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Abstract
In this paper we develop data mining techniques to

predict 3D contact potentials among protein residues
(or amino acids) based on the hierarchical nucleation-
propagation model of protein folding. We apply a hybrid
approach, using a Hidden Markov Model to extract folding
initiation sites, and then apply association mining to discov-
er contact potentials. The new hybrid approach achieves
accuracy results better than those reported previously.

1 Introduction
Today we are witnessing a paradigm shift in predict-

ing protein structure from its known amino acid sequence
(a1, a2, · · · , an). The traditional or Ab initio folding
method employed first principles to derive the 3D structure
of proteins. However, even though considerable progress
has been made in understanding the chemistry and biol-
ogy of folding, the success of ab initio folding has been
quite limited. Instead of simulation studies, an alterna-
tive approach is to employ learning from examples using
a database of known protein structures. For example, the
Protein Data Bank (PDB) records the 3D coordinates of the
atoms of thousands of protein structures. Most of these pro-
teins cluster into around 700 fold-families based on their
similarity. It is conjectured that there will be on the orderof
1000 fold-families for the natural proteins. The PDB thus
offers a new paradigm to protein structure prediction by em-
ploying data mining methods like clustering, classification,
association rules, hidden Markov models, etc.

A fascinating property of protein chains is that they
spontaneously and reproducibly fold into complex three-
dimensional globules when placed in an aqueous solution.
The sequence of amino acids making up the polypeptide
chain contains, encoded within it, the complete building in-
structions. This self-organization cannot occur by a ran-
dom conformational search for the lowest energy state, s-
ince such a search would take millions of years, while pro-
teins fold in milliseconds. In recent years, a combination of
molecular biological and biophysical techniques have dis-
sected the folding process into fast and slow components
which localize to certain parts of the protein sequence.

Some small, fast-folding regions of the molecule may be
identified by their sequence alone. A library of short se-
quence patterns that fold fast has been compiled by cluster

analysis of the database of known protein structures (the
I-sites Library, [1]). In this work, similar short sequences
that mapped to the same local structure in different proteins
were deemed to be autonomous folding units, and the short
sequences were compiled into patterns or “profiles” which
could then be used to predict whether or not a segment of the
protein would tend to fold independently of the rest of the
molecule. Cross-validation showed a strong statistical sig-
nificance to the predictions made by the profiles, and later
NMR studies showed that some peptides predicted to fold in
isolation actually did so [10]. Peptides with a strong tenden-
cy to fold independently constitute about 30% of the amino
acid residues in protein sequences. The formation of in-
dependent folding units (I-sites motifs) is the first level of
self-organization in the folding process: the “initiation.”

These short motifs occur in proteins of widely differing
topology, and so cannot contain sufficient information to de-
fine the overall, global fold of the protein molecule. More-
over, they are too short to be the fast-folding regions found
by experimental dissection. There must be a higher level of
self-organization which dictates how the short pieces come
together to form larger, longer globular domains. The rules
defining the propagation of structure along the chain, start-
ing from the sites of initiation, have been extracted from
the database of known protein structures and formalized as
a hidden Markov model (HMM), called HMMSTR [2] (or
“hamster”), discussed further below. HMMSTR models the
interactions between adjacent short regions of the sequence,
attempting to model the second level of self-organization:
“propagation” of structure along the sequence.

The I-sites Library models the initiation sites of folding,
and the new HMM models interactions between those sites.
But HMMSTR [2] is a network of connections between I-
sites motifs, and thus simultaneously models both folding
initiation and propagation. The two levels of complexity,
not discretely defined but smoothly intermingled, are repre-
sented in the HMM as variable degrees of branching. Un-
branched segments are initiations sites, whose probabilities
depend simultaneously on short contiguous segments of the
sequence, while branching and cycles represent multiple
sequence-dependent ways of extending and linking the ini-
tiation sites. Arbitrary levels of complexity may be modeled
by including HMMs recursively within overarching HMMs,
the latter representing the ways of connecting the output of
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the HMMs it contains. Hidden Markov models are limited
to data that can be expressed as one-dimensional sequences
of discrete symbols, but there are techniques for overcom-
ing both the discreteness and the one-dimensionality [7].

The next level of complexity in protein folding is called
“condensation”. In the first few microseconds after in-
troducing the polypeptide chain into an aqueous solution,
initiation sites form transient, rapidly-interchanging struc-
tures, favoring one or more conformations to varying de-
grees. These structures propagate along the chain by pro-
moting compatible upstream and downstream conforma-
tions, and the resulting transiently-formed substructures en-
counter each other by through-space diffusion, condensing
into larger, ordered globules, as energy dictates. The order-
ing of these three processes is not discrete but overlapping,
and they should therefore be integrated into a single com-
putational model. Modeling of the condensation step given
predictions based on the modeling of initiation/propagation
is the subject of the present work. A single Markov state
prediction implies a local substructure and a single amino
acid position within it. Thus, a contact between two Markov
states implies a specific mode of condensation between two
local substructures to form tertiary structure.
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Figure 1. Contact Map (PDB ID 2igd, N = 61)
The contact map of a protein (see Figure 1) is a particu-

larly useful representation of protein tertiary structure. Two
amino acids in a protein that come into contact with each
other form a non-covalent interaction (hydrogen-bonds, hy-
drophobic effect, etc.). More formally, we say that two
residues (or amino acids)ai andaj in a protein are incon-
tact if the 3D distanceδ(ai, aj) is less than some threshold
valuet (in this paper we uset = 7Å as the threshold dis-
tance), whereδ(ai, aj) = |ri − rj|, andri andrj are the
coordinates of theα-Carbon atoms of amino acidsai and
aj. We definesequence separationas the distance between
two amino acidsai andaj in the amino acid sequence, giv-
en as|i − j|. A contact map for a protein withN residues
is anN ×N binary matrixC whose elementC(i, j) = 1 if
residuesi andj are in contact, andC(i, j) = 0 otherwise.
The contact map provides a host of useful information. For
example, secondary structure can easily be discerned from
it. α-Helices appear as thick bands along the main diago-
nal since they involve contacts between one amino acid and
its four successors, whileβ-Sheets are thin bands parallel
or anti-parallel to the main diagonal, etc. However, tertiary
structure is not easily found from the contact map. For pre-
dicting the elusive global fold of a protein we are usually
interested in only those contacts that are far from the main

diagonal. In this paper we thus ignore any pair of residues
whose sequence separation|i − j| < 4.

Previous work on contact prediction has employed Neu-
ral Networks [3], and statistical techniques based on corre-
lated mutations [6, 8]. Recent work by Vendruscolo et al [9]
has also shown that it is possible to recover the 3D structure
from even corrupted contact maps. In this paper we present
a new hybrid technique for contact map prediction. We first
predict local structural elements using an HMM. The HM-
M simultaneously represents the initiation and propagation
steps of protein folding. We then apply association mining
technique on top of the HMM states to predict the states that
frequently co-occur with contacts. These sets are then used
for predicting contacts in unseen proteins. Our model ob-
tains 19% accuracy and coverage over the set of all proteins;
the model is also 5.2 times better than a random predictor.
We can significantly enhance coverage to over 40% if we
sacrifice accuracy (13%). For short proteins (length< 100)
we get 30% accuracy and coverage (4.5 times better than
random); if we lower accuracy to 26% we can get coverage
upto 63%. We believe that these results are better than (or
equal to) those reported previously.

2 Hybrid Mining Approach
We first use an HMM to predict local substructures with-

in the protein. We then use meta-level mining on the output
of the HMM using association rule mining.
Hidden Markov Models: The description of HMM below
is based on the excellent tutorial by Rabiner [7]. An HMM
is a doubly stochastic process with an underlying stochastic
process that is not observable (it is hidden), but can only be
observed through another set of observed symbols.

An HMM is made up of a finite numberN of states. At
each time stept a new state is entered based on a transition
probability distribution which depends on the previous state
(the Markovian property). After each transition is made, an
observation output is produced according to a fixed prob-
ability distribution which depends on the the current state.
Thus there aN such observation probability distributions.

An HMM is made up of the following components:T
is the length of the observation sequence;N the num-
ber of states in the model;M the number of observa-
tion symbols (for simplicity we assume here that the out-
put is a discrete symbol, e.g. an amino acid. How-
ever we actually use a continuous vector output as we
shall see later);Q = {q1, q2, · · · qN} is set of HMM s-
tates;V = {v1, v2, · · · , vM} is the set of output symbol-
s; A = {aij} gives the set of state transition probabili-
ties, i.e.,aij = P (qj at t + 1|qi at t); B = {bj(k)} is
the output symbol probability distribution in stateqj , i.e.,
bj(k) = P (vk at t|qj at t); and finallyπ = {πj} gives the
initial state distribution, i.e.,πj = P (qj at t = 1).

Using the model, an observation sequenceO =
O1O2 · · ·OT is generated as follows: 1) choose an initial
statei1 based onπ, 2) set positiont = 1, 3) chooseOt

according tobit
(k), 4) chooseit+1 according to{aitit+1

},
it+1 = 1, 2, · · ·N , and 5) sett = t + 1; return to step 3 if
t < T ; otherwise terminate the procedure.
Association Rules: The association mining [11] task can be
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stated as follows: LetI be a set of items, andD a database
of examples composed of items. A subset of items is also
called anitemset. Thesupportof an itemset is the number
of examples inD where it occurs as a subset. An itemset
is frequentif its support is more than a user-specifiedmini-
mum support (minsup)value. Anassociation ruleis an ex-
pressionA ⇒ B, whereA andB are itemsets. The support
of the rule is the joint probability of a example containing
bothA andB. Theconfidenceof the rule is the conditional
probability that an example containsB, given that it con-
tainsA. A rule is strong if its confidence is more than a
user-specifiedminimum confidence (minconf). In this pa-
per we are interested in rules with a specific item, called
the class, as a consequent, i.e., we mine rules of the form
A ⇒ ci whereci is a class attribute (1 ≤ i ≤ k).

We mine the frequent sets based on the Formal Concept
Analysis approach, which is a very elegant mathematical
framework for extracting “concepts” from databases.

Consider an itemsetX . Let Y = {E ∈ D|X ⊆ E}
be the set of all examplesE in the databaseD whereX
occurs. Further letX ′ = {i ∈ I|i ∈ ∩E∈Y E} be the set
of all items that are common to all examples in the setY .
Then we say thatX is closedif X = X ′. In other wordsX
is the maximal set of items that is common to all examples
in Y . A closed itemset is also called aconcept.

The set of all closed frequent itemsets can be orders of
magnitude smaller than the set of all frequent itemsets, e-
specially for real (dense) datasets. At the same time, we
don’t loose any information; the closed itemsets uniquely
determine the set of all frequent itemsets and theirexactfre-
quency. Thus instead of mining all the frequent itemsets we
only mine the frequent closed itemsets using the CHAR-
M algorithm [12] we recently developed. A detailed de-
scription of the algorithm is beyond the scope of this paper.
Suffice it to say that CHARM can handle very large disk-
resident or external memory databases; it has been tested
on databases with millions of examples, and it scales linear-
ly in the database size. We refer the reader to [12] for the
algorithm description and its efficiency.

3 HMMSTR: An HMM for Local Structure
We describe here the hidden Markov model, HMM-

STR [2], for general protein sequences based on the I-sites
library of sequence-structure motifs [1]. In the next section
we will show how we apply association mining on the out-
put of HMMSTR to predict residue contacts.

The I-sites (Invariant or Initiation sites) library consist-
s of an extensive set of short sequence motifs, length 3
to 19, obtained by exhaustive clustering of sequence seg-
ments from a non-redundant database of known structures
[1]. Each sequence pattern correlates strongly with a recur-
rent local structural motif in proteins. Approximately one
third of all residues in the database are found in an I-sites
motif that can be predicted with a high degree of confidence
(> 70%). The library is non-redundant in that no motif is
completely contained within another, longer motif. How-
ever, many of the motifs overlap. Furthermore, the isolat-
ed motif model does not capture higher order relationship-
s such as the distinctly non-random transition frequencies

between the different motifs. The redundancy inherent in
the I-sites model suggests a better representation that would
model the diversity of the motifs and their higher order rela-
tionships while condensing features they have in common.
A hidden Markov model is well suited to this purpose.
Description of HMMSTR: Each of the 262 I-sites motif
was represented as a chain of Markov states, each of which
contains information about the sequence and structure at-
tributes of a single position in the motif. Adjacent positions
were represented by transitions from one state to the next.
Hierarchical merging of these linear chains of states, based
on sequence and structure similarity, resulted in a graph
containing almost all the motifs. The merged I-sites mo-
tifs comprise a network of states connected by probabilistic
transitions, i.e. an HMM as shown in Figure 2.
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Figure 2. HMMSTR model [2]
Each HMMSTR state can produce, or ”emit”, amino

acids and structure symbols according to a probability dis-
tribution specific to that state. There are four probability
distributions defined for the states in HMMSTR,b, d, r,
andc, which describe the probability of observing a particu-
lar amino acid, secondary structure, backbone angle region,
or structural context descriptor, respectively. A contextde-
scriptor represents the classification of a secondary structure
type according to its context. For example, a hairpin turn is
distinguished from a diverging turn, and a beta-strand in the
middle of a sheet is distinguished from one at the end of a
sheet. More formally, for a given stateqi, there are a set
of emission probabilities, collectively calledBi. The val-
uesbi(m) (m = 1 · · · 20) are associated with probabilities
for the emission of amino acids;di(m) (m = 1 · · · 3) are
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the probabilities of emitting helix(H), strand(S) or loop(T);
ri(m) (m = 1 · · · 11) are the probabilities of emitting dihe-
dral angle symbols, andci(m) (m = 1 · · · 10) are probabil-
ities of emitting structural context symbols.

The database is encoded as a linear sequence of amino
acids and structural observables. The amino acid sequence
data consists of a “parent” amino acid sequence of known
three-dimensional structure, and an amino acid profile
obtained by alignments to the parent sequence [1]. The
amino acid of the parent sequence is denoted byOt, and
the profile by{Om

t }(1 ≤ m ≤ 20). For the structural
identifiers at each positiont, the following nomenclature
is used: 3-state secondary structureDt, discrete backbone
angle regionRt, and the context symbolCt. A sequence
s of lengthT is given by the values of the attributes at all
positionsst = {Ot, {O

m
t }, Dt, Rt, Ct} (1 ≤ t ≤ T ). A

path is a sequence of states through the HMM, denoted
Q = q1q2 · · · qT . Thus, the probability of a sequences
given the modelλ, P (s|λ), is obtained by summing the
relevant contributions from all possible pathsQ: P (s|λ) =
∑

all I πi1Bi1(s1)ai1i2bi2(s2) · · · aiT−1iT
biT

(sT ), where
I = i1i2 · · · iT is a fixed sequence of states andBi(st)
is the probability of observingst at stateqi. HMMSTR
showed significant improvements in performance when
we used amino acid profiles instead of single amino
acids, thusB is given as (Ncount is a global parameter):

Bi(st) =

(

di(Dt)
ri(Rt)
ci(Ct)

)

∑20

m=1
bi(m)Ncount×Om

t

Training HMMSTR: For training and testing of the H-
MMSTR we used a non-redundant database of proteins of
known structure, PDBselect:December 1998 [4] containing
691 proteins and their sequence families. The proteins in the
set have< 25% sequence similarity. Entries in the database
were selectively removed if the structure was solved by N-
MR, had a large number of disulfide bridges or cis-peptide
bonds, or if it was a membrane-associated protein according
to the header records. Disordered or missing coordinates in
the middle of a sequence were addressed by dividing the
sequence at that point. Contiguous segments of length less
than 20 were ignored. Multiple sequence alignments were
generated from each sequence using PSI-BLAST after fil-
tering the query sequences for low-complexity regions. Da-
ta for training the HMM included the sequence profile, com-
puted from the multiple sequence alignment as described
before [1], the DSSP secondary structure assignments [5],
the backbone angles, and a structural “context” symbol.

Backbone angles were measured from the coordinates
and assigned, using a Voronoi method, to 11 regions of
phi/psi space. The centroids of 10 regions were chosen by
K-means clustering of a large subset of trans phi/psi pairs
from the database. The 11th region is all cis peptides.

A randomly selected set of 73 of the 691 proteins (19,000
positions) was then set aside and not used for training, but
only for the final cross-validation. Before cross-validation,
a test for true independence was applied to each member of
the test set, and 12 members were removed. The final test
set thus contained 61 proteins and 16,000 positions.

The remaining set of 618 parent sequences (145,000 po-

sitions) was used for training, and divided into a large set of
564 sequences (133,000 positions), used for optimization
via the Expectation-Maximization algorithm, and a small
set of 54 sequences (12,000 positions) used to evaluate the
predictive ability of the model during training. Note that the
small set of 54 sequences is used only for evaluation of the
performance of a model and may thus appear to be a test set.
However, decisions regarding the modification of the model
are based on results of those evaluations. The set of 54 se-
quences is therefore not a test set, but a training set. For the
final round of training we re-combined the large and small
training sets, to a total of 618 sequence families. After the
final round of training, the models were frozen.

4 Data Format and Preparation
After HMMSTR is built we again took the 691 proteins

from PDBSelect and computed for each protein the optimal
HMMSTR states that agree with the observed amino acids
in the protein. In other words for each protein sequence-
structure we solve the estimation problem, i.e., given the
observation sequenceO = O1O2 · · ·OT , how to choose a
state sequenceI = i1i2 · · · iT , which is optimal. The out-
put probability distributions of all the states thus chosenfor
a protein sequence is used as input for the association min-
ing algorithm. In fact, rather than a single state associated
with a given residue, we have available the probability that
the residue at the given position is associated with all the
states of HMMSTR, i.e., we have availableP (qi|aj) for all
the 282 HMMSTR states (1 ≤ i ≤ 282) for all the residues
in a given protein (1 ≤ j ≤ n, wheren is the length of
the protein). For each residue we also know the amino acid
at that position; theb, d, r, andc outputs, which describe
the probability of observing a particular amino acid, sec-
ondary structure, backbone angle region, or structural con-
text descriptor, respectively; the spatial coordinates ofthe
α-Carbon atom〈x, y, z〉; a distance vector of lengthn giv-
ing the distance of this residue from all other residues in the
protein; and the 20 amino acid profiles for that position. A
protein data file may look like this:

PDB Name: 153l_, Sequence Length: 185

Position: 1, Residue: R
Coordinates: 0.0 -73.2 177.6
Profile (20 values): 0.0 ... 1.0 ... 0.0
HMMSTR State Probabilities (282 values):

0.0 ... 0.7 .... 0.3 ... 0.0
Distance Vector (185 values): 0 3 ... 15 13

Position: 2, Residue: T
Coordinates: -124.4 0.2 -177.1
Profile: 0.0 ... 1.0 ... 0.0
HMMSTR State Probabilities:

0.0 ... 0.9 ... 0.1 ... 0.0
Distance Vector: 3 0 3 ... 15 13 10
...
Position: 185, Residue: Y
Coordinates: -88.7 0.0 0.0
Profile: 0.0 ... 0.4 ... 0.6 ... 0.0
HMMSTR State Probabilities:

0.0 ... 0.2 ... 0.5 ... 0.3 ... 0.0
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Distance Vector: 15 13 10 ... 5 3 0

We have one file for each of the 691 proteins from PDB-
Select. Disordered or missing coordinates in the middle
of a protein sequence were addressed by dividing the se-
quence at that point. This produces a set of 794 files, most
of them containing an entire protein sequence, but some of
these correspond to proteins that were split.

Given a protein file, we now have to transform the da-
ta into a format that can be easily mined for frequent closed
itemsets, i.e., we need to prepare the data in the relationalor
tabular format where we have multiple attributes (columns)
for each example (rows) or record. Since we are interest-
ed in predicting the contact between a pair of amino acids,
we use each pair as an example in the training set, associ-
ated with a specialclassattribute indicating whether it is
a contact (C) or non-contact (NC); amino acidsai andaj

are in contact ifδ(ai, aj) < 7Å, i.e., the distance between
α-carbons of amino acidsai andaj is less then7Å. Our
new database has an entry showing the two amino acids and
their class for each pair of amino acids for each protein. In
order to avoid predicting purely local contacts we ignore all
pairs whose sequence separation|i− j| < 4. Note also that
the number of contactsNC is a lot smaller than the number
of non-contactsNNC for any protein.

We found that the percentage of contacts (or number of
database entries with class 1) over all pairs is less than 1.7%.
Across the 794 files, the longest sequence had length 907,
while the smallest had length 35. There were 17,618,115
pairs over all proteins, while only 292,126 pairs were in
contact. This database thus corresponds to a highly biased
binary classification problem. That is, we have to build a
mining model that can discriminate between contacts and
non-contacts between amino acids pairs, where the exam-
ples are overwhelmingly biased towards the non-contacts.

Our database so far doesn’t have enough information for
good discrimination. All we have is the amino acids making
up the pair and whether they are in contact or not. We need
to add more “context” information to facilitate the classifi-
cation. It is easy to incorporate, for each amino acid in the
pair, the 3 secondary structure symbols (di, dj ), the 11 back-
bone angle regions (ri, rj ), and the 10 structural context de-
scriptors (ci, cj). For each pair we would also like to add the
HMMSTR state probabilities. Since association rules only
work for categorical attributes, we need to convert the con-
tinuous state probabilities into discrete values. To do this
we take the ratio of each of the 282 HMMSTR state proba-
bilities for ai against the background or prior probability of
an amino acid being in that state; if the ratio is more than
some threshold we include the state in the context ofai, else
we ignore it. We repeat the same process foraj . Using a
similar thresholding method one can incorporate the amino
acid profiles for positionsi andj. With all this context in-
formation for bothai andaj we obtain a new database to
be used to find the frequent itemsets characterizing the con-
tacts and non-contacts. This has the following columns for
pairs of amino acids over all proteins:
Position Info: i j |i-j| ai aj
Context: di dj ri rj ci cj
Profile: pi1 pi2 ... pj1 pj2 ...
HMMSTR: qi1 qi2 ... qj1 qj2 ...
Class: C or NC

Note that the number of columns can be variable for dif-
ferent pairs depending on the profile and HMMSTR state
probabilities.pi1 , pi2 , etc. show the other amino acids that
can appear in positioni (provided the probability is more
than some threshold), and finallyqi1 , qi2 , etc. show HMM-
STR states with probabilities more than some factor of the
prior probability of those states.

5 Association Mining on the Pairs Database
We are now in a position to cast the above database in the

association framework. Each attribute-value pair is an item,
and is represented with a fixed, unique integer. For example
ai = G is one item andai = L is another item. By the
same token each value ofci, di, ri, Li, andRi is a different
item. Each of the HMMSTR states becomes a distinct item,
as do the profile values. The items for the context attributes
of ai andaj are also kept distinct. Finally we separate the
examples that are contacts from those that are non-contacts
to get two databases, denoted asDC andDNC , respectively.

Our goal is to find high support and high confidence rules
of the formA ⇒ C andA ⇒ NC, that discriminate be-
tween the contact pairs and the non-contact pairs, respec-
tively. Below we describe the mining/training and testing
phases, where we learn from examples using the frequent
closed itemsets, and then classify unseen examples as being
contacts or non-contacts, respectively.

5.1 Mining on Known Examples
The goal of the mining phase is to learn from known con-

tact and non-contact examples and build a model or rule set
that discriminates between the two classes. We selected a
random 90% of the files for training, out of a total of 794
files. The remaining 10% of the files were kept aside for
testing the mined rule set. Since we are primarily interest-
ed in predicting the contacts rather than the non-contacts,
we mine only on the contacts databaseDC . However, we
do use the non-contacts databaseDNC to prune out those
itemsets that are frequent in both sets. Building a discrimi-
native rule set consists of the following steps, in order:
Mining: We use CHARM [12] to mine all the frequen-
t closed itemsets inDC based on a suitably chosenmin sup
value. Let’s denote the set of frequent closed itemsets asF .
Counting: We compute the support of all itemsets inF in
the non-contacts databaseDNC .
Pruning: We compute the probability of occurrence of each
itemset inF in both the contact and non-contact databas-
es. The probability of occurrence is simply the support of
the itemset divided by the number of examples in the given
dataset. For example, if itemsetX ∈ F , then the prob-
ability of its occurrence inDC is given asP (X,DC) =
σ(X,DC)/|DC |. As a first step in pruning we can remove
all itemsetsX ∈ F which have a greater probability of
occurrence in the non-contact database than in the contact
database, i.e., ifP (X,DNC) > P (X,DC). Actually, we
compute the ratio of the contact probability versus the non-
contact probability forX , and prune it if this ratio is less
than some suitably chosen thresholdρ, i.e., we pruneX if
P (X,DC)/P (X,DNC) < ρ. In other words we want to
retain only those itemset that have a much greater chance of
predicting a contact rather than a non-contact.
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5.2 Testing on Unknown Examples
The goal of testing is to find how accurately the mined

set of rules predict the contacts versus the non-contacts in
new examples not used for training. We used a random 10%
of the files in the database for testing. The test set had a total
of 2,336,548 pairs, out of which 35,987 or 1.54% were con-
tacts. Since we do know the true class of each example it is
easy for us to find out how well our rules are for prediction.
For testing we generate a combined databaseDt containing
all pairs of amino acids in contact or otherwise. For each
example we know the true class. We assign each example a
predicted class using the following steps:
Evidence Calculation: For each exampleE in the test
datasetDt, we compute which itemsets in the set of mined
and pruned closed frequent itemsetsF are subsets ofE.
Let’s denote the set of these itemsets asS. We next calcu-
late the cumulative contact and non-contact support for ex-
ampleE, i.e., the sum of the supports of all itemsets inS in
the contact and non-contact database. Finally, we compute
the evidence forE being a contact, i.e., the ratio of the cu-
mulative contact support over non-contact support, denoted
asρE . Any E with zero contact support is taken to be a
non-contact and discarded, and only the examples or with
positive contact support are retained for the next step.
Prediction: To make the final prediction if a test pair of
residues is in contact or not, we sort all test examplesE
(with positive cumulative contact support) in decreasing or-
der of contact evidenceρE . Finally, the topγ fraction of
examples in terms ofρE are predicted to be contacts and
the remaining1 − γ fraction of examples as non-contacts.
How γ is chosen will be explained below.

5.3 Model Accuracy and Coverage
In predicting contacts versus non-contacts for the test ex-

amples, we have to evaluate the mined model based on t-
wo metrics:AccuracyandCoverage. Furthermore, we are
only interested in the prediction of contacts; thus accuracy
and coverage is only considered for contacts. Accuracy is
the ratio of correct contacts to the predicted contacts, while
coverage is the percentage of all contacts correctly predict-
ed. Thus, accuracy tells us how good the model is, while
coverage tells us the number of contacts predicted.

More formally, letNtc denote the number of true con-
tacts in the test examples,Npc the number of predicted
contacts,Ntpc the number of true predicted contacts, and
let Na denote the number of all possible contacts, i.e.,
Na = (N −3)×(N −2)/2 (whereN is the protein length),
since the contact map is symmetric and pairs with sequence
separation less than 4 are ignored. The accuracy of the mod-
el is given asA = Ntpc/Npc, and the coverage of the model
is given asC = Ntpc/Ntc We also compare our model a-
gainst a random predictor. The accuracy of random predic-
tion of contacts is defined asAr = Ntc/Na.

The number of contacts predictedNpc of course depends
on how we choseγ, since the topγ fraction of test examples
based on evidence is predicted as contacts. Since a protein
is characterized byNtc true contacts, we setγ = N∗

tc/N
∗

a

and then predict the topγ fraction of examples as contact-
s. Note thatN∗

tc andN∗

a denote the actual contacts and all

pairs, respectively, that have positive contact support, since
we discard examples with zero contact support. By adopt-
ing the above method, the number of predicted contacts is
limited to those actually present in the protein. Further, this
method has been used by previous approaches to contact
map prediction [3, 6]; we use it for comparison.

6 Experimental Results
We mined the pairs database using various combinations

of context information and then tested the model on the un-
seen proteins. The pairs databases for training and testing
had the following approximate sizes:DC = 32MB for the
training contacts database,DNC = 2GB for the training
non-contacts database, andDt = 340MB for the testing
database (includes both contacts and non-contacts). For all
experiments below, we used a minimum support of 0.5% in
the contact database, and we pruned a pattern if the ratio of
contact to non-contact frequency was less than 4 (except for
the amino acids only case where we used a ratio of 1.5).
Amino Acids Only: Our first goal was to test how much in-
formation is contained in the amino acids only, i.e., for both
training and testing, each example consisted of only the two
amino acidsai andaj, and nothing else. Figure 3 shows the
accuracy, coverage, and improvement of the mined model
over the random predictor for the test set. The accuracy and
coverage is the mean value over all proteins. The figure
shows that the amino acids have some information that can
be used to predict contacts versus non-contacts, but this in-
formation is not too good. The figure plots the accuracy and
coverage as percentages. It also plots the improvement of
the model over the random predictor. The x-axis shows the
prediction factor, which is related to theγ value (used to
predict the top fraction of pairs as contacts). The prediction
factor is in multiples ofN∗

tc, the number of true contacts in
the protein with positive contact evidence. For example, a
value of 10 means that the top(10 × N∗

tc)/N
∗

a fraction of
the examples are predicted as contacts.

The left-most graph in Figure 3 shows the accuracy and
coverage of the predictor over test proteins of all lengths.
The other two figures on the right show how accuracy and
coverage change with protein length. We have divided the
test proteins into four bins:1 ≤ N < 100, 100 ≤ N < 170,
170 ≤ N < 300, and300 ≤ N .

We find that over all proteins the amino acids by them-
selves can be used to give an 8.5% accuracy, 1.5% coverage,
and an improvement over a random predictor by a factor of
2.4. Note also the interesting trend in the graph. As the
prediction factor increases we get better and better cover-
age, but the accuracy trails off. This represents the classic
accuracy versus coverage trade-off common to many pre-
diction problems. Which value to choose for the predic-
tion factor depends on what is more important. It has been
reported in [9] that the 3D structure of proteins can be re-
covered quite robustly, even from corrupted contacts maps.
This implies that coverage should have an higher weight
than accuracy. In any case, if we had to choose a value rep-
resenting the best trade-off, we can pick the point where the
accuracy and coverage curves intersect. This happens for a
prediction factor of 7, where we have roughly 7% accuracy
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Figure 3. Amino Acids Only
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Figure 4. HMMSTR States and Amino Acids
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Figure 5. HMMSTR States, Amino acids, and Rt, Dt, Ct Symbols
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Figure 6. HMMSTR States, Amino Acids, and Amino Acid Profiles
and coverage, and which is 2 times better than random. For
6.3% accuracy we can increase coverage to 14%.

When we consider the results for proteins of different
lengths, we find the same trade-off between accuracy and
coverage. Looking at the crossover point, we get around
13% accuracy and coverage for short proteins withN <
100, 6% for 100 ≤ N < 170, 4.5% for170 ≤ N < 300,
and around 2% of longer proteins.
HMMSTR States and Amino Acids: We next added the
HMMSTR states corresponding toai andaj , i.e., we added
the columnsqi1 , qi2 , · · · andqj1 , qj2 , · · · to the training and
testing sets. Figure 4 shows the results. If we look at the
cross-over point we get almost 19% accuracy and cover-
age, while the model remains 5.2 times better than random.

For 18% accuracy we can get coverage of 25% (still 5.1
times better than random). Figure 7 shows the results in a
slightly different format. It plots the improvement in cov-
erage/accuracy over a random prediction. These results are
comparable to or better than the results recently reported in
[13], where they examined pairwise amino acid interaction-
s in the context of secondary structural environment (helix,
strand, and coil), and used the environment dependent con-
tact energies for contact prediction experiments. For about
25% coverage our model does more than 5 times the random
predictor, as compared to the 4 times improvement report-
ed in [13]. Figure 8 shows the predicted contact map for
the protein2igd that we used in the introduction. We got
35% accuracy and 37% coverage for this protein. The fig-
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If we look at proteins of various lengths in Figure 4, we

find that for N < 100, we get 26% accuracy and 63%
coverage at the extreme point (4 times over random). For
100 ≤ N < 170 we get 21.5% accuracy and 10% coverage
towards the end (6 times over random), for170 ≤ N < 300
we get 13% accuracy and around 7.5% coverage (6.5 times
over random), and for longer proteins we get 9.7% accura-
cy and 7.5% coverage (7.8 times over random). We believe
these results are the best, or at least comparable to those re-
ported so far in the literature on contact map prediction [3,
6]. For example, Fariselli and Casadio [3], used a Neu-
ral Network based approach over pairs database, with oth-
er contextual information like sequence context windows,
amino acid profiles, and hydrophobicity values. They re-
ported an 14.4% accuracy over all proteins, with an 5.4
times improvement over random. They also got 18% ac-
curacy for short proteins with an 3.1 times improvement
over random. Olmea and Valencia [6] on the other hand
used correlated mutations in multiple sequence alignments
for contact map prediction. They added other information
like sequence conservation, alignment stability, contactoc-
cupancy, etc. to improve the accuracy. They reported 26%
accuracy for short proteins, but did not report results for
all proteins. While we believe that our hybrid approach
does better, we should say that direct comparison is not
possible, since previous works used a different (and small-
er) PDB select database for training and testing. One draw
back of these previous approaches is that they do not report
any coverage values, so it is not clear what percentage of
contacts are correctly predicted. Another approach to con-
tact map prediction was presented in [8], which was based

on correlated mutations. They obtained an accuracy of 13%
or 5 times better than random.
Adding Additional Information: We next tried to add
more columns to the training database. For example we
separately added the amino acid profiles, and the structural
context symbols for the 3-state secondary structureDt, dis-
crete backbone angle regionRt, and the context symbolCt.
The results for these cases are shown in Figure 5 and Fig-
ure 6. As we can see adding the profiles did not add any
additional prediction power to our model, while adding the
structural symbols had a positive (somewhat mixed) effect
on accuracy and coverage. It appears that while the accura-
cy of the prediction drops a little there is tremendous boost
in the coverage of the model. For example at around 18%
accuracy we get about 25% coverage using the HMM states
and amino acids (see Figure 4), but when we add the struc-
tural symbols, we get about 44% coverage for an accuracy
of 12.5%. This tells us that the structural symbols can be
helpful in providing the right context and thus help in iden-
tifying a larger portion of the contacts.

In conclusion we have presented a new hybrid HMM and
association rule mining method for contact predictions. Our
results are the best or comparable to those previously re-
ported. We are currently working to further improve both
accuracy and coverage by carefully selecting many of the
threshold parameters used in the experiments, as well as by
adding additional attributes that might help prediction.
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