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ABSTRACT

Discrimination-aware models in machine learning are a recent topic
of study that aim to minimize the adverse impact of machine learn-
ing decisions for certain groups of people due to ethical and legal
implications. We propose a benchmark framework for assessing
discrimination-aware models. Our framework consists of systemat-
ically generated biased datasets that are similar to real world data,
created by a Bayesian network approach. Experimental results show
that we can assess the quality of techniques through known metrics
of discrimination, and our flexible framework can be extended to
most real datasets and fairness measures to support a diversity of
assessments.
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1 INTRODUCTION

Discrimination-aware learning is a topic of research that aims at
minimizing the impact of bias against certain groups due to ethi-
cal reasons and legal implications. Given a labeled dataset whose

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

AIES ’19, January 27-28, 2019, Honolulu, HI, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6324-2/19/01...$15.00
https://doi.org/10.1145/3306618.3314262

Wagner Meira Jr
meira@dcc.ufmg.br
Universidade Federal de Minas Gerais
Belo Horizonte, Minas Gerais, Brazil

Mohammed J. Zaki
zaki@cs.rpi.edu
Rensselaer Polytechnic Institute
Troy, New York

records represent individuals, let its attributes be divided into non-
protected and protected attributes, such as race and gender. The
problem consists of building a classifier that takes the non-protected
attributes of an individual and maps them to a class label, so that
the classifier has minimum discrimination and maximum accuracy.

There are several recent works that tackle the issue of
discrimination-aware learning; see for example the survey by [5] on
fairness in machine learning. However, it is interesting to note that
there is no consensus on the best technique for a given application
scenario, since it also depends on the level of discrimination that
is inherent to the dataset being targeted. The recent study by [11]
discusses the impossibility of a classifier to satisfy multiple notions
of fairness. This is one of the reasons why researchers have put
their efforts on minimizing the effect of biased data on the predic-
tions. We argue that an effective strategy to assess discrimination-
aware learning models is by running them on scenarios where the
discrimination-related parameters differ, so that we can observe
how well the models behave. The main contribution of this work is
a framework for comparing discrimination-aware learning models
— the first such benchmark framework. Our framework comprises
systematically generated biased datasets that are sampled from
Bayesian networks learned from real world data. Our main concern
is to explore alternative discrimination scenarios, that is, we want to
learn from data representing different levels of bias for the purpose
of analyzing the behavior of techniques when bias levels differ. Our
work focuses on two metrics for assessing discrimination: disparate
impact and disparate mistreatment [18]. However, our approach
may be extended to other metrics (see [20]) as well.

2 RELATED WORK

Most of the studies in this area may be divided into two groups
[5]: discrimination discovery, which focuses on studying metrics
and identifying how much discrimination there is in a dataset, and
discrimination prevention, which focuses on building classification
models that are less likely to produce discriminatory results.

For discrimination discovery there are a number of works that aim
at identifying patterns of discrimination in data [15, 17], including
metrics to quantify the amount of discrimination. Zliobaite [20]
surveys several such metrics; she defines the mean difference as
the most commonly used metric in early works, also called slifd
[16] or disparate impact. Zafar et al. [18] propose a metric called
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disparate mistreatment, which measures the difference between
misclassifications.

Discrimination prevention methods can be divided into three
groups: pre-processing, in-processing and post-processing techniques
[5]. We focus more on Pre-processing techniques [4, 9], since they
modify the training set in order to make it as discrimination-free
as possible, so that a classifier becomes less prone to exhibit bias.
In-processing techniques [3, 10, 18] work by changing the classi-
fier to produce less discriminating models, whereas Post-processing
techniques [6] change the outcome of classification models.

Regarding discrimination-related assessment, several previous
works on discrimination-aware learning generate synthetic data for
evaluation [8, 21]. However, they create simple models with a few
variables and their conditional dependencies, containing protected
and non-protected artificial attributes and a binary class. In contrast,
we generate biased data sampled from Bayesian networks learned
from real world data, instead of purely synthetic data.

There are works that employ Bayesian networks to deal with
discrimination discovery and prevention task. Bonchi et al. (2017)
address the problem of learning probabilistic causal structures of
discrimination from datasets. Mancuhan et al. (2014) use Bayesian
networks for the task of bias prevention. Our work learns these
structures, identifies discrimination patterns and uses them to sam-
ple data at different levels of bias. While previous approaches fo-
cused on discovering and mitigating discrimination, we employ
sampled data from Bayesian networks in order to evaluate the
quality of discrimination prevention techniques.

3 DEFINITIONS

A discrimination-aware learning model usually exploits the trade-
off between accuracy and discrimination. The task is usually framed
as a binary classification problem, where not only the accuracy
should be maximized, but also discrimination has to be minimized.
The classification score is defined according to the probabilities of
outcomes for different groups of individuals. These groups are sets
of individuals who share the same value of a specific attribute and,
by contrasting their outcomes, we assess the model discrimination.

Formally, we are given a labeled dataset D where each record
represents an individual. For each individual there are two sets
of attributes X = {x1,...,x,} and S = {s1, ..., sm }. We call the set
X the legally usable attributes, or non-protected attributes, which,
in theory, may be used in decision making without any legal im-
plications, e.g., annual income. We call the set S the non-legally
usable attributes, or protected attributes. We are not supposed to
use any attribute from S in a decision making process because they
are protected by law, for instance, race, sex.

The class label y € {+, —} is the variable the model tries to pre-
dict for each individual. A positive class label y = + (also denoted
y*) expresses a favorable outcome for the individual; alternatively,
a negative class label y = — (also denoted y~) expresses an unfa-
vorable outcome. An example is in credit scoring, where a bank
wants to decide whether a customer has good credit score or not. A
good credit score is represented by y = +, while a bad credit score
is represented by y = —.

Let s be a protected attribute taking on two values {g, §}. Here,
the assumptions is that individuals belonging to g (that is s = g)

usually suffer from discriminatory conditions, and are called the
deprived group, and individuals not belonging to g (that is, s # g
or s = g) usually have an unfair advantage in models, and they are
called the favored group. In order to measure the discrimination
with respect to a protected attribute s for individuals that belong
to a group g, we quantify the difference between probabilities of
positive outcomes for individuals that belong to g, and those who
don’t belong to g, as follows:

Definition 3.1. Let D be a dataset with labeled binary classes
y € {+,—}, and a protected attribute s € {g, g} that defines indi-
viduals belonging to a group g or not belonging to the group 4.
The discrimination discp s 4 in D with respect to the attribute s for
individuals from g is defined by the following equation:

discp,s,g = P(y*|s = 9) = P(y™|s = g) (1)
That is, the difference between the probability of positive class
for the favored (g) versus the disfavored group (g). For example,
members of the favored group may have a higher probability of
a good credit score. This definition is widely used for measuring
discrimination [6, 9] and it is often referred to as disparate impact.
Another way of measuring discrimination is through the two
metrics presented in Zafar et al. [18] as disparate mistreatment.
These are the metrics for misclassification that take into account
the difference between false-positive and false-negative rates for
individuals of different groups, defined as follows:

Definition 3.2. Let a classifier f assign for every record in D a
class label . The disparate mistreatment of the classifier f in the
dataset D with respect to the attribute s between the groups g and
g is defined as:

Dfp(D,s,g.f) = PG Is = g,y7) = P@*|s = g,y7) (2
Dfn(p,s,g.f) = PG Is = g:y") =P |s = g, y") ®3)

The favored group g may have a higher false-positive rate (called
overestimation) and a lower false negative rate (called underes-
timation) compared to the disfavored group g. These metrics seek
to measure the extent of this problem for a given classifier f.

4 BENCHMARK METHODOLOGY

Our benchmark framework comprises systematically generated
biased datasets that are derived from Bayesian networks learned
from real-world data. We learn an approximate network structure
that describes a dataset, which in turn depends on the conditional
probabilities between the attributes. Modified Bayesian networks
with different degrees of bias are used to generate new datasets
that are used for evaluating discrimination-aware models.

4.1 Estimating Bayesian Networks

A Bayesian network is a probabilistic graphical model that maps
conditional dependencies of random variables into a directed acyclic
graph. We use an estimated Bayesian network to generate synthetic
data, which allows us to quantify how much influence a protected
attribute has on the outcome of a classification model.

To learn the structure of a Bayesian network in order to study
causal relationships between the variables, we use the popular R li-
brary bnlearn [14]. Knowing the Bayesian network that represents



a given data allows us to reproduce the characteristics inherent to
the original data and to also adjust specific parameters to generate
diverse scenarios. By learning these structures we can modify any
node’s conditional probabilities and are thus able to calibrate the
bias of an outcome with respect to a protected attribute. Currently,
we employ two methods for learning Bayesian Networks, Hill-
Climbing greedy search and Tabu Search algorithm, both described
in [14].

4.2 Modifying probabilities

Once we have learned a Bayesian network that represents the data,
we can change the conditional probabilities of specific nodes. By
doing this, we create a scenario where some of the nodes have
different degrees of influence on other nodes. The modification
is performed by selecting a specific attribute of our interest, that
is, a protected attribute s. This attribute is represented by a node
and it will have a direct or indirect influence on the outcome. The
influence is observed in the conditional probability table of the
outcome node.

Suppose we have a target attribute s € {g, g} and the outcome y €
{—, +}. Recall that g represents a deprived group and g represents a
favored group. We modify the Bayesian network by changing values
in the probability table. Let 0 < f < 1 be the level of artificial bias
we want to insert for this node. The new probability P’(y = +|s = g)
is defined as:

Plly=+ls=g)=Ply=+s=9)(1-p) )

We only change the probabilities for the deprived group (s = g)
because, if we change the conditional probabilities of the other
group, we will be inserting twice the amount of bias. Our method-
ology consists of generating n Bayesian networks for each dataset.
Each Bayesian network is generated with an increasing f (from 0.0
to 1.0).

Table 1: Toy conditional probability table

‘ $s=g s=g
P(y=-ls) | 0.63 0.80 — 0.90
P(y = +|s) | 0.37 0.20 — 0.10

Table 1 shows a toy example of conditional probabilities of the
outcome given a variable s. Using the disparate impact score we
can see that the discrimination against the group g is 0.17 since
P(y*|g) — P(y*|g) = 0.37 — 0.20 = 0.17. Suppose we want to insert
a bias level § of 0.5. In order to do this, we change the probability
under the column s = g, as shown in Table 1. Now we can observe
that the discrimination against the group g is 0.27 (0.37 — 0.10),
which means that we have increased the resulting discrimination.

4.3 Sampling and Evaluation

After learning a Bayesian network with the conditional probabili-
ties on its nodes, we can then sample data from it. Since we have
the frequency of each attribute in the dataset, we can sample this
structure, so that samples remain similar to the real data regarding
the probability of each individual attribute. A sample consists of
randomly generated observations, where each attribute value in

an observation is generated according the probability table learned
from the original data. For each bias level introduced, we gener-
ate random samples that form the corresponding biased training
dataset. These systematically biased datasets are used for evaluating
discrimination models and metrics. Those techniques either pre-
process the input data and generate a new data or use the input data
without any pre-processing and provide a discrimination-aware
classification model.

5 EXPERIMENTS

We compare well-known discrimination-aware techniques by test-
ing them on the systematically biased datasets. We mainly test pre-
processing techniques and some in-processing techniques. When a
pre-processing technique is employed, it outputs a modified dataset
that is used by conventional classification models. The test set
is the original real data that was used to generate the Bayesian
network. Evaluation is performed in two different ways. First, by
comparing the discrimination of the prediction to the accuracy on
the test set, and second, by measuring overestimation (eq. (2)) and
underestimation (eq. (3)) of the resulting predictions.

5.1 Discrimination-aware Techniques

The techniques we compare are listed below.

5.1.1  Baseline: It consists of removing the protected attribute from
the training set. It has been argued that this may even increase dis-
crimination [15] due to the fact that some of the attributes may
describe the protected one. For example, the neighborhood informa-
tion may carry racial information about individuals. This problem
is known as redlining.

5.1.2  Calders et al. [3]: propose several pre-processing approaches
for dealing with the problem of discrimination aware learning.
These are:

e Massaging changes the class label of individuals in order to
balance positive outcomes between groups. Individuals of
the deprived group from the negative class are reassigned
to the positive class, and individuals of the favored group
having a positive class are reassigned to the negative class.
Instances are selected for class reassignment based on a score
learned by a ranker.

o Re-weighting assigns higher weights to individuals of the
deprived group that have a positive class label and to in-
dividuals of the favored group that have a negative class
label.
Uniform Sampling applies the following rule on a randomly
chosen instance: if the instance is from the deprived group
with negative class, it is removed, otherwise, if it is from the
positive class, it is duplicated. Likewise, if the instance is of
the favored group with a positive class is removed, but if it
has a negative class it is duplicated.

o Preferential Sampling chooses instances based on a ranker
like in the Massaging technique. The change rules are the
same as in uniform sampling.

5.1.3 Black Box Auditing (Auditor). Black Box Auditing (https:
//github.com/algofairness/BlackBoxAuditing) is an implementation
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of Gradient Feature Auditing (GFA) introduced in [1]. This tech-
nique works by repairing the dataset via a pre-processing technique,
which means that it changes attribute labels. The resulting repaired
dataset is expected to have lower discrimination. We run the data
repairer described by [4] at the repair levels of 0.25, 0.50 and 0.75.

5.2 Datasets

We test on the following original real-world datasets. The Adult
dataset [12], also known as Census Income, is a widely used dataset
in previous discrimination-aware learning studies. The task is to
predict whether an individual has a yearly income greater than
$50K or not (i.e., high vs. low income). It has 48,842 instances with
14 attributes. The protected attribute is sex and the original dataset
has an inherent disparate impact against women (equal to 0.19).
For generating biased data, we increase the influence of the feature
relationship on the outcome, thus making it less likely that wives
have high income, thus increasing the bias against women. The
Pro Publica COMPAS dataset (https://github.com/propublica/
compas-analysis) records racial bias on recidivism scores. The data
contains information from defendants such as race, age, criminal
history and whether the defendant had committed a crime within
a two-year window. It has 6,150 instances with 13 attributes. The
sensitive attribute is race, which can be either “Caucasian” or
“African-American”. We modified the influence of the variable race
on the outcome for generating biased data. Dutch census [3] is also
a demographic census. We use it to make predictions of whether
an individual has a “high level” occupation or not. This dataset has
11 attributes and we define sex as the protected attribute.

5.3 Experimental setup

We evaluate various discrimination-aware techniques on our set of
systematically biased datasets generated from the real-world data
mentioned above. This set consists of 4 training datasets with in-
creasing levels of artificial bias () against individuals of the defined
deprived group. For the classifier, we use the Weka implementa-
tion of the C4.5 decision tree [7]. We reproduced the experimental
setup described by the authors of the techniques and used default
parameters [12, 21]. Thereafter, we measure the accuracy and dis-
crimination observed when the original data is used as the test-
ing data. Note that we refer to disparate impact as discrimination
(eq. (1)), and measure disparate mistreatment via overestimation
and underestimation (eq. (2) and eq. (3)).

6 RESULTS AND DISCUSSION

In this section we present the results of employing our framework
to assess several techniques. Every experiment was run 30 times.
We computed the confidence intervals as well as the variances for
each set of experiments.

6.1 Discrimination vs. Accuracy

Table 2 shows Discrimination versus Accuracy on each dataset
when we only remove the protected attribute. We perform this
experiment for a couple of reasons. The first one is to make sure
that removing the protected attribute does not reduce the resulting
discrimination in the classification task. The second reason is to
define upper bounds for both discrimination and accuracy. That is,

the discrimination without any technique being employed must be
higher than when some technique is used, otherwise the use of this
anti-discrimination technique would be of no use. It is also expected
that the accuracy will be higher than the resulting accuracy when
a discrimination-aware technique is used because the technique
must lower the discrimination at the cost of accuracy.

Table 2: Discrimination and Accuracy on biased datasets
from Adult, COMPAS and Dutch data (classifier does not use
the protected attribute)

Disc.‘ Acc. || Disc. | Acc. || Disc. | Acc.

COMPAS Dutch

0.00 0.162 | 0.845 || 0.121 | 0.878 || 0.322 | 0.832
0.25 0.280 | 0.829 || 0.121 | 0.880 || 0.358 | 0.831
0.50 0.581 | 0.729 || 0.123 | 0.879 || 0.393 | 0.827
0.75 0.592 | 0.726 || 0.120 | 0.878 || 0.479 | 0.805
1.00 0.602 | 0.723 || 0.124 | 0.880 (| 0.677 | 0.729

We can observe in Table 2 that, as we increase f, the discrimi-
nation on the Adult census increases and the accuracy decreases,
which means that highly biased data is worse for the performance
of a traditional classifier like C4.5. The COMPAS case shows better
performance as it does not increase the discrimination as we raise
B. In COMPAS the resulting decision trees for each f are similar,
which explains its behavior. Dutch census is similar to Adult. As
expected, removing the protected attribute contributes poorly in re-
ducing discrimination because other attributes are highly correlated
with the protected one.

6.1.1 Data pre-processing techniques. Table 3 shows Discrimina-
tion vs. Accuracy results for different pre-processing techniques.
Recall that we expect the discrimination and accuracy upper bounds
to be preserved; we highlight (in bold) scenarios where the accuracy
increased instead of decreasing.

Table 3: Discrimination and Accuracy for data pre-
processing techniques trained on artificially generated
datasets learned from adult census.

Tech.

Massaging Reweighting || Unif. Sampling || Pref. Sampling

Disc. Acc. || Disc. Acc. || Disc. Acc. Disc. Acc.

0.00 | 0.046 | 0.830 || 0.111 | 0.842 || 0.112 0.842 || -0.006 | 0.822

0.25 | 0.009 | 0.816 || 0.140 | 0.840 || 0.139 0.838 || -0.034 | 0.812

Adult 050 | 0.095 | 0.778 || 0.260 | 0.802 || 0.257 0.799 0.044 | 0.794
0.75 | 0.082 | 0.718 || 0.479 | 0.710 || 0.480 0.710 0.142 | 0.756

1.00 | 0.003 | 0.676 || 0.473 | 0.690 || 0.474 0.690 0.416 | 0.673

0.00 | 0.095 | 0.879 || 0.104 | 0.876 || 0.110 0.877 0.076 | 0.872

0.25 | 0.084 | 0.879 || 0.103 | 0.876 || 0.113 0.879 0.067 | 0.871
COMPAS 0.50 | 0.070 | 0.875 || 0.102 | 0.875 || 0.111 0.878 0.054 | 0.870
0.75 | 0.054 | 0.872 || 0.098 | 0.874 || 0.104 0.877 0.044 | 0.866

1.00 | 0.057 | 0.871 || 0.107 | 0.877 || 0.108 0.878 0.045 | 0.866

0.00 | 0.101 | 0.791 || 0.153 | 0.818 || 0.159 0.817 0.066 | 0.790

0.25 | 0.013 | 0.768 || 0.154 | 0.818 || 0.166 0.818 0.018 | 0.774
Dutch 050 | -0.052 | 0.748 || 0.150 | 0.816 || 0.161 0.816 || -0.029 | 0.760
0.75 | -0.119 | 0.721 || 0.157 | 0.816 || 0.159 0.813 || -0.062 | 0.749

1.00 | -0.182 | 0.693 || 0.483 | 0.720 - - - -
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We can see that in Table 3, on Adult, every technique except
Massaging increases discrimination when using a more biased train-
ing set. Re-weighting and Uniform Sampling behave very similarly
(this behavior is held true on other datasets). Preferential sampling
has a steady decrease in accuracy and increase in discrimination,
but its result for 100% bias is quite different. We hypothesize that,
when the dataset becomes fully biased, its results are not really
significant anymore, but we include them for the sake of providing
a bound.

Massaging
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Figure 1: Discrimination vs Accuracy for data Massaging
technique on Adult data

The most intriguing result is for the Massaging technique. Ta-
ble 3 and Figure 1 show that it has lower discrimination for lower
and higher f, but when we introduce moderate f it increases the
resulting discrimination. In Figure 1, each colored dot represents
a set of 30 artificial datasets, with the color denoting the f bias
level. Massaging works by defining a decision boundary between
positive and negative outcomes through a Naive Bayes classifier,
then it selects points from the dataset and changes their labels in
order to balance the ratio of positives and negatives between the
two classes of the sensitive attribute. Massaging works by chang-
ing labels, thus forcing the deprived group to have more positive
outcomes and the favored group to have more negative outcomes.
This is possibly the reason Massaging causes negative discrimina-
tion. We can observe that the results for the various techniques on
COMPAS were also consistent with previous findings. Massaging
and Preferential Sampling performed better in terms of lowering
discrimination. Nevertheless, the highlighted scenarios where the
accuracy increased suggests that data manipulation might actually
improve both accuracy and discrimination in specific scenarios. It
can be noticed on Dutch that Massaging and Preferential Sampling
behave similarly, but the former has more spread, which means that
Preferential Sampling is more stable when dealing with this dataset.
Re-weighting and Uniform Sampling, except on higher 3, keep the
discrimination and accuracy around the same level. Notice that we
couldn’t run Uniform or Preferential Sampling for higher f, since
those techniques don’t work well on very imbalanced scenarios.

6.1.2  Auditor’s technique. Table 4 presents results for Auditor at
repair levels of 0.25, 0.50 and 0.75. On Adult, we see it works well
for lower f, but it performs poorly in more biased scenarios. It is
worth noting that scenarios with very high discrimination are less
realistic, which means that Auditor performance may be consid-
ered decent because it has minimal losses with respect to accuracy.
When the repair level is set to 0.75, Auditor keeps the accuracy and

Table 4: Discrimination and Accuracy for Auditor in-
processing technique.

Tech

Repair 0.25 Repair 0.50 Repair 0.75

Disc. Acc. || Disc. Acc. || Disc. Acc.

0.00 | 0.149 | 0.844 || 0.064 | 0.818 || 0.039 | 0.805
0.25 | 0.197 | 0.841 || 0.110 | 0.827 || 0.034 | 0.801
Adult 0.50 | 0.492 | 0.768 || 0.242 | 0.828 || 0.031 | 0.796
0.75 | 0.597 | 0.725 || 0.592 | 0.726 || 0.034 | 0.795
1.00 | 0.605 | 0.723 || 0.605 | 0.723 || 0.576 | 0.728

0.00 | 0.121 | 0.879 || 0.123 | 0.879 || 0.122 | 0.880
0.25 | 0.127 | 0.880 || 0.125 | 0.879 || 0.127 | 0.880
COMPAS 0.50 | 0.124 | 0.879 || 0.129 | 0.880 || 0.127 | 0.879
0.75 | 0.124 | 0.879 || 0.128 | 0.879 || 0.130 | 0.878
1.00 | 0.125 | 0.879 || 0.129 | 0.879 || 0.129 | 0.877

0.00 | 0.270 | 0.829 || 0.224 | 0.825 || 0.161 | 0.815
0.25 | 0.270 | 0.831 || 0.211 | 0.824 || 0.154 | 0.814
Dutch 0.50 | 0.304 | 0.829 || 0.224 | 0.825 || 0.150 | 0.811
0.75 | 0.390 | 0.806 || 0.295 | 0.798 || 0.143 | 0.798
1.00 | 0.586 | 0.730 || 0.468 | 0.717 || 0.212 | 0.619

discrimination at the same levels for every f with low deviation,
except when maximum bias is inserted. On COMPAS Auditor per-
formed similarly for each one of the repairing levels, but didn’t
quite remove the discrimination. The consistency of the results is
also demonstrated by the similarity of the decision trees generated
by C4.5 at every repairing level. On Dutch census scenario, Au-
ditor kept the accuracy around the 80%, but it didn’t prevent the
discrimination, and pre-processing techniques performed better.
However, it maintains the best accuracy overall. It can be observed
that the 0.75 repair level performs slighly better than repair level
0.25 and 0.50. The highlighted numbers suggest that Auditor could
improve the accuracy in some cases. However, this improvement is
not statistically significant, and, more importantly, there are cases
where the discrimination increases.

Table 5: Overestimation and Underestimation for Adult,

COMPAS and Dutch (classifier does not use the protected at-
tribute).

Over. ‘ Under. || Over. | Under. || Over. | Under.

COMPAS Dutch

0.00 0.065 0.105 || 0.012 0.046 || 0.194 0.072
0.25 0.154 0.399 || 0.015 0.044 || 0.239 0.108
0.50 0.471 0.712 || 0.015 0.047 || 0.268 0.162
0.75 0.480 0.745 || 0.013 0.043 || 0.312 0.346
1.00 0.480 0.831 || 0.014 0.049 || 0.356 0.870

6.2 Overestimation vs. Underestimation

Table 5 shows results on Overestimation and Underestimation for
each dataset when no technique is applied. Again, it is important
to consider these values as upper bounds, which means that the
objective of each techniques is to reduce these (absolute) values.



We can see that Adult and Dutch have high Overestimation and
Underestimation at higher values of . Curiously, COMPAS keeps
the values close. This suggests that for COMPAS higher f may
have little influence on the resulting Overestimation and Underes-
timation, which is also explained by the fact that the decision trees
generated by the classifier are similar no matter the g.

Table 6: Overestimation and Underestimation for data pre-
processing techniques.

Tech.

Massaging Reweighting Unif. Sampling || Pref. Sampling

Over. | Under. || Over. | Under. || Over. ‘ Under. || Over. ‘ Under.

0.00 | -0.025 | -0.217 0.030 | -0.063 || 0.029 | -0.062 || -0.051 | -0.324

0.25 | -0.062 | -0.269 0.051 0.012 || 0.045 0.012 || -0.084 | -0.353

Adult 050 | 0.011 | -0.130 0.154 0.196 || 0.151 0.198 || -0.023 | -0.236
0.75 | 0.005 | -0.111 0.384 0.470 || 0.383 0.476 0.074 | -0.124

1.00 | -0.086 | -0.070 0.351 0.706 || 0.355 0.709 0.298 0.644

0.00 | -0.017 0.021 || -0.000 0.026 || 0.006 0.036 || -0.031 0.003

0.25 | -0.024 0.006 || -0.000 0.023 || 0.008 0.032 || -0.038 | -0.008

COMPAS 0.50 | -0.031 | -0.012 || -0.001 0.024 || 0.006 0.030 || -0.044 | -0.026
0.75 | -0.043 | -0.031 || -0.005 0.020 || 0.002 0.028 || -0.051 | -0.039

1.00 | -0.034 | -0.032 0.001 0.030 || 0.006 0.031 || -0.045 | -0.040

Table 7: Overestimation and Underestimation for Auditor in-
processing technique.

Tech

Repair 0.25 Repair 0.50 Repair 0.75

Over. | Under. || Over. | Under. || Over. | Under.

0.00 | 0.056 0.096 || 0.010 0.006 || 0.001 | -0.014
0.25 | 0.087 0.269 || 0.032 0.092 || 0.001 | -0.019
Adult 0.50 | 0.368 0.644 || 0.131 0.386 || 0.002 | -0.019
0.75 | 0.484 0.750 || 0.482 0.750 || 0.003 | -0.016
1.00 | 0.483 0.829 || 0.484 0.821 || 0.470 0.727

0.00 | 0.015 | 0.046 || 0.019 | 0.047 || 0.019 | 0.046
0.25 | 0.019 | 0.048 || 0.020 | 0.051 || 0.017 | 0.045

COMPAS 050 | 0.018 | 0.049 || 0.020 | 0.052 || 0.021 | 0.044
075 | 0.017 | 0.045 || 0.020 | 0.051 || 0.026 | 0.050

1.00 | 0.019 | 0.051 || 0.022 | 0.052 || 0.018 | 0.053

0.00 | 0.122 | 0.017 || 0.077 | -0.027 |[ 0.013 | -0.097

0.25 | 0128 | 0.031 || 0.071 | -0.022 || 0.018 | -0.093

Dutch 0.50 | 0.163 | 0.084 || 0.077 | -0.015 || 0.018 | -0.096
075 | 0196 | 0.265 || 0.094 | 0.173 || 0.019 | -0.089

1.00 | 0.223 | 079 || 0.109 | 0.685 || 0.030 | 0.314

0.00 | -0.065 | -0.096 0.014 | -0.095 || 0.023 | -0.087 || -0.091 | -0.145
0.25 | -0.165 | -0.159 0.015 | -0.094 || 0.029 | -0.078 || -0.151 | -0.170
Dutch 0.50 | -0.239 | -0.200 0.012 | -0.098 || 0.024 | -0.085 || -0.197 | -0.208
0.75 | -0.314 | -0.236 0.019 | -0.089 || 0.018 | -0.083 || -0.214 | -0.247
1.00 | -0.384 | -0.263 0.120 0.700 - - - -

6.2.1 Data pre-processing techniques. Table 6 shows the results
for Overestimation and Underestimation for data pre-processing
techniques. For Adult, Massaging reduces Overestimation and Un-
derestimation in more biased scenarios. It is also interesting to note
that almost every result of Massaging was a negative value. This
technique keeps Overestimation closer to 0, meaning that it bal-
ances false positives between the two groups. The Underestimation
has slightly higher negative values, but these values get closer to 0
as we insert more bias. This means that the technique underesti-
mates the favored group for lower f, but it manages to balance the
Underestimation between groups under higher . Re-weighting and
Uniform Sampling performed similarly by increasing both Overesti-
mation and Underestimation, although they exhibit high deviation
on both. Preferential Sampling has hard to predict behavior; it has
low Overestimation and its Underestimation started very nega-
tive and became closer to 0, except for the last biased sample. For
COMPAS, we can see that Massaging and Preferential Sampling
introduce negative Underestimation and Overestimation at higher
B. Re-weighting and Uniform Sampling kept both Underestimation
and Overestimation closer to 0, which is desirable. Dutch scenario
suggests that Massaging and Preferential Sampling work similarly
by inserting negative Overestimation and Underestimation when
we increase f. Re-weighting and Uniform Sampling did a good job
on keeping the values close (expect for the case of higher f on
Re-weighting).

6.2.2 Auditor technique. Table 7 shows results for Overestimation
and Underestimation of Auditor technique for each dataset on repair
levels of 0.25, 0.50 and 0.75. For Adult, every technique performed
similarly to Re-weighting and Uniform Sampling except Auditor at
0.75 repairing level, which kept almost every value close to zero for
both Overestimation and Underestimation. For COMPAS, Auditor

did not quite improve the result if compared to no technique used.
In general, those techniques couldn’t keep up with pre-processing
techniques for this scenario. For Dutch, Auditor improved the
consistency of its results when we increase the repairing level to
0.75 as it has nearly 80% less overestimation compared to repair
level of 0.25. It isn’t pareto-dominated (which means that it isn’t
outperformed on both metrics) by any technique and provides a
competitive result in most cases.

7 CONCLUSIONS AND FUTURE WORK

This work introduces a novel benchmark framework for validating
discrimination-aware data mining and machine learning models
using systematically biased datasets generated from real world data.
The need for a benchmark is crucial due to the lack of a common
ground for the evaluation of techniques. We demonstrated the
applicability and effectiveness of the proposed benchmark through
a comparative assessment among several models on three relevant
datasets.

The value of our benchmark approach is apparent when we
observe that it is hard to define which technique is better than
another. What is important is to decide which constraint is more
relevant under a given scenario and then interpret the accuracy
versus discrimination or over/under-estimation results in order to
perform a trade-off between metrics. Our framework makes this
type of decision easier. In the future, we intend to extend our work
to a more complete coverage of techniques of disparate impact and
disparate mistreatment removal, as well as other fairness metrics.
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A APPENDIX

Here we detail a practical example of our Bayesian network based
sampling method, and show additional results on reducing disparate
impact and disparate mistreatment using the methods from Zafar
et al in [18, 19].

A.1 Practical example

We take the Adult dataset (also known as census income dataset)
from UCI Machine Learning Repository [12] as an example for
our methodology. This dataset is a demographic census and it is
commonly used to predict whether an individual’s income is greater
than $50K per year or not given a list of attributes that include age,
education level, marital status, occupation and sex.

A data cleansing step is performed by discretizing some of the
attributes and removing others. The clean dataset is used as input
for the bnlearn Hill-Climbing learner.

Figure 2 is a visual representation of the generated Bayesian
network (BN) using the adult census dataset as input. It can be
observed that there is conditional dependency between the vari-
ables relationship and income_class and also there is conditional
dependency between relationship and sex. This evidence supports
the fact that this data is biased with respect to sex, because sex is
described by the relationship, e.g., a wife is a woman, and income
class is also described by the relationship, e.g., being a wife may
influence income.

maritalstatus

relationship

workclass

capitalgain

nativecountry

Figure 2: Bayesian network learned from the adult dataset.

For the synthetic data generation process, we have the corre-
sponding BN for the Adult census dataset and its conditional prob-
abilities tables. Each row in this dataset is randomly generated by
observing the BN. The list of dependencies is represented by the
directed edges in Figure 2. For sampling, we start with the inde-
pendent node in the BN, which is age. We sample age according
to its distribution. After sampling age, we can sample the marital
status. The conditional probability table for marital status is given
in Table 8. Notice that age is divided into bins, which means that
younger people are represented by bins identified by smaller num-
bers and older ones by larger numbers. We omit some of the bins
due to space constraints.

This process continues until we have sampled every feature. We
then repeat this process until we have enough rows sampled, thus
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Table 8: Conditional probabilities of marital status given
some age categories (1-younger,10-older)

Age Cat.
W 2(22-28) 5(46-52) 8 (70-76)
Divorced 0.087 0.206 0.081
Married-AF-spouse 0.001 0.000 0.002
Married-civ-spouse 0.372 0.630 0.560
Married-spouse-absent 0.011 0.016 0.014
Never-married 0.490 0.077 0.060
Separated 0.032 0.033 0.014
Widowed 0.003 0.035 0.265

generating a synthetic dataset that follows the same distribution as
the original adult data.

In order to produce biased samples consider Table 9, which con-
tains conditional probabilities for the income class node given ed-
ucation levels (Edu-level) and relationships (r). We can see that,
according to this table, the probability of a positive outcome (the
individual earns more than $50K per year), considering the fact
that the individual is a wife is slightly better with higher education
levels, but it is worse for lower education levels. In order to pro-
duce even more bias, we must decrease the probabilities in the first
line of Table 9. For instance, we may decrease the probability of
high income considering that the relationship is wife. This is done
gradually, each time by 10% of the original probability, until the
probability reaches 0, as described in Section 4.2. For example, the
probability of an individual having high income, considering she is
a woman and her education level is 10th grade, is 0.100. The first
artificial dataset is sampled by lowering this probability to 0.090,
the second one to 0.080, and so on.

The resulting sampled datasets are then used as training data
for a classifier. We chose the C4.5 decision tree classifier due to its
good results on previous works of discrimination-aware learning.
Since our aim is to evaluate discrimination-aware techniques, the
choice of the classifier is not that important.

Table 9: Conditional probabilities of high income (above
$50K a year) given education and relationship

Edu-level 1st-4th 10th HS  Doctorate
Cond. prob

P(y = highlr = wife) | 0000 0100 0343  0.850
P(y = high|r = husband) | 0.085 0.128 0.311 0.837

A.2 Disparate Impact and Mistreatment

We also consider the implementations of Zafar et al. [18, 19], where
they design a fair classifier that works by modifying the decision
boundary of a classifier. It can maximize fairness under accuracy
constraints and maximize accuracy under fairness constraints. It is
also possible to add a constraint on misclassification of positive out-
come, which means that it only changes the label for the protected
group from negative to positive class and doesn’t change the label

of non-protected groups to the negative outcome. This technique
will be used for the disparate impact experiments (Accuracy vs.
Discrimination). In [18], they introduced the notion of disparate
mistreatment and proposed a methodology that aims at reducing
false positive and false negative rates. The technique consists of
training classifiers in such a way that their decision boundaries
are modified in order to avoid those misclassification rates. We can
adjust which constraints we want to use: correcting false positive,
false negatives, or both. This technique will be used for the disparate
mistreatment experiments (Overestimation vs. Underestimation).

A.2.1 Discrimination vs Accuracy. Table 10 presents results for
Zafar’s disparate impact technique for each one of its three con-
straints.

Table 10: Discrimination and Accuracy for Zafar’s in-
processing techniques trained on artificially generated
datasets learned from adult census.

Tech

Acc. cons. Disc. cons. Misclass.

Disc. Acc. Disc. Acc. Disc. ‘ Acc.

0.00 | 0.128 | 0.837 || -0.018 | 0.791 || -0.066 | 0.590
0.25 | 0.156 | 0.829 || -0.032 | 0.773 || -0.016 | 0.571
Adult 050 | 0.181 | 0.821 || -0.046 | 0.760 || -0.015 | 0.530
0.75 | 0.205 | 0.814 || -0.046 | 0.747 || -0.003 | 0.503
1.00 | 0.258 | 0.813 || -0.032 | 0.743 0.063 | 0.528

0.00 | 0.010 | 0.631 0.032 | 0.629 0.020 | 0.617

0.25 | 0.014 | 0.630 0.014 | 0.628 0.029 | 0.615

COMPAS 0.50 | 0.005 | 0.628 || -0.002 | 0.622 0.022 | 0.610
0.75 | 0.005 | 0.628 || -0.027 | 0.620 0.040 | 0.610

1.00 | 0.004 | 0.626 || -0.043 | 0.615 0.033 | 0.607

0.00 | 0.108 | 0.806 || -0.031 | 0.746 || -0.020 | 0.695

0.25 | 0.091 | 0.801 || -0.003 | 0.765 || -0.059 | 0.647

Dutch 0.50 | 0.061 | 0.792 0.044 | 0.785 || -0.105 | 0.596
0.75 | -0.025 | 0.762 0.127 | 0.812 || -0.090 | 0.558

1.00 | -0.147 | 0.719 0.252 | 0.820 0.032 | 0.705

In Table 10 we present the results for Zafar’s disparate impact
techniques. In particular, the technique described in [19] for fairness,
accuracy and positive misclassification constraints. For Adult the
Discrimination constraint indeed keeps the discrimination around
the same level at the cost of accuracy when the bias level § increases.
On the other hand, for accuracy constraint, it keeps the accuracy
around the same level and the discrimination increases with higher
B. An interesting result can be observed when the positive misclas-
sification constraint is applied; it causes lower discrimination levels
but at a great cost to accuracy. For COMPAS, Zafar’s techniques
tried to enforce less discrimination but also decreased the accuracy.
For Dutch, Zafar’s techniques, except the one for positive misclassi-
fication, achieved competitive accuracy compared to pre-processing
techniques and decreased accuracy. It provided a trade-off between
accuracy and discrimination. As for the highlighted cases, when
we apply Accuracy and Discrimination constraints on Adult the
accuracy does not suffers very much for higher . This means that
Zafar’s classifiers not only fix the bias inserted but also make them
consistent with the original data. On Dutch the same pattern can
be observed for higher f.
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