
Artificial Intelligence Review14: 421–446, 2000.
Issues on the Application of Data Mining.
© 2001Kluwer Academic Publishers. Printed in the Netherlands.

421

PLAN MINE: Predicting Plan Failures Using Sequence Mining∗

MOHAMMED J. ZAKI, NEAL LESH & MITSUNORI OGIHARA
1Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
(E-mail: zaki@cs.rpi.edu);2Mitsubishi Electric Research Laboratory, 201 Broadway, 8th
Floor, Cambridge, MA 02139, USA (E-mail: lesh@merl.com);3Department of Computer
Science, University of Rochester, Rochester, NY 14627, USA (E-mail:
ogihara@cs.rochester.edu)

Abstract. This paper presents the PLAN MINE sequence mining algorithm to extract patterns
of events that predict failures in databases of plan executions. New techniques were needed
because previous data mining algorithms were overwhelmed by the staggering number of very
frequent, but entirely unpredictive patterns that exist in the plan database. This paper combines
several techniques for pruning out unpredictive and redundant patterns which reduce the size
of the returned rule set by more than three orders of magnitude. PLAN MINE has also been
fully integrated into two real-world planning systems. We experimentally evaluate the rules
discovered by PLAN MINE, and show that they are extremely useful for understanding and
improving plans, as well as for building monitors that raise alarms before failures happen.

Keywords: plan monitoring, predicting failures, sequence mining

1. Introduction

Knowledge Discovery and Data Mining (KDD) refers to the process of
discovering new, useful and understandable knowledge in databases. KDD
techniques have been used successfully in a number of domains such as
molecular biology, marketing, fraud detection, etc. Typically data mining
has the two high level goals ofprediction and description(Fayyad et al.,
1996). In prediction, we are interested in building a model that will predict
unknown or future values of attributes of interest, based on known values of
some attributes in the database. In KDD applications, the description of the
data in human-understandable terms is equally if not more important than
prediction. The typical data mining tasks include classification, clustering,
deviation detection, and association and sequence discovery. See Fayyad et
al. (1996) for an excellent overview of the different aspects of KDD.

∗ Supported by NSF grants CCR-9705594, CCR-9701911, CCR-9725021 and INT-
9726724; and U.S. Air Force/Rome Labs contract F30602-95-1-0025.

422 MOHAMMED J. ZAKI ET AL.

In this paper, we present the PLAN MINE sequence discovery algorithm for
mining information from plan execution traces. Analyzing execution traces is
appropriate for planning domains that contain uncertainty, such as incomplete
knowledge of the world or actions with probabilistic effects. Assessing plans
in probabilistic domains is particularly difficult. For example, in (Kushmerick
et al., 1995) four algorithms for probabilistic plan assessment are presented,
all of which are exponential in the length of the plan. When analyzing plans
directly is impractical, execution traces can be a rich, but largely untapped,
source of useful information about a plan. We apply sequence data mining
to extract causes of plan failures, and feed the discovered patterns back into
the planner to improve future plans. We also use the mined rules for building
monitors that signal an alarm before a failure is likely to happen.

PLAN MINE has been integrated into two applications in planning: the
TRIPS collaborative planning system (Ferguson and James, 1998), and the
IMPROVE algorithm for improving large, probabilistic plans (Lesh et al.,
1998). TRIPS is an integrated system in which a person collaborates with
a computer to develop a high quality plan to evacuate people from a small
island. During the process of building the plan, the system simulates the plan
repeatedly based on a probabilistic model of the domain, including predicted
weather patterns and their effect on vehicle performance. The system returns
an estimate of the plan’s success. Additionally, TRIPS invokes PLAN MINE

on the execution traces produced by simulation, in order to analyzewhy the
plan failed when it did. This information can be used to improve the plan.
PLAN MINE has also been integrated into an algorithm forautomatically
modifying a given plan so that it has a higher probability of achieving its
goal. IMPROVE runs PLAN MINE on the execution traces of the given plan
to pinpoint defects in the plan that most often lead to plan failure. It then
applies qualitative reasoning and plan adaptation algorithms to modify the
plan to correct the defects detected by PLAN MINE.

This paper describes PLAN MINE, the data mining component of the above
two applications. We show that one cannot simply apply previous sequence
discovery algorithms (Srikant and Agrawal, 1996b; Zaki, 1998) for mining
execution traces. Due to the complicated structure and redundancy in the data,
simple application of the known algorithms generates an enormous number
of highly frequent, but unpredictive rules. We use the following novel meth-
odology for pruning the space of discovered sequences. We label each plan as
“good” or “bad” depending on whether it achieved its goal or it failed to do
so. Our goal is to find “interesting” sequences that have a high confidence
of predicting plan failure. We developed a three-step pruning strategy for
selecting only the most predictive rules:

PLANMINE 423

Figure 1. PLAN MINE architecture.

1. Pruning Normative Patterns: We eliminate allnormativerules that are
consistent with background knowledge that corresponds to the normal
operation of a (good) plan, i.e., we eliminate those patterns that not only
occur in bad plans, but also occur in the good plans quite often, since
these patterns are not likely to be predictive of bad events.

2. Pruning Redundant Patterns: We eliminate allredundantpatterns that
have the same frequency as at least one of their proper subsequences, i.e.,
we eliminate those patternsq that are obtained by augmenting an existing
patternp, while q has the samefrequencyasp. The intuition is thatp is
as predictive asq.

3. Pruning Dominated Patterns: We eliminate alldominatedsequences that
are less predictive than any of their proper subsequences, i.e., we elimin-
ate those patternsq that are obtained by augmenting an existing pattern
p, wherep is shorter or more general thanq, and has a higherconfidence
of predicting failure thanq.

These three steps are carried outautomaticallyby mining the good and bad
plans separately and comparing the discovered rules from the unsuccessful
plans against those from the successful plans. The complete architecture of
PLAN MINE is shown in Figure 1. There are two main goals: (1) to improve
an existing plan, and (2) to generate a plan monitor for raising alarms. In the
first case, the planner generates a plan and simulates it multiple times. It then
produces a database of good and bad plans in simulation. This information
is fed into the mining engine, which discovers high frequency patterns in
the bad plans. We next apply our pruning techniques to generate a final set
of rules that are highly predictive of plan failure. This mined information is
used for fixing the plan to prevent failures, and the loop is executed multiple
times till no further improvement is obtained. The planner then generates

424 MOHAMMED J. ZAKI ET AL.

Figure 2. Plan database parameters.

the final plan. For the second goal, the planner generates multiple plans, and
creates a database of good and bad plans (there is no simulation step). The
high confidence patterns are mined as before, and the information is used to
generate a plan monitor that raises alarms prior to failures in new plans.

To experimentally validate our approach, we show that IMPROVE does
not work well if the PLAN MINE component is replaced by less sophisticated
methods for choosing which parts of the plan to repair. We also show that the
output of PLAN MINE can be used to build execution monitors which predict
failures in a plan before they occur. We were able to produce monitors with
100% precision, that signal 90% of all the failures that occur.

The rest of the paper is organized as follows. In Section 2 we describe
the plan database, and precisely formulate the data mining task. Section 3
presents the algorithm used for sequence discovery. In Section 4 we describe
our automatic methodology for incorporating background or normative
knowledge about the data for extracting the predictive sequences in a plan
database. An experimental evaluation of our approach is presented in Sec-
tion 5. We look at related work in Section 6, and present our conclusions and
directions for future work in Section 7.

2. Discovery of Plan Failures: Sequence Mining

The input to PLAN MINE consists of a database of plans for evacuating people
from one city to another. Each plan is taggedFailure or Successdepending
on whether or not it achieved its goal. Each plan has a unique identifier, and

PLANMINE 425

Figure 3. Example plan database.

a sequence of actions or events. Each event is composed of several different
fields or items including the event time, the unique event identifier, the action
name, the outcome of the event, and a set of additional parameters specifying
the weather condition, vehicle type, origin and destination city, cargo type,
etc. An example of the different parameter values is shown in Figure 2, and
some example plans are shown in Figure 3.

While routing people from one city to another using different vehicles, the
plan will occasionally run into trouble. The outcome of the event specifies
the type of error that occurred, if any. Only a few of the errors, such as a
helicopter crashing or a truck breaking down, aresevere, and cause the plan
to fail. However, a sequence of non-severe outcomes may also be the cause
of a failure. For example, a rule might be(Load People-7 Truck-1)7→ (Move
Flat Truck-1) 7→ (Move Late Truck-1)7→ (Load People-7 Heli-1)7→ (Move
Crash Heli-1 RoughWeather)⇒ Failure, indicating that the plan is likely to
fail if Truck-1getsLatedue to aFlat. This causes theHelicopter-1to crash,
a severe outcome, since the weather getsRoughwith time.

We now cast the problem of mining for causes of plan failures as the
problem of findingsequential patterns(Agrawal and Srikant, 1995). Let
I = {i1, i2, · · · , im} be a set ofm distinct attributes, also calleditems. Each
distinct parameter and value pair is an item. For example, in Figure 2,Action
= Move, Action = Load, etc., are all distinct items. Anitemsetis an unordered
collection of items, all of which are assumed to occur at the same time.
Without loss of generality, we assume that the items are mapped to integers,
and that items of an itemset are sorted in increasing order. An itemseti is
denoted as(i1i2 · · · ik), whereij is an item.

A sequenceis an ordered list of itemsets. A sequenceα is denoted as
(α1 7→ α2 7→ · · · 7→ αn), where each sequence elementαj is an itemset.
An item can occur only once in an itemset, but it can occur multiple times in
different itemsets of a sequence. A sequence withk items (k = ∑

j |αj |) is
called ak-sequence. We say thatα is asubsequenceof β, denoted asα � β,
if there exist integersi1 < i2 < · · · < in such thataj ⊆ bij for all aj . For
example,B 7→ AC is a subsequence ofAB 7→ E 7→ ACD. We say that

426 MOHAMMED J. ZAKI ET AL.

α is a proper subsequence ofβ, denotedα ≺ β, if α � β andβ 6� α. If
α is obtained by removing a single item fromβ, we write it asα ≺1 β. For
example,(B 7→ AC) ≺1 (BE 7→ AC).

We now cast our plans in the sequence mining framework. AneventE is
an itemset, and has a unique identifier. For example, in Figure 3, the second
row (event) of the first plan corresponds to the itemset(84, Load, Success,
Exodus, People7, Heli1). A plan or plan-sequenceS has a unique identifier
and is associated with a sequence of eventsE1 7→ E2 7→ · · · 7→ En. Without
loss of generality, we assume that no plan has more than one event with the
same time-stamp, and that the events are sorted by the event-time. The input
plan database, denotedD , consists of a number of such plan-sequences.

Support. A plan S is said tocontaina sequenceα, if α � S, i.e., if α is a
subsequence of the plan-sequenceS. Thesupportor frequencyof a sequence
α, denotedf r(α,D) is the fraction of plans in the databaseD that contain
α, i.e.,

f r(α,D) = |{α � S ∈ D}|
|D | .

According to this definition a sequenceα is counted only once per plan even
though it may occur multiple times in that plan. It is easy to modify this
definition to count a sequence multiple times per plan, if the semantics of
the problem require it. Given a user-specified threshold called theminimum
support(denotedmin_sup), we say that a sequence isfrequentif f r(α,D) ≥
min_sup.

Confidence. Let α andβ be two sequences. Theconfidenceof a sequence
ruleα ⇒ β is the conditional probability that sequenceβ occurs, given that
α occurs in a plan, given as

Conf (α,D) = f r(α 7→ β,D)

f r(α,D)
.

Given a user-specified threshold called theminimum confidence(denoted
min_conf), we say that a sequence isstrongif Conf(α,D) ≥ min_conf .

Discovery task. Given a databaseD of good and bad plans, tagged as
SuccessandFailure, respectively, the problem of discovering causes of plan
failures can be formulated as finding all strong rules of the formα ⇒ Failure,
whereα is a frequent sequence. This task can be broken into two main steps:
1. Find all frequent sequences. This step is computationally and I/O intens-

ive, since there can be potentially an exponential number of frequent
sequences.

PLANMINE 427

2. Generate all strong rules. Since we are interested in predicting failures,
we only consider rules of the formα ⇒ Failure, even though our for-
mulation allows rules with consequents having multiple items. The rule
generation step has relatively low computational cost.

We use the SPADE algorithm (Zaki, 1998) to efficiently enumerate all
the frequent sequences. Generally, a very large number of frequent patterns
are discovered in the first step, and consequently a large number of strong
rules are generated in the second step. If one thinks of the frequent sequence
discovery step as thequantitativestep due to its high computational cost,
then the rule generation step is thequalitativeone, where the quality of the
discovered rules is important and not the quantity. The main focus of this
paper is on how to apply effective pruning techniques to reduce the final set
of discovered rules, retaining only the rule that are most predictive of failure,
and on how to do this automatically.

3. Sequential Pattern Discovery Algorithm

We now briefly describe the SPADE (Zaki, 1998) algorithm that we used
for efficient discovery of sequential patterns. SPADE is disk-based and is
designed to work with very large datasets.

SPADE uses the observation that the subsequence relation� defines a
partial order on the set of sequences, also called aspecialization relation
(Gunopulos et al., 1997). Ifα � β, we say thatα is more general thanβ, orβ
is more specific thanα. The second observation used is that the relation� is a
monotone specialization relationwith respect to the frequencyf r(α,D), i.e.,
if β is a frequent sequence, then all subsequencesα � β are also frequent.
The algorithm systematically searches the sequence lattice spanned by the
subsequence relation in a breadth-first (level-wise) or depth-first manner, from
the most general to the maximally specific (frequent) sequences. For example,
let the set of frequent itemsF1 = {A,B,C}, and let the maximal frequent
sequences be(ABC 7→ A), and(B 7→ A 7→ C), then Figure 4 shows the
lattice of frequent sequences induced by the maximal elements (note that a
sequence is maximal if it is not a subsequence of any other sequence).

Given Fk, the set of frequent sequences of lengthk, we say that two
sequences belong to the same equivalence class if they share a commonk−1
length prefix. For example, from theF2 shown in Figure 4, we obtain the
following three equivalence classes:[A] = {A 7→ A,A 7→ C,AB,AC};
[B] = {B 7→ A,B 7→ C,BC}; and [C] = {C 7→ A}. Each class[℘] has
complete information for generating all frequent sequences with the prefix℘.
Each class can thus be solved independently.

428 MOHAMMED J. ZAKI ET AL.

Figure 4. Lattice induced by maximal sequences.

SPADE decomposes the original problem into smaller subproblems by the
recursive partitioning into equivalence classes (sub-lattices). This allows each
class to be processed entirely in main-memory, and generally requires up to
two complete database scans. Figure 5 shows the outline of the algorithm.
SPADE systematically searches the sub-lattices in a breadth-first manner
(SPADE can also use a depth-first search if main-memory is limited), i.e.
it starts with the frequent single items, and during each iteration the frequent
sequences of the previous level are extended by one more item. Before com-
puting the support of a newly formed sequence, a check is made to ensure
that all its subsequences are frequent. If any subsequence is found to be infre-
quent, then the sequence cannot possibly be frequent due to the monotone

PLANMINE 429

Figure 5. The SPADE algorithm.

support property. This pruning criterion is extremely effective in reducing
the search space. For applying global pruning across all equivalence classes,
all the cross class links have to maintained, which corresponds to storing all
frequent sequences in memory. If memory is limited, then only local pruning
within a class can be applied.

For fast frequency computation, SPADE maintains, for each distinct item,
an inverted list (denotedL) of (PlanId, EventTime)pairs where the item
occurs. For example, from our initial database in Figure 3, we obtain,
L(Move) = {(1,10)(1,30)(2,10)(2,20)}, andL(F lat) = {(1,30)(2,10)}.
To compute the support of a sequence from any two of its subsets, their lists
are intersected in a special way. For example, to obtainL(Move F lat) =
{(1,30)(2,10)}, an equality check is made for each pair, and to obtain
L(Move 7→ F lat) = {(1,30)}, a check is made whether there exists any
EventTimefor Flat that follows anyEventTimefor Move, for pairs with the
samePlanId.

4. Mining Strong Sequence Rules

We now describe our methodology for extracting the predictive sequences on
a sample plan database. LetDg and Db refer to the good and bad plans,
respectively. All experiments were performed on an SGI machine with a
100MHz MIPS processor and 256MB main memory, running IRIX 6.2.

4.1. Mining the whole database (D = Dg +Db)

We used an example database with 522 items, 1000 good plans and 51 bad
plans, with an average of 274 events per good plan, 196 events per bad plan,
and an average event length of 6.3 in both. We mined the entire database of

430 MOHAMMED J. ZAKI ET AL.

Figure 6. Sequences of different length mined at various levels of minimum support (MS).

good and bad plans for frequent sequences. Since there are about 5% bad
plans, we would have to use a minimum support of at least 5% to discover
patterns that have some failure condition. However, even at 100% minimum
support, the algorithm proved to be intractable. For example, we would find
more than a 100 length sequence of the formMove · · · 7→ Move, all 2100

of whose subsequences would also be frequent, since about half of the events
contain aMove. Such long sequences would also be discovered for other com-
mon items such asSuccess, Truck, etc. With this high level of item frequency,
and long plan-sequences, we would generate an exponential number of fre-
quent patterns. Mining the whole database is thus infeasible. Note also that
none of these rules can have high confidence, i.e., none can be used to predict
plan failure, because they occur in all the good as well as the bad plans. The
problem here is that the common strategy of mining for all highly frequent
rules and then eliminating all the low confidences ones will be infeasible in
this highly structured database.

4.2. Mining the bad plans (Db)

Since we are interested in rules that predict failure, we only need to consider
patterns that are frequent in the failed plans. A rule that is frequent in the suc-
cessful plans cannot have a high confidence of predicting failure. To reduce

PLANMINE 431

Table 1. Discovered patterns and running times.

MS = 100% MS = 75% MS = 60%

#Sequences 544 38386 642597

Time 0.2s 19.8s 185.0s

the plan-sequence length and the complexity of the problem, we decided to
focus only on those events that had an outcome other than aSuccess. The
rationale is that the plan solves its goal if things go the way we expect, and
so it is reasonable to assume that only non-successful actions contribute to
failure. We thus removed all actions with a successful outcome from the
database of failed plans, obtaining a smaller database of bad plans, which
had an average of about 8.5 events per plan.

The number of frequent sequences of different lengths for various levels
of minimum support are plotted in Figure 6, while the running times and
the total number of frequent sequences is shown in Table 1. At 60% support
level we found an overwhelming number of patterns. Even at 75% support,
we have too many patterns (38386), most of which are quite useless when we
compute their confidence relative to the entire database of plans. For example,
the patternMove 7→ Truck-1 7→ Movehad a 100% support in the bad plans.
However, it is not at all predictive of a failure, since it occurs in every plan,
both good and bad. The problem here is that if we only look at bad plans, the
confidence of a rule is not an effective metric for pruning uninteresting rules.
In particular, every frequent sequenceα will have 100% confidence, since
f r(α 7→ Failure,Db) is the same asf r(α,Db). However, all potentially
useful patterns are present in the sequences mined from the bad plans. We
must, therefore, extract the interesting ones from this set.

4.2.1. Reducing discovered sequences
We can also reduce the number of patterns generated by putting limits on
the maximum number of itemsets per sequence or the maximum length of
an itemset. Figure 7 plots the total number of frequent sequences discovered
under length restrictions. For example, there are 38386 total sequences at
75%min_sup(ISET-SA). But if we restrict the maximum itemset length to 2,
then there are only 14135 sequences. If we restrict the maximum number of
itemsets per sequence to 3, then we discover only 8037 sequences (ISET-S3),
and so on. Due to the high frequency character of our domain, it makes sense
to put these restrictions, especially on the maximum length of an itemset,

432 MOHAMMED J. ZAKI ET AL.

Figure 7. Number of sequences discovered with length rescrictions (75% minimum sup-
port). ISET-SA shows all sequences plotted against limits on the itemset length; ISET-S2(3)
the sequences with 2(3) itemsets per sequence plotted against the itemset length; SEQ-IA
all sequences against varying #itemsets/sequence; and SEQ-I2(3) the sequences with fixed
itemset length of 2(3) against varying #itemsets/sequence.

especially if we want to use a low minimum support value, and discover long
sequences.

4.3. Extracting interesting rules

A discovered pattern may be uninteresting due to various reasons (Klemet-
tinen et al., 1994). For example, it may correspond to background knowledge,
or it may be redundant, i.e., subsumed by another equally predictive but more
general pattern. Below we present our pruning schemes for retaining only the
most predictive patterns.

4.3.1. Pruning normative patterns
Background knowledge plays an important role in data mining (Fayyad et
al., 1996). One type of background knowledge, which we callnormative
knowledge, corresponds to a set of patterns that are uninteresting to the
user, often because they are obvious. Normative knowledge can be used to
constrain or prune the search space, and thereby enhance the performance.
Typically, the normative knowledge is hand-coded by an expert who knows

PLANMINE 433

Figure 8. Effect of different pruning techniques.

the domain. In our case, normative knowledge is present in the databaseDg

of good plans. The good plans describe the normal operations, including the
minor problems that may arise frequently but do not lead to plan failure. We
automatically extract the normative knowledge from the database of good
plans as follows: We first mine the bad plansDb for frequent sequences. We
also compute the support of the discovered sequences in the successful plans.
We then eliminate those sequences that have a high support (greater than a
user-specifiedmax_supin Dg) in the successful plans, since such sequences
represent the normal events of successful plans. This automatic technique for
incorporating background knowledge is effective in pruning the uninteresting
patterns. Figure 8 shows the reduction in the number of frequent sequences
by excluding normative patterns. At 25% maximum support inDg, we get
more than a factor of 2 reduction (from 38386 to 17492 rules).

4.3.2. Pruning redundant patterns
Even after pruning based on normative knowledge, we are left with many
patterns (17492) which have high frequency and high confidence, i.e., they
are highly predictive of failure. The problem is that the existence of one good
rule implies the existence of many almost identical, and equally predictive
rules. For example, suppose(Flat Truck-1) 7→ (Overheat Truck-1)is highly
predictive, and that the first action of every plan is aMove. In this case,Move

434 MOHAMMED J. ZAKI ET AL.

Figure 9. The complete PLAN MINE algorithm.

7→ (Flat Truck-1) 7→ (Overheat Truck-1)will be equally predictive, and will
have the same frequency. The latter sequence is thus redundant. Formally,β

is redundantif there existsα ≺1 β, with the same support asβ both in good
and bad plans (recall thatα ≺1 β, if α is obtained by removing a single item
from β).

Given the high frequency of some actions in our domain, there is tremend-
ous redundancy in the set of highly predictive and frequent patterns obtained
after normative pruning. Therefore, we prune all redundant patterns. Figure 8
shows that by applying redundant pruning in addition to normative pruning
we are able to reduce the pattern set from 17492 down to 113. This technique
is thus very effective.

4.3.3. Pruning dominated patterns
After applying normative and redundant pruning, there still remain some
patterns that are very similar. Above, we pruned rules which had equivalent
support. We can also prune rules based on confidence. We say thatβ is dom-
inatedbyα, if α ≺1 β, andα has lower support in good and higher support in
bad plans (i.e.,α has higher confidence thanβ). Figure 8 shows that dominant
pruning, when applied along with normative and redundant pruning, reduces
the rule set from 113 down to only 5 highly predictive patterns. The combined
effect of the three pruning techniques is to retain only the patterns that have
the highest confidence of predicting a failure, where confidence is given as:

Conf (α) = f r(α 7→ Failure,D)

f r(α,D)
= |α � Sb ∈ Db|
|α � S ∈ D | (1)

Figure 9 shows the complete pruning algorithm. An important feature of our
approach is that all steps are automatic. The lattice structure on sequences
makes the redundancy and dominance easy to compute. Given the databases

PLANMINE 435

Db and Dg, min_sup, andmax_sup, the algorithm returns the set of the
most predictive patterns.

5. Experimental Evaluation

In this section we present an experimental evaluation of PLAN MINE. We
show how it is used in the TRIPS (Ferguson and James, 1998) and IMPROVE
(Lesh et al., 1998) applications, and how it is used to build plan monitors.

5.1. TRIPS and IMPROVE applications

TRIPS is a collaborative planning system in which a person and a com-
puter develop an evacuation plan. TRIPS uses simulation and data mining
to provide helpful analysis of the plan being constructed. At any point, the
person can ask TRIPS to simulate the plan. The percentage of time that the
plan succeeds in simulation provides an estimate of the plan’s true probab-
ility of success. Techniques for quick estimation are important because past
methods for assessing probabilistic plans have focused on analytic techniques
which are exponential in the length of the plan (Kushmerick et al., 1995).
After a plan has been simulated, the next step is to run PLAN MINE on the
execution traces in order to find explanations for why the plan failed when it
did. The point of mining the execution traces is to determine which problems
are the most significant, or at least which ones are most correlated with plan
failure. We believe that this information will help focus the user’s efforts on
improving the plan.

It is difficult to quantify the performance of TRIPS or how much the
PLAN MINE component contributes to it. However, both seem to work well on
our test cases. In one example, we use TRIPS to develop a plan that involves
using two trucks to bring the people to the far side of a collapsed bridge near
the destination city. A helicopter then shuttles the people, one at a time, to
the destination city. The plan works well unless the truck with the longer
route gets two or more flat tires, which delays the truck. If the truck is late,
then the helicopter is also more likely to crash, since the weather worsens as
time progresses. On this example, PLAN MINE successfully determined that
(Move Truck1 Flat)→ (Move Truck1 Flat)⇒ Failure, as well as(Move Heli1
Crash)⇒ Failure, is a high confidence rule for predicting plan failure.

We now discuss the role of PLAN MINE in IMPROVE, a fully automatic
algorithm which modifies a given plan to increase its probability of goal sat-
isfaction (Lesh et al., 1998). IMPROVE first simulates a plan many times and
then calls PLAN MINE to extract high confidence rules for predicting plan
failure. IMPROVE then applies qualitative reasoning and plan adaptation

436 MOHAMMED J. ZAKI ET AL.

Table 2. Performance of IMPROVE(averaged over 70 trials).

initial final initial final num.

plan plan success success plans

length length rate rate tested

IMPROVE 272.3 278.9 0.82 0.98 11.7

RANDOM 272.3 287.4 0.82 0.85 23.4

HIGH 272.6 287.0 0.82 0.83 23.0

techniques by adding actions to make the patterns that predict failure less
likely to occur. For example, if PLAN MINE produces the rule(Truck1 Flat)
→ (Truck1 Overheat)⇒ Failure, then IMPROVE will conclude thateither
preventingT ruck1 from getting a flat or from overheating might improve the
plan. In each iteration, IMPROVE constructs several plans which might be bet-
ter than the original plan. If any of the plans perform better in simulation than
the original plan, then IMPROVE repeats the entire process on the new best
plan in simulation. This process is repeated until no suggested modification
improves the plan.

Table 2 shows the performance of the IMPROVE algorithm, as reported
in Lesh et al. (1998), on a large evacuation domain that contains 35 cities, 45
roads, and 100 people. The people are scattered randomly in each trial, and
the goal is always to bring all the people, using two trucks and a helicopter,
to one central location. The trucks can hold 25 people and the helicopter
only one person, so the plans involve multiple round trips. The plans suc-
ceed unless a truck breaks down or the helicopter crashes. For each trial
we generate a random set of road conditions and rules which give rise to a
variety of malfunctions in the vehicles, such as a truck getting a flat tire or
overheating. Some malfunctions worsen the condition of the truck and make
other problems, such as the truck breaking down, more likely. The process is
not completely random in that by design there usually exists some sequence
of two to three malfunctions that makes a breakdown or crash very likely.
Furthermore, there are always several malfunctions, such as trucks getting
dents or having their windows cracked, that occur frequently and never cause
other problems. We use a domain-specific greedy scheduling algorithm to
generate initial plans for this domain. The initial plans contain over 250
steps.

We compared IMPROVE with two less sophisticated alternatives. The
RANDOM approach modifies the plan randomly five times in each itera-
tion, and chooses the modification that works best in simulation. The HIGH

PLANMINE 437

approach replaces the PLAN MINE component of IMPROVE with a technique
that simply tries to prevent the malfunctions that occur most often. As shown
in Table 2, IMPROVE with PLAN MINE increases a plan’s probability of
achieving its goal, on average, by about 15%, but without PLAN MINE only
by, on average, about 3%.

5.2. Plan monitoring

We now describe experiments to directly test PLAN MINE. In each trial, we
generate a training and a test set of plan executions. We run PLAN MINE on
the training set and then evaluate the discovered rules on the test set. We
used the sequence rules to build monitors, which observe the execution of the
plan, and sound an alarm when a plan failure is likely. The hypothesis behind
these tests is that predicting failure accurately will be useful in avoiding
errors during plan execution. We used the same evacuation domain described
above. The training set had 1000 plan traces, with around 5% plan-failure
rate. Only 300 of the good plans were used for background knowledge. We
used amin_sup of 60% in the bad plans, and amax_sup of 20% in the good
plans.

We run PLAN MINE on the training data and use the discovered set of rules
R to build amonitor – a function that takes as input the actions executed
so far and outputs failure iff any of the rules inR is a subsequence of the
action sequence. For example, a monitor built on the rules(Truck-1 Flat)
7→ (Truck-1 Overheat)⇒ Failure and (Truck-2 Flat) 7→ (Truck-2 Flat)⇒
Failure sounds its alarm ifTruck-1gets a flat tire and overheats, or ifTruck-2
gets two flat tires. Theprecisionof a monitor is the percentage of times the
monitor signals a failure, and a failure actually occurs (i.e., the ratio of correct
failure signals to the total number of failure signals). Therecall of a monitor
is the percentage of failures signaled prior to their occurrence. A monitor that
always signals failure has 100% recall andp% precision wherep is the rate
of plan failure. To generate monitors, first we mine the database of execution
traces for sequence rules. We then build a monitor by picking some threshold
λ, varied in the experiments, and retain only those rules that have at leastλ

precision or confidence (see Equation 1) on the training data.
Figure 10a shows the evaluation of the monitors produced with PLAN -

MINE on a test set of 500 (novel) plans. The results are the averages over
105 trials, and thus each number reflects an average of approximately 50,000
separate tests. It plots the precision, recall, and frequency of the mined rules
in the test database against the precision threshold in the training data. The
frequency graph shows the percent of trials for which we found at least one
rule of the given precision. The figure clearly shows that our mining and prun-
ing techniques produce excellent monitors, which have 100% precision with

438 MOHAMMED J. ZAKI ET AL.

Figure 10. (a) Using PLAN MINE for prediction; (b) using failure count for prediction.

recall greater than 90%. We can produce monitors with significantly higher
recall, but only by reducing precision to around 50%. The desired tradeoff
depends on the application. If plan failures are very costly then it might be
worth sacrificing precision for recall. For comparison we also built monitors
that signaled failure as soon as a fixed number of malfunctions of any kind
occurred. Figure 10b shows that this approach produces poor monitors, since
there was no correlation between the number of malfunctions and the chance
of failure (precision).

We also investigated whether or not data mining was really necessary to
obtain these results. The graphs in Figure 11 describe the performance of the
system if we limit the length of the rules. For example, limiting the rules to
length two corresponds to building a monitor out of the pairs of actions that

PLANMINE 439

Figure 11. (a) Precision, (b) recall and (c) frequency of discovered sequences in test set.

440 MOHAMMED J. ZAKI ET AL.

best predict failure. The figure shows the precision, recall, and frequency of
the rules of different lengths discovered in the test database plotted against
the precision threshold in the training data. The frequency graph shows the
percent of trials for which we found at least one rule of the given precision
and the given length. For example, at 0.5 training precision, out of the 105
trials, we found a frequent rule of length 3 in more than 90% of the trials, and
a rule of length 5 in 10% of the trials, and so on.

The results indicate that monitors built out of rules of length less than
three are much worse than monitors built out of longer rules. In particular,
the graphs show that there were very few rules of length one or two with
even 50% or higher precision. Furthermore, rules of higher length always
had better recall for the same level of precision. However, only 30% of our
experiments produced useful rules of length four and only 10% produced
rules of length five. But when these rules were produced, they were highly
effective.

6. Related Work

We now describe related work in sequence mining, classification and plan-
ning.

6.1. Sequential patterns

The problem of mining sequential patterns was introduced in (Agrawal and
Srikant, 1995). They also presented three algorithms for solving this prob-
lem. Two of the algorithms,AprioriSomeandDynamicSome, generated only
maximal sequential patterns. However, many applications require all frequent
patterns. TheAprioriAll algorithm found all patterns, and was shown to per-
form equal to or better than the other approaches. In subsequent work (Srikant
and Agrawal, 1996b), the same authors proposed the GSP algorithm that
outperformedAprioriAll by up to 20 times. GSP also introduced constraints
(such as maximum gap, minimum gap and sliding windows), and item hier-
archies on the discovered sequences. Recently, the SPADE algorithm (Zaki,
1998), was shown to outperform GSP by more than a factor of 2 and by more
than an order of magnitude if some pre-processed information is also kept.

The problem of findingfrequent episodesin a sequence of events was
presented in Mannila et al. (1995). An episode consists of a set of events
and an associated partial order over the events. Their algorithm is targeted
to discover the frequent episodes in a single long event sequence, although
it can be adapted to find frequent sequences across many different plan-
sequences, as in our study. They further extended their framework in Mannila

PLANMINE 441

and Toivonen (1996) to discovergeneralized episodes, which allows one to
express arbitrary unary conditions on individual episode events, or binary
conditions on event pairs. The TASA system (Hatonen et al., 1996) applied
frequent episode mining to discover frequent alarms in telecommunication
network databases. The MSDD (Oates et al., 1997) algorithm finds patterns
in multiple streams of data. The patterns are evaluated using a metric similar
to the chi-square significance test.

The high item frequency in our domain distinguishes it from previous
applications of sequential patterns. For example, while extracting patterns
from mail order datasets (Srikant and Agrawal, 1996b), the database items
had very low support, so that support values like 1% or 0.1% were used. For
discovering frequent alarm sequences in telecommunication network alarm
databases (Hatonen et al., 1996) the support used was also 1% or less. Fur-
thermore, in previous applications (Hatonen et al., 1996) only a database of
alarms (i.e., only the bad events) was considered, and the normal events of the
network were ignored. In our approach, since we wanted to predict plan fail-
ures, we have shown that considering only the frequent sequences in the bad
plans is not sufficient (all these have 100% confidence of predicting failure).
We also had to use the good plans as a source of “normative” information,
which was used to prune out unpredictive rules.

Since sequential patterns are essentially associations over temporal data,
they utilize some of the ideas initially proposed for the discovery of asso-
ciation rules (Agrawal et al., 1996; Zaki et al., 1997a). While association
rules discover only intra-plan (transaction) patterns (itemsets), sequential
patterns also include the inter-plan patterns (sequences). The set of all fre-
quent sequences is thus a superset of the set of all frequent itemsets. Other
relevant work includes discovery of association rules when the quantity of
items bought is also considered (Srikant and Agrawal, 1996a), and when a
taxonomy is imposed on the items (Han and Fu, 1995; Srikant and Agrawal,
1995). Lately, there has been an increasing interest in developing efficient
parallel algorithms for these problems (Agrawal and Shafer, 1996; Zaki et
al., 1997b). Parts of this paper have also appeared in Zaki et al. (1998).

6.2. Classification

The problem formulation for predicting failures that we presented in Sec-
tion 2 can be thought of as discovering high confidence classification rules,
where the class being predicted is whether a plan fails. However, there are
several characteristics that render traditional classifiers ineffective in our
domain. Firstly, we have a large number of attributes, many of which have
missing values. Secondly, we are trying to predict rare events with very low
frequency, resulting in skewed class distribution. Lastly, and most import-

442 MOHAMMED J. ZAKI ET AL.

antly, we are trying to predict sequence rules, while most previous work
only targets non-temporal domains. The main difficulty is in finding good
features to use to represent the plan traces for decision trees construction.
One can find a reasonable set of features for describing an individual event
(i.e., action in the plan) and then have a copy of this feature set by every
time step. However, very soon we run into trouble, since our feature space of
multiple event sequences can become exponential. A method to control this
explosion is to bound the feature length to sequences of size 2 for example.
However, this is likely to miss out on longer predictive rules. As we showed
in Figure 11, it was not uncommon to find predictive sequences of length 5 in
out datasets.

An approach similar to ours, but applied in a non-temporal domain, is the
partial classification work in Ali et al. (1997). They try to predict rules for a
specific class out of two or more classes. They isolate the examples belonging
to a given class, mine frequent associations, and then compare the confidence
based on the frequency for that class, and the frequency in the remaining
database, which is similar to our background pruning. However, they don’t
do any redundant or dominant pruning and, as we mentioned above, they
do not consider sequences over time. A brute-force method for mining high-
confidence classification rules using frequent associations was presented in
Bayardo (1997). He also describes several pruning strategies to control com-
binatorial explosion in the number of candidates counted. One key difference
is that we are working in the sequence domain, as opposed to the association
domain. The Brute algorithm (Riddle et al., 1994) also performs a depth-
bounded brute-force search for predictive rules, returning thek best ones.
In one of their datasets applied to Boeing parts they do consider time, but
their treatment is different. The dataset consists of part type and the time it
spends at a particular workstation in a semi-automated factory. They treat
time as another attribute, and the discovered rules may thus have a temporal
component. In our data format, each instance corresponds to a sequence of
event sets. Time is not an attribute but is used to order the events, and we
explicitly mine predictive sequences in this database.

6.3. Planning

There has been much research on analyzing planning episodes (i.e., invoc-
ations of the planner) to improve future planning performance in terms of
efficiency or quality (e.g. Minton, 1990). Our work is quite different in that
we are analyzing the performance of the plan, and not the planner.

In McDermott (1994), a system is described in which a planning robot
analyzes simulated execution traces of its current plan for bugs, or dis-
crepancies between what was expected and what occurred. Each bug in the

PLANMINE 443

simulations is classified according to an extensive taxonomy of failure modes.
This contrasts to our work in which we mine patterns of failure from data-
bases of plans that contain many problems, some minor and some major, and
the purpose of analysis is to discover important trends that distinguish plan
failures from successes.

CHEF (Hammond, 1990) is a case-based planning system that also ana-
lyzes a simulated execution of a plan. CHEF simulates a plan once, and if the
plan fails, applies a deep causal model to determine the cause of failure. This
work assumes that the simulator has a correct model of the domain. Reece
and Tate (1994) also described a method of producing execution monitors by
analyzing the causal structure of the plan.

Additionally, there has been work on extending classical planners to prob-
abilistic domains (e.g. Kushmerick et al., 1995). These methods have been
applied to very small plans because the analytic techniques are exponential
in the length of the plan. Furthermore, in this work, plan assessment and
plan refinement are completely separate. They also mention the importance
of using the results of assessing a probabilistic plan to help guide the choice
of how to improve it. Currently, the probabilistic planner chooses randomly
from among all the actions thatmight improve the plan. As shown in our
second set of experiments, the patterns extracted by data mining can help
focus a planner on what part of the plan to improve.

Haigh and Veloso (1998) apply machine learning techniques to robot path
planning. Their system uses predictive features of the environment to cre-
atesituation-dependent costsfor arcs in a path map used by the planner to
create routes for the robot. They use regression trees (Breiman et al., 1984)
for the mining engine, to learn separate models for each arc in the path. In
our domain this would correspond to learning rules for each route in the
evacuation domain. However, our goal is different in that we are trying to
learn long sequences of events that cause plan failure.

In Howe and Cohen (1995), a methodology calleddependency interpret-
ation is presented. This methodology uses statistical dependency detection to
identify interesting (unusually frequent or infrequent) patterns in plan exe-
cution traces. They then interpret the patterns using a weak model of the
planner’s interaction with its environment to explain how the patterns might
have been caused by the planner. One limitation is that once the patterns have
been detected, the user is responsible for picking up an interesting pattern
from among the set of mined patterns, and using it for interpretation. In con-
trast, we automatically extract the set of the highly predictive patterns. They
also applied the discovered patterns for preventing plan failures. However,
they detect dependencies between a precursor and the failure that immedi-
ately follows it, and they found that they were likely to miss dependencies

444 MOHAMMED J. ZAKI ET AL.

by not considering longer sequences. Our approach on the other hand detects
long failure sequences. In their failure prevention study they only used traces
of failure and recovery methods, and did not include other influences (e.g.,
changing weather). In contrast, we use all possible influences for discovering
patterns. In Oates and Cohen (1996), they applied the MSDD algorithm to
detect rules among planning operators and the context. Our work contrasts
with theirs in that, in addition to detecting the frequent operators in the bad
plans, we apply effective pruning techniques to automatically extract the rules
most predictive of failure.

7. Conclusions

We presented PLAN MINE, an automatic mining method that discovers event
sequences causing failures in plans. We developed novel pruning techniques
to extract the set of the most predictive rules from highly structured plan data-
bases. Our pruning strategies reduced the size of the rule set by three orders
of magnitude. The rules discovered by PLAN MINE were extremely useful
for understanding and improving plans, as well as for building monitors that
raise alarms before failures happen, i.e., we show that not only we can analyze
the simulation traces of a single plan to improve it, but we can also analyze
multiple plan executions and detect common failure modes.

There are several directions in which this work can be extended. In the
experiments we were limited to using a 60% minimum support. A lower
value would easily generate more than a million patterns. But a high sup-
port value can miss long failure sequences. It will only find fragments of the
long sequences. We would thus like to be able to lower the minimum support
threshold, and we would like to do this without making the problem intract-
able. One reason for the combinatorial explosion of patterns with decreasing
support is that we do not impose any restrictions on the event times. It might
be reasonable to assume that failures are caused by events that follow closely
in time, for example only within a specific window of time. Such constraints
can significantly reduce the number of patterns and can enable us to mine at
lower support levels. Other types of constraints include putting restrictions
on the sequence lengths, minimum and maximum gaps between successive
sequence elements, and so on.

In our current approach we first mine the bad plans, and then apply the
pruning in a separate step by comparing the support in both the good and
bad plans. A promising direction is to incorporate the pruning directly into
the first step, and to mine both the databases simultaneously. This can result
in significant speedups by pruning patterns as early in the computation as
possible. One can perhaps use information about the planner and the kinds of

PLANMINE 445

action sequences that can even be generated to improve the efficiency of this
application significantly.

Using support as a percentage of the whole plan database can also be
potentially limiting. For example, if the planner performs a wide variety
of plans for differing goals, we would need a lower support threshold to
compensate for the diversity. While incorporating constraints on discovered
patterns is one solution, an alternative would be to change the denominator in
the frequency formula to reflect similarity in the goals of the plans. It would
also be interesting to study the long term effects of data mining, i.e., what
happens if the process is repeated on new traces? How does one merge new
rules with the existing ones? and so on.

References

Agrawal, R. & Shafer, J. (1996). Parallel Mining of Association Rules.IEEE Trans. on
Knowledge and Data Engg.8(6): 962–969.

Agrawal, R. & Srikant, R. (1995). Mining Sequential Patterns. In11th Intl. Conf. on Data
Engg.

Agrawal, R., Mannila, H., Srikant, R., Toivonen, H. & Verkamo, A. I. (1996). Fast Discovery
of Association Rules. In Fayyad, U. and et al. (eds.)Advances in Knowledge Discovery
and Data Mining, 307–328. AAAI Press, Menlo Park, CA.

Ali, K., Manganaris, S. & Srikant, R. (1997). Partial Classification using Association Rules.
In 3rd Int’l Conference on Knowledge Discovery in Databases and Data Mining.

Bayardo, R.J. (1997). Brute-force Mining of High-confidence Classification Rules. In3rd
Intl. Conf. on Knowledge Discovery and Data Mining.

Breiman, L., Friedman, J.H., Olshen, R.A. & Stone, C.J. (1984).Classification and Regression
Trees. Belmont: Wadsworth.

Fayyad, U., Piatetsky-Shapiro, G., Smyth, P. & Uthurusamy, R. (1996).Advances in
Knowledge Discovery and Data Mining. AAAI Press, Menlo Park, CA.

Fayyad, U., Piatetsky-Shapiro, G. & Smyth, P. (1996). From Data Mining to Knowledge
Discovery: An Overview. InAdvances in Knowledge Discovery and Data Mining.(1996).

Ferguson, G. & James, A. (1998). TRIPS: An Integrated Intelligent Problem-Solving
Assistant. In15th Nat. Conf. AI.

Gunopulos, D., Khardon, R., Mannila, H. & Toivonen, H. (1997). Data Mining, Hypergraph
Transversals, and Machine Learning. In16th ACM Symp. Principles of Database Systems.

Haigh, K.Z. & Veloso, M.M. (1998). Learning Situation-dependent Costs: Improving
Planning from Probabilistic Robot Execution. InIntl. Conf. Autonomous Agents.

Hammond, K. (1990). Explaining and Repairing Plans that Fail.J. Artificial Intelligence45:
173–228.

Han, J. & Fu, Y. (1995). Discovery of Multiple-level Association Rules from Large Databases.
In 21st VLDB Conf.

Hatonen, K., Klemettinen, M., Mannila, H., Ronkainen, P. & Toivonen, H. (1996). Knowledge
Discovery from Telecommunication Network Alarm Databases. In12th Intl. Conf. Data
Engineering.

Howe, A.E. & Cohen, P.R. (1995). Understanding Planner Behavior.J. Artificial Intelligence
76(1): 125–166.

446 MOHAMMED J. ZAKI ET AL.

Klemettinen, M., Mannila, H., Ronkainen, P., Toivonen, H. & Verkamo, A.I. (1994). Finding
Interesting Rules from Large Sets of Discovered Association Rules. In3rd Intl. Conf.
Information and Knowledge Management, 401–407.

Kushmerick, N., Hanks, S. & Weld, D. (1995). An Algorithm for Probabilistic Planning.J.
Artificial Intelligence76: 239–286.

Lesh, N., Martin, N. & Allen, J. (1998). Improving Big Plans. In15th Nat. Conf. AI.
Mannila, H. & Toivonen, H. (1996). Discovering Generalized Episodes Using Minimal

Occurences. In2nd Intl. Conf. Knowledge Discovery and Data Mining.
Mannila, H., Toivonen, H. & Verkamo, I. (1995). Discovering Frequent Episodes in

Sequences. In1st Intl. Conf. Knowledge Discovery and Data Mining.
McDermott, D. (1994). Improving Robot Plans during Execution. In2nd Intl. Conf. AI

Planning Systems, 7–12.
Minton, S. (1990). Quantitative Results Concerning the Utility of Explanation-based

Learning.Artificial Intelligence42(2–3).
Oates, T. & Cohen, P. R. (1996). Searching for Planning Operators with Context-dependent

and Probabilistic Effects. In13th Nat. Conf. AI.
Oates, T., Schmill, M.D., Jensen, D. & Cohen, P.R. (1997). A Family of Algorithms for

Finding Temporal Structure in Data. In6th Intl. Workshop on AI and Statistics.
Reece, G. & Tate, A. (1994). Synthesizing Protection Monitors from Causal Structure. In2nd

Intl. Conf. AI Planning Systems.
Riddle, P., Segal, R. & Etzioni, O. (1994). Representation Design and Brute-force Induction

in a Boeing Manufacturing Domain.Applied Aritficial Intelligence8: 125–147.
Srikant, R. & Agrawal, R. (1995). Mining Generalized Association Rules. In21st VLDB

Conf.
Srikant, R. & Agrawal, R. (1996a). Mining Quantitative Association Rules in Large Relational

Tables. InACM SIGMOD Conf. Management of Data.
Srikant, R. & Agrawal, R. (1996b). Mining Sequential Patterns: Generalizations and

Performance Improvements. In5th Intl. Conf. Extending Database Technology.
Zaki, M.J., Parthasarathy, S., Ogihara, M. & Li, W. (1997a). New Algorithms for Fast

Discovery of Association Rules. In3rd Intl. Conf. on Knowledge Discovery and Data
Mining.

Zaki, M.J., Parthasarathy, S., Ogihara, M. & Li, W. (1997b). New Parallel Algorithms for Fast
Discovery of Association Rules.Data Mining and Knowledge Discovery: An International
Journal1(4): 343–373.

Zaki, M.J., Lesh, N. & Ogihara, M. (1998). PLANMINE: Sequence Mining for Plan Failures.
In 4th Intl. Conf. Knowledge Discovery and Data Mining.

Zaki, M.J. (1998). Efficient Enumeration of Frequent Sequences. In7th Intl. Conf. on
Information and Knowledge Management.

