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1.1 Introduction

The association mining task is to discover a set of attributes shared among a large number of objects in a given
database. For example, consider the sales database of a bookstore, where the objects represent customers and
the attributes represent books. The discovered patterns are the set of books most frequently bought together
by the customers. An example could be that, “40% of the peoplewho buy Jane Austen’sPride and Prejudice
also buySense and Sensibility.” The store can use this knowledge for promotions, shelf placement, etc.
There are many potential application areas for associationrule technology, which include catalog design,
store layout, customer segmentation, telecommunication alarm diagnosis, and so on.

The task of discovering all frequent associations in very large databases is quite challenging. The search
space is exponential in the number of database attributes, and with millions of database objects the problem
of I/O minimization becomes paramount. However, most current approaches are iterative in nature, requiring
multiple database scans, which is clearly very expensive. Some of the methods, especially those using some
form of sampling, can be sensitive to the data-skew, which can adversely affect performance. Furthermore,
most approaches use very complicated internal data structures which have poor locality and add additional
space and computation overheads. Our goal is to overcome allof these limitations.

Since the discovery of association rules is a very computational and I/O intensive task, it is crucial to
leverage the combined computational power of multiple processors for fast response and scalability. In this
paper we present new parallel algorithms for discovering the set of frequent attributes (also called itemsets).
The key features of our approach are as follows: 1) We use avertical tid-list database format, where we
associate with each itemset a list of transactions in which it occurs. We show that all frequent itemsets
can be enumerated via simple tid-list intersections. 2) We use a lattice-theoretic approach to decompose
the original search space (lattice) into smaller pieces (sub-lattices), which can be processed independently
in main-memory. We propose two techniques for achieving thedecomposition: prefix-based and maximal-
clique-based partition. 3) We decouple the problem decomposition from the pattern search. We propose three
new search strategies for enumerating the frequent itemsets within each sub-lattice: bottom-up, top-down
and hybrid search. 4) Our approach roughly requires only a few database scans (with some pre-processed
information), minimizing the I/O costs.
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We present four new algorithms combining the features listed above, depending on the database format,
the decomposition technique, and the search procedure used. These includePar-Eclat, Par-MaxEclat, Par-
Clique, andPar-MaxClique. The parallel work is distributed among the processors in such a way that each
processor can compute the frequent itemsets independently, using simple intersection operations. These
techniques eliminate the need for synchronization after the initial set-up phase, and enable us to scan the
database only two times, drastically cutting down the I/O overhead. Our tid-list based approach is also
insensitive to data-skew. Furthermore, the use of simple intersection operations makes the new algorithms an
attractive option for direct implementation in database systems, using SQL.

Our experimental testbed is a 32-processor DEC Alpha SMP cluster (8 hosts, 4 processors/host) inter-
connected by the Memory Channel (Gillett 1996) network. Thenew parallel algorithms are also novel in
that they are hierarchical in nature, i.e., they assume a distributed-memory model across the 8 cluster hosts,
but assume a shared-memory model for the 4 processors on eachhost. With the help of an extensive set
of experiments, we show that the best new algorithm improvesover current methods by over an order of
magnitude. At the same time, the proposed techniques retainlinear scalability in the number of transactions
in the database.

The rest of this paper is organized as follows: In Section 1.2we describe the association discovery
problem. We look at related work in Section 1.3. In section 1.4 we develop our lattice-based approach for
problem decomposition and pattern search. Section 1.5 describes the sequential algorithm, and Section 1.6
presents our new parallel algorithms. An experimental study is presented in Section 1.7, and we conclude in
Section 1.8.

1.2 Problem Statement

The association mining task, first introduced in (Agrawal, Imielinski, & Swami 1993), can be stated as
follows: Let I be a set of items, andD a database of transactions, where each transaction has a unique
identifier (tid) and contains a set of items. A set of items is also called anitemset. An itemset withk items
is called ak-itemset. Thesupportof an itemsetX , denotedσ(X), is the number of transactions in which it
occurs as a subset. Ak length subset of an itemset is called ak-subset. An itemset is maximal if it is not
a subset of any other itemset. An itemset isfrequentif its support is more than a user-specifiedminimum
support (minsup)value. The set of frequentk-itemsets is denotedFk.

An association ruleis an expressionA ⇒ B, whereA andB are itemsets. The support of the rule is
given asσ(A ∪B), and theconfidenceasσ(A ∪B)/σ(A) (i.e., the conditional probability that a transaction
containsB, given that it containsA). A rule isstrongif its confidence is more than a user-specifiedminimum
confidence (minconf).

The data mining task is to generate all association rules in the database, which have a support greater than
min sup, i.e., the rules are frequent. The rules must also have confidence greater thanmin conf, i.e., the rules
are strong. This task can be broken into two steps (Agrawalet al. 1996):

1. Find all frequent itemsets. This step is computationallyand I/O intensive. Givenm items, there can
be potentially2m frequent itemsets. Efficient methods are needed to traversethis exponential itemset
search space to enumerate all the frequent itemsets. Thus frequent itemset discovery is the main focus
of this paper.

2. Generate strong rules. This step is relatively straightforward; rules of the formX\Y ⇒ Y , where
Y ⊂ X , are generated for all frequent itemsetsX , provided the rules have at least minimum confidence.

Consider an example bookstore sales database shown in Figure 1.1. There are five different items (names
of authors the bookstore carries), i.e.,I = {A, C, D, T, W}, and the database consists of six customers
who bought books by these authors. Figure 1.1 shows all the frequent itemsets that are contained in at
least three customer transactions, i.e.,min sup = 50%. It also shows the set of all association rules with
min conf = 100%. The itemsetsACTW andCDW are the maximal frequent itemsets. Since all other
frequent itemsets are subsets of one of these two maximal itemsets, we can reduce the frequent itemset search
problem to the task of enumerating only the maximal frequentitemsets. On the other hand, for generating
all the strong rules, we need the support of all frequent itemsets. This can be easily accomplished once the
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Figure 1.1: a) Bookstore Database, b) Frequent Itemsets andStrong Rules

maximal elements have been identified, by making an additional database pass, and gathering the support of
all uncounted subsets.

1.2.1 Computational Complexity

The search space for enumeration of all frequent itemsets is2m, which is exponential inm, the number of
items. One can prove that the problem of finding a frequent setof a certain size is NP-Complete, by reducing
it to the balanced bipartite clique problem, which is known to be NP-Complete (Zaki & Ogihara 1998).
However, if we assume that there is a bound on the transactionlength, we can prove that frequent itemset
enumeration is essentially linear in the database size (Zaki & Ogihara 1998).

Once the frequent itemsets are known, they can be used to obtain rules that describe the relationship
between different itemsets. We generate and test the confidence of all rules of the formX\Y ⇒ Y ,
whereY ⊂ X , andX is frequent. For example, the itemsetCDW generates the following rules{CD ⇒
W, CW ⇒ D, DW ⇒ C, C ⇒ DW, D ⇒ CW, W ⇒ CD}. For an itemset of sizek there are2k − 2
potentially strong rules that can be generated. This follows from the fact that we must consider each subset of
the itemset as an antecedent, except for the empty and the full itemset. The complexity of the rule generation
step is thusO(r · 2l), wherer is the number of frequent itemsets, andl is the longest frequent itemset.

1.3 Related Work

1.3.1 Sequential Algorithms

Several algorithms for mining associations have been proposed in the literature (Agrawal, Imielinski, &
Swami 1993; Agrawalet al. 1996; Brinet al. 1997; Houtsma & Swami 1995; Lin & Kedem 1998; Lin &
Dunham 1998; Mueller 1995; Park, Chen, & Yu 1995a; Savasere,Omiecinski, & Navathe 1995; Toivonen
1996). TheApriori algorithm (Agrawalet al. 1996) is the best known previous algorithm, and it uses an
efficient candidate generation procedure, such that only the frequent itemsets at a level are used to construct
candidates at the next level. However, it requires multipledatabase scans. The DHP algorithm (Park, Chen,
& Yu 1995a) tries to reduce the number of candidates by collecting approximate counts in the previous level.
Like Apriori it requires as many database passes as the longest itemset. ThePartition algorithm (Savasere,
Omiecinski, & Navathe 1995) minimizes I/O by scanning the database only twice. It partitions the database
into small chunks which can be handled in memory. In the first pass it generates the set of all potentially
frequent itemsets, and in the second pass it counts their global support. The DLG (Yen & Chen 1996)
algorithm uses a bit-vector per item, noting the tids where the item occurred. It generates frequent itemsets
via logical AND operations on the bit-vectors. However, DLGassumes that the bit vectors fit in memory,
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and thus scalability could be a problem for databases with millions of transactions. The DIC algorithm
(Brin et al. 1997) dynamically counts candidates of varying length as the database scan progresses, and
thus is able to reduce the number of scans. Another way to minimize the I/O overhead is to work with
only a small sample of the database. An analysis of the effectiveness of sampling for association mining
was presented in (Zakiet al. 1997a), and (Toivonen 1996) presents an exact algorithm that finds all rules
using sampling. The AS-CPA algorithm and its sampling versions (Lin & Dunham 1998) build on top of
Partition and produce a much smaller set of potentially frequent candidates. It requires at most two database
scans. Also, sampling may be used to eliminate the second pass altogether. Approaches using only general-
purpose DBMS systems and relational algebra operations have also been studied (Holsheimeret al. 1995;
Houtsma & Swami 1995). We proposed new algorithms (Zakiet al. 1997b; 1997c) that were shown to
outperform previous approaches.

All the above algorithms generate all possible frequent itemsets. Methods for finding the maximal ele-
ments includeAll-MFS (Gunopulos, Mannila, & Saluja 1997), which is a randomized algorithm to discover
maximal frequent itemsets. ThePincer-Searchalgorithm (Lin & Kedem 1998) not only constructs the can-
didates in a bottom-up manner likeApriori, but also starts a top-down search at the same time. This can help
in reducing the number of database scans.MaxMiner (Bayardo 1998) is another algorithm for finding the
maximal elements. It uses efficient pruning techniques to quickly narrow the search space.

1.3.2 Parallel Algorithms

Distributed-Memory Machines Three different parallelizations ofApriori on IBM-SP2, a distributed
memory machine, were presented in (Agrawal & Shafer 1996). The Count Distributionalgorithm is a
straight-forward parallelization ofApriori. Each processor generates the partial support of all candidate
itemsets from its local database partition. At the end of each iteration the global supports are generated by
exchanging the partial supports among all the processors. TheData Distributionalgorithm partitions the can-
didates into disjoint sets, which are assigned to differentprocessors. However to generate the global support
each processor must scan the entire database (its local partition, and all the remote partitions) in all iterations.
It thus suffers from huge communication overhead. TheCandidate Distributionalgorithm also partitions
the candidates, but it selectively replicates the database, so that each processor proceeds independently. The
local database portion is still scanned in every iteration.Count Distributionwas shown to have superior
performance among these three algorithms (Agrawal & Shafer1996). Other parallel algorithms improving
upon these ideas in terms of communication efficiency, or aggregate memory utilization have also been pro-
posed (Cheunget al. 1996b; 1996a; Han, Karypis, & Kumar 1997). The PDM algorithm(Park, Chen, & Yu
1995b) presents a parallelization of the DHP algorithm (Park, Chen, & Yu 1995a). The hash based parallel
algorithms NPA, SPA, HPA, and HPA-ELD, proposed in (Shintani & Kitsuregawa 1996) are similar to those
in (Agrawal & Shafer 1996). Essentially NPA corresponds to Count Distribution, SPA to Data Distribution,
and HPA to Candidate Distribution. The HPA-ELD algorithm isthe best among NPA, SPA, and HPA, since
it eliminates the effect of data skew, and reduces communication by replicating candidates with high sup-
port on all processors. We also presented a new parallel algorithm Eclat (Zaki, Parthasarathy, & Li 1997;
Zaki et al. 1997d) on a DEC Alpha Cluster.Eclat uses the equivalence class decomposition scheme along
with a bottom-up lattice traversal. It was shown to outperform Count Distributionby more than an order of
magnitude.

Shared-Memory Machines In recent work we presented the CCPD parallel algorithm for shared-memory
machines (Zakiet al. 1996). It is similar in spirit toCount Distribution. The candidate itemsets are generated
in parallel and are stored in a hash tree which is shared amongall the processors. Each processor then scans
its logical partition of the database and atomically updates the counts of candidates in the shared hash tree.
CCPD uses additional optimization such as candidate balancing, hash-tree balancing and short-circuited sub-
set counting to speed up performance (Zakiet al. 1996). APM (Cheung, Hu, & Xia 1998) is an asynchronous
parallel algorithm for shared-memory machines based on theDIC algorithm (Brinet al. 1997).
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1.3.3 TheApriori and Count Distribution Algorithms

We now describe theApriori algorithm (Agrawalet al. 1996) in more detail, since it forms the basis of
almost all parallel algorithms proposed to-date. For comparison with the methods we will describe in this
paper, we also look at the Count Distribution algorithm (Agrawal & Shafer 1996) which is one of the current
best parallel methods.

Apriori Algorithm Apriori (Agrawalet al. 1996) is an iterative algorithm that counts itemsets of a specific
length in a given database pass. The process starts by scanning all transactions in the database and computing
the frequent items. Next, a set of potentially frequentcandidate2-itemsets is formed from the frequent
items. Another database scan is made to obtain their supports. The frequent 2-itemsets are retained for
the next pass, and the process is repeated until all frequentitemsets have been enumerated. The complete
algorithm is shown in figure 1.2. We refer the reader to (Agrawal et al. 1996) for additional details. There
are three main steps in the algorithm: 1) Generate candidates of lengthk from the frequent(k − 1) length
itemsets, by a self join onFk−1. For example, ifF2 = {AB, AC, AD, AE, BC, BD, BE}. ThenC3 =
{ABC, ABD, ABE, ACD, ACE, ADE, BCD, BCE, BDE}. 2) Prune any candidate with at least one
infrequent subset. As an example,ACD will be pruned sinceCD is not frequent. After pruning we get a
new setC3 = {ABC, ABD, ABE}. 3) Scan all transactions to obtain candidate supports. Thecandidates
are stored in a hash tree for fast support counting.

F1 = {frequent 1-itemsets};
for (k = 2;Fk−1 6= ∅; k + +)

Ck = Set of New Candidates;
for all transactionst ∈ D

for all k-subsetss of t
if (s ∈ Ck) s.count + +;

Fk = {c ∈ Ck|c.count ≥ min sup};
Set of all frequent itemsets =

⋃

k Fk;

Figure 1.2: TheApriori Algorithm

The Count Distribution Algorithm TheCount Distributionalgorithm (Agrawal & Shafer 1996) is a simple
but effective parallelization ofApriori. All processors generate the entire candidate hash tree from Fk−1.
Each processor can thus independently get partial supportsof the candidates from its local database partition.
This is followed by a sum-reduction to obtain the global counts. Note that only the partial counts need to be
communicated, rather than merging different hash trees, since each processor has a copy of the entire tree.
Once the globalFk has been determined each processor buildsCk+1 in parallel, and repeats the process
until all frequent itemsets are found. This simple algorithm minimizes communication since only the counts
are exchanged among the processors. However, since the entire hash tree is replicated on each processor, it
doesn’t utilize the aggregate memory efficiently.

1.4 Itemset Enumeration: Lattice-Based Approach

Before embarking on the algorithm description, we will briefly review some terminology from lattice theory
(see (Davey & Priestley 1990) for a good introduction).

Definition 1 LetP be a set. Apartial order onP is a binary relation≤, such that for allX, Y, Z ∈ P , the
relation is: 1) Reflexive:X ≤ X . 2) Anti-Symmetric:X ≤ Y andY ≤ X , impliesX = Y . 3) Transitive:
X ≤ Y andY ≤ Z, impliesX ≤ Z. The setP with the relation≤ is called anordered set.

Definition 2 Let X, Z, Y ∈ P . We sayX is covered byY , denotedX < Y , if X < Y andX ≤ Z < Y ,
impliesZ = X , i.e., if there is no elementZ of P with X < Z < Y .
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Definition 3 LetP be an ordered set, and letS ⊆ P . An elementX ∈ P is anupper bound (lower bound)
of S if s ≤ X (s ≥ X) for all s ∈ S. The least upper bound, also calledjoin , of S is denoted as

∨

S, and
the greatest lower bound, also calledmeet, of S is denoted as

∧

S. The greatest element ofP , denoted⊤, is
called thetop element, and the least element ofP , denoted⊥, is called thebottom element.

Definition 4 Let L be an ordered set.L is called ajoin (meet) semilatticeif X ∨ Y (X ∧ Y ) exists for all
X, Y ∈ L. L is called alattice if it is a join and meet semilattice, i.e., ifX ∨ Y andX ∧ Y exist of all
X, Y ∈ L. L is a complete latticeif

∨

S and
∧

S exist for allS ⊆ L. A ordered setM ⊂ L is a sublattice
of L if X, Y ∈ M impliesX ∨ Y ∈ M andX ∧ Y ∈ M .
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Figure 1.3: a) The Complete Powerset LatticeP(I), b) Tid-List for the Atoms

For setS, the ordered setP(S), the power set ofS, is a complete lattice in which join and meet are given
by union and intersection, respectively:

∨

{Ai | i ∈ I} =
⋃

i∈I

Ai

∧

{Ai | i ∈ I} =
⋂

i∈I

Ai

The top element ofP(S) is ⊤ = S, and the bottom element ofP(S) is ⊥ = {}. For anyL ⊆ P(S), L
is called alattice of setsif it is closed under finite unions and intersections, i.e.,(L;⊆) is a lattice with the
partial order specified by the subset relation⊆, X ∨ Y = X ∪ Y , andX ∧ Y = X ∩ Y .

Figure 1.3 shows the powerset latticeP(I) of the set of items in our example databaseI = {A, C, D, T, W}.
Also shown are the frequent (grey circles) and maximal frequent itemsets (black circles). It can be observed
that the set of all frequent itemsets forms a meet semilattice since it is closed under the meet operation, i.e.,
for any frequent itemsetsX , andY , X ∩ Y is also frequent. On the other hand, it doesn’t form a join semi-
lattice, sinceX andY frequent, doesn’t implyX ∪ Y is frequent. It can be mentioned that the infrequent
itemsets form a join semilattice.

Lemma 1 All subsets of a frequent itemsets are frequent.

The above lemma is a consequence of the closure under meet operation for the set of frequent itemsets.
As a corollary, we get that all supersets of an infrequent itemset are infrequent. This observation forms
the basis of a very powerful pruning strategy in a bottom-up search procedure for frequent itemsets, which
has been leveraged in many association mining algorithms (Agrawalet al. 1996; Park, Chen, & Yu 1995a;
Savasere, Omiecinski, & Navathe 1995). Namely, only the itemsets found to be frequent at the previous level
need to be extended as candidates for the current level. However, the lattice formulation makes it apparent
that we need not restrict ourselves to a purely bottom-up search, i.e., if we view the lattice as a collection of
(multiple) paths leading to the maximal frequent itemsets,then one can formulate alternate ways of reaching
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the maximal elements. We need not look at all intermediate levels as in a bottom-up approach. For example,
in a depth-first search, once can reachACTW in just four steps using the pathA, AC, ACT , andACTW .
Later, we will describe practical implementations of such alternate enumeration schemes.

Lemma 2 The maximal frequent itemsets uniquely determine all frequent itemsets.

This observation tells us that our goal should be to devise a search procedure that quickly identifies the
maximal frequent itemsets. In the following sections we will see how to do this efficiently.

1.4.1 Support Counting

Definition 5 A latticeL is said to bedistributive if for all X, Y, Z ∈ L, X ∧ (Y ∨Z) = (X ∧Y )∨ (X ∧Z).

Definition 6 Let L be a lattice with bottom element⊥. ThenX ∈ L is called anatom if ⊥ < X , i.e.,X
covers⊥. The set of atoms ofL is denoted byA(L).

Definition 7 A latticeL is called aBoolean lattice if 1) It is distributive. 2) It has⊤ and⊥ elements. 3)
Each memberX of the lattice has a complement.

We begin by noting that the powerset latticeP(I) on the set of database itemsI is aBooleanlattice, with
the complement ofX ∈ L given asI\X . The set of atoms of the powerset lattice corresponds to the set of
items, i.e.,A(P(I)) = I. We associate with each atom (database item)X its tid-list, denotedL(X), which
is a list of all transaction identifiers containing the atom.Figure 1.3 shows the tid-lists for the atoms in our
example database. For example consider atomA. Looking at the database in Figure 1.1, we see thatA occurs
in transactions 1, 3, 4, and 5. This forms the tid-list for atom A.

Lemma 3 ((Davey & Priestley 1990))For a finite boolean latticeL, with X ∈ L, X =
∨

{Y ∈ A(L) | Y ≤
X}.

In other words every element of a boolean lattice is given as ajoin of a subset of the set of atoms. Since the
powerset latticeP(I) is a boolean lattice, with the join operation correspondingto set union, we get

Lemma 4 For anyX ∈ P(I), let J = {Y ∈ A(P(I)) | Y ≤ X}. ThenX =
⋃

Y ∈J Y , andσ(X) =|
⋂

Y ∈J L(Y ) |.

The above lemma states that any itemset can be obtained as a join of some atoms of the lattice, and the support
of the itemset can be obtained by intersecting the tid-list of the atoms. We can generalize this lemma to a set
of itemsets:

Lemma 5 For anyX ∈ P(I), let X =
⋃

Y ∈J J . Thenσ(X) =|
⋂

Y ∈J L(Y ) |.

This lemma says that if an itemset is given as a union of a set ofitemsets inJ , then its support is given as
the intersection of tid-lists of elements inJ . In particular we can determine the support of anyk-itemset by
simply intersecting the tid-lists of any two of its(k − 1) length subsets. A simple check on the cardinality
of the resulting tid-list tells us whether the new itemset isfrequent or not. Figure 1.4 shows this process
pictorially. It shows the initial database with the tid-list for each item (i.e., the atoms). The intermediate
tid-list for CD is obtained by intersecting the lists ofC andD, i.e.,L(CD) = L(C) ∩ L(D). Similarly,
L(CDW ) = L(CD)∩L(CW ), and so on. Thus, only the lexicographically first two subsets at the previous
level are required to compute the support of an itemset at anylevel.

Lemma 6 LetX andY be two itemsets, withX ⊆ Y . ThenL(X) ⊇ L(Y ).

PROOF: Follows from the definition of support.
This lemma states that ifX is a subset ofY , then the cardinality of the tid-list ofY (i.e., its support)

must be less than or equal to the cardinality of the tid-list of X . A practical and important consequence of the
above lemma is that the cardinalities of intermediate tid-lists shrink as we move up the lattice. This results in
very fast intersection and support counting.
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1.4.2 Lattice Decomposition: Prefix-Based Classes

If we had enough main-memory we could enumerate all the frequent itemsets by traversing the powerset
lattice, and performing intersections to obtain itemset supports. In practice, however, we have only a limited
amount of main-memory, and all the intermediate tid-lists will not fit in memory. This brings up a natural
question: can we decompose the original lattice into smaller pieces such that each portion can be solved
independently in main-memory. We address this question below.

Definition 8 LetP be a set. Anequivalence relationonP is a binary relation≡ such that for allX, Y, Z ∈
P , the relation is: 1) Reflexive:X ≡ X . 2) Symmetric:X ≡ Y impliesY ≡ X . 3) Transitive:X ≡ Y
and Y ≡ Z, impliesX ≡ Z. The equivalence relation partitions the setP into disjoint subsets called
equivalence classes. The equivalence class of an elementX ∈ P is given as[X ] = {Y ∈ P | X ≡ Y }.

Define a functionp : P(I) 7→ P(I) wherep(X, k) = X [1 : k], thek length prefix ofX . Define an
equivalence relationθk on the latticeP(I) as follows:∀X, Y ∈ P(I), X ≡θk

Y ⇔ p(X, k) = p(Y, k).
That is, two itemsets are in the same class if they share a common k length prefix. We therefore callθk a
prefix-basedequivalence relation.

Figure 1.5a shows the lattice induced by the equivalence relation θ1 on P(I), where we collapse all
itemsets with a common1 length prefix into an equivalence class. The resulting set orlattice of equivalence
classes is{[A], [C], [D], [T ], [W ]}.

Lemma 7 Each equivalence class[X ]θk
induced by the relationθk is a sub-lattice ofP(I).

PROOF: Let U andV be any two elements in the class[X ], i.e.,U, V share the common prefixX . U ∨ V =
U ∪ V ⊇ X implies thatU ∨ V ∈ [X ], andU ∧ V = U ∩ V ⊇ X implies thatU ∧ V ∈ [X ]. Therefore
[X ]θk

is a sublattice ofP(I).
Each[X ]θ1

is itself a boolean lattice with its own set of atoms. For example, the atoms of[A]θ1
are

{AC, AD, AT, AW}, and the top and bottom elements are⊤ = ACDTW , and⊥ = A. By the application
of Lemmas 4, and 5, we can generate all the supports of the itemsets in each class (sub-lattice) by intersecting
the tid-list of atoms or any two subsets at the previous level. If there is enough main-memory to hold tempo-
rary tid-lists for each class, then we can solve each[X ]θ1

independently. Another interesting feature of the
equivalence classes is that the links between classes denote dependencies. That is to say, if we want to prune
an itemset if there exists at least one infrequent subset (see Lemma 1), then we have to process the classes in
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Figure 1.5: Equivalence Classes of a)P(I) Induced byθ1, and b)[A]θ1
Induced byθ2; c) Final Lattice of

Independent Classes

a specific order. In particular we have to solve the classes from bottom to top, which corresponds to a reverse
lexicographic order, i.e., we process[W ], then[T ], followed by[D], then[C], and finally[A]. This guarantees
that all subset information is available for pruning. For example, assume that we have already enumerated all
frequent itemsets of[W ], [T ], [D], and[C]. When we are processing[A], we have full pruning information
for itemsets that do not belong to[A]. For example we know thatCTW is frequent, thusACTW is a possible
candidate. If we further label classes in decreasing order of their size (number of atoms), then we solve small
classes first, and the large ones later, allowing us to fully use all pruning information.

In practice we have found that the one level decomposition induced byθ1 is sufficient. However, in some
cases, a class may still be too large to be solved in main-memory. In this scenario, we apply recursive class
decomposition. Let’s assume that[A] is too large to fit in main-memory. Since[A] is itself a boolean lattice,
it can be decomposed usingθ2. Figure 1.5b shows the equivalence class lattice induced byapplyingθ2 on
[A], where we collapse all itemsets with a common2 length prefix into an equivalence class. The resulting
set of classes are{[AC], [AD], [AT ], [AW ]}. Like before, each class can be solved independently, and we
can solve them in reverse lexicographic order to enable subset pruning. The final set of independent classes
obtained by applyingθ1 on P(I) and θ2 on [A] is shown in Figure 1.5c. As before, the links show the
pruning dependencies that exist among the classes. Depending on the amount of main-memory available
we can recursively partition large classes into smaller ones, until each class is small enough to be solved
independently in main-memory.

1.4.3 Search for Frequent Itemsets

In this section we discuss efficient search strategies for enumerating the frequent itemsets within each class.

Bottom-Up Search

The bottom-up search is based on a recursive decomposition of each class into smaller classes induced by the
equivalence relationθk. Figure 1.6 shows the decomposition of[A]θ1

into smaller classes, and the resulting
lattice of equivalence classes. Also shown are the atoms within each class, from which all other elements
of a class can be determined. The equivalence class lattice can be traversed in either depth-first or breadth-
first manner. In this paper we will only show results for a breadth-first traversal, i.e., we first process the
classes{[AC], [AT ], [AW ]}, followed by the classes{[ACT ], [ACW ], [ATW ]}, and finally[ACTW ]. For
computing the support of any itemset, we simply intersect the tid-lists of two of its subsets at the previous
level. Since the search is breadth-first, this technique enumerates all frequent itemsets.
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Figure 1.6: Bottom-Up Search

Top-Down Search

The top-down approach starts with the top element of the lattice. Its support is determined by intersecting
the tid-lists of the atoms. This requires ak-way intersection if the top element is ak-itemset. The advantage
of this approach is that if the maximal element is fairly large then one can quickly identify it, and one can
avoid finding the support of all its subsets. The search starts with the top element. If it is frequent we are
done. Otherwise, we check each subset at the next level. Thisprocess is repeated until we have identified
all minimal infrequent itemsets. Figure 1.7 depicts the top-down search. We start with a 5-way tid-list
intersection to obtain the support forACDTW , which turns out to be infrequent. We next have to try its
subsets at the next level. Out of the 4 subsets, onlyACTW is frequent. This means we don’t check any of
its subsets, since they all must be frequent. For the other three itemsetsACDT, ACDW , andADTW , we
check their subsets that are not known to be frequent, i.e., we checkACD, ADT andADW , all of which are
infrequent. Finally, at the next level, we find the minimal infrequent itemsetAD, and the process stops. As
it turns out, we had to perform 9 intersections here, the sameas in bottom-up search. But ifACDTW had
been frequent, we would have saved a lot of computation.

This scheme enumerates only the maximal frequent itemsets within each sub-lattice. However, the maxi-
mal elements of a sub-lattice may not be globally maximal. Itcan thus generate some non-maximal itemsets.

ACDT ACDW ADTW

ATWADWADTACWACTACD

ADAC AT AW

A

ACDTW

ACTW

Minimal Infrequent Itemset: AD

Figure 1.7: Top-Down Search
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Hybrid Search

The hybrid scheme is based on the intuition that the greater the support of an frequent itemset the more likely
it is to be a part of a longer frequent itemset. There are two main steps in this approach. We begin with the
set of atoms of the class sorted in descending order based on their support. The first, hybrid phase starts by
intersecting the atoms one at a time, beginning with the atomwith the highest support, generating longer and
longer frequent itemsets. The process stops when an extension becomes infrequent. We then enter the second,
bottom-up phase. The remaining atoms are combined with the atoms in the first set in a breadth-first fashion
described above to generate all other frequent itemsets. Figure 1.8 illustrates this approach (just for this case,
to better show the bottom-up phase, we have assumed thatAD andADW are also frequent). Initially, we
have four 2-itemsets (or atoms) in the sub-lattice. We sort them in decreasing order of support to obtain the
atom listAC, AW, AT , andAD. We now start the hybrid phase. Starting withAC we try to join it withAW ,
gettingACW which is frequent. We next joinACW with the next atomAT , to getACTW which is also
frequent. Finally we tryACTW with the last atomAD, butACDTW is infrequent. Note, that ifACDTW
were frequent, we would stop the computation at this stage, having found the maximal frequent itemset. The
algorithm now shifts into the bottom-up phase.AD is the atom which could not be combined withACTW .
With AD as the bottom element, we generate a new sub-lattice, whose atoms are the join ofAD with itemsets
that precede it in the sorted initial ordering, i.e., the newatoms areACD, ADW , andADT . This sublattice
can be solved using the bottom-up approach. In fact, if thereare many atoms likeAD which could not be
combined withACTW , then one can even re-apply hybrid search on the newly generated sub-lattice.

Like the bottom-up approach this scheme only requires2-way intersections. This scheme enumerates the
“long” maximal frequent itemsets discovered in the hybrid phase, and also the non-maximal ones found in
the bottom-up phase. Another modification of this scheme is to recursively substitute the second bottom-up
phase with the hybrid phase. This approach will enumerate some maximal elements (hybrid phase) and the
remaining frequent itemset (bottom-phase).

ADW ADTACD

AC

ACW

AW AT AD

ACDTW

ACTW

Hybrid Phase

AT ADAWAC

AC AD AT AW

Item Pairs

Sort on Support

Bottom-Up Phase

Figure 1.8: Hybrid Search

1.4.4 Generating Smaller Classes: Maximal Clique Approach

In this section we show how to produce smaller sub-lattices or equivalence classes compared to the pure
prefix-based approach, by using additional information. Aswe shall see later in this section, smaller sub-
lattices have fewer atoms and can save unnecessary intersections. For example, if there arek atoms, then
we have to perform

(

k
2

)

intersections for the next level in the bottom-up approach.Fewer atoms thus lead
to fewer intersections in the bottom-up search. Fewer atomsalso reduce the number of intersections in the
hybrid scheme, and lead to smaller maximum element size in the top-down search.

Definition 9 Let P be a set. Apseudo-equivalence relationon P is a binary relation≡ such that for all
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X, Y ∈ P , the relation is: 1) Reflexive:X ≡ X . 2) Symmetric:X ≡ Y impliesY ≡ X . The pseudo-
equivalence relation partitions the setP into possibly overlapping subsets calledpseudo-equivalence class-
es.

1 1 1

1

2 2 2
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7
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45
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1 3
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[7] :  78

Maximal-Clique-Based Classes

Figure 1.9:Maximal Cliques of the Association Graph; Prefix-Based and Maximal-Clique-Based Classes

LetFk denote the set of frequentk-itemsets. Define ank-association graph, given asGk = (V, E), with
the vertex setV = {X | X ∈ F1}, and edge setE = {(X, Y ) | X, Y ∈ V and∃ Z ∈ F(k+1), such that -
X, Y ⊂ Z}. Let Mk denote the set of maximal cliques inGk. Figure 1.9 shows the association graphG1 for
the exampleF2 shown. Its maximal clique setM1 = {1235, 1258, 1287, 13456, 1568}.

Define a pseudo-equivalence relationφk on the latticeP(I) as follows:∀X, Y ∈ P(I), X ≡φk
Y ⇔

∃ C ∈ Mk such thatX, Y ⊆ C andp(X, k) = p(Y, k). That is, two itemsets are related, i.e, they are in the
samepseudo-class, if they are subsets of the same maximal clique and they sharea common prefix of length
k. We therefore callφk amaximal-clique-basedpseudo-equivalence relation.

Lemma 8 Each pseudo-class[X ]φk
induced by the relationφk is a sub-lattice ofP(I).

PROOF: Let U andV be any two elements in the class[X ], i.e.,U, V share the common prefixX and there
exists a maximal cliqueC ∈ Mk such thatU, V ⊆ C. Clearly,U ∪ V ⊆ C, andU ∩ V ⊆ C. Furthermore,
U ∨ V = U ∪ V ⊇ X implies thatU ∨ V ∈ [X ], andU ∧ V = U ∩ V ⊇ X implies thatU ∧ V ∈ [X ].

Thus, each pseudo-class[X ]φ1
is a boolean lattice, and the supports of all elements of the lattice can be

generated by applying Lemmas 4, and 5 on the atoms, and using any of the three search strategies described
above.

Lemma 9 Let ℵk denote the set of pseudo-classes of the maximal-clique-based relationφk. Each pseudo-
class[Y ]φk

induced by the prefix-based relationφk is a subset of some class[X ]θk
induced byθk. Conversely,

each[X ]θk
, is the union of a set of pseudo-classesΨ, given as[X ]θk

=
⋃

{[Z]φk
| Z ∈ Ψ ⊆ ℵk}.

PROOF: Let Γ(X) denote the neighbors ofX in the graphGk. Then[X ]θk
= {Z | X ⊆ Z ⊆ {X, Γ(X)}}.

In other words,[X ] consists of elements with the prefixX and extended by all possible subsets of the neigh-
bors ofX in the graphGk. Since any cliqueY is a subset of{Y, Γ(Y )}, we have that[Y ]φk

⊆ [X ]θk
, where

Y is a prefix ofX . On the other hand it is easy to show that[X ]θk
=

⋃

{[Y ]φk
| Y is a prefix ofX}.

This lemma states that each pseudo-class ofφk is a refinement of (i.e., is smaller than) some class of
θk. By using the relationφk instead ofθk, we can therefore generate smaller sub-lattices. These sub-
lattices require less memory, and can be processed independently using any of the three search strategies
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described above. Figure 1.9 contrasts the classes (sub-lattices) generated byφ1 andθ1. It is apparent that
φ1 generates smaller classes. For example, the prefix class[1] = 12345678 is one big class containing all
the elements, while the maximal-clique classes for[1] = {1235, 1258, 1278, 13456, 1568}. Each of these
classes is much smaller than the prefix-based class. The increased refinement ofφk comes at a cost, since the
enumeration of maximal cliques can be computationally expensive. For general graphs the maximal clique
decision problem is NP-Complete (Garey & Johnson 1979). However, thek-association graph is usually
sparse and the maximal cliques can be enumerated efficiently. As the edge density of the association graph
increases the clique based approaches may suffer.φk should thus be used only whenGk is not too dense.
Some of the factors affecting the edge density include decreasing support and increasing transaction size. The
lower the support and the longer the transaction size, the greater the edge density of thek-association graph.

Maximal Clique Generation

We used a modified version of the Bierstone’s algorithm (Mulligan & Corneil 1972) for generating maximal
cliques in thek-association graph. For a class[x], andy ∈ [x], y is said tocover the subset of[x], given
by cov(y) = [y] ∩ [x]. For each classC, we first identify itscovering set, given as{y ∈ C|cov(y) 6=
∅, andcov(y) 6⊆ cov(z), for anyz ∈ C, z < y}. For example, consider the class[1], shown in figure 1.9.
cov(2) = {3, 5, 7, 8} = [2]. Similarly, for our example,cov(y) = [y], for all y ∈ [1], since each[y] ⊆ [1].
The covering set of[1] is given by the set{2, 3, 5}. The item4 is not in the covering set since,cov(4) = {5, 6}
is a subset ofcov(3) = {4, 5, 6}. Figure 1.10 shows the complete clique generation algorithm. Only the
elements in the covering set need to be considered while generating maximal cliques for the current class
(step 3). We recursively generate the maximal cliques for elements in the covering set for each class. Each
maximal clique from the covering set is prefixed with the class identifier to obtain the maximal cliques for
the current class (step 7). Before inserting the new clique,all duplicates or subsets are eliminated. If the new
clique is a subset of any clique already in the maximal list, then it is not inserted. The conditions for the
above test are shown in line 8.

1:for (i = N ; i >= 1; i −−) do
2: [i] .CliqList = ∅;
3: for all x ∈ [i] .CoveringSet do
4: for all cliq ∈ [x].CliqList do
5: M = cliq ∩ [i];
6: if M 6= ∅ then
7: insert({i} ∪ M) in [i] .CliqList such that
8: 6 ∃XorY ∈ [i] .CliqList, X ⊆ Y, orY ⊆ X ;

Figure 1.10: The Maximal Clique Generation Algorithm

Weak Maximal Cliques For some database parameters, the edge density of thek-association graph may
be too high, resulting in large cliques with significant overlap among them. In these cases, not only the clique
generation takes more time, but redundant frequent itemsets may also be discovered within each sublattice.
To solve this problem we introduce the notion of weak maximality of cliques. Given any two cliquesX ,
andY , we say that they areα-related, if α = |X∩Y |

|X∪Y | , i.e., the ratio of the common elements to the distinct
elements of the cliques. Aweak maximalclique,Z = {X ∪ Y }, is generated by collapsing the two cliques
into one, provided that they areα-related. During clique generation only weak maximal cliques are generated
for some user specified value ofα. Note that forα = 1, we obtain regular maximal cliques, while forα = 0,
we obtain a single clique. Preliminary experiments indicate that using an appropriate value ofα, most of the
overhead of redundant cliques can be avoided. We foundα = 0.5 to work well in practice.
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1.5 Sequential Algorithm

In this section we describe the sequential algorithm for efficient enumeration of frequent itemsets. The first
step involves the computation of the frequent items and 2-itemsets. The next step generates the sub-lattices
(classes) by applying either the prefix-based equivalence relationθ1, or the maximal-clique-based pseudo-
equivalence relationφ1 on the set of frequent 2-itemsetsF2. The sub-lattices are then processed one at a time
in reverse lexicographic order in main-memory using eitherbottom-up, top-down or hybrid search. We will
now describe these steps in some more detail.

1.5.1 Computing Frequent 1-Itemsets and 2-Itemsets

Most of the current association algorithms (Agrawalet al. 1996; Brinet al. 1997; Lin & Dunham 1998; Park,
Chen, & Yu 1995a; Savasere, Omiecinski, & Navathe 1995; Toivonen 1996) assume ahorizontaldatabase
layout, such as the one shown in Figure 1.1, consisting of a list of transactions, where each transaction has an
identifier followed by a list of items in that transaction. Incontrast our algorithms use thevertical database
format, such as the one shown in Figure 1.3, where we maintaina disk-based tid-list for each item. This
enables us to check support via simple tid-list intersections.

Computing F1 Given the vertical tid-list database, all frequent items can be found in a few database scans.
For each item, we simply read its tid-list from disk into memory. We then scan the tid-list, incrementing the
item’s support for each entry.

Computing F2 Let N = |I| be the number of frequent items, andA the average tid-list size in bytes. A
naive implementation for computing the frequent 2-itemsets requires

(

N
2

)

tid-list intersections for all pairs of
items. The amount of data read isA · N · (N − 1)/2, which corresponds to aroundN/2 data scans. This is
clearly inefficient. Instead of the naive method we propose two alternate solutions: 1) Use a preprocessing
step to gather the counts of all 2-sequences above a user specified lower bound. Since this information is
invariant, it has to be computed once, and the cost can be amortized over the number of times the data is
mined. 2) Perform a vertical to horizontal transformation on-the-fly. This can be done quite easily. For each
item i, we scan its tid-list into memory. We inserti in an array indexed by tid for eacht ∈ L(i). This
approach can be implemented with little overhead. For example, Partition performs the opposite inversion
from horizontal to vertical tid-list format on-the-fly, with very little cost. We plan to implement on-the-fly
inversion in the future. However, our current implementation uses the first approach due to its simplicity.

1.5.2 Search Implementation

Bottom-Up Search Figure 1.11 shows the pseudo-code for the bottom-up search.The input to the pro-
cedure is a set of atoms of a sub-latticeS. Frequent itemsets are generated by intersecting the tid-lists of
all distinct pairs of atoms and checking the cardinality of the resulting tid-list. A recursive procedure call is
made with those itemsets found to be frequent at the current level. This process is repeated until all frequent
itemsets have been enumerated. In terms of memory management it is easy to see that we need memory to
store intermediate tid-lists for at most two consecutive levels. Once all the frequent itemsets for the next level
have been generated, the itemsets at the current level can bedeleted.

One practical implementation note for the bottom-up searchusing tid-list intersections is that we found the
candidate pruning to be of little or no benefit. Recall that inApriori, whenever we generate a new candidate
a check is made to see if all its subsets are frequent. If thereis any infrequent subset then we can prune the
candidate. We can implement a similar step in our approach, since each sub-lattice is processed in reverse
lexicographic order, and thus all subset information is available for itemset pruning. Furthermore, for fast
subset checking the frequent itemsets can be stored in a hashtable. However, in our experiments on synthetic
data we found pruning to be of no help. This is mainly because of Lemma 6, which says that the tid-list
intersection is especially efficient for large itemsets. Nevertheless, there may be databases where pruning is
crucial for performance, and we can support pruning for those datasets.
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Bottom-Up(S):
for all atomsAi ∈ S do

Ti = ∅;
for all atomsAj ∈ S, with j > i do

R = Ai ∪ Aj ;
L(R) = L(Ai) ∩ L(Aj);
if σ(R) ≥ min sup then

Ti = Ti ∪ {R}; F|R| = F|R| ∪ {R};
end

end
delete S; //reclaim memory
for all Ti 6= ∅ do Bottom-Up(Ti);

Figure 1.11: Pseudo-code for Bottom-Up Search

Top-Down(S):
R =

⋃

{Ai ∈ S};
if R 6∈ F|R| then
L(R) =

⋂

{L(Ai) | Ai ∈ S};
if σ(R) ≥ min sup then
F|R| = F|R| ∪ {R};

else
for all Y ⊂ R, with |Y | = |R| − 1

if Y /∈ HT then
Top-Down({Aj | Aj ∈ Y });
if σ(Y ) < min sup then HT = HT ∪{Y };

end

Figure 1.12: Pseudo-code for Top-Down Search

Top-Down Search The code for top-down search is given in Figure 1.12. The search begins with the
maximum elementR of the sub-latticeS. A check is made to see if the element is already known to be
frequent. If not we perform ak-way intersection to determine its support. If it is frequent then we are done.
Otherwise, we recursively check the support of each of its(k − 1)-subsets. We also maintain a hash table
HT of itemsets known to be infrequent from previous recursive calls to avoid processing sub-lattices that
have already been examined. In terms of memory management the top-down approach requires that only the
tid-lists of the atoms of a class be in memory.

Hybrid Search Figure 1.13 shows the pseudo-code for the hybrid search. Theinput consists of the atom
setS sorted in descending order of support. The maximal phase begins by intersecting atoms one at a time
until no frequent extension is possible. All the atoms involved in this phase are stored in the setS1. The
remaining atomsS2 = S\S1 enter the bottom-up phase. For each atom inS2, we intersect it with each atom
in S1. The frequent itemsets form the atoms of a new sub-lattice and are solved using the bottom-up search.
This process is then repeated for the other atoms ofS2. The maximal phase requires main-memory only for
the atoms, while the bottom-up phase requires memory for at most two consecutive levels.

1.5.3 Number of Database Scans

Before processing each sub-lattice from the initial decomposition all the relevant item tid-lists are scanned
into memory. The tid-lists for the atoms (frequent 2-itemsets) of each initial sub-lattice are constructed by
intersecting the item tid-lists. All the other frequent itemsets are enumerated by intersecting the tid-lists of
the atoms using the different search procedures. If all the initial classes have disjoint set of items, then each
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Hybrid (S sorted on support):
R = A1; S1 = {A1};
for all Ai ∈ S, i > 1 do /* Maximal Phase */

R = R ∪ Ai; L(R) = L(R) ∩ L(Ai);
if σ(R) ≥ min sup then

S1 = S1 ∪ {Ai}; F|R| = F|R| ∪ {R};
elsebreak;

end
S2 = S − S1;
for all Bi ∈ S2 do /* Bottom-Up Phase */

Ti = {Xj | σ(Xj) ≥ min sup, L(Xj) = L(Bi) ∩ L(Aj), ∀Aj ∈ S1};
S1 = S1 ∪ {Bi};
if Ti 6= ∅ then Bottom-Up(Ti);

end

Figure 1.13: Pseudo-code for Hybrid Search

item’s tid-list is scanned from disk only once during the entire frequent itemset enumeration process over
all sub-lattices. In the general case there will be some degree of overlap of items among the different sub-
lattices. However only the database portion correspondingto the frequent items will need to be scanned,
which can be a lot smaller than the entire database. Furthermore, sub-lattices sharing many common items
can be processed in a batch mode to minimize disk access. Thuswe claim that our algorithms will usually
require a few database scans after computingF2, in contrast to the current approaches which require as many
scan as the longest frequent itemset.

There are cases where more concern has to be paid to minimize database scans. For example if there is a
large degree of overlap among the atoms of different classes, then it is best to adopt a mixed approach where
we simply applyApriori for the initial levels, and then switch to our methods when the overlap is manageable.
What this means is that we need to go beyond a simple one level partitioning based onθ1, instead we might
have to useθ2 or θ3.

1.6 Parallel Algorithm Design and Implementation

In this section we will discuss the design and implementation of new parallel algorithms for mining frequent
itemsets. We present four new parallel algorithms, depending on the decomposition relation used to generate
independent classes, and the lattice search scheme used.

• Par-Eclat: It uses prefix-based equivalence relationθ1 along with bottom-up search. It enumerates all
frequent itemsets.

• Par-MaxEclat: It uses prefix-based equivalence relationθ1 along with hybrid search. It enumerates the
“long” maximal frequent itemsets, and some non-maximal ones.

• Par-Clique: It uses maximal-clique-basedpseudo-equivalence relationφ1 along with bottom-up search.
It enumerates all frequent itemsets.

• Par-MaxClique: It uses maximal-clique-based pseudo-equivalencerelationφ1 along with hybrid search.
It enumerates the “long” maximal frequent itemsets, and some non-maximal ones.

We next present the parallel design and implementation issues, which are applicable to all four algorithms.

1.6.1 Initial Database Partitioning

We assume that the database is in the vertical format, and that we have the support counts of all 2-itemsets
available locally on each host. We further assume that the database of tid-lists is initially partitioned among all
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the hosts. This partitioning is done off-line, similar to the assumption made inCount Distribution(Agrawal
& Shafer 1996). The tid-lists are partitioned so that the total length of all tid-lists in the local portions on each
host are roughly equal. This is achieved using a greedy algorithm. The items are sorted on their support, and
the next item is assigned to the least loaded host. Note that the entire tid-list for an item resides on a host.
Figure 1.15 shows the original database, and the resultant initial partition on two processors.

Begin ParAssociation:
/* Initialization Phase*/
F2 = { Set of Frequent 2-Itemsets}
Generate Independent Classes fromF2 using:

Prefix-Based or Maximal-Clique-Based Partitioning
Schedule Classes among the processorsP
Scan local database partition
Transmit relevant tid-lists to other processors
Receive tid-lists from other processors

/* Asynchronous Phase */
for each assigned Class,C2

Compute Frequent Itemsets: Bottom-Up(C2) or Hybrid(C2)

/* Final Reduction Phase*/
Aggregate Results and Output Associations

End ParAssociation

Figure 1.14: Pseudo-code for the New Parallel Algorithms

1.6.2 Parallel Design and Implementation

The new algorithms overcome the shortcomings of theCountandCandidate Distributionalgorithms. They
utilize the aggregate memory of the system by partitioning the itemsets into disjoint sets, which are assigned
to different processors. The dependence among the processors is decoupled right in the beginning so that the
redistribution cost can be amortized by the later iterations. Since each processor can proceed independently,
there is no costly synchronization at the end of each iteration. Furthermore the new algorithms use the vertical
database layout which clusters all relevant information inan itemset’s tid-list. Each processor computes all
the frequent itemsets from one class before proceeding to the next. The local database partition is scanned
only once. In contrastCandidate Distributionmust scan it once in each iteration. The new algorithms don’t
pay the extra computation overhead of building or searchingcomplex data structures, nor do they have to
generate all the subsets of each transaction. As the intersection is performed an itemset can immediately be
inserted inFk. Notice that the tid-lists also automatically prune irrelevant transactions. As the itemset size
increases, the size of the tid-list decreases, resulting invery fast intersections. There are two distinct phases
in the algorithms. The initialization phase, responsible for communicating the tid-lists among the processors,
and the asynchronous phase, which generates frequent itemsets. The pseudo-code for the new algorithms is
shown in Figure 1.14, and a pictorial representation of the different phases is shown in Figure 1.15.

Initialization Phase

The initialization step consists of three sub-steps. First, the support counts for 2-itemsets from the preprocess-
ing step are read, and the frequent ones are inserted intoF2. Second, applying one of the two decomposition
schemes toF2 – prefix-based or maximal-clique-based – the set of independent classes is generated. These
classes are then scheduled among all the processors so that asuitable level of load-balancing can be achieved.
Third, the database is repartitioned so that each processorhas on its local disk the tid-lists of all 1-itemsets in
any class assigned to it.
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[C] = { CD, CT, CW }
[D] = { DW }

Processor 1 (P1)

EQUIVALENCE CLASSES

Partitioned Database After Tid-List Exchange
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Original Database
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Figure 1.15: Database Partitioning and Class Scheduling
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Figure 1.16: ThePar-EclatAlgorithm
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Class Scheduling We first partitionF2 into equivalence classes using prefix-based or maximal-clique-
based partitioning. We next generate a schedule of the equivalence classes on the different processors in a
manner minimizing the load imbalance and minimizing the inter-process communication required in partially
replicating the tid-lists. Note that it may be necessary to sacrifice some amount of load balancing for a better
communication efficiency. For this reason, whole equivalence classes are assigned to the same processor.
Load balancing is achieved by assigning a weight to each equivalence class based on the number of elements
in the class. Since we have to consider all pairs of atoms for the next iteration, we assign the weight

(

s

2

)

to a
class withs atoms. Once the weights are assigned we generate a schedule using a greedy heuristic. We sort
the classes on the weights, and assign each class in turn to the least loaded processor, i.e., one having the least
total weight at that point. Ties are broken by selecting the processor with the smaller identifier. These steps
are done concurrently on all the processors since all of themhave access to the globalF2. Figure 1.15 shows
how the prefix-based classes of our example database (from Figure 1.1) are scheduled on two processors.
Notice how an entire class is assigned to a single processor.Although the number of atoms of a class gives a
good indication of the amount of work that needs to be done forthat class, better heuristics for generating the
weights are possible. For example, if we could better estimate the number of frequent itemsets that would be
enumerated from a class we could use that as our weight.

Tid-list Communication Once the classes have been scheduled among the processors, each processor has
to exchange information with every other processor to read the non-local tid-lists over the Memory Channel
network. To minimize communication, and being aware of the fact that in our configuration there is only one
local disk per host (recall that our cluster has 8 hosts, with4 processors per host), only the hosts take part
in the tid-list exchange. Additional processes on each of the 8 hosts are spawned only in the asynchronous
phase. To accomplish the inter-process tid-list communication, each processor scans the item tid-lists in its
local database partition and writes it to a transmit region which is mapped for receive on other processors.
The other processors extract the tid-list from the receive region if it belongs to any class assigned to them.
For example, Figure 1.15 shows the initial local database ontwo hosts, and the final local database after the
tid-list communication.

Asynchronous Phase

At the end of the initialization step, the relevant tid-lists are available locally on each host, thus each pro-
cessor can independently generate the frequent itemsets from its assigned classes eliminating the need for
synchronization with other processors. Each class is processed in its entirety before moving on to the next
class in the schedule. This step involves scanning the localdatabase partition only once (depending on the
amount of overlap among the classes). We can thus benefit fromhuge I/O savings. Since each class induces a
sublattice, depending on the algorithm, we either use a bottom-up traversal to generate all frequent itemsets,
or we use the hybrid traversal to generate only the “long” maximal and other frequent itemsets. The pseudo-
code and implementation of the two lattice search schemes was presented in the last section (see Figure 1.11
and Figure 1.12). As an illustration of the various steps, thePar-Eclatalgorithm is shown in Figure 1.16. At
the end of the asynchronous phase we accumulate all the results from each processor and print them out.

1.6.3 Salient Features of the New Algorithms

In this section we will recapitulate the salient features ofour proposed algorithms, contrasting them against
Count Distribution. Our algorithms differ in the following respect:

• They utilize the aggregate memory of the parallel system by partitioning the candidate itemsets among
the processors using the prefix-based and maximal-clique-based decomposition schemes.

• They decouple the processors right in the beginning by repartitioning the database, so that each pro-
cessor can compute the frequent itemsets independently. This eliminates the need for communicating
the frequent itemsets at the end of each iteration.

• They use the vertical database layout which clusters the transactions containing an itemset into tid-
lists. Using this layout enables our algorithms to scan the local database partition only a few times on
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each processor. It usually takes two scans, the first for communicating the tid-lists, and the second for
obtaining the frequent itemsets. In contrast,Count Distributionscans the database multiple times –
once during each iteration.

• To compute frequent itemsets, they performs simple intersections on two tid-lists. There is no extra
overhead associated with building and searching complex hash tree data structures. Such complicated
hash structures also suffer from poor cache locality (Parthasarathy, Zaki, & Li 1998). In our algorithms,
all the available memory is utilized to keep tid-lists in memory which results in good locality. As larger
itemsets are generated the size of tid-lists decreases, resulting in very fast intersections.

• Our algorithms avoid the overhead of generating all the subsets of a transaction and checking them
against the candidate hash tree during support counting.

1.7 Experimental Results

All the experiments were performed on a 32-processor (8 hosts, 4 processors/host) Digital Alpha cluster inter-
connected via the Memory Channel network (Gillett 1996). Each Alpha processor runs at 233MHz. There’s
a total of 256MB of main memory per host (shared among the 4 processors on that host). Each host also has
a 2GB local disk, out of which less than 500MB was available tous.

The Digital Memory Channel Digital’s Memory Channel network provides applications with a global
address space using memory mapped regions. A region can be mapped into a process’ address space for
transmit, receive, or both. Virtual addresses for transmitregions map into physical addresses located in I/O
space on the Memory Channel’s PCI adapter. Virtual addresses for receive regions map into physical RAM.
Writes into transmit regions are collected by the source Memory Channel adapter, forwarded to destination
Memory Channel adapters through a hub, and transferred via DMA to receive regions with the same global
identifier. Figure 1.17 shows the Memory Channel space (The lined region is mapped for both transmit and
receive on node 1 and for receive on node 2; The gray region is mapped for receive on node 1 and for transmit
on node 2). Regions within a node can be shared across different processors on that node. Writes originating
on a given node will be sent to receive regions on that same node only if loop-backhas been enabled for the
region. We do not use the loop-back feature. We usewrite-doublinginstead, where each processor writes
to its receive region and then to its transmit region, so thatprocesses on a host can see modification made
by other processes on the same host. Though we pay the cost of double writing, we reduce the amount of
messages to the hub.

Memory Channel
Address Space
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Figure 1.17: a) The Memory Channel Space, b) Number of Frequent Itemsets

In our system unicast and multicast process-to-process writes have a latency of 5.2µs, with per-link
transfer bandwidths of 30 MB/s. Memory Channel peak aggregate bandwidth is also about 32 MB/s. Memory
Channel guarantees write ordering and local cache coherence. Two writes issued to the same transmit region
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(even on different nodes) will appear in the same order in every receive region. When a write appears in a
receive region it invalidates any locally cached copies of its line.

Database T I D1 D1 Size D4 D4 Size D6 Size
T10.I4.D2084K 10 4 2,084,000 91 MB 8,336,000 364MB 546MB
T15.I4.D1471K 15 4 1,471,000 93 MB 5,884,000 372MB 558MB
T20.I6.D1137K 20 6 1,137,000 92 MB 4,548,000 368MB 552MB

Table 1.1: Database Properties

Synthetic Databases All the partitioned databases reside on the local disks of each processor. We used
different synthetic databases that have been used as benchmark databases for many association rules algo-
rithms (Agrawal, Imielinski, & Swami 1993; Agrawalet al. 1996; Brinet al. 1997; Houtsma & Swami 1995;
Lin & Kedem 1998; Lin & Dunham 1998; Park, Chen, & Yu 1995a; Savasere, Omiecinski, & Navathe 1995;
Zaki et al. 1997b). The dataset generation procedure is described in (Agrawalet al. 1996), and the code is
publicly available from IBM (IBM ).

These datasets mimic the transactions in a retailing environment, where people tend to buy sets of items
together, the so called potential maximal frequent set. Thesize of the maximal elements is clustered around a
mean, with a few long itemsets. A transaction may contain oneor more of such frequent sets. The transaction
size is also clustered around a mean, but a few of them may contain many items.

Let D denote the number of transactions,T the average transaction size,I the size of a maximal poten-
tially frequent itemset,L the number of maximal potentially frequent itemsets, andN the number of items.
The data is generated using the following procedure. We firstgenerateL maximal itemsets of average size
I, by choosing from theN items. We next generateD transactions of average sizeT by choosing from
theL maximal itemsets. We refer the reader to (Agrawal & Srikant 1994) for more detail on the database
generation.

Table 1.1 shows the databases used and their properties. Thenumber of transactions is denoted asDr,
wherer is the replication factor. Using a replication factor allows us to keep the number of frequent itemsets
the same for a given minimum support, but it allows us to studylarger databases. Forr = 1, all the databases
are roughly 90MB in size. Except for the sizeup experiments,all results shown are on databases with a
replication factor ofr = 4 (≈360MB). We could not go beyond a replication factor of 6 (≈540MB; used
in sizeup experiments) since the repartitioned database would become too large to fit on disk. The average
transaction size is denoted asT , and the average maximal potentially frequent itemset sizeasI. The number
of maximal potentially frequent itemsets wasL = 2000, and the number of items wasN = 1000. All
the experiments were performed with a minimum support valueof 0.25%. The number of large itemsets
discovered are shown in Figure 1.17. For a fair comparison, all algorithms discover frequentk-itemsets for
k ≥ 3, using the supports for the 2-itemsets from the preprocessing step.

1.7.1 Performance Comparison

In this section we will compare the performance of our new algorithms withCount Distribution(henceforth
referred to asCD), which was shown to be superior to bothData andCandidate Distribution(Agrawal &
Shafer 1996). In all the figures the different parallel configurations are represented asHx.Py.T z, where
H = x denotes the number of hosts,P = y the number of processors per host, andT = H · P = z, the total
number of processors used in the experiments. Figure 1.18 shows the total execution time for the different
databases and on different parallel configurations. The configurations have been arranged in increasing order
of T . Configurations with the sameT are arranged in increasing order ofH . The left column comparesPar-
MaxClique, the best new algorithm, withPar-EclatandCD, while the right column compares only the new
algorithms, so that the differences among them become more apparent. It can be clearly seen thatPar-Eclat
out-performsCD for almost all configurations on all the databases, with improvements as high as a factor
of 5. If we compare with the best new algorithmPar-MaxClique, we see an improvement of upto an order
of magnitude overCD. Even more dramatic improvements are possible for lower values of minimum sup-
port (Zaki, Parthasarathy, & Li 1997). An interesting trendin the figures is that the performance gap seems



22 CHAPTER 1. HIERARCHICAL PARALLEL ALGORITHMS FOR ASSOCIATION MINING

H1.P1.T1 H1.P2.T2 H2.P1.T2 H1.P4.T4 H2.P2.T4 H4.P1.T4 H2.P4.T8 H4.P2.T8 H8.P1.T8 H4.P4.T16 H8.P2.T16 H8.P4.T32
0

200

400

600

800

1000

1200

T
o

ta
l 
E

x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

Count Distribution

Par-Eclat

Par-MaxClique

T10.I4.D2084K

H1.P1.T1 H1.P2.T2 H2.P1.T2 H1.P4.T4 H2.P2.T4 H4.P1.T4 H2.P4.T8 H4.P2.T8 H8.P1.T8 H4.P4.T16 H8.P2.T16 H8.P4.T32
0

20

40

60

80

100

120

140

160

180

200

T
o

ta
l 
E

x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

Par-Eclat

Par-Clique

Par-MaxEclat

Par-MaxClique

T10.I4.D2084K

H1.P1.T1 H1.P2.T2 H2.P1.T2 H1.P4.T4 H2.P2.T4 H4.P1.T4 H2.P4.T8 H4.P2.T8 H8.P1.T8 H4.P4.T16 H8.P2.T16 H8.P4.T32
0

200

400

600

800

1000

1200

1400

1600

1800

2000

T
o

ta
l 
E

x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

Count Distribution

Par-Eclat

Par-MaxClique

T15.I4.D1471K

H1.P1.T1 H1.P2.T2 H2.P1.T2 H1.P4.T4 H2.P2.T4 H4.P1.T4 H2.P4.T8 H4.P2.T8 H8.P1.T8 H4.P4.T16 H8.P2.T16 H8.P4.T32
0

50

100

150

200

250

300

350

400

450

T
o

ta
l 
E

x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

Par-Eclat

Par-Clique

Par-MaxEclat

Par-MaxClique

T15.I4.D1471K

H1.P1.T1 H1.P2.T2 H2.P1.T2 H1.P4.T4 H2.P2.T4 H4.P1.T4 H2.P4.T8 H4.P2.T8 H8.P1.T8 H4.P4.T16 H8.P2.T16 H8.P4.T32
0

1000

2000

3000

4000

5000

6000

T
o

ta
l 
E

x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

Count Distribution

Par-Eclat

Par-MaxClqiue

T20.I6.D1137K

H1.P1.T1 H1.P2.T2 H2.P1.T2 H1.P4.T4 H2.P2.T4 H4.P1.T4 H2.P4.T8 H4.P2.T8 H8.P1.T8 H4.P4.T16 H8.P2.T16 H8.P4.T32
0

200

400

600

800

1000

1200

T
o

ta
l 
E

x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

Par-Eclat

Par-Clique

Par-MaxEclat

Par-MaxClique

T20.I6.D1137K

Figure 1.18: Parallel Performance
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to decrease at larger configurations, withCD actually performing better on the 32 processor configuration
H8.P4.T32 for the databases T10.I4.D2084K and T15.I4.D1471K. To see why, consider Figure 1.17, which
shows the total number of frequent itemsets of different sizes for the different databases. Also from Fig-
ure 1.19, which shows the initial database repartitioning and tid-list communication cost as a percentage of
the total execution time ofPar-Eclat, it becomes clear that there is not enough work for these two databases
to sufficiently offset the communication cost, consequently more than 70% of the time is spent in the ini-
tialization phase. For T20.I6.D1137K, which has more work,Par-Eclat is still about twice as fast asCD
on 32 processors. The basic argument falls on the computation versus communication trade-off in parallel
computing. Whenever this ratio is high we would expectPar-Eclat to out-performCD. We would also ex-
pect the relative improvements ofPar-EclatoverCD to be better for larger databases. Unfortunately due to
disk space constraints we were not able to test the algorithms on larger databases. In all except theH = 1
configurations, the local database partition is less than available memory. Thus forCD the entire database is
cached after the first scan. The performance ofCD is thus a best case scenario for it since the results do not
include the “real” hitCD would have taken from multiple disk scans. As mentioned in section 1.6,Par-Eclat
was designed to scan the database only once during frequent itemset computation, and would thus benefit
more with larger database size.

Figure 1.18 (right column) shows the differences among the new algorithms for different databases and
parallel configurations. There are several parameters affecting their performance. It can be seen that in
generalPar-CliqueandPar-MaxCliqueperform better thanPar-EclatandPar-MaxEclat, respectively. This
is because they use the maximal-clique-based decomposition, which generates more precise classes. On the
other axis, in generalPar-MaxCliqueandPar-MaxEclat, out-performPar-CliqueandPar-Eclat, respectively.
This is because the hybrid lattice search scheme quickly generates the long maximal frequent itemsets, saving
on the number of intersections. The results are also dependent on the number of frequent itemsets. The larger
the number of frequent itemsets, the more the opportunity for the hybrid approach to save on the joins. For
example, consider Figure 1.19, which shows the total numberof tid-list intersections performed for the four
algorithms on the three databases. For T20.I6.D1137K, which has the largest number of frequent itemsets
(see Figure 1.17),Par-MaxCliquecuts down the number of intersections by more than 60% overPar-Eclat.
The reduction was about 20% forPar-MaxEclat, and 35% forPar-Clique. These factors are responsible for
the trends indicated above. The winner in terms of the total execution time is clearlyPar-MaxClique, with
improvements overPar-Eclatas high as 40%.
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Figure 1.20: Parallel Speedup and Sizeup (H4.P1.T4)
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1.7.2 Sensitivity Analysis

Speedup:The goal of the speedup experiments is to see how the new algorithms perform as we increase the
number of processors while keeping the data size constant. Figure 1.20, shows the speedup on the different
databases and parallel configurations. Due to disk constraints we used a replication factor of 4, for database
sizes of approximately 360MB. The speedup numbers are not asimpressive at first glance. However, this is
not surprising. For example, on the largest configuration H8.P4.T32, there is only about 11MB of data per
processor. Combined with the fact that the amount of computation is quite small (see Figure 1.17), and that
about 50% to 70% of the time is spent in tid-list communication (see Figure 1.19), we see a maximum speedup
of about 5. Another reason is that the communication involves only the 8 hosts. Additional processes on a
host are only spawned after the initialization phase, whichthus represents a partially-parallel phase, limiting
the speedups. If we take out the communication costs we see a maximum speedup of 12 to 16. An interesting
trend is the step-effect seen in the speedup graphs. For the configurations which have the same number of
total processors, the ones with more hosts perform better. Also, for configurations with more total processors,
with P = 4, the configurations immediate preceding it, with only 1 processor per host, performs better. In
both cases, the reason is that increasing the number of processors on a given host, causes increased memory
contention (bus traffic), and increased disk contention, aseach processor tries to access the database from the
local disk at the same time.
Sizeup: The goal of the sizeup experiments is to see how the new algorithms perform as we increase the
size of the database while keeping the number of processors constant. For the sizeup experiments we fixed
the parallel configuration to H4.P1.T4, and varied the database replication factor from 1 to 6, with the total
database size ranging from about 90MB to 540MB. Figure 1.20 shows the sizeup for the four algorithms
on the different databases. The figures indicate an almost linear sizeup. The slightly upward bend is due
to the relative computation versus communication cost. Thelarger the database the more the time spent in
communication, while the tid-list intersection cost doesn’t increase at the same pace. Moreover, the number
of frequent itemsets remains constant (since we use percentages for minimum support, as opposed to absolute
counts) for all replication factors.

1.8 Conclusions

In this paper we presented new parallel algorithms for efficient enumeration of frequent itemsets. We p-
resented a lattice-theoretic approach to partition the frequent itemset search space into small, independent
sub-spaces using either prefix-based or maximal-clique-based methods. Each sub-problem can be solved in
main-memory using bottom-up, top-down, or a hybrid search procedure, and the entire process usually takes
only a few database scans.

The set of independent classes is scheduled among the processors, and the database is also selectively
replicated so that the portion of the database needed for thecomputation of associations is local to each
processor. After the initial set-up phase the algorithms donot need any further communication or synchro-
nization. The algorithms minimize I/O overheads by scanning the local database portion only two times.
Once in the set-up phase, and once when processing all the itemset classes. We implemented the algorithms
on a 32 processor Digital cluster interconnected with the Memory Channel network, and compared them
against a well known parallel algorithmCount Distribution(Agrawal & Shafer 1996). Experimental results
indicate that our best parallel algorithmPar-MaxCliqueoutperformedCount Distributionby upto an order of
magnitude.
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