6 71.8 69.6 97.4 23.0
GoogLeNet 60.2 61.05 77.59 81.81 70.0 44.88 43.86 81.56 55.32 61.63 51.28 60.87 92.31 11.47
DiT 78.6 80.5 86.2 97.0 91.4 62.4 86 95.4 72.3 84.9 82.1 73.4 92.3 41.0
LayoutLMv2 55.6 60 89.7 84.8 52.9 26.1 33.3 83.6 51.1 51.2 76.9 56.5 92.3 16.4
LayoutLMv3 82.4 83.8 91.2 90.62 91.9 25.7 92.3 92.5 76.2 77.8 97.8 95.3 97.9 76.8
GVdoc 89.9 89.1 98.3 82.8 89.9 85.1 96.7 95.1 87.9 81.9 97.4 97.3 97.4 61.7

Table 2: The per-class accuracy scores on RN (OOD but in-domain dataset) for each document classification model
demonstrate the superior performance of GVdoc across various classes. Our model consistently achieves higher
accuracy, outperforming or matching the best model on 10 classes and ranking as the second-best on 3 classes.

Model
MSP Energy

Micro Macro Micro Macro
VGG-16 0.649 0.706 0.648 0.707
GoogLeNet 0.592 0.679 0.587 0.689
DiT 0.728 0.780 0.753 0.792
LayoutLMv2 0.620 0.717 0.643 0.716
LayoutLMv3 0.755 0.807 0.755 0.807
GVdoc 0.865 0.888 0.997 0.999

Table 3: AUC scores (higher better): RN versus RO.

Model
MSP Energy

Micro Macro Micro Macro
VGG-16 0.916 0.858 0.912 0.845
GoogLeNet 0.947 0.869 0.943 0.845
DiT 0.847 0.704 0.843 0.685
LayoutLMv2 0.932 0.848 0.939 0.847
LayoutLMv3 0.839 0.618 0.834 0.611
GVdoc 0.650 0.516 0.002 0.003

Table 4: FPR95 scores (lower better): RN versus RO.

ergy function do not follow the trend. GoogLeNet
achieved the lowest test accuracy and has the low-
est Energy AUC scores. Although VGG-16 has
higher test accuracy than LayoutLMv2, it is almost
2 points lower on the Micro AUC energy score.
Nevertheless, VGG-16 is almost 2 points better
on the Macro AUC energy score. DiT and Lay-
outLMv3 have similar micro and macro scores. GV-
doc achieves the highest micro- and macro-AUC
scores using energy suggesting that it can effec-
tively differentiate between the in-distribution and
out-distribution datasets.

Table 4 compares FPR95 scores where a model
with lower score is considered better. Micro FPR95
with MSP is in low 0.90’s for all the models except
LayoutLMv3, DiT and ours. Unlike rest of the
models, energy-based FPR95 scores for our model
are almost perfect i.e., close to zero. This is evident
from the distribution of energy scores in Figure 8
(see Appendix). Overall, GVdoc has lower FPR95
scores compared to the other models. Furthermore,

Model
MSP Energy

Micro Macro Micro Macro
VGG-16 0.881 0.895 0.922 0.930
GoogLeNet 0.838 0.859 0.847 0.869
DiT 0.893 0.902 0.888 0.902
LayoutLMv2 0.842 0.875 0.849 0.891
LayoutLMv3 0.817 0.889 0.817 0.889
GVdoc 0.898 0.907 0.955 0.951

Table 5: AUC scores (higher better): RT versus RO.

Model
MSP Energy

Micro Macro Micro Macro
VGG-16 0.649 0.533 0.465 0.391
GoogLeNet 0.748 0.620 0.665 0.560
DiT 0.587 0.463 0.499 0.417
LayoutLMv2 0.717 0.592 0.753 0.574
LayoutLMv3 0.578 0.531 0.576 0.528
GVdoc 0.593 0.488 0.250 0.233

Table 6: FPR95 scores (lower better): RT versus RO.

the ROC curves in Figure 5 (see Appendix) confirm
that our model can effectively differentiate negative
(out-of-distribution) from positive (in-distribution)
data. More details are discussed in Appendix A.3.

RT vs RO (T-O): Table 5 analyzes the AUC
scores of the RT versus out-domain RO data. All
models in the study have MSP-based AUC scores
ranging from 0.8 to 0.9. While DiT has the high-
est test accuracy among baselines, its MSP AUC
scores are slightly lower than our model. Addi-
tionally, DiT falls behind in terms of energy-based
AUC scores. Although LayoutLMv3 outperforms
its predecessor, LayoutLMv2, in terms of macro
MSP and energy scores, it is still unable to surpass
DiT. However, GVdoc consistently outperforms all
others in the study.

Table 6 presents the FPR95 scores on RT ver-
sus RO. In terms of MSP-based FPR95, there is
no fixed trend, yet our GVdoc model achieves the
second-best FPR95 score based on Macro MSP.
In terms of energy-based FPR95, GVdoc outper-
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Figure 4: Distribution of confidence scores on RO for
different models. GVdoc consistently demonstrates
lower confidence scores on out-of-domain data points,
indicating its cautious approach towards assigning class
labels to unseen classes.

forms the rest. VGG-16 achieves a better Micro
FPR95 score, whereas GVdoc is 0.146 points bet-
ter than VGG-16 in terms of Macro FPR95. Al-
though VGG-16 has lower test accuracy than DiT,
its energy-based AUC and FPR95 scores are better
than DiT. Overall, GVdoc consistently performs
the best in terms of AUC scores and energy-based
FPR95, but it is the second-best in MSP-based
Macro FPR95.

To further investigate this, we plot MSP scores
on RO for different models in Figure 4. We can see
that our GVdoc model predicts lower confidence
scores for out-domain data samples. Figure 6 (see
Appendix) demonstrates that the predicted confi-
dence scores for RN and RT are close to 1.0 for
most of the examples. By selecting the proper
threshold on confidence scores, we can correctly
differentiate between in-domain versus out-domain,
and in-distribution versus out-of-distribution data
with our model. ROC curves in Figure 5 (see Ap-
pendix A.3) show that GVdoc is equivalent or even
better than the other models.

5.7 Ablation Study
Effect of graph generation methods As an ab-
lation study, we compare the effect of different
graph generation methods for visual documents.
Table 7 demonstrates the importance of the β skele-
ton graph for document classification. Regard-
less graph generation method, classification accu-
racy on RT is almost the same. But, using only
paragraph-level graphs (based on OCR reading or-
der), the methods struggle to perform well on RN.

Method
RT Acc RN Acc

Micro Macro Micro Macro
β skeleton 87.40 87.36 87.07 86.67
Paragraph-level 87.15 87.11 84.90 85.53
Both 87.54 87.50 89.90 89.12

Table 7: Comparison of graph generation methods: All
the models achieved almost similar classification accu-
racy on RT. On RN, most of learning is coming from
β skeleton graph but OCR-based paragraph-level graph
helps to improve on out-of-domain RN.

However, our global graph, which combines both
β skeleton and paragraph-level-graph, achieves the
best accuracy on RT and RN.

Number of the maximum neighbors per token
in graph As discussed in Section 5.4, we discard
neighbors from the paragraph-level graph to make
it sparse. We constraint maximum degree per node
during training. For testing, we select a fixed num-
ber of neighbors per token (degree per node). Ta-
ble 8 demonstrates that reducing the edges during
training makes the model robust to the number of
neighbors per token. Therefore, our GVdoc model
shows the best performance on OOD data.

Dataset
Number of neighbors

5 10 15 20
RN 89.47 89.90 89.25 89.25
RT 87.30 87.60 87.26 87.32

Table 8: The accuracy of the model varies with the num-
bers of maximum neighbors per token during testing.

6 Conclusion

In this paper, we address the limitation of existing
visual document classification models by modeling
a document as a graph and learning its embeddings
using a graph attention network. By defining two
types of edges (β skeleton and paragraph-based),
we leverage the benefit of layout information while
minimizing the effects of the errors from OCR read-
ing order. Thus, effectively embracing coarse and
fine-grained layout information, GVdoc general-
izes better for different layouts. While most vi-
sual document classifiers tend to perform well on
in-distribution data, they fail or struggle on out-
of-distribution data; our model does not drop its
performance on OOD data. Through experiments,
we demonstrate the generalization of our model on
out-of-distribution data.



7 Limitations

• We employed Tesseract OCR, an open-source
OCR system, which can sometimes make er-
rors in text detection and recognition. How-
ever, commercially available OCR engines
such as Microsoft Azure OCR are more profi-
cient in detecting text and layout from visual
documents. OCR errors can propagate during
training and affect the model’s performance.
For instance, we observed that when Tesser-
act OCR was used instead of Microsoft Azure
OCR, LayoutLMv2 (Xu et al., 2021) experi-
enced a 7% decrease in performance.

• Our model relies on textual and layout fea-
tures, neglecting the visual component. Vari-
ous works (Li et al., 2021b; Xu et al., 2021)
have already witnessed improvements by uti-
lizing visual features along with textual and
layout features. We plan to investigate inte-
gration of visual features.
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A Appendix

A.1 Training Details
We pretrained the model on IITCDIP for one epoch
on 64 Tesla V100 GPUs (8 nodes with 8 GPUs per
node) with batch size 128 (2 per GPU). We fine
tuned the model on RVLCDIP for 100 epochs on
8 GPUs with batch size of 32 (4 per GPU). We
used AdamW optimizer with initial learning rate
of 0.001 and weight decay of 0.1, for both pre-
training and fine-tuning.

A.2 Ablation Study
Effect of embedding dimensions: Table 9 com-
pares the different values for the embedding di-
mension d. The lowest embedding dimension
(d = 128) does not have enough information for
generalization. Comparing the performance on RN
vs. RT, we see that using d = 128 results in a
drop in performance on RN. However, for larger
values, starting at d = 256, we have see better per-
formance on RN vs. RT. We obtain better scores on
RT and OOD RN for d = 768. Therefore, d = 768
is default embedding dimension for GVdoc.

d Micro RT Macro RT Micro RN Macro RN
128 86.78 86.67 85.01 85.16
256 86.26 86.20 88.16 88.12
768 87.60 87.36 89.90 89.12

Table 9: The effect of embedding dimension: Increasing
d has a positive impact on generalization.

A.3 ROC Curve
Figure 5 (left) compares Receiver Operating Char-
acteristic curves (ROC) for in-domain RN versus
out-domain RO denoted as (N-O). ROC curve of
our GVdoc model is significantly better than the
rest of the models. GoogLeNet has AUC score
0.59 and ROC curve close to 0.5 indicates it can
not differentiate between in- and out-domain data.

For RT versus RO (T-O), DiT has AUC score of
0.89 whereas our model has 0.9. The ROC curve in
Figure 5 (right) demonstrates that GVdoc is close
to DiT. Moreover, it has better AUC score and
ROC curve than LayoutLMv2 and GoogLeNet for
T-O. Overall, GVdoc can effectively differentiate
between in-domain and out-of-domain data.

A.4 Distribution of confidence scores
We plot prediction confidence scores in Figure 6
for RT and RN, respectively. Similar trends sug-
gest that all model have similar confidence score

on both datasets. However, Figure 7 demonstrates
that our model predicts lower confidence scores
on RO suggesting that it is not certain in classify-
ing OOD samples. Whereas, DiT assigns higher
confidence to fewer examples, hence incorrectly
classifies them into specific class.

A.5 Distribution of energy scores
When we compare the distribution of energy scores
for different models, our GVdoc model has a clear
separation between energy scores for RN-RO and
RT-RO, as shown in Figure 8. However, from Fig-
ure 9, it is hard to differentiate the energy scores
of the positive (in-distribution) and negative (out-
of-distribution) data samples for the DiT model.
The energy scores of VGG-16 for RN and RO in
Figure 10 are similar, whereas energy scores for
RT-RO are clearly separable.

A.6 Sample Document Graph
Figure 11 shows an example of a combined graph
constructed by merging both the β skeleton and
OCR-based paragraph-level graph.



Figure 5: ROC curves for N-O (left) (i.e differentiating RN versus RO examples) and T-O (right) (i.e differentiating
RT versus RO examples) suggest that our model is consistently better in differentiating the in-distribution and
out-distribution data.
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Figure 6: Distribution of confidence scores on RT (left) and RN (right) for different models.
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Figure 7: Distribution of confidence scores predicted by out model and DiT on RT, RN, and RO.
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Figure 8: Distribution of energy scores of GVdoc; Left: RN-RO, Right: RT-RO.
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Figure 9: Distribution of energy scores of DiT; Left: RN-RO, Right: RT-RO.
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Figure 10: Distribution of energy scores of VGG-16; Left: RN-RO, Right: RT-RO.

Figure 11: Graph generation: left is β graph, middle is OCR-based paragraph-level graph and right is combination
of both.


