Chapter 1

Hierarchical Parallel Algorithms for
Association Mining

MOHAMMED J. ZAKI

Computer Science Department
Rensselaer Polytechnic Institute, Troy, NY 12180, USA

Email: zaki@cs.rpi.edu

1.1 Introduction

The association mining task is to discover a set of attribskared among a large number of objects in a given
database. For example, consider the sales database ofstdi@okvhere the objects represent customers and
the attributes represent books. The discovered patteentbharset of books most frequently bought together
by the customers. An example could be that, “40% of the pesptebuy Jane AustenBride and Prejudice
also buySense and Sensibility The store can use this knowledge for promotions, sheltgizent, etc.
There are many potential application areas for associatientechnology, which include catalog design,
store layout, customer segmentation, telecommunicataymeadiagnosis, and so on.

The task of discovering all frequent associations in vergdalatabases is quite challenging. The search
space is exponential in the number of database attributesydh millions of database objects the problem
of I/O minimization becomes paramount. However, most eurapproaches are iterative in nature, requiring
multiple database scans, which is clearly very expensigeesof the methods, especially those using some
form of sampling, can be sensitive to the data-skew, whichathversely affect performance. Furthermore,
most approaches use very complicated internal data stascwhich have poor locality and add additional
space and computation overheads. Our goal is to overcoro&thltse limitations.

Since the discovery of association rules is a very comprtatiand 1/O intensive task, it is crucial to
leverage the combined computational power of multiple pssors for fast response and scalability. In this
paper we present new parallel algorithms for discoveriegstit of frequent attributes (also called itemsets).
The key features of our approach are as follows: 1) We usertical tid-list database format, where we
associate with each itemset a list of transactions in whiatéurs. We show that all frequent itemsets
can be enumerated via simple tid-list intersections. 2) \&& a lattice-theoretic approach to decompose
the original search space (lattice) into smaller pieceb-(attices), which can be processed independently
in main-memory. We propose two techniques for achievingdteomposition: prefix-based and maximal-
cligue-based partition. 3) We decouple the problem decaitipn from the pattern search. We propose three
new search strategies for enumerating the frequent itemg#tin each sub-lattice: bottom-up, top-down
and hybrid search. 4) Our approach roughly requires onlywad@abase scans (with some pre-processed
information), minimizing the 1/O costs.

2 CHAPTER 1. HIERARCHICAL PARALLEL ALGORITHMS FOR ASSOCIATN MINING

We present four new algorithms combining the featuresdisteove, depending on the database format,
the decomposition technique, and the search procedure Uibede includéar-Eclat Par-MaxEclat Par-
Clique, andPar-MaxClique The parallel work is distributed among the processors ahsuway that each
processor can compute the frequent itemsets independeanihg simple intersection operations. These
techniques eliminate the need for synchronization afterititial set-up phase, and enable us to scan the
database only two times, drastically cutting down the I/@rbead. Our tid-list based approach is also
insensitive to data-skew. Furthermore, the use of simpégsaction operations makes the new algorithms an
attractive option for direct implementation in databasgtems, using SQL.

Our experimental testbed is a 32-processor DEC Alpha SM&terl§8 hosts, 4 processors/host) inter-
connected by the Memory Channel (Gillett 1996) network. Tke parallel algorithms are also novel in
that they are hierarchical in nature, i.e., they assumetatdited-memory model across the 8 cluster hosts,
but assume a shared-memory model for the 4 processors orheathWith the help of an extensive set
of experiments, we show that the best new algorithm improwes current methods by over an order of
magnitude. At the same time, the proposed techniques Hatasr scalability in the number of transactions
in the database.

The rest of this paper is organized as follows: In Sectionvte2describe the association discovery
problem. We look at related work in Section 1.3. In sectichwe develop our lattice-based approach for
problem decomposition and pattern search. Section 1.5idesdhe sequential algorithm, and Section 1.6
presents our new parallel algorithms. An experimentalysisiggresented in Section 1.7, and we conclude in
Section 1.8.

1.2 Problem Statement

The association mining task, first introduced in (Agrawatjdlinski, & Swami 1993), can be stated as
follows: LetZ be a set of items, an® a database of transactions, where each transaction hagj@euni
identifier ¢id) and contains a set of items. A set of items is also calledleanset An itemset withk items

is called ak-itemset. Thesupportof an itemsetX, denoteds(X), is the number of transactions in which it
occurs as a subset. Alength subset of an itemset is called-asubset. An itemset is maximal if it is not
a subset of any other itemset. An itemsefreqjuentif its support is more than a user-specifimhimum
support (minsup)value. The set of frequehtitemsets is denoted;,.

An association rulegs an expressionl = B, whereA and B are itemsets. The support of the rule is
given ass (A U B), and theconfidencaso (A U B)/o(A) (i.e., the conditional probability that a transaction
containsB, given that it containgl). A rule isstrongif its confidence is more than a user-specifieidimum
confidence (mirconf)

The data mining task is to generate all association ruldsinlatabase, which have a support greater than
min_sup i.e., the rules are frequent. The rules must also have cardagreater thamin_conf i.e., the rules
are strong. This task can be broken into two steps (Agrawal. 1996):

1. Find all frequent itemsets. This step is computationaligl I/O intensive. Givem items, there can
be potentially2™ frequent itemsets. Efficient methods are needed to trateisexponential itemset
search space to enumerate all the frequent itemsets. Tduusefint itemset discovery is the main focus
of this paper.

2. Generate strong rules. This step is relatively straggtidrd; rules of the formX'\Y = Y, where
Y C X, are generated for all frequentitemsa&tsprovided the rules have at least minimum confidence.

Consider an example bookstore sales database shown ireRigurThere are five different items (names
of authors the bookstore carries), i.&.,= {A,C,D,T,W}, and the database consists of six customers
who bought books by these authors. Figure 1.1 shows all g#ouént itemsets that are contained in at
least three customer transactions, iein_sup = 50%. It also shows the set of all association rules with
min_.conf= 100%. The itemsetsACTW and CDW are the maximal frequent itemsets. Since all other
frequentitemsets are subsets of one of these two maximadéts, we can reduce the frequentitemset search
problem to the task of enumerating only the maximal freqitentsets. On the other hand, for generating
all the strong rules, we need the support of all frequentsets This can be easily accomplished once the

1.3. RELATED WORK 3

ITEMS FREQUENT ITEMSETS (min_sup = 50%)
Janc Aadsten - Support Itemsets
Agatha Christie <
Sir Arthur Conan Doyle (=1 100% (6) C
Mark Twain e
P. . Wodehouse w 83% (5) W, CW
DATABASE
o A,D, T, AC, AW
Transaction ltem s 67/0(4) CD. CT., ACW
a A C T W 50% (3) AT, DW, g}('VV'\/ACT’ ATW
p=4 D W
Maximal Frequent Itemsets:
3 A C T W ASSOCIATION RULES (min_conf = 100%)
A — C (4/4) AC — W (4/4) TW — C (3/3)
A — W (4/4) AT — C (3/3) AT — CW (3/3)
A — CW (4/4) AT — W (3/3) TW — AC (3/3)
D — C (4/4) AW — C (4/4) ACT —— W (3/3)
T —C 4/4) DW — C (3/3) ATW — C (3/3)
W — C (5/5) TW — A (3/3) CTW — A (3/3)

Figure 1.1: a) Bookstore Database, b) Frequent ltemsetStnadg Rules

maximal elements have been identified, by making an ad@itidatabase pass, and gathering the support of
all uncounted subsets.

1.2.1 Computational Complexity

The search space for enumeration of all frequent itemséXs jisvhich is exponential im, the number of
items. One can prove that the problem of finding a frequentdfszetertain size is NP-Complete, by reducing
it to the balanced bipartite clique problem, which is knownbe NP-Complete (Zaki & Ogihara 1998).
However, if we assume that there is a bound on the transaetimyth, we can prove that frequent itemset
enumeration is essentially linear in the database sizel @&lgihara 1998).

Once the frequent itemsets are known, they can be used tinohtas that describe the relationship
between different itemsets. We generate and test the cocfidef all rules of the formX\Y = Y,
whereY C X, andX is frequent. For example, the item&&DW generates the following rules”D =
W,CW = D,DW = C,C = DW,D = CW,W = CD}. For an itemset of sizé there are2* — 2
potentially strong rules that can be generated. This fdlfram the fact that we must consider each subset of
the itemset as an antecedent, except for the empty and thitefoset. The complexity of the rule generation
step is thug)(r - 2!), wherer is the number of frequent itemsets, drid the longest frequent itemset.

1.3 Related Work

1.3.1 Sequential Algorithms

Several algorithms for mining associations have been @edn the literature (Agrawal, Imielinski, &
Swami 1993; Agrawaét al. 1996; Brinet al. 1997; Houtsma & Swami 1995; Lin & Kedem 1998; Lin &
Dunham 1998; Mueller 1995; Park, Chen, & Yu 1995a; Savas@ngiecinski, & Navathe 1995; Toivonen
1996). TheApriori algorithm (Agrawalet al. 1996) is the best known previous algorithm, and it uses an
efficient candidate generation procedure, such that oelyréguent itemsets at a level are used to construct
candidates at the next level. However, it requires multij@itabase scans. The DHP algorithm (Park, Chen,
& Yu 1995a) tries to reduce the number of candidates by difigapproximate counts in the previous level.
Like Apriori it requires as many database passes as the longest iterhgd®arfition algorithm (Savasere,
Omiecinski, & Navathe 1995) minimizes I/O by scanning thealase only twice. It partitions the database
into small chunks which can be handled in memory. In the fiestspt generates the set of all potentially
frequent itemsets, and in the second pass it counts thdiabkupport. The DLG (Yen & Chen 1996)
algorithm uses a bhit-vector per item, noting the tids whbeeitem occurred. It generates frequent itemsets
via logical AND operations on the bit-vectors. However, DB8€sumes that the bit vectors fit in memory,

4 CHAPTER 1. HIERARCHICAL PARALLEL ALGORITHMS FOR ASSOCIATN MINING

and thus scalability could be a problem for databases willioms of transactions. The DIC algorithm
(Brin et al. 1997) dynamically counts candidates of varying length asdatabase scan progresses, and
thus is able to reduce the number of scans. Another way tonmzeithe 1/0 overhead is to work with
only a small sample of the database. An analysis of the @ffawtss of sampling for association mining
was presented in (Zaldt al. 1997a), and (Toivonen 1996) presents an exact algorithtritias all rules
using sampling. The AS-CPA algorithm and its sampling wersi(Lin & Dunham 1998) build on top of
Partition and produce a much smaller set of potentially frequent chates. It requires at most two database
scans. Also, sampling may be used to eliminate the secorsdgitagether. Approaches using only general-
purpose DBMS systems and relational algebra operations &lae been studied (Holsheimetral. 1995;
Houtsma & Swami 1995). We proposed new algorithms (Zdkal. 1997b; 1997c¢) that were shown to
outperform previous approaches.

All the above algorithms generate all possible frequembétets. Methods for finding the maximal ele-
ments includéll-MFS (Gunopulos, Mannila, & Saluja 1997), which is a randomizigghdthm to discover
maximal frequent itemsets. THncer-Searctalgorithm (Lin & Kedem 1998) not only constructs the can-
didates in a bottom-up manner likgriori, but also starts a top-down search at the same time. Thisatgn h
in reducing the number of database scaMaxMiner (Bayardo 1998) is another algorithm for finding the
maximal elements. It uses efficient pruning techniques tolkdyunarrow the search space.

1.3.2 Parallel Algorithms

Distributed-Memory Machines Three different parallelizations o&priori on IBM-SP2, a distributed
memory machine, were presented in (Agrawal & Shafer 199&)e Qount Distributionalgorithm is a
straight-forward parallelization oApriori. Each processor generates the partial support of all catedid
itemsets from its local database partition. At the end ohatration the global supports are generated by
exchanging the partial supports among all the processbesD@ta Distributionalgorithm partitions the can-
didates into disjoint sets, which are assigned to diffepeotessors. However to generate the global support
each processor must scan the entire database (its lodtibpadnd all the remote partitions) in all iterations.

It thus suffers from huge communication overhead. Tamdidate Distributionalgorithm also partitions
the candidates, but it selectively replicates the datalsastihat each processor proceeds independently. The
local database portion is still scanned in every iterati@uount Distributionwas shown to have superior
performance among these three algorithms (Agrawal & SHe§86). Other parallel algorithms improving
upon these ideas in terms of communication efficiency, oreggge memory utilization have also been pro-
posed (Cheungt al. 1996b; 1996a; Han, Karypis, & Kumar 1997). The PDM algorittitark, Chen, & Yu
1995b) presents a parallelization of the DHP algorithmKP@hen, & Yu 1995a). The hash based parallel
algorithms NPA, SPA, HPA, and HPA-ELD, proposed in (ShintaKitsuregawa 1996) are similar to those

in (Agrawal & Shafer 1996). Essentially NPA corresponds tuft Distribution, SPA to Data Distribution,
and HPA to Candidate Distribution. The HPA-ELD algorithnmtie best among NPA, SPA, and HPA, since
it eliminates the effect of data skew, and reduces commtiaicay replicating candidates with high sup-
port on all processors. We also presented a new paralletitdgoEclat (Zaki, Parthasarathy, & Li 1997;
Zaki et al. 1997d) on a DEC Alpha ClusteEclat uses the equivalence class decomposition scheme along
with a bottom-up lattice traversal. It was shown to outperf@ount Distributionby more than an order of
magnitude.

Shared-Memory Machines In recent work we presented the CCPD parallel algorithm tiared-memory
machines (Zaket al. 1996). It is similar in spirit tadCount Distribution The candidate itemsets are generated
in parallel and are stored in a hash tree which is shared amlbtige processors. Each processor then scans
its logical partition of the database and atomically upsldite counts of candidates in the shared hash tree.
CCPD uses additional optimization such as candidate bialgritash-tree balancing and short-circuited sub-
set counting to speed up performance (Zalal. 1996). APM (Cheung, Hu, & Xia 1998) is an asynchronous
parallel algorithm for shared-memory machines based oDt@ealgorithm (Brinet al. 1997).

1.4. ITEMSET ENUMERATION: LATTICE-BASED APPROACH 5

1.3.3 TheApriori and Count Distribution Algorithms

We now describe thépriori algorithm (Agrawalet al. 1996) in more detail, since it forms the basis of
almost all parallel algorithms proposed to-date. For caispa with the methods we will describe in this
paper, we also look at the Count Distribution algorithm (Agal & Shafer 1996) which is one of the current
best parallel methods.

Apriori Algorithm Apriori (Agrawalet al. 1996) is an iterative algorithm that counts itemsets of @ifipe
length in a given database pass. The process starts by sgaditransactions in the database and computing
the frequent items. Next, a set of potentially frequeandidate2-itemsets is formed from the frequent
items. Another database scan is made to obtain their suppdtie frequent 2-itemsets are retained for
the next pass, and the process is repeated until all fredieemsets have been enumerated. The complete
algorithm is shown in figure 1.2. We refer the reader to (Agrist al. 1996) for additional details. There
are three main steps in the algorithm: 1) Generate candidétiengthk from the frequentk — 1) length
itemsets, by a self join orf;,_1. For example, itF; = {AB, AC, AD, AE, BC,BD,BE}. ThenCs =
{ABC,ABD,ABE,ACD,ACE,ADE,BCD,BCE,BDE}. 2) Prune any candidate with at least one
infrequent subset. As an exampkeC' D will be pruned since”' D is not frequent. After pruning we get a
new setCs = {ABC, ABD, ABE}. 3) Scan all transactions to obtain candidate supports.c@hdidates
are stored in a hash tree for fast support counting.

F1 = {frequent 1-itemset};
for (k=2;Fr_1 #0:k++)
C) = Set of New Candidates;
for all transactiong € D
for all k-subsets of ¢
if (s € C) s.count + +;
Fi = {c € Ckle.count > min_sup};
Set of all frequent itemsets|d,, Fi;

Figure 1.2: TheApriori Algorithm

The Count Distribution Algorithm TheCount Distributionalgorithm (Agrawal & Shafer 1996) is a simple
but effective parallelization oApriori. All processors generate the entire candidate hash tree fig ;.
Each processor can thus independently get partial suppidtte candidates from its local database partition.
This is followed by a sum-reduction to obtain the global dsuiNote that only the partial counts need to be
communicated, rather than merging different hash treasgstach processor has a copy of the entire tree.
Once the globalF,, has been determined each processor builds; in parallel, and repeats the process
until all frequent itemsets are found. This simple algantminimizes communication since only the counts
are exchanged among the processors. However, since the leash tree is replicated on each processor, it
doesn't utilize the aggregate memory efficiently.

1.4 Itemset Enumeration: Lattice-Based Approach

Before embarking on the algorithm description, we will Byigeview some terminology from lattice theory
(see (Davey & Priestley 1990) for a good introduction).

Definition 1 Let P be a set. Aartial order on P is a binary relation<, such that for allX, Y, Z € P, the
relation is: 1) ReflexiveX < X. 2) Anti-SymmetricX <Y andY < X, impliesX = Y. 3) Transitive:
X <Y andY < Z,impliesX < Z. The setP with the relation< is called anordered set

Definition 2 Let X, Z,Y € P. We sayX is covered byY, denotedX C Y,if X < YandX < Z <Y,
implies”Z = X, i.e., if there is no elemeiff of Pwith X < Z < Y.

6 CHAPTER 1. HIERARCHICAL PARALLEL ALGORITHMS FOR ASSOCIATN MINING

Definition 3 Let P be an ordered set, and 16t C P. An elemenX € P is anupper bound (lower bound)
of Sif s < X (s > X) forall s € S. The least upper bound, also callgin, of S is denoted a3/ S, and
the greatest lower bound, also calletket of S is denoted ag\ S. The greatest element &% denotedT, is
called thetop element and the least element &f, denotedL, is called thebottom element

Definition 4 Let L be an ordered setL is called ajoin (meet) semilatticeif X VY (X AY) exists for all
X,Y € L. Lis called alattice if it is a join and meet semilattice, i.e., ¥ VY and X A Y exist of all
X,Y € L. Lis acomplete latticeif \/ S and A S exist for allS C L. A ordered sef\/ C L is asublattice
of Lif X,)Y € M impliesXVvY e MandX AY € M.

ACDTW

Maximal Frequent Itemsets: ACTW, CDW

Figure 1.3: a) The Complete Powerset LattR€), b) Tid-List for the Atoms

For setS, the ordered s&®(S), the power set of, is a complete lattice in which join and meet are given
by union and intersection, respectively:

icl el

The top element oP(S) is T = 9, and the bottom element @(S) is | = {}. For anyL C P(S), L
is called alattice of setdf it is closed under finite unions and intersections, i(é;,C) is a lattice with the
partial order specified by the subsetrelationX VY = X UY,andX AY =X NY.

Figure 1.3 shows the powerset |attiBéZ) of the set of items in our example datab@se {A,C, D, T, W}.
Also shown are the frequent (grey circles) and maximal feeqitemsets (black circles). It can be observed
that the set of all frequent itemsets forms a meet semiasiiece it is closed under the meet operation, i.e.,
for any frequent itemset¥’, andY, X NY is also frequent. On the other hand, it doesn’t form a joinisem
lattice, sinceX andY frequent, doesn’t implyX' U Y is frequent. It can be mentioned that the infrequent
itemsets form a join semilattice.

Lemma 1 All subsets of a frequent itemsets are frequent.

The above lemma is a consequence of the closure under meatiopdor the set of frequent itemsets.
As a corollary, we get that all supersets of an infrequemhsiet are infrequent. This observation forms
the basis of a very powerful pruning strategy in a bottom-egreh procedure for frequent itemsets, which
has been leveraged in many association mining algorithrgsai@alet al. 1996; Park, Chen, & Yu 1995a;
Savasere, Omiecinski, & Navathe 1995). Namely, only thasits found to be frequent at the previous level
need to be extended as candidates for the current level. \owee lattice formulation makes it apparent
that we need not restrict ourselves to a purely bottom-ucheae., if we view the lattice as a collection of
(multiple) paths leading to the maximal frequent itemsttisn one can formulate alternate ways of reaching

1.4. ITEMSET ENUMERATION: LATTICE-BASED APPROACH 7

the maximal elements. We need not look at all intermediatdeas in a bottom-up approach. For example,
in a depth-first search, once can readTW in just four steps using the path AC, ACT, andACTW .
Later, we will describe practical implementations of sulteraate enumeration schemes.

Lemma 2 The maximal frequent itemsets uniquely determine all fatjiiemsets.

This observation tells us that our goal should be to deviseaach procedure that quickly identifies the
maximal frequent itemsets. In the following sections wd sgdle how to do this efficiently.

1.4.1 Support Counting
Definition 5 A lattice L is said to bedistributive ifforall X,Y,Z € L, XA(YVZ) = (X AY)V(XAZ).

Definition 6 Let L be a lattice with bottom element. ThenX < L is called anatomif L — X, i.e., X
coversLl. The set of atoms df is denoted byA(L).

Definition 7 A lattice L is called aBoolean latticeif 1) It is distributive. 2) It hasT and L elements. 3)
Each membeX of the lattice has a complement.

We begin by noting that the powerset lattie€Z) on the set of database itess aBooleanattice, with
the complement oK € L given asZ\ X. The set of atoms of the powerset lattice corresponds toethefs
items, i.e., A(P(Z)) = Z. We associate with each atom (database it&nifs tid-list, denoted (.X), which
is a list of all transaction identifiers containing the atdfigure 1.3 shows the tid-lists for the atoms in our
example database. For example consider atornooking at the database in Figure 1.1, we see thatcurs
in transactions 1, 3, 4, and 5. This forms the tid-list fomata.

Lemma 3 ((Davey & Priestley 1990)for a finite boolean latticd,, with X € L, X = \/{Y € A(L) | Y <
X},

In other words every element of a boolean lattice is given jagneof a subset of the set of atoms. Since the
powerset latticé?(7) is a boolean lattice, with the join operation correspondinget union, we get

Lemma4 Forany X € P(Z), letJ = {Y € A(P(Z)) | Y < X}. ThenX = {J,,Y, ando(X) =|
Nyes £OV) |-

The above lemma states that any itemset can be obtainediamdgome atoms of the lattice, and the support
of the itemset can be obtained by intersecting the tid-fishe atoms. We can generalize this lemma to a set
of itemsets:

Lemma5 ForanyX € P(I), letX =y, J. Theno(X) = Ny c; L(Y) |.

This lemma says that if an itemset is given as a union of a se¢mfsets inJ, then its support is given as
the intersection of tid-lists of elements h In particular we can determine the support of &rgemset by
simply intersecting the tid-lists of any two of it& — 1) length subsets. A simple check on the cardinality
of the resulting tid-list tells us whether the new itemsefrésjuent or not. Figure 1.4 shows this process
pictorially. It shows the initial database with the tidtlfer each item (i.e., the atoms). The intermediate
tid-list for C'D is obtained by intersecting the lists 6fand D, i.e., L(CD) = £(C) N L(D). Similarly,
L(CDW) = L(CD)NL(CW), and so on. Thus, only the lexicographically first two subsethe previous
level are required to compute the support of an itemset atevey.

Lemma 6 Let X andY be two itemsets, with' C Y. ThenZ(X) 2 L(Y).

PrRooOFE Follows from the definition of suppom

This lemma states that X is a subset ol’, then the cardinality of the tid-list of (i.e., its support)
must be less than or equal to the cardinality of the tid-fisko A practical and important consequence of the
above lemma is that the cardinalities of intermediateititblshrink as we move up the lattice. This results in
very fast intersection and support counting.

8 CHAPTER 1. HIERARCHICAL PARALLEL ALGORITHMS FOR ASSOCIATN MINING

ACDTW Intersect
CD & CW

é

Intersect
CcC&D

o INITIAL DATABASE
OF TID-LISTS

Figure 1.4: Computing Support of Itemsets via Tid-List lsttions

1.4.2 Lattice Decomposition: Prefix-Based Classes

If we had enough main-memory we could enumerate all the &ptjilemsets by traversing the powerset
lattice, and performing intersections to obtain itemseipguts. In practice, however, we have only a limited
amount of main-memory, and all the intermediate tid-list$ mot fit in memory. This brings up a natural
guestion: can we decompose the original lattice into smalleces such that each portion can be solved
independently in main-memory. We address this questianbel

Definition 8 Let P be a set. Arequivalence relationon P is a binary relation= such that for allX, Y, Z €
P, the relation is: 1) ReflexiveX = X. 2) Symmetric:X = Y impliesY = X. 3) Transitive: X = Y
andY = Z, impliesX = Z. The equivalence relation partitions the s@tinto disjoint subsets called
equivalence classesThe equivalence class of an elem@ht PisgivenagX]|={Y e P| X =Y}.

Define a functiorp : P(Z) — P(Z) wherep(X, k) = X[1 : k], thek length prefix ofX. Define an
equivalence relatiofl;, on the latticeP(Z) as follows:VX,Y € P(Z), X =y, Y < p(X,k) = p(Y, k).
That is, two itemsets are in the same class if they share a corgrtength prefix. We therefore call, a
prefix-baseaquivalence relation.

Figure 1.5a shows the lattice induced by the equivalenagioeld; on P(Z), where we collapse all
itemsets with a commonlength prefix into an equivalence class. The resulting skdttice of equivalence
classesig[A], [C], [D], [T], [W]}.

Lemma 7 Each equivalence clagX]y, induced by the relatiofi is a sub-lattice of?(7).

PROOF LetU andV be any two elements in the class], i.e.,U, V share the common prefiX. U vV =
UUV D X impliesthatU vV € [X],andU AV =UNV D X implies thatU AV € [X]. Therefore
[X]o, is a sublattice oP(Z).

Each[X]y, is itself a boolean lattice with its own set of atoms. For egleamthe atoms ofA],, are
{AC, AD, AT, AW}, and the top and bottom elements are=- ACDTW, and_L = A. By the application
of Lemmas 4, and 5, we can generate all the supports of theéitsiin each class (sub-lattice) by intersecting
the tid-list of atoms or any two subsets at the previous ld¥éhere is enough main-memory to hold tempo-
rary tid-lists for each class, then we can solve efg€h, independently. Another interesting feature of the
equivalence classes is that the links between classesadéapéndencies. That is to say, if we want to prune
an itemset if there exists at least one infrequent subset @ema 1), then we have to process the classes in

1.4. ITEMSET ENUMERATION: LATTICE-BASED APPROACH 9

ACDT ACDW

ACDW

Figure 1.5: Equivalence Classes offa)7) Induced byd;, and b)[A]s, Induced byds; c) Final Lattice of
Independent Classes

a specific order. In particular we have to solve the classes bottom to top, which corresponds to a reverse
lexicographic order, i.e., we procd$Eg], then[T’], followed by[D], then[C], and finally[A]. This guarantees
that all subset information is available for pruning. Foaeple, assume that we have already enumerated all
frequent itemsets dW], [T], [D], and[C]. When we are processind], we have full pruning information

for itemsets that do not belongftd]. For example we know th&'TW is frequent, thuslCTW is a possible
candidate. If we further label classes in decreasing ortitedr size (number of atoms), then we solve small
classes first, and the large ones later, allowing us to fidbyall pruning information.

In practice we have found that the one level decompositidnéed by, is sufficient. However, in some
cases, a class may still be too large to be solved in main-merrothis scenario, we apply recursive class
decomposition. Let's assume tHat] is too large to fit in main-memory. Sindd] is itself a boolean lattice,
it can be decomposed usiflg. Figure 1.5b shows the equivalence class lattice induceabplyingd, on
[A], where we collapse all itemsets with a comniblength prefix into an equivalence class. The resulting
set of classes affAC|, [AD], [AT],[AW]}. Like before, each class can be solved independently, and we
can solve them in reverse lexicographic order to enablesgydraning. The final set of independent classes
obtained by applying; on P(Z) andf, on [A] is shown in Figure 1.5c. As before, the links show the
pruning dependencies that exist among the classes. Deweadithe amount of main-memory available
we can recursively partition large classes into smallerspoetil each class is small enough to be solved
independently in main-memory.

1.4.3 Search for Frequent Itemsets

In this section we discuss efficient search strategies fomemating the frequent itemsets within each class.

Bottom-Up Search

The bottom-up search is based on a recursive decompositéath class into smaller classes induced by the
equivalence relatiofi;.. Figure 1.6 shows the decomposition[df s, into smaller classes, and the resulting
lattice of equivalence classes. Also shown are the atontsnnéach class, from which all other elements
of a class can be determined. The equivalence class lattitbe traversed in either depth-first or breadth-
first manner. In this paper we will only show results for a loiteafirst traversal, i.e., we first process the
classeq[AC], [AT], [AW]}, followed by the classe§ ACT], [ACW], [ATW]}, and finally[ACTW]. For
computing the support of any itemset, we simply interseettith-lists of two of its subsets at the previous
level. Since the search is breadth-first, this techniquenemnates all frequent itemsets.

10 CHAPTER 1. HIERARCHICAL PARALLEL ALGORITHMS FOR ASSOCIATN MINING

Equivalence Classes

[AC:]} [ACW]

[ATW]

(AW

Atoms in each Class

1 1
(Aac AT Aw |
[A]

Figure 1.6: Bottom-Up Search

Top-Down Search

The top-down approach starts with the top element of thiedatiits support is determined by intersecting
the tid-lists of the atoms. This requiregavay intersection if the top element iskaitemset. The advantage
of this approach is that if the maximal element is fairly Ethen one can quickly identify it, and one can
avoid finding the support of all its subsets. The searchsstaith the top element. If it is frequent we are
done. Otherwise, we check each subset at the next level. pfbiess is repeated until we have identified
all minimal infrequent itemsets. Figure 1.7 depicts the-dogvn search. We start with a 5-way tid-list
intersection to obtain the support fédilC DT'W, which turns out to be infrequent. We next have to try its
subsets at the next level. Out of the 4 subsets, dd{'WW is frequent. This means we don’t check any of
its subsets, since they all must be frequent. For the othee temsetsAC DT, ACDW, andADTW, we
check their subsets that are not known to be frequent, ieecheckAC D, ADT andADW, all of which are
infrequent. Finally, at the next level, we find the minimdreguent itemsefdl D, and the process stops. As
it turns out, we had to perform 9 intersections here, the sagria bottom-up search. But ACDTW had
been frequent, we would have saved a lot of computation.

This scheme enumerates only the maximal frequent itemsgtsweach sub-lattice. However, the maxi-
mal elements of a sub-lattice may not be globally maximalait thus generate some non-maximal itemsets.

Minimal Infrequent ltemset: AD

Figure 1.7: Top-Down Search

1.4. ITEMSET ENUMERATION: LATTICE-BASED APPROACH 11

Hybrid Search

The hybrid scheme is based on the intuition that the grelatesupport of an frequent itemset the more likely
it is to be a part of a longer frequent itemset. There are twim si@ps in this approach. We begin with the
set of atoms of the class sorted in descending order basdwrstipport. The first, hybrid phase starts by
intersecting the atoms one at a time, beginning with the atitmthe highest support, generating longer and
longer frequent itemsets. The process stops when an extdmstomes infrequent. We then enter the second,
bottom-up phase. The remaining atoms are combined withttimesain the first set in a breadth-first fashion
described above to generate all other frequent itemsegard-iL.8 illustrates this approach (just for this case,
to better show the bottom-up phase, we have assumeditbaand ADW are also frequent). Initially, we
have four 2-itemsets (or atoms) in the sub-lattice. We $@mntin decreasing order of support to obtain the
atom listAC, AW, AT, andAD. We now start the hybrid phase. Starting witty’ we try to join it with AW,
getting ACW which is frequent. We next joid CW with the next atomAT, to getACTW which is also
frequent. Finally we tryACTW with the last atomA D, but ACDTW is infrequent. Note, that ilC DTW
were frequent, we would stop the computation at this staaén found the maximal frequent itemset. The
algorithm now shifts into the bottom-up phaseD is the atom which could not be combined wHlC T V.
With AD as the bottom element, we generate a new sub-lattice, wharses are the join of D with itemsets
that precede it in the sorted initial ordering, i.e., the r@ems areAC D, ADW, andADT. This sublattice
can be solved using the bottom-up approach. In fact, if theeemany atoms likel D which could not be
combined withACTW, then one can even re-apply hybrid search on the newly gextksab-lattice.

Like the bottom-up approach this scheme only requiresy intersections. This scheme enumerates the
“long” maximal frequent itemsets discovered in the hybrithpe, and also the non-maximal ones found in
the bottom-up phase. Another modification of this scheme igd¢ursively substitute the second bottom-up
phase with the hybrid phase. This approach will enumerateesnaximal elements (hybrid phase) and the
remaining frequent itemset (bottom-phase).

Item Pairs

e e e aw

Sort on Support

ACDTW

x>

Hy brid Phase Bottom-Up Phase

Figure 1.8: Hybrid Search

1.4.4 Generating Smaller Classes: Maximal Clique Approach

In this section we show how to produce smaller sub-latticesquivalence classes compared to the pure
prefix-based approach, by using additional information.w&sshall see later in this section, smaller sub-
lattices have fewer atoms and can save unnecessary intensecFor example, if there afeatoms, then
we have to perforn(’;) intersections for the next level in the bottom-up approdedwer atoms thus lead
to fewer intersections in the bottom-up search. Fewer a@stsreduce the number of intersections in the
hybrid scheme, and lead to smaller maximum element sizeeitoihrdown search.

Definition 9 Let P be a set. Apseudo-equivalence relatioron P is a binary relation= such that for all

12 CHAPTER 1. HIERARCHICAL PARALLEL ALGORITHMS FOR ASSOCIATN MINING

X,Y € P, the relation is: 1) ReflexiveX = X. 2) Symmetric:.X = Y impliesY = X. The pseudo-
equivalence relation partitions the sEtinto possibly overlapping subsets calleseudo-equivalence class-
es

Frequent 2-ltemsets
{12, 13, 14, 15, 16, 17, 18, 23, 25, 27, 28, 34, 35, 36, 45, 46, 56, 58, 6§, 78}
Association Graph Maximal Cliques
5 @& 8
©‘A@*
@& &) 6

Prefix-Based Classes Maximal-Clique-Based Classes

1] : 12345678 1]: 1235, 1258, 1278, 13456, 1568

2] : 23578 2] : 235, 258, 278

3] : 3456 3] : 3456

4] : 456 4] : 456

5] : 568 5]: 568

6] : 68 6] : 68

7]: 78 7]: 78

Figure 1.9:Maximal Cliques of the Association Graph; Prefix-Based arakivhal-Clique-Based Classes

Let F;, denote the set of frequehtitemsets. Define ak-association graphgiven asGy, = (V, E), with
the vertexsel’ = {X | X € F1},andedge sef = {(X,Y) | X,Y € V and3 Z € F(;41), suchthat -
X,Y C Z}. Let M, denote the set of maximal cliquesd#.. Figure 1.9 shows the association gr&@phfor
the exampleF; shown. Its maximal clique séif; = {1235, 1258, 1287, 13456, 1568}.

Define a pseudo-equivalence relatippon the latticeP(Z) as follows:VX,Y € P(Z), X =,, ¥ &
3C € My suchthatX, Y C C andp(X, k) = p(Y, k). Thatis, two itemsets are related, i.e, they are in the
samepseudo-classf they are subsets of the same maximal clique and they shemenmon prefix of length
k. We therefore calp, amaximal-clique-basepseudo-equivalence relation.

Lemma 8 Each pseudo-clags(],, induced by the relation,, is a sub-lattice ofP (7).

PROOF. Let U andV be any two elements in the clals], i.e.,U, V share the common prefiX and there
exists a maximal cliqué€’ € My, such that/, V' C C. Clearly,U UV C C,andU NV C C. Furthermore,
UvV =UUV D2 X impliesthatU vV € [X],andUAV =UNV D X impliesthatyU AV € [X]. &

Thus, each pseudo-clals], is a boolean lattice, and the supports of all elements ofatiieé can be
generated by applying Lemmas 4, and 5 on the atoms, and usynaf ¢he three search strategies described
above.

Lemma 9 Let XN denote the set of pseudo-classes of the maximal-cliquedlratation¢,. Each pseudo-
class[Y],, induced by the prefix-based relatigp is a subset of some clag¥ |y, induced by;,. Conversely,
each[X]y,, is the union of a set of pseudo-clasSegyiven ag X1y, = U{[Z]s, | Z € ¥ C Ny }.

PrROOF LetT'(X) denote the neighbors df in the graphG.. Then[X]y, = {Z | X C Z C {X,T(X)}}.
In other words[X] consists of elements with the prefi& and extended by all possible subsets of the neigh-
bors of X in the graph’,. Since any cliqué” is a subset of Y, I'(Y") }, we have thafY]4, C [X]o,, Where
Y is a prefix ofX. On the other hand it is easy to show th&{s, = |J{[Y]4, | Y isaprefixofX}. m

This lemma states that each pseudo-clasg,ofs a refinement of (i.e., is smaller than) some class of
0,. By using the relationy;, instead off,, we can therefore generate smaller sub-lattices. These sub
lattices require less memory, and can be processed indepeydsing any of the three search strategies

1.4. ITEMSET ENUMERATION: LATTICE-BASED APPROACH 13

described above. Figure 1.9 contrasts the classes (dide$atgenerated by, andd;. It is apparent that

¢1 generates smaller classes. For example, the prefix [dlass 12345678 is one big class containing all
the elements, while the maximal-clique classes[fbr= {1235, 1258, 1278, 13456, 1568}. Each of these
classes is much smaller than the prefix-based class. Tresised refinement gf, comes at a cost, since the
enumeration of maximal cliques can be computationally espe. For general graphs the maximal clique
decision problem is NP-Complete (Garey & Johnson 1979). évew thek-association graph is usually
sparse and the maximal cliques can be enumerated efficid&glthe edge density of the association graph
increases the clique based approaches may suffeshould thus be used only whéry, is not too dense.
Some of the factors affecting the edge density include @samg support and increasing transaction size. The
lower the support and the longer the transaction size, thatgr the edge density of theassociation graph.

Maximal Clique Generation

We used a modified version of the Bierstone’s algorithm (Malh & Corneil 1972) for generating maximal
cliques in thek-association graph. For a clagg, andy € [z], y is said tocoverthe subset ofz], given

by cov(y) = [y] N [z]. For each clasg, we first identify itscovering setgiven as{y € Clcov(y) #

, andcov(y) € couv(z), foranyz € C,z < y}. For example, consider the clad$, shown in figure 1.9.
cov(2) = {3,5,7,8} = [2]. Similarly, for our examplegov(y) = [y], for all y € [1], since eachiy] C [1].
The covering set dfl] is given by the sef2, 3, 5}. The itemd is not in the covering set sincey(4) = {5, 6}

is a subset otov(3) = {4,5,6}. Figure 1.10 shows the complete clique generation algarit®nly the
elements in the covering set need to be considered whilerggmg maximal cliques for the current class
(step 3). We recursively generate the maximal cliques famehts in the covering set for each class. Each
maximal clique from the covering set is prefixed with the slagentifier to obtain the maximal cliques for
the current class (step 7). Before inserting the new cliglieluplicates or subsets are eliminated. If the new
cligue is a subset of any clique already in the maximal lis¢ntit is not inserted. The conditions for the
above test are shown in line 8.

Lfor (i = N;i>=1;i——)do
2: [i].CligList = (;
3: for all x €[i].CoveringSet do
for all clig € [x].CligList do
M = clig N [i];
if M # (then
insert({i} U M) in [i] .CliqgList such that
AXorY €[i] .CligList, X CY,orY C X;

S

Figure 1.10: The Maximal Clique Generation Algorithm

Weak Maximal Cligues For some database parameters, the edge density aéfdissociation graph may
be too high, resulting in large cliques with significant dapramong them. In these cases, not only the clique
generation takes more time, but redundant frequent itenmsay also be discovered within each sublattice.
To solve this problem we introduce the notion of weak maxityaf cliques. Given any two cliqueX,
andY, we say that they are-related if @ = KBQ i.e., the ratio of the common elements to the distinct
elements of the cliques. weak maximatlique,Z = {X U Y}, is generated by collapsing the two cliques
into one, provided that they arerelated. During clique generation only weak maximal aigare generated
for some user specified value @f Note that fora: = 1, we obtain regular maximal cliques, while far= 0,

we obtain a single clique. Preliminary experiments indidagat using an appropriate valueaafmost of the
overhead of redundant cliques can be avoided. We feuad).5 to work well in practice.

14 CHAPTER 1. HIERARCHICAL PARALLEL ALGORITHMS FOR ASSOCIATN MINING

1.5 Sequential Algorithm

In this section we describe the sequential algorithm focieffit enumeration of frequent itemsets. The first
step involves the computation of the frequent items ané&@sets. The next step generates the sub-lattices
(classes) by applying either the prefix-based equivaleelegion,, or the maximal-cligue-based pseudo-
equivalence relation; on the set of frequent 2-itemsefs. The sub-lattices are then processed one at atime
in reverse lexicographic order in main-memory using eitt@tom-up, top-down or hybrid search. We will
now describe these steps in some more detail.

1.5.1 Computing Frequent 1-ltemsets and 2-ltemsets

Most of the current association algorithms (Agraeihl. 1996; Brinet al. 1997; Lin & Dunham 1998; Park,
Chen, & Yu 1995a; Savasere, Omiecinski, & Navathe 1995;cfmwn 1996) assumelarizontaldatabase
layout, such as the one shown in Figure 1.1, consisting et afitransactions, where each transaction has an
identifier followed by a list of items in that transaction. dantrast our algorithms use tkertical database
format, such as the one shown in Figure 1.3, where we maiatdisk-based tid-list for each item. This
enables us to check support via simple tid-list intersastio

Computing 7; Given the vertical tid-list database, all frequent items ba found in a few database scans.
For each item, we simply read its tid-list from disk into memdNe then scan the tid-list, incrementing the
item’s support for each entry.

Computing > Let N = |Z| be the number of frequent items, aAdhe average tid-list size in bytes. A
naive implementation for computing the frequent 2—itemsequires(g’) tid-list intersections for all pairs of
items. The amount of data readds: NV - (N — 1)/2, which corresponds to arourd/2 data scans. This is
clearly inefficient. Instead of the naive method we propesedlternate solutions: 1) Use a preprocessing
step to gather the counts of all 2-sequences above a usséfieghémver bound. Since this information is
invariant, it has to be computed once, and the cost can betiaethover the number of times the data is
mined. 2) Perform a vertical to horizontal transformationtbe-fly. This can be done quite easily. For each
item ¢, we scan its tid-list into memory. We inserin an array indexed by tid for eache L£(i). This
approach can be implemented with little overhead. For eXarRartition performs the opposite inversion
from horizontal to vertical tid-list format on-the-fly, vhitvery little cost. We plan to implement on-the-fly
inversion in the future. However, our current implememtatises the first approach due to its simplicity.

1.5.2 Search Implementation

Bottom-Up Search Figure 1.11 shows the pseudo-code for the bottom-up sedted.input to the pro-
cedure is a set of atoms of a sub-latti¢e Frequent itemsets are generated by intersecting thésteldf

all distinct pairs of atoms and checking the cardinalityhef tesulting tid-list. A recursive procedure call is
made with those itemsets found to be frequent at the curegal I This process is repeated until all frequent
itemsets have been enumerated. In terms of memory manag#nsegasy to see that we need memory to
store intermediate tid-lists for at most two consecutivele. Once all the frequent itemsets for the next level
have been generated, the itemsets at the current level cdeldied.

One practical implementation note for the bottom-up seasitng tid-list intersections is that we found the
candidate pruning to be of little or no benefit. Recall thaApriori, whenever we generate a new candidate
a check is made to see if all its subsets are frequent. If ey infrequent subset then we can prune the
candidate. We can implement a similar step in our approacbe £ach sub-lattice is processed in reverse
lexicographic order, and thus all subset information islatste for itemset pruning. Furthermore, for fast
subset checking the frequent itemsets can be stored in adt@dehHowever, in our experiments on synthetic
data we found pruning to be of no help. This is mainly becaddeescnma 6, which says that the tid-list
intersection is especially efficient for large itemsetsv@téheless, there may be databases where pruning is
crucial for performance, and we can support pruning forétdetasets.

1.5. SEQUENTIAL ALGORITHM 15

Bottom-Up(.5):
for all atomsA; € S do
Ty =0,
for all atomsA; € S, with j > i do
L(R)=L(A;) N L(A;j);
if o(R) > min_sup then
T, =T; U {R}, .7:‘3‘ = —7:|R| U {R},
end
end
delete S; //reclaim memory
for all T; # () do Bottom-Up(T;);

Figure 1.11: Pseudo-code for Bottom-Up Search

Top-Down(S):
R ={4; € S};
if R ¢ F|g) then
L(R)=N{L(A:) | A; € S};
if o(R) > min_sup then
Fir = Fir| ULRE
else
forall Y C R, with|Y| = |R| -1
if Y ¢ HT then
Top-Down{A; | A; € Y'});
if o(Y) < min_sup then HT = HT U{Y'};

end

Figure 1.12: Pseudo-code for Top-Down Search

Top-Down Search The code for top-down search is given in Figure 1.12. Thecéebegins with the
maximum elemenf of the sub-latticeS. A check is made to see if the element is already known to be
frequent. If not we perform &-way intersection to determine its support. If it is frequéren we are done.
Otherwise, we recursively check the support of each offits- 1)-subsets. We also maintain a hash table
HT of itemsets known to be infrequent from previous recursa#sdo avoid processing sub-lattices that
have already been examined. In terms of memory manageneetagkdown approach requires that only the
tid-lists of the atoms of a class be in memory.

Hybrid Search Figure 1.13 shows the pseudo-code for the hybrid search.influg consists of the atom
set.S sorted in descending order of support. The maximal phasebby intersecting atoms one at a time
until no frequent extension is possible. All the atoms imedl in this phase are stored in the $gt The
remaining atomss = S\\S; enter the bottom-up phase. For each atorfiinwe intersect it with each atom
in S1. The frequent itemsets form the atoms of a new sub-lattideaa@ solved using the bottom-up search.
This process is then repeated for the other atonfs,ofThe maximal phase requires main-memory only for
the atoms, while the bottom-up phase requires memory foioat two consecutive levels.

1.5.3 Number of Database Scans

Before processing each sub-lattice from the initial decositpn all the relevant item tid-lists are scanned
into memory. The tid-lists for the atoms (frequent 2-itetayef each initial sub-lattice are constructed by
intersecting the item tid-lists. All the other frequenmitgets are enumerated by intersecting the tid-lists of
the atoms using the different search procedures. If allriti@i classes have disjoint set of items, then each

16 CHAPTER 1. HIERARCHICAL PARALLEL ALGORITHMS FOR ASSOCIATN MINING

Hybrid (S sorted on support):
R=A;; 5 ={A1};
for all A; € S, > 1 do/* Maximal Phase */
R=RUA;; L(R)=L(R)NL(A);
if o(R) > min_sup then
S1=51U{4;}; -7:|R| e -7:|R| U{R};
elsebreak;
end
Sg =5 - Sl;
for all B; € S, do /* Bottom-Up Phase */
T; ={X, | o(X;) > min_sup, L(X;) = L(B;) N L(A;),YVA; € S1};
Sl = Sl U {BZ},
if T; # () then Bottom-Up(T;);
end

Figure 1.13: Pseudo-code for Hybrid Search

item’s tid-list is scanned from disk only once during theienfrequent itemset enumeration process over
all sub-lattices. In the general case there will be someedegf overlap of items among the different sub-
lattices. However only the database portion corresponttirthe frequent items will need to be scanned,
which can be a lot smaller than the entire database. Furtirerraub-lattices sharing many common items
can be processed in a batch mode to minimize disk access.wéhuakim that our algorithms will usually
require a few database scans after computipgn contrast to the current approaches which require as many
scan as the longest frequent itemset.

There are cases where more concern has to be paid to miniataleage scans. For example if there is a
large degree of overlap among the atoms of different clasises it is best to adopt a mixed approach where
we simply applyApriori for the initial levels, and then switch to our methods whendherlap is manageable.
What this means is that we need to go beyond a simple one lau#igning based o#,, instead we might
have to us#, or 65.

1.6 Parallel Algorithm Design and Implementation

In this section we will discuss the design and implementedionew parallel algorithms for mining frequent
itemsets. We present four new parallel algorithms, depenain the decomposition relation used to generate
independent classes, and the lattice search scheme used.

e Par-Eclat It uses prefix-based equivalence relatthralong with bottom-up search. It enumerates all
frequent itemsets.

e Par-MaxEclat It uses prefix-based equivalence relatieralong with hybrid search. It enumerates the
“long” maximal frequent itemsets, and some non-maximakone

e Par-Clique It uses maximal-clique-based pseudo-equivalenceoelati along with bottom-up search.
It enumerates all frequent itemsets.

e Par-MaxClique It uses maximal-clique-based pseudo-equivalenceoalati along with hybrid search.
It enumerates the “long” maximal frequent itemsets, andesnom-maximal ones.

We next present the parallel design and implementatioesssuvhich are applicable to all four algorithms.

1.6.1 Initial Database Partitioning

We assume that the database is in the vertical format, anavthhave the support counts of all 2-itemsets
available locally on each host. We further assume that ttebdae of tid-lists is initially partitioned among alll

1.6. PARALLEL ALGORITHM DESIGN AND IMPLEMENTATION 17

the hosts. This partitioning is done off-line, similar t@thssumption made @ount Distribution(Agrawal

& Shafer 1996). The tid-lists are partitioned so that thalt@ngth of all tid-lists in the local portions on each

host are roughly equal. This is achieved using a greedy itthgor The items are sorted on their support, and
the next item is assigned to the least loaded host. Notehbagritire tid-list for an item resides on a host.
Figure 1.15 shows the original database, and the resuitgial partition on two processors.

Begin ParAssociation:
/* Initialization Phase*/
F, = { Set of Frequent 2-ltemse}s
Generate Independent Classes frdpusing:
Prefix-Based or Maximal-Clique-Based Partitioning
Schedule Classes among the processgbors
Scan local database partition
Transmit relevant tid-lists to other processors
Receive tid-lists from other processors

/* Asynchronous Phase */
for each assigned Class;
Compute Frequent Itemsets: Bottom-dp) or Hybrid(C5)

/* Final Reduction Phase*/
Aggregate Results and Output Associations
End ParAssociation

Figure 1.14: Pseudo-code for the New Parallel Algorithms

1.6.2 Parallel Design and Implementation

The new algorithms overcome the shortcomings of@eentandCandidate Distributioralgorithms. They
utilize the aggregate memory of the system by partitionmggitemsets into disjoint sets, which are assigned
to different processors. The dependence among the prasésstecoupled right in the beginning so that the
redistribution cost can be amortized by the later iteratid®ince each processor can proceed independently,
there is no costly synchronization at the end of each imaturthermore the new algorithms use the vertical
database layout which clusters all relevant informatioariritemset’s tid-list. Each processor computes all
the frequent itemsets from one class before proceedingetodikt. The local database partition is scanned
only once. In contrasfandidate Distributiormust scan it once in each iteration. The new algorithms don't
pay the extra computation overhead of building or searchomgplex data structures, nor do they have to
generate all the subsets of each transaction. As the iotemsés performed an itemset can immediately be
inserted inF;. Notice that the tid-lists also automatically prune irvalet transactions. As the itemset size
increases, the size of the tid-list decreases, resultingfip fast intersections. There are two distinct phases
in the algorithms. The initialization phase, responsiblecommunicating the tid-lists among the processors,
and the asynchronous phase, which generates frequenetenisie pseudo-code for the new algorithms is
shown in Figure 1.14, and a pictorial representation of ifferént phases is shown in Figure 1.15.

Initialization Phase

The initialization step consists of three sub-steps. Rinstsupport counts for 2-itemsets from the preprocess-
ing step are read, and the frequent ones are insertedrintS8econd, applying one of the two decomposition
schemes tdF;, — prefix-based or maximal-clique-based — the set of indepetrelasses is generated. These
classes are then scheduled among all the processors sathttde level of load-balancing can be achieved.
Third, the database is repartitioned so that each prochasarn its local disk the tid-lists of all 1-itemsets in
any class assigned to it.

18

CHAPTER 1. HIERARCHICAL PARALLEL ALGORITHMS FOR ASSOCIATN MINING

ITEM SET LATTICE CLASS PARTITIONING

EQUIVALENCE CLASSES
[A] ={ AC, AT, AW }
[C]={CD,CT,CW}
[D] ={ Dw}
[TI={TW}

CLASS SCHEDULE

Processor O (PO)
[A]l ={ AC, AT, AW}
[M={TW}

Processor 1 (P1)
[C]l={CD, CT,CW}
[D] ={ Dw}

O

TID-LIST COMMUNICATION

Original Database Partitioned Database After Tid-List Exchange
PO P1 PO P1

C A T

wW D

A CTW C DTWwW

Figure 1.15: Database Partitioning and Class Scheduling

PROCESSORO PROCESSOR 1 PROCESSOR 2

@@CF

PARTITIONED DATABASE

}

SCHEDULE EQUIVALENCE CLASSES
EXCHANGE LOCAL TID-LISTS

_—

SELECTIVELY REPLICATED DATABASE

Figure 1.16: TheéPar-EclatAlgorithm

1.6. PARALLEL ALGORITHM DESIGN AND IMPLEMENTATION 19

Class Scheduling We first partitionF, into equivalence classes using prefix-based or maximalieh
based partitioning. We next generate a schedule of the @guige classes on the different processors in a
manner minimizing the load imbalance and minimizing therifgrocess communication required in partially
replicating the tid-lists. Note that it may be necessanetrifice some amount of load balancing for a better
communication efficiency. For this reason, whole equivedeclasses are assigned to the same processor.
Load balancing is achieved by assigning a weight to eaclvalguice class based on the number of elements
in the class. Since we have to consider all pairs of atomshfonext iteration, we assign the weig@ toa
class withs atoms. Once the weights are assigned we generate a schethgeagreedy heuristic. We sort
the classes on the weights, and assign each class in tum lizet$t loaded processor, i.e., one having the least
total weight at that point. Ties are broken by selecting ttee@ssor with the smaller identifier. These steps
are done concurrently on all the processors since all of thae access to the gloh#}. Figure 1.15 shows
how the prefix-based classes of our example database (frgane-1.1) are scheduled on two processors.
Notice how an entire class is assigned to a single proceskbough the number of atoms of a class gives a
good indication of the amount of work that needs to be don#imirclass, better heuristics for generating the
weights are possible. For example, if we could better esértiee number of frequent itemsets that would be
enumerated from a class we could use that as our weight.

Tid-list Communication Once the classes have been scheduled among the proceasbrpr@cessor has
to exchange information with every other processor to reachbn-local tid-lists over the Memory Channel
network. To minimize communication, and being aware of ot that in our configuration there is only one
local disk per host (recall that our cluster has 8 hosts, Wigitocessors per host), only the hosts take part
in the tid-list exchange. Additional processes on each ef@ltnosts are spawned only in the asynchronous
phase. To accomplish the inter-process tid-list commuioicaeach processor scans the item tid-lists in its
local database partition and writes it to a transmit regidrictv is mapped for receive on other processors.
The other processors extract the tid-list from the recedggon if it belongs to any class assigned to them.
For example, Figure 1.15 shows the initial local databasevorhosts, and the final local database after the
tid-list communication.

Asynchronous Phase

At the end of the initialization step, the relevant tiddistre available locally on each host, thus each pro-
cessor can independently generate the frequent itemsetsits assigned classes eliminating the need for
synchronization with other processors. Each class is pe&ekin its entirety before moving on to the next
class in the schedule. This step involves scanning the atabase partition only once (depending on the
amount of overlap among the classes). We can thus benefitfogm|/O savings. Since each class induces a
sublattice, depending on the algorithm, we either use @bmwtip traversal to generate all frequent itemsets,
or we use the hybrid traversal to generate only the “long”imakand other frequent itemsets. The pseudo-
code and implementation of the two lattice search schemspresented in the last section (see Figure 1.11
and Figure 1.12). As an illustration of the various stepsPdr-Eclatalgorithm is shown in Figure 1.16. At
the end of the asynchronous phase we accumulate all thesréswh each processor and print them out.

1.6.3 Salient Features of the New Algorithms

In this section we will recapitulate the salient featureswoif proposed algorithms, contrasting them against
Count Distribution Our algorithms differ in the following respect:

e They utilize the aggregate memory of the parallel systemdstitipning the candidate itemsets among
the processors using the prefix-based and maximal-cligweébdecomposition schemes.

e They decouple the processors right in the beginning by tipaing the database, so that each pro-
cessor can compute the frequent itemsets independenily eliminates the need for communicating
the frequent itemsets at the end of each iteration.

e They use the vertical database layout which clusters thesaions containing an itemset into tid-
lists. Using this layout enables our algorithms to scan dcalldatabase partition only a few times on

20 CHAPTER 1. HIERARCHICAL PARALLEL ALGORITHMS FOR ASSOCIATN MINING

each processor. It usually takes two scans, the first for aomrating the tid-lists, and the second for
obtaining the frequent itemsets. In contraStunt Distributionscans the database multiple times —
once during each iteration.

e To compute frequent itemsets, they performs simple int#ises on two tid-lists. There is no extra
overhead associated with building and searching complst trae data structures. Such complicated
hash structures also suffer from poor cache locality (Ragthathy, Zaki, & Li 1998). In our algorithms,
all the available memory is utilized to keep tid-lists in m@amwhich results in good locality. As larger
itemsets are generated the size of tid-lists decreasedtingsn very fast intersections.

e Our algorithms avoid the overhead of generating all the etshsf a transaction and checking them
against the candidate hash tree during support counting.

1.7 Experimental Results

All the experiments were performed on a 32-processor (&hdgirocessors/host) Digital Alpha cluster inter-
connected via the Memory Channel network (Gillett 1996)cHEAlpha processor runs at 233MHz. There’s
a total of 256MB of main memory per host (shared among the dgasors on that host). Each host also has
a 2GB local disk, out of which less than 500MB was availablego

The Digital Memory Channel Digital's Memory Channel network provides applicationgtwa global
address space using memory mapped regions. A region can fiygechinto a process’ address space for
transmit, receive, or both. Virtual addresses for transagitons map into physical addresses located in 1/0
space on the Memory Channel’'s PCl adapter. Virtual addsdss@eceive regions map into physical RAM.
Writes into transmit regions are collected by the source BlgnChannel adapter, forwarded to destination
Memory Channel adapters through a hub, and transferredMi& @ receive regions with the same global
identifier. Figure 1.17 shows the Memory Channel space (iftegl region is mapped for both transmit and
receive on node 1 and for receive on node 2; The gray regioajgped for receive on node 1 and for transmit
on node 2). Regions within a node can be shared across difigrecessors on that node. Writes originating
on a given node will be sent to receive regions on that same anly if loop-backhas been enabled for the
region. We do not use the loop-back feature. We wgte-doublinginstead, where each processor writes
to its receive region and then to its transmit region, so finatesses on a host can see modification made
by other processes on the same host. Though we pay the costibledwriting, we reduce the amount of
messages to the hub.

Memory Channel 10000 Frequent Itemsets at Support = 0.25%
Node 1 Address Space Node 2 BheDuER
8 . T10.14.D2084K =
g 1000} o
g 100} hY
/ L =
E 10} \
—, =T Transmit z
Receive '
! 4 6 10 12 14
Frequent Itemset Size (k)

Figure 1.17: a) The Memory Channel Space, b) Number of Fredtemsets

In our system unicast and multicast process-to-processsvniave a latency of 5.2s, with per-link
transfer bandwidths of 30 MB/s. Memory Channel peak agdedgandwidth is also about 32 MB/s. Memory

Channel guarantees write ordering and local cache coherg@no writes issued to the same transmit region

1.7. EXPERIMENTAL RESULTS 21

(even on different nodes) will appear in the same order imyereceive region. When a write appears in a
receive region it invalidates any locally cached copiegsline.

Database T |1 D, D, Size Dy D, Size | Dg Size
T10.14.D2084K| 10 | 4 | 2,084,000, 91 MB | 8,336,000 364MB | 546MB
T15.14.D1471K| 15| 4 | 1,471,000, 93 MB | 5,884,000 372MB | 558MB
T20.16.D1137K| 20 | 6 | 1,137,000, 92 MB | 4,548,000 368MB | 552MB

Table 1.1: Database Properties

Synthetic Databases All the partitioned databases reside on the local disks oh gmocessor. We used
different synthetic databases that have been used as baricdatabases for many association rules algo-
rithms (Agrawal, Imielinski, & Swami 1993; Agrawat al. 1996; Brinet al. 1997; Houtsma & Swami 1995;
Lin & Kedem 1998; Lin & Dunham 1998; Park, Chen, & Yu 1995a; &sere, Omiecinski, & Navathe 1995;
Zaki et al. 1997b). The dataset generation procedure is describedgrag/alet al. 1996), and the code is
publicly available from IBM (IBM).

These datasets mimic the transactions in a retailing emviemt, where people tend to buy sets of items
together, the so called potential maximal frequent set.siteof the maximal elements is clustered around a
mean, with a few long itemsets. A transaction may containosmeore of such frequent sets. The transaction
size is also clustered around a mean, but a few of them magicanany items.

Let D denote the number of transactiofisthe average transaction sizethe size of a maximal poten-
tially frequent itemset[. the number of maximal potentially frequent itemsets, ahthe number of items.
The data is generated using the following procedure. Wed@saerate, maximal itemsets of average size
1, by choosing from théV items. We next generat® transactions of average siZéby choosing from
the L maximal itemsets. We refer the reader to (Agrawal & SrikeB84) for more detail on the database
generation.

Table 1.1 shows the databases used and their propertiesiunfilger of transactions is denoted2s
wherer is the replication factor. Using a replication factor albous to keep the number of frequent itemsets
the same for a given minimum support, but it allows us to stadyer databases. For= 1, all the databases
are roughly 90MB in size. Except for the sizeup experimealisiesults shown are on databases with a
replication factor ofr = 4 (=360MB). We could not go beyond a replication factor of<86@40MB; used
in sizeup experiments) since the repartitioned databasddvicome too large to fit on disk. The average
transaction size is denoted&sand the average maximal potentially frequent itemsetaide The number
of maximal potentially frequent itemsets was= 2000, and the number of items was = 1000. All
the experiments were performed with a minimum support vafu@.25%. The number of large itemsets
discovered are shown in Figure 1.17. For a fair comparisibalgorithms discover frequerit-itemsets for
k > 3, using the supports for the 2-itemsets from the preprocgssep.

1.7.1 Performance Comparison

In this section we will compare the performance of our nevoatgms withCount Distribution(henceforth
referred to a<”' D), which was shown to be superior to bddata and Candidate Distribution(Agrawal &
Shafer 1996). In all the figures the different parallel camfégions are represented &sc. Py. Tz, where

H = x denotes the number of hos3,= y the number of processors per host, dhe: H - P = z, the total
number of processors used in the experiments. Figure 1d8ssthe total execution time for the different
databases and on different parallel configurations. Thégumations have been arranged in increasing order
of T'. Configurations with the sani€ are arranged in increasing orderif The left column comparegar-
MaxClique the best new algorithm, witRar-EclatandC' D, while the right column compares only the new
algorithms, so that the differences among them become nppr@rant. It can be clearly seen tiiRatr-Eclat
out-performsC D for almost all configurations on all the databases, with mepments as high as a factor
of 5. If we compare with the best new algorithPar-MaxClique we see an improvement of upto an order
of magnitude ovetCD. Even more dramatic improvements are possible for lowaresbf minimum sup-
port (Zaki, Parthasarathy, & Li 1997). An interesting tréndhe figures is that the performance gap seems

22

CHAPTER 1. HIERARCHICAL PARALLEL ALGORITHM

S FOR ASSOCIATON MINING

Total Execution Time (sec) Total Execution Time (sec)

Total Execution Time (sec)

1200

1000

800 i

600

400

200

2000

1800
1600
1400
1200
1000

800

600

400 A

6000

5000

4000 i

3000

2000

1000 7

T10.14.D2084K

T10.14.D2084K

HLPLTL HLP2T2 H2PLT2 HLPATA H2P2T4 HAPLT4 H2PAT8 HAP2T8 H8PLT8 HAPATI6 HBP2.TL6 HEBPAT32

[] Par-Eclat

[Count Distribution

Bl o

B Par-Eclat

-Par-MaxEctat—

Par-MaxClique 160 |

[l Par-MaxClique

140 |

80

60

40

Total Execution Time (sec)

20

T15.14.D1471K

i

HLPLTL HLP2T2 H2PLT2 HLPAT4 H2,

T15.14.D1471K

200 A

HL,

40 [| Par-Eclat
- [] Count Distribution 400 I [Par-Clique
.DrEIf ’J il .EB-YBXEQHL
q) "
[paritaxCiiqe &, 350 | Bl Par-MaxCligue:
p |
£ 30
|_ I -
—_— _S 250 g
L _ = | |
L O 200,
- o] I |
0 I
] W 150 | | |
- g Ll i I
0 1
50 1
7 I-;| ql . I I 1]
7z 7 Al zil LI Ll il
1. P: 2. 4.

PLTL HLP2T2 H2PLT2 HLPAT4 H2P2T4 HAPLT4 H2PAT8 HAP2T8 HBPLTB HAPATI6 HBP2TI6 HEP4T32 HLPLTL HLP2T2 H2PLT2 H:

T20.16.D1137K

T20.16.D1137K

HLPLTL HLP2T2 H2PLT2 HLPAT H2P2T4 HAPLT4 H2PAT8 HAP2T8 H8.PLT8 HAPATI6 HBP2.TL6 HEBPAT32

1200
M ["] Count Distribution [l Par-E?Iat
B Par-Eclat —~ L] Par-Ciique
Trear i g 1000 B -ParMaxEctat—
-
E 80 I
|_ 7‘\
c -
T o -
[g 600 =
0
. o I
X
W 400
T N
3
e i
m |||||‘|I|‘|I‘|‘||I|||
. |||||||||

HLPLTL HLP2T2 H2PLT2 H;

Figure 1.18: Parallel Performance

LPAT4 H2P2T4 HAPLT4 H2PAT8 HAP2T8 HBPLT8 H4PATI6 HBP2TI6 He.Pdl

1.7. EXPERIMENTAL RESULTS 23

T20.16.D1137K 80000
60 Par-Eclat <+—
Par-MaxEclat ——- |
0000 Par-Clique —o—-
Par-MaxClique —~—-
% i ¢ 60000 |]
c
5 R I
= 3]
g S | 50000
° | | | 5
5 £ 40000 |
£ i 1 1 1 5
g i i] i 5 - £ 30000 -
[S
O 00— | | | | | | | | | | | 5
8 0 L | © 20000
o | I 1 1 0101101 10000 |
0 0 ‘
H2PLT2 H2P2T4 H2P4T8 HAPLT4 HAP2T8 HAPATIS HBPLTS H8.P2TI6 HEP T20.16.D1137K T15.14.D1471K T10.14.D2084K

Figure 1.19: a) Communication Cost, b) Number of Intereecti

to decrease at larger configurations, witlh actually performing better on the 32 processor configunatio
H8.P4.T32 for the databases T10.14.D2084K and T15.14.0K4To see why, consider Figure 1.17, which
shows the total number of frequent itemsets of differerdéssifor the different databases. Also from Fig-
ure 1.19, which shows the initial database repartitionimg) &d-list communication cost as a percentage of
the total execution time d®ar-Eclat it becomes clear that there is not enough work for these atabédses

to sufficiently offset the communication cost, consequemtbre than 70% of the time is spent in the ini-
tialization phase. For T20.16.D1137K, which has more wdtki-Eclatis still about twice as fast a&'D

on 32 processors. The basic argument falls on the compnte¢icsus communication trade-off in parallel
computing. Whenever this ratio is high we would expeat-Eclatto out-performC'D. We would also ex-
pect the relative improvements Bar-Eclatover C' D to be better for larger databases. Unfortunately due to
disk space constraints we were not able to test the algosittnmarger databases. In all except fiie= 1
configurations, the local database partition is less thaiale memory. Thus fo€' D the entire database is
cached after the first scan. The performanc€ &f is thus a best case scenario for it since the results do not
include the “real” hitC'D would have taken from multiple disk scans. As mentioned atise 1.6,Par-Eclat
was designed to scan the database only once during fregaerget computation, and would thus benefit
more with larger database size.

Figure 1.18 (right column) shows the differences among the algorithms for different databases and
parallel configurations. There are several parameterstaftetheir performance. It can be seen that in
generalPar-CliqueandPar-MaxCliqueperform better tha®ar-EclatandPar-MaxEclat respectively. This
is because they use the maximal-clique-based decompusitiich generates more precise classes. On the
other axis, in generdar-MaxCliqgueandPar-MaxEclat out-performPar-CliqueandPar-Eclat, respectively.
This is because the hybrid lattice search scheme quicklgrgées the long maximal frequent itemsets, saving
on the number of intersections. The results are also depéndé¢he number of frequent itemsets. The larger
the number of frequent itemsets, the more the opportunitihi® hybrid approach to save on the joins. For
example, consider Figure 1.19, which shows the total nurobtd-list intersections performed for the four
algorithms on the three databases. For T20.16.D1137K,whés the largest number of frequent itemsets
(see Figure 1.17Rar-MaxCliquecuts down the number of intersections by more than 60% BaeEclat
The reduction was about 20% fBar-MaxEclat and 35% foiPar-Clique These factors are responsible for
the trends indicated above. The winner in terms of the totatetion time is clearlyPar-MaxClique with
improvements ovelPar-Eclatas high as 40%.

24 CHAPTER 1. HIERARCHICAL PARALLEL ALGORITHMS FOR ASSOCIATN MINING

T10.14.02084K: Speedup T10.14.D2084K: Sizeup

. ‘ 180 :
. ;ar-gc}a: f Par-Eclat -—
arciqn - 160 | Par-MaxEclat -+ 1
Par-MaxClique - Par_C“que
35F 4 ~ I
2 140 ¢ Par-MaxClique .
Q) oy
g 2 1
T - E
0] o =
o A _ - i
Q il v s o
%) 256 P - _ jk 7 ‘g]
g) //// T 4// - g
F LA 0 |
v 2r A5 s
d S8 =
"4 - / ~ '9]
IS4
sk 1
7,
// 0 I L
W 1 2 o 6
HLPLTL HLP2T2 H2PLT2 HLPATA H2P2T4 HAPLT4 H2PAT8 HAP2T8 H8.PLT8 HAPATLE HB.PLTL6 HEPATI2 Replication Factor
T15.14.D1471K: Speedup T15.14.D1471K: Sizeup
45 — ‘ 350 \ -
Par-Edat N
PavaiEdal - Par-Eclat 2
Par-Clique <
s Par-MaxC\lgue *-
/ o
/ Q
X / Q)
/ . ~
a 35 J \ / E °
o) g // " E
° ARV =
Q 3 r70 N\ c
8_ 17 \ / o
b \ E=
/ Y4 3
ﬁ 25+ 4 J §
2 4 w
I sl T
v 2 P o
i2 5 =
s
e
15 =< o- f‘wﬁ ’
i
/ //fa,/ 0 L L
W 1 2 4 6
HLPLTL HLP2T2 H2PLT2 HLPAT4 H2P2T4 HAPLT4 H2PAT8 HAPLT8 HBPLT8 HAPATL6 H8P2T16 HBPAT3 Replication Factor
T20.16.D1137K: Speedup T2016.DL137K: Sizeup
800 \
55 T T T T T T T
Par-Eclat <— Par-Eclat -—
Par-MaxEclat + d
5k Par-Clique
Par-MaxClique,
g
a5t g 2
g e °
T 4r o E
o 27 =
) g _ c
5 e
B / 3
] 7 o
2 0 P £
‘('U’ //// t LI_J
D 2t 8= ;:;/// E
14 g - m—= ,(/ o
02 =
2k 4
4
-y
S |
1 ///// i 0 L .
. 1 2 6
HLPLTL HLP2T2 H2PLT2 HLPATA H2P2T4 HAPLT4 H2PAT8 HAP2T8 H8.PLT8 HAPATLE HB.PLTL6 HEPAT32 Replication Factor

Figure 1.20: Parallel Speedup and Sizeup (H4.P1.T4)

1.8. CONCLUSIONS 25

1.7.2 Sensitivity Analysis

Speedup:The goal of the speedup experiments is to see how the newithlgsrperform as we increase the
number of processors while keeping the data size constanire=1.20, shows the speedup on the different
databases and parallel configurations. Due to disk constraie used a replication factor of 4, for database
sizes of approximately 360MB. The speedup numbers are riot@essive at first glance. However, this is
not surprising. For example, on the largest configuratiorP4832, there is only about 11MB of data per
processor. Combined with the fact that the amount of contiputés quite small (see Figure 1.17), and that
about 50% to 70% of the time is spent in tid-list communiaafsee Figure 1.19), we see a maximum speedup
of about 5. Another reason is that the communication inwtwaly the 8 hosts. Additional processes on a
host are only spawned after the initialization phase, whiicis represents a partially-parallel phase, limiting
the speedups. If we take out the communication costs we segiam speedup of 12 to 16. An interesting
trend is the step-effect seen in the speedup graphs. Footifgyarations which have the same number of
total processors, the ones with more hosts perform bettso, for configurations with more total processors,
with P = 4, the configurations immediate preceding it, with only 1 g®gor per host, performs better. In
both cases, the reason is that increasing the number ofgs@seon a given host, causes increased memory
contention (bus traffic), and increased disk contentioeaah processor tries to access the database from the
local disk at the same time.

Sizeup: The goal of the sizeup experiments is to see how the new #igasiperform as we increase the
size of the database while keeping the number of processostant. For the sizeup experiments we fixed
the parallel configuration to H4.P1.T4, and varied the dagelyeplication factor from 1 to 6, with the total
database size ranging from about 90MB to 540MB. Figure 1t2fvs the sizeup for the four algorithms
on the different databases. The figures indicate an almusadisizeup. The slightly upward bend is due
to the relative computation versus communication cost. [&tger the database the more the time spent in
communication, while the tid-list intersection cost doesicrease at the same pace. Moreover, the number
of frequent itemsets remains constant (since we use pagesfor minimum support, as opposed to absolute
counts) for all replication factors.

1.8 Conclusions

In this paper we presented new parallel algorithms for efficenumeration of frequent itemsets. We p-
resented a lattice-theoretic approach to partition thgueat itemset search space into small, independent
sub-spaces using either prefix-based or maximal-cliqsedmethods. Each sub-problem can be solved in
main-memory using bottom-up, top-down, or a hybrid searde@dure, and the entire process usually takes
only a few database scans.

The set of independent classes is scheduled among the pooseand the database is also selectively
replicated so that the portion of the database needed focah®putation of associations is local to each
processor. After the initial set-up phase the algorithmsaioneed any further communication or synchro-
nization. The algorithms minimize 1/O overheads by scagrire local database portion only two times.
Once in the set-up phase, and once when processing all thedtelasses. We implemented the algorithms
on a 32 processor Digital cluster interconnected with thenidiey Channel network, and compared them
against a well known parallel algorith@ount Distribution(Agrawal & Shafer 1996). Experimental results
indicate that our best parallel algoritHPar-MaxCliqueoutperformedCount Distributionby upto an order of
magnitude.

References

Agrawal, R., and Shafer, J. 1996. Parallel mining of assimtiaules.IEEE Trans. on Knowledge and Data
Engg.8(6):962—969.
Agrawal, R., and Srikant, R. 1994. Fast algorithms for mgrassociation rules. 1B0th VLDB Conference

Agrawal, R.; Mannila, H.; Srikant, R.; Toivonen, H.; and kamo, A. |. 1996. Fast discovery of association

26 REFERENCES

rules. In Fayyad, U., and et al., edadvances in Knowledge Discovery and Data Mini@§7—328. AAAI
Press, Menlo Park, CA.

Agrawal, R.; Imielinski, T.; and Swami, A. 1993. Mining assation rules between sets of items in large
databases. IACM SIGMOD Conf. Management of Data

Bayardo, R. J. 1998. Efficiently mining long patterns froned@ses. IRCM SIGMOD Conf. Management
of Data

Brin, S.; Motwani, R.; Ullman, J.; and Tsur, S. 1997. Dynaitéenset counting and implication rules for
market basket data. WKCM SIGMOD Conf. Management of Data

Cheung, D.; Han, J.; Ng, V.; Fu, A.; and Fu, Y. 1996a. A fastriiated algorithm for mining association
rules. Indth Intl. Conf. Parallel and Distributed Info. Systems

Cheung, D.; Ng, V.; Fu, A.; and Fu, Y. 1996b. Efficient mininfgagsociation rules in distributed databases.
In IEEE Trans. on Knowledge and Data Engg|6):911-922.

Cheung, D.; Hu, K.; and Xia, S. 1998. Asynchronous paralb@thm for mining association rules on
shared-memory multi-processors.16th ACM Symp. Parallel Algorithms and Architectures

Davey, B. A., and Priestley, H. A. 199Mhtroduction to Lattices and OrdeiCambridge University Press.

Garey, M. R., and Johnson, D. S. 197@omputers and Intractability: A Guide to the Theory of NP-
CompletenessN. H. Freeman and Co.

Gillett, R. 1996. Memory channel: An optimized cluster netennect. INEEE Micro, 16(2)

Gunopulos, D.; Mannila, H.; and Saluja, S. 1997. Discowgaiththe most specific sentences by randomized
algorithms. Inintl. Conf. on Database Theary

Han, E.-H.; Karypis, G.; and Kumar, V. 1997. Scalable patalata mining for association rules. ACM
SIGMOD Conf. Management of Data

Holsheimer, M.; Kersten, M.; Mannila, H.; and Toivonen, HD95. A perspective on databases and data
mining. In1st Intl. Conf. Knowledge Discovery and Data Mining

Houtsma, M., and Swami, A. 1995. Set-oriented mining of eisdion rules in relational databases.1lith
Intl. Conf. Data Engineering

IBM. http://www.almaden.ibm.com/cs/quest/syndata.h@uiest Data Mining Project, IBM Almaden Re-
search Center, San Jose, CA 95120.

Lin, J.-L., and Dunham, M. H. 1998. Mining association rul@sti-skew algorithms. IriL4th Intl. Conf.
on Data Engineering

Lin, D.-l., and Kedem, Z. M. 1998. Pincer-search: A new aiipon for discovering the maximum frequent
set. In6th Intl. Conf. Extending Database Technology

Mueller, A. 1995. Fast sequential and parallel algorithmrsassociation rule mining: A comparison.
Technical Report CS-TR-3515, University of Maryland, @gk Park.

Mulligan, G. D., and Corneil, D. G. 1972. Corrections to btene’s algorithm for generating cliquek.of
the ACM19(2):244-247.

Park, J. S.; Chen, M.; and Yu, P. S. 1995a. An effective hashdalgorithm for mining association rules.
In ACM SIGMOD Intl. Conf. Management of Data

Park, J. S.; Chen, M.; and Yu, P. S. 1995b. Efficient parali¢h anining for association rules. ACM Intl.
Conf. Information and Knowledge Management

Parthasarathy, S.; Zaki, M. J.; and Li, W. 1998. Memory ptaest techniques for parallel association
mining. In4th Intl. Conf. Knowledge Discovery and Data Mining

Savasere, A.; Omiecinski, E.; and Navathe, S. 1995. An efft@lgorithm for mining association rules in
large databases. RBist VLDB Conf.

Shintani, T., and Kitsuregawa, M. 1996. Hash based paadtierithms for mining association rules. 4th
Intl. Conf. Parallel and Distributed Info. Systems

REFERENCES 27

Toivonen, H. 1996. Sampling large databases for assogiaties. In22nd VLDB Conf.

Yen, S.-J., and Chen, A. L. P. 1996. An efficient approachsodaliering knowledge from large databases.
In 4th Intl. Conf. Parallel and Distributed Info. Systems

Zaki, M. J., and Ogihara, M. 1998. Theoretical foundatiohassociation rules. 8rd ACM SIGMOD
Workshop on Research Issues in Data Mining and Knowledgeohésy

Zaki, M. J.; Ogihara, M.; Parthasarathy, S.; and Li, W. 19B@rallel data mining for association rules on
shared-memory multi-processors.Snpercomputing’96

Zaki, M. J.; Parthasarathy, S.; Li, W.; and Ogihara, M. 199%®aluation of sampling for data mining of
association rules. Iiith Intl. Wkshp. Research Issues in Data Engg

Zaki, M. J.; Parthasarathy, S.; Ogihara, M.; and Li, W. 199New algorithms for fast discovery of
association rules. 18rd Intl. Conf. on Knowledge Discovery and Data Mining

Zaki, M. J.; Parthasarathy, S.; Ogihara, M.; and Li, W. 199'NMew algorithms for fast discovery of
association rules. Technical Report URCS TR 651, Unived§iRochester.

Zaki, M. J.; Parthasarathy, S.; Ogihara, M.; and Li, W. 199Parallel algorithms for fast discovery of
association rulesData Mining and Knowledge Discovery: An International Joak1(4):343-373.

Zaki, M. J.; Parthasarathy, S.; and Li, W. 1997. A localizégbathm for parallel association mining. In
9th ACM Symp. Parallel Algorithms and Architectures

