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Opening Remarks

Bioinformatics is the science of managing, mining, and in-
terpreting information from biological sequences and struc-
tures. Genome sequencing projects have contributed to an

exponential growth in complete and partial sequence databases.
The structural genomics initiative aims to catalog the structure-

function information for proteins. Advances in technology
such as microarrays have launched the subfield of genomics
and proteomics to study the genes, proteins, and the regu-
latory gene expression circuitry inside the cell. What char-
acterizes the state of the field is the flood of data that exists
today or that is anticipated in the future; data that needs
to be mined to help unlock the secrets of the cell.

While tremendous progress has been made over the years,
many of the fundamental problems in bioinformatics, such
as protein structure prediction or gene finding, are still open.
Data mining will play a fundamental role in understanding
gene expression, drug design and other emerging problems
in genomics and proteomics. Furthermore, text mining will
be fundamental in extracting knowledge from the growing
literature in bioinformatics.

The goal of this workshop is to encourage KDD researchers
to take on the numerous challenges that Bioinformatics of-
fers. The workshop features an invited talks from noted
expert in the field, and the latest data mining research in
bioinformatics. We encouraged papers that propose novel
data mining techniques for tasks such as:

e Gene expression analysis

e Protein/RNA structure prediction

e Phylogenetics

e Sequence and structural motifs

e Genomics and Proteomics

e Gene finding

e Drug design

e RNAi and microRNA Analysis

e Text mining in bioinformatics

e Modeling of biochemical pathways

moris@k.u-tokyo.ac.jp

Yorktown Heights, NY 10598
rigoutso@us.ibm.com

These proceedings contain 10 papers (6 long and 4 short),
out of 26 submissions that were accepted for presentation at
the workshop. Each paper was reviewed by three members
of the program committee. Along with a keynote talk, we
were able to assemble a very exciting program.

We would like to thank all the authors, invited speaker, and
attendees for contributing to the success of the workshop.
Special thanks are due to the program committee for help
in reviewing the submissions.

This workshop follows the previous three highly successful

workshops: BIOKDDO03, held in Washington, DC; BIOKDDO02,

held in Edmonton, Canada; and BIOKDDO1 held in San
Francisco, CA. We expect BIOKDDO04 to be equally suc-
cessful.
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A New Approach to Protein Structure Mining and
Alignment’

Hongyuan Li, Keith Marsolo, Srinivasan Parthasarathy and Dmitrii Polshakov f
The Ohio State University
Columbus, Ohio, USA

1i.274@osu.edu, {marsolo,srini}@cse.ohio-state.edu, dpolshak@chemistry.ohio-state.edu

ABSTRACT

One of the largest areas of focus in bioinformatic and data
mining research has been on the protein domain. These
research efforts have included protein structure prediction,
folding pathway prediction, sequence alignment, ab initio
simulation, structure alignment, substructure detection and
many others. In this work, we deal with substructure detec-
tion and sequence alignment. Substructure detection is gen-
erally defined as the mining of a molecule’s 3D structure in
order to find interesting/frequent domains. Sequence align-
ment involves determining the similarity of two (or more)
protein molecules based on the how well their amino acid
sequences “match.” There are potential pitfalls when trying
solve both of these problems, however. In the case of sub-
structure mining, focusing solely on structural information
can lead to the discovery of biologically irrelevant substruc-
tures. With sequence alignment, the alignment results can
vary greatly, depending on the substitution matrix used. In
this paper we describe a method that combines the ben-
efits of both substructure mining and sequence alignment
in an attempt to determine the similarity between protein
molecules. In the absence of biological information, our work
will quickly and efficiently mine a protein molecule in order
to determine frequent local structures. With the addition
of biological sequence information, however, our algorithm
provides a way to align proteins with similar local struc-
tures and sequence, yielding a global alignment between
molecules. We present a novel structure mining/alignment
algorithm as well as some additional work into a new cluster-
ing metric for amino acids based on several different physio-
chemical properties. This metric is used with our alignment
algorithm in order to provide a mechanism for globally align-
ing protein molecules.

General Terms

Algorithms, Experimentation
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1. INTRODUCTION:

With the ever-increasing power and storage capacities of

computers comes the ability to process larger amounts of in-

formation. Through endeavors such as the Human Genome

Project [36] and the Sloan Digital Sky Survey [41], the amount
of potential data has increased exponentially, to the point

where new techniques are needed to analyze and compre-

hend it. One of the fastest-growing areas in computer sci-

ence is that of data mining, or the process of deriving useful

relationships and patterns from large stores of data. Data

mining has been increasingly applied to problems in the sci-

entific domain, especially bioinformatics, which involves the

application of data mining techniques to biological datasets.

One of the richest research areas in bioinformatics has been

in the protein domain. Proteins are often studied because

they play an important role in a countless number of biolog-

ical processes, yet there is still a great deal about proteins

that is not understood. For instance, a protein can fold

spontaneously and reproducibly into a three-dimensional struc-
ture when placed into aqueous solution. This transformation
occurs in a fraction of a second, yet researchers still have not
been able to determine the exact sequence of steps that cause
a protein to fold. It is known that a protein’s amino acid
sequence uniquely determines its three-dimensional struc-
ture and that this structure influences the protein’s biolog-
ical function. Thus, if two proteins share a similar struc-
ture, they may have a similar biological function. While
researchers have found that sequence influences structure,
they have not yet determined the exact nature of the link
between the two.

Substructure detection involves the mining of a protein’s
three-dimensional graph in order to find “interesting” (or
possibly just frequent) structural motifs [4-6,9, 12, 18, 25,
30,33,43]. By determining whether an previously unclassi-
fied protein contains certain structural motifs, one can make
inferences as to the role it might play biologically. The prob-
lem with substructure detection algorithms is that the anal-
ysis methods are often quite complicated and require large
amounts of time, memory, and computational resources to
execute. With protein sequence mining, there has been a
great deal of success in determining the similarity between
proteins based on their amino acid sequence, yet through
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evolution, it is possible for a protein’s sequence to mutate.
These mutations may not have any influence over a protein’s
structure or function, yet may lead to false notions of sim-
ilarity between molecules. As a result, one would like to
create a program that is able to combine the best of both
worlds: have the ability to find interesting structural motifs
within a protein, and then, using those motifs and a pro-
tein’s amino acid sequence, construct an alignment between
proteins that can be used to determine the similarity be-
tween molecules. In this paper we present work that is able
to provide such functionality. By adding domain-specific
extensions to a previously developed substructure mining
algorithm [7,8,29,37] our work makes the following contri-
butions to research in the protein domain:

1. The ability to quickly and efficiently find local sub-
structures within a protein molecule.

2. With the inclusion of biological sequence information,
the ability to align local substructures to determine a
global alignment between protein molecules.

3. The incorporation of a new classification for amino
acids based on physio-chemical properties that allows
for partial matching and partial alignment between
molecules.

2. RELATED WORK AND BACKGROUND

2.1 Sequence Alignment

The idea of using alignment to determine protein similarity
is not a new one. Programs like BLAST [15] and its re-
finements PSI-BLAST and gapped BLAST [16] have been
used to align proteins based on their amino acid sequence.
With the completion of the Human Genome Project [36] and
other genome mapping initiatives, there is obviously a great
need for such an alignment method. However, the number of
new protein structures is growing enormously as well. The
Protein Data Bank (PDB) [3] currently holds over 22,000
protein structures and is growing by almost 4,000 structures
every year.

Much information about the structure of proteins can be
found in the Structural Classification of Proteins (SCOP)
database [34]. The SCOP database provides ”a detailed
and comprehensive description of the structural and evolu-
tionary relationships of proteins,” including information on
a protein’s secondary and tertiary structure. This informa-
tion is derived by the visual inspection of the proteins in
the PDB. The SCOP database is arranged into four differ-
ent hierarchical levels: Class, Fold, Superfamily and Family.
Proteins in the same Class share similar secondary struc-
ture information, while proteins within the same Fold have
similar secondary structures that are arranged in the same
topological configuration. Proteins within the same Super-
family show clear structural homology and proteins within
the same Family exhibit a great deal of sequence similarity
and are thought to be evolutionarily related.

2.2 Structure Alignment

There have been a number of methods proposed to compare
protein structures. Some methods compare the secondary
structures of the proteins; others try to align proteins based
simply on their backbone configuration. A number of public
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tools exist that provide some type of alignment/similarity
function, including DALI, STRUCTAL and LOCK. A brief
description of each follows.

DALI [21] is based on the alignment of two-dimensional dis-
tance matrices, with the matrix values representing the dis-
tances between the C, atoms of a protein. The algorithm
attempts to find patterns of similar distances within two
matrices. These patterns are combined with the intention of
maximizing the number of atoms and minimizing the root
mean square distance (RMSD) between them. DALI also
uses a Monte Carlo optimization [32] to prevent the algo-
rithm from quickly reaching a local minimum.

The STRUCTAL [17] algorithm uses an iterative dynamic
programming [2] approach to align two proteins. The prin-
cipal behind the algorithm is to minimize the RMSD be-
tween two protein backbones. First, the distance between
all C, carbons is computed. These distances are converted
into a scoring matrix. Standard dynamic programming is
employed to compute the optimal alignment of the two pro-
teins. Since the solution to this algorithm depends heavily
on the starting alignments of the two proteins, several dif-
ferent starting configurations are used.

LOCK [39] attempts to align proteins by using hierarchical
structure superposition. A protein is decomposed into its
secondary structures, which are represented as a series of
vectors. A scoring matrix is created based on the vectors
of the two proteins being aligned. Dynamic programming is
then used to find the best local alignment between the vec-
tors. Next, the algorithm attempts to iteratively minimize
the RMSD between pairs of nearest atoms. Finally, a core
of well-aligned atoms is created and the algorithm attempts
to minimize the RMSD of the core.

2.3 Substructure Analysis

Discovering important structures in molecular datasets has
been the focus of many recent research efforts in scientific
data analysis [4-6,9,12,18,25,30,33,43]. These efforts have
targeted substructure analysis in small molecules, material
defect analysis in molecular dynamics simulations, and more
recently in macromolecules such as proteins and nucleic acids
[21, 24, 46].

Several methods for secondary level motif finding in pro-
teins have been proposed in the past. An algorithm based
on subgraph isomorphism was proposed in [33]; it searches
for an exact match of a specific pattern in a database. The
search for distantly related proteins using a graph to rep-
resent the helices and strands was proposed in [25]. An
approach based on maximally common substructures be-
tween two proteins was proposed in [18]; it also highlights
areas of structural overlap. SUBDUE [9] is an approach
based on Minimum Description Length for finding patterns
in proteins. Another graph based method for structure dis-
covery, based on geometric hashing, was presented in [43].
Recent work on graph data mining is also related to this
effort [9, 18,2527, 33,43,45].

2.4 MotifMiner Toolkit

Our own attempts at substructure detection have resulted
in the development of an extensible prototype toolkit, Mo-
tifMiner [7,8,29,37], that detects frequently occurring struc-
tural motifs. We have conducted a fairly in-depth evalua-
tion of MotifMiner on various datasets, from pharmaceu-
tical data [7], to tRNA data, to protein data (from the
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PDB) [7,37] to data obtained from molecular dynamics sim-
ulations [6]. As stated previously, MotifMiner was designed
to be extensible and here we present several extensions to the
toolkit, some domain-neutral, others targeted specifically to
proteins.

3. ALGORITHMS

The work described here is based on the MotifMiner project
introduced in Section 2.4. A discussion of the general algo-
rithm can be found in Section 3.1. Several basic extensions
to the MotifMiner toolkit have been implemented and are
presented in Section 3.2. A number of domain-specific con-
straints for the mining and alignment of proteins have also
been developed. They are discussed in Section 3.3.

3.1 Background

MotifMiner represents the interaction between a pair of nodes
A; and A;, as a mining bond. A node can be an atom, an
amino acid, a secondary structure, etc., depending on the
resolution desired. A mining bond M (A;A;) is a 3-tuple of
the form:

M(A;A;) = {Astype, Ajtype, AttributeSet(A;, A;)}

The information contained in AttributeSet(A;, Aj) can vary
depending on the resolution of the structure being repre-
sented. For instance, if the resolution of the structure is
at the atomic level, AttributeSet(Ai, A;) could contain the
distances between atoms A; and A;. At the secondary struc-
ture level, AttributeSet(A;, A;) might contain the secondary
structure type (a-helix or S-sheet), the number of residues
within the secondary structure and so forth. Using the above
definition, a k-nodeset is a substructure containing k con-
nected (within a user-specified range) nodes, and is repre-
sented as:

X = {Sx,Al,Ag, .. .,Ak},

where A; is the i** node and Sx is the set of mining bonds
describing the nodeset. By defining pairs of nodes with min-
ing bonds, the graph is completely represented, such that
two nodesets X and Y are considered to be the same sub-
structure if Sx = Sy. Since we only deal with atoms in
this work, we will refer to nodesets as atomsets. In addi-
tion, atomsets with a similar set of mining bonds are said
to belong to the same atomset family, or motif.
Additionally, MotifMiner uses the following principles to
generate frequent substructures: 1) Range pruning to limit
the search for viable strongly connected sub-structures, 2)
Candidate pruning [1], for pruning the search space of possi-
ble frequent structures, 3) Recursive Fuzzy Hashing for rapid
matching of structures (to determine frequency of occur-
rence), and finally 4) Distance Binning and Resolution to
work in conjunction with recursive fuzzy hashing to deal
with noise in the input data.

Range pruning and candidate pruning reduce the candi-
date search space, thereby reducing the memory footprint
and significantly improving the scalability of the algorithm.
The biological motivation behind range pruning is that even
though molecules are made up of atoms that interact with
one another, there is only a finite distance over which such
an interaction can occur. At a larger distance, the inter-
action between two atoms is essentially negligible and two
atoms can be considered independent. As a result, by hav-
ing a user-specified range parameter, it is possible to cut
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1. Prune infrequent atoms (1-atomsets)
2. Generate candidate 2-atomsets

from frequent atoms
3. Prune infrequent 2-atomsets
4. k=3
5
6

. while (| frequent k-atomsets |> 0)
Generate candidate k-atomsets
from frequent (k-1)-atomsets
Prune infrequent k-atomsets
k=k+1

Figure 1: Local substructure discovery algorithm

down on the number of potential atomsets.

Recursive fuzzy hashing, which is similar in principle to ge-
ometric hashing [28, 44], was designed to efficiently handle
noise effects in data [37]. The idea behind distance binning
and resolution is the data mining principle of discretiza-
tion [13]. The raw Euclidean distance between two atoms is
discretized by binning; This task is accomplished by choos-
ing a resolution value and dividing the inter-atom distance
into equi-width bins based on this value, represented effi-
ciently as bits in the mining bond. Binning of the data
simplifies calculations and helps MotifMiner handle minor
fluctuations in distance.

As shown in Figure 1, atomsets of size (i+1) are derived by
combining two frequent atomsets of size i that differ by one
atom. Once an atomset has been generated, its frequency is
determined using the following metrics:

o atomsetSupport- The number of atomsets in the atom-
set family.

e coverRate- The percentage of molecules that contain
at least one atomset from the atomset family.

The minimum support thresholds for both parameters can
be specified by the user.

3.2 Basic Extensions

In this section we present several basic improvements to
the original MotifMiner algorithm. These extensions are
domain-independent and can be applied to bio-molecular
data of any type. These extensions were borne out of exper-
imental testing of the original MotifMiner algorithm. They
represent ways to improve both the running time and the
quality of the results.

3.2.1 Variable Resolution

In the original version of MotifMiner, the resolution param-
eter is used to handle noise in the input data. One drawback
with resolution in the original version is that the parameter
is not flexible and cannot handle modulation in structure.
The differences between two substructures can be very small
in the short range, but as the substructures become larger,
those differences are accumulated and magnified. Thus, the
resolution is now variable. As the distance between two
atoms increases, so does the resolution. This allows for the
identification of larger similar structures. Figure 2 shows
an example of this principle. With a sliding resolution, it
is possible to identify an a-helix and a smaller helix from
a helix-bundle as similar. Without variable resolution, the
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Figure 2: The twisted a-helices found in 1A02_J and 1A02_F
(subunits of nuclear transcription complex).

1. Generate candidate atomset A

2. If atomCounta < minLinkage then
3. Vatomsi€ A

4. V atoms j € A (j # 1)

5. if dist(atom i, atom j) > Range then
6. discard A

7. Else

8. Vatomsi€ A

9. V atoms j € A (j # 1)

10. count = count + 1

11. if count < minLinkage then
12. discard A

Figure 3: Local Structure Linkage Algorithm

bend in helix on left would have prevented it from being
matched with the helix on the right.

3.2.2 Boundary Conditions

Another potential problem when dealing with noise in the
input data is the handling of boundary conditions. For in-
stance, if the range is specified to be 5A, and the distance
between two atoms % and j is 4.99A, a mining bond will be
created between the atoms. If the distance between them is
5.01A, however, no bond will be created, which can cause
problems when trying to determine substructure frequency.
As a result, a mining bond will be created when the distance
between two atoms is just over the range value.

3.2.3 Local Structure Linkage

The notion behind Local Structure Linkage is that an atom-
set should contain a minimum number of “close” points.
In this case, “close” means that the distance between two
atoms is less than the user-specified Range value. The min-
imum number of points is a user-specified parameter desig-
nated minLinkage. In most experiments, minLinkage was
set to four.

The Local Structure Linkage algorithm is presented in Fig-
ure 3. The effect of the algorithm is to ensure that every
atom in an atomset is within a distance Range of at least
minLinkage atoms. Additionally, Local Structure Linkage
makes use of another parameter: initialRange, where
initial Range < Range (see Figure 4). The effect of ini-
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1. V atomsets A with atomCount = 2:

2. for atoms i,j € A (j # 1)

3. if dist(atom i, atom j) > initialRange then
4 discard A

Figure 4: Effect of initialRange Parameter
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Figure 5: Examples of 6-atom local structures. Left, an
unspecified local structure. Middle, partial a-helix. Right,
partial anti-parallel 8-sheet. Each of these three substruc-
tures occurs more than 100 times among the 23 molecules.

tialRange is to guarantee that each atom has at least one
close neighbor and to eliminate many meaningless substruc-
tures. The results of an experiment testing the minLinkage
algorithm are shown in Figure 5. Twenty-three molecules
from each of the four major SCOP [34] fold classes (5-a,
7-B, 6-a + B, 5-a\B) were mined looking for substructures
with a minimum coverage of three molecules (a coverRate of
13%). Several substructures were found and are presented
in Figure 5.

3.3 Domain Constraints

One of the most important contributions of this work is the
incorporation of domain constraints into the original Mo-
tifMiner algorithm. Recall that MotifMiner was intended to
be a general framework that could be used across multiple
domains. By incorporating domain constraints, [35,40], it is
possible to increase the utility of the original framework.
Such constraints enable the researcher to interrogate the
data while incorporating specific domain knowledge in the
process. We have identified several such constraints which
are described below.

3.3.1 Abstraction Using a-carbons

All proteins contain a backbone that is formed by peptide
bonds. This substructure is very frequent and generates a
number of trivial atomset families. Using the a-carbon of
the amino acid as an abstraction of the peptide bond is a
good way to reduce the number of atoms that need to be
examined and enhance the speed of the algorithm. We do
lose information about the chemical linkage of the peptide
bond with such an abstraction, but compensate for the loss
by including information about the amino acid sequence.

3.3.2 Sequence-based Pruning of Motifs

We also incorporate domain constraints that integrate se-
quence information. This has useful possibilities for the
alignment of two proteins and also results in the detection of
biologically relevant motifs. Specifically, the algorithm has
an option wherein candidate atomsets can be pruned based
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on the relative sequence ordering of the atomsets. In terms
of implementation, this constraint is relatively straightfor-
ward. In addition to the mining bond information, informa-
tion about the sequence order is maintained in the Attribute-
Set parameter of the mining bond. When two substructures
are compared, we first compare the relative sequence or-
dering and then match the substructures. We demonstrate
the use of this constraint in our global alignment algorithm
(Section 3.4).

3.3.3 Approximate Matching of Amino-Acids Based
on Physio-Chemical Properties

As an additional extension, we now support approximate
sequence matches where a particular amino acid is replaced
by a label that represents amino acids which share similar
physio-chemical properties (hydrophobicity, helical propen-
sity, etc.). To implement this feature, we used a multi-
dimension description of the amino acid space that included
a large number (243) of physio-chemical properties that were
collected from a number of different sources. In addition, we
extended that list of physio-chemical properties with prop-
erties obtained from quantum chemical calculations. We
used the Gaussian 98" program to compute properties such
as ground state energy, dipole moment, and vibration fre-
quency for all 20 amino acids.

To reduce the inherent redundancy in the physio-chemical
property space, we relied on the technique of multi-scale
analysis [42]. This method involves the multi-dimensional
scaling of the high-dimension physio-chemical property space

to a lower dimensional space using a PCA-style reduction [23].

We found that the first five Eigenvectors sufficed to cap-
ture more than 95% of the total inertia of the data. Fig-
ure 6 shows the projection of the amino acids on the first
two principal-component dimensions (left), and the first and
third principal-component dimension (right). After comput-
ing the eigenvectors, we used the K-means clustering algo-
rithm [31] to group amino acids by Euclidean distance in 5D
space. The result of clustering is shown in Table 1.

Some of the clusters in Table 1 are similar to the results
found in [42]. When K=4, for example, residues I, V, L, F,
and M fall into the same cluster. This cluster consists of
hydrophobic amino acids. The cluster of amino acids W, Y
and C consists of polar residues. At high K values (K >5)
this cluster separates into two, one of which contains just
the aromatic residues W and Y. Another noticeable cluster
found in several different levels contains the small residues
N, D, S, T, G and P. As shown in Table 1, residues G and
P always fall into the same cluster. This result agrees with
experimental observation, as it is known that residues G
and P play an important role in the determining the 3D
architecture of a protein [38]. They are frequently located
in the linkage between secondary structures; for example,
between two a-helices or between an a-helix and a S-sheet.
To model the cost of a replacement we use the following
principle, depending on whether a coarse-grained or fine-
grained cost model is desired. For a coarse-grained level, the
cost of a replacement is 1 if two amino acids are in different
clusters and 0 if they are in the same cluster. At a more
fine-grained level we simply use the distances between amino
acids in the scaled dimensional space to quantify the cost of
replacement. A user-specified threshold determines whether

Yhttp://www.gaussian.com
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1. Generate i-atomsets using the local substructure
discovery algorithm and a coverRate of 100%
2. If there exists any ambiguity among atomsets then
3. Increment %, go to step 1 and repeat until
the ambiguity is resolved.
4. Else
Begin alignment.

Figure 7: Ideal Alignment Preprocessing

1. Generate i-atomsets using the local substructure

discovery algorithm and a coverRate of 100%.
2. If there exists any ambiguity among atomsets then
3. If out-of-memory then
4. Force alignment.
5. Else
6. Increment 4, go to step 1 and repeat until

the ambiguity is resolved or out-of-memory.
7. Else
Begin alignment.

Figure 8: Modified Alignment Preprocessing

a replacement or a series of replacements in a structure is
acceptable or not.

3.4 Global Alignment

The most significant contribution of this work is the devel-
opment of a global alignment method that aligns protein
molecules based on their structure as well as their sequence.
The alignment algorithm works by generating frequent lo-
cal substructures and then, starting with the largest local
structures discovered, attempts to assemble an alignment
between two molecules.

Alignment Preprocessing

Before the global alignment of two molecules can occur, sev-
eral preprocessing steps must be taken, starting with the
generation of local substructures. A high-level presentation
of the preprocessing steps is given in Figure 7.

In the ideal case, the substructure generation algorithm would
be able to execute as shown in Figure 7. In practice, how-
ever, the number of frequent atomsets is usually very large,
often to the point where they do not all fit into memory.
When this occurs, we say that the local substructure dis-
covery algorithm is out-of-memory. As a result, we must
modify the preprocessing steps we take before the alignment
can begin. The modified algorithm is shown in Figure 8.
In the algorithms presented in Figures 7 and 8, the term
ambiguity is used to denote when there are atomsets from
each molecule that belong to the same atomset family but
do not contain exactly the same types of atoms (this can
occur due to recursive fuzzy hashing). Thus, it is possible
for a single atom in an atomset to align with multiple atoms
in the other atomsets in the family. For example, given the
4-atomset families shown in the top table of Table 2, there
is ambiguity when aligning atom D. It can align with either
atom D’ or atom E.

In order to solve this problem, the substructures at the next
level are generated to see if they resolve the ambiguity. Since
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Figure 6: Multi-scale projection of amino acids on Components 1 and 2 (left) and Components 1 and 3 (right).

K]

Clusters |

2 {A7R1N7D7Q1E7G1H7K1P7S7T}{C7I7L1M7F7W7Y7V}

{A1R7Q7E!H7K}{N’D1G7P)S7T}{C7I’L7M)F7W7Y’V}

{AR,QEHK}HN,D,G,PSTHCW,YH{ILMF,V}

{AEHR,QHKHN,D,G,PSTHCLLMFEVH{W,Y}

{AEHR,QHK}HN,D,S, THC,LLMF,VHG,PHW,Y}

{AEHR,QHKHN,D,S, THCOHG,PHLLM,F,VH{W,Y}

Q| | O O x| W

{AEHR,Q,HK}HN,D,S, THCHG,PHLM,VHLFH{W,Y}

Table 1: K-Means clustering of amino acids based on multi-dimensional scaling

| Family 1 | Family 2 |

ABCD ABCD

A’B’C’D’ A’B,C,E’
Level 4

ABCDF
A’B’C’D’'F’
Level 5

Table 2: Ambiguity between Families. In the 4-atomsets,
atom D can possibly align with atoms D’ and E. By growing
the atomsets to the next level, the ambiguity is resolved.

the atom sequences of Family 2 differ, it will not be expanded
at the next level. The atomsets of Family 1 will be used in
the next level, however. After the next step of the the sub-
structure discovery phase, suppose Family 1 now contains
the atom sequences shown in the bottom table of Table 2.
There is no longer any ambiguity. D can align with D’ and
F will align with F’. In this manner, the ambiguity is re-
solved. As shown in Figure 8, the alignment preprocessing
algorithm runs until there are no ambiguous substructures
between the molecules or until the program runs out of mem-
ory, whichever comes first. Once this point is reached, the
assembly of the alignment between the molecules can begin.

Initial Alignment Assembly

When the alignment preprocessing algorithm finishes, we are
left with two possible cases. In the first case, the algorithm
is able to finish without any ambiguity among the atom-
sets. When this occurs, all of the atomsets at the highest
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level reached by the substructure generation algorithm (i.e.
the largest frequent substructures discovered) are used as
the basis for the starting alignment. This is considered to
be normal assembly. The other case occurs when the algo-
rithm runs out of memory before resolving all of the ambigu-
ities between atomsets (i.e. atomsets contained in the same
atomset family do not have exactly the same atom types).
When this occurs, the algorithm is said to start with forced
assembly. Before assembling the alignment, the algorithm
attempts to find the atomset families that have the fewest
conflicts with the other atomset families at the same level (in
this case, the highest level reached by the substructure gen-
eration algorithm before running out of memory). The total
number of conflicts is defined as the number of sequence
conflicts between atomsets in the same family. For example,
suppose an atomset family contained the 3-atomsets ABC
and ABD. This family would contain one conflict: the con-
flict between atoms C and D. Given the family of 3-atomsets
ABD and AEF, there would be two conflicts: atoms BD and
atoms EF. The algorithm attempts to find the atomset fam-
ilies with the smallest number of conflicts and use them as
the starting alignment.

Alignment Assembly

Once the initial alignment has been determined, the align-
ment assembly can begin. Suppose that the largest substruc-
tures found by the initial alignment algorithm are of size n.
The assembly algorithm examines the atomsets at level n-1
and determines whether there are any conflicts (using the
measure of conflict defined above) between those atomsets.
If there are, the alignments with fewer conflicts are given a
higher priority. Any candidate atomset (i.e. non-conflicting
or a conflicting with a high priority) at this new level is
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Determine the initial (existing) alignment from
level-n atomsets.
n=n-—1.
while n > minLevel
Determine conflicts among level-n atomsets.
Remove any atomset that conflicts with
the existing alignment.
6. Merge any remaining atomsets with
the existing alignment. The resulting
set becomes the new existing alignment.
7. m=n-1
8. Return the set of atomsets as the
global alignment.

Gl N

Figure 9: Alignment Assembly Algorithm

checked against the existing alignment (i.e. the larger atom-
sets). If there is any conflict between the candidate atom-
set and an atomset in the existing alignment, the candidate
atomset is removed. Once this step has completed, all of
the remaining candidate atomsets are added to the existing
alignment. The algorithm then examines the atomsets at
the next lower level. These steps repeat until the algorithm
reaches a lower limit of potential atomset size that is speci-
fied by the user. A pseudo-code description of the algorithm
is shown in Figure 9.

4. VALIDATION

In the following examples, we present the results of several
experiments that serve as a preliminary validation of our
global alignment algorithm.

4.1 Alignment of FHA Domains

The FHA domain is a phospho-protein binding domain. It
was originally identified using sequence alignment [20]. How-
ever, FHA domains have very few conserved residues (only
three residues are completely conserved) and sequence align-
ment only detected the core region. Later, after the struc-
tures of FHA domains were solved, the full domain was
demonstrated to cover a much larger region than the core
region. We used our global alignment to align the proteins
Radb3 and Chk2. The aligned result is very similar to those
obtained through manual alignment [14]. The results are
shown in Figure 10.

4.2 Alignment of Sequentially Distinct Pro-
teins

Pair-wise structural alignment generates a number of pos-
sible sequence alignments that are very hard to align using
just a scoring matrix. To give one example, we found that
proteins pdbla2y_B and pdbladj L give an alignment of 49
a-carbons. These corresponding residues have a very sim-
ilar substructure (Figure 11, top). The resulting sequence
alignment of the substructure is shown in Figure 11, bottom.
We attempted to align these proteins based on sequence in-
formation only, using the scoring matrices BLOSUM 62 [19]
and PAM 250 [10,11]. Neither scoring matrix was able to
give a clear result, however (Results omitted due to space
constraints).

Sequence alignment has two major difficulties: How to choose
scoring matrix and how to estimate gap cost. These two
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Figure 10: Structural alignment of two FHA domains.
FHA1 of Rad53 (left) and FHA of Chk2 (right)

74 pdblaZy B

2-VOLOES M SLST TCTVSAVNWVRQPEGKGLEWLiMARLSI SEMVELFMN T ARYYCARMYWGOGT TL- 112
113_pdbladi_L

2-LVMTQTQASI SCRES" LHWYLORPEOS PKLLﬁYAEE‘SGSGAE‘TLKISALGVYE‘CSQATFGGGTKL— 109

Figure 11: Sequence alignment of pdbla2y B and pdbla4j_L
” ? indicates one space, ”"” indicates more than 2 spaces

problems no longer exist in structure-aided sequence align-
ment. We can give solid parameters to control the similari-
ties of the structures and if there is any gap in the sequence,
it is omitted by structure alignment. Thus, structure is
more conserved than sequence since all amino acids share
the backbone structure.

4.3 Alignment using Physio-Chemical Proper-
ties

Since the structural alignment algorithm in this paper uses
a-carbons only, the side chain information is ignored to
some extent. In many proteins, however, the side chain
plays an important role in their activity. Adding amino acid
constraints helps defray this loss and such constraints will
also help identify residues that contribute more than just
backbone linking in structure. Fewer a-carbons need to be
aligned which usually speeds up the program.

As a final example, in Figure 12 we show the results of align-
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| Cluster | # Proteins | Function |
1 23 Antibodies
2 11 Hydrolases
(mainly serine proteases)
3 7 Transferases
(mainly kinases)
4 6 Oxygen Transport
(including heme proteins)
5 5 Oxidoreductase
(Dehydrogenease)
5 5 Haloperoxidase

Table 3: Top six protein clusters based on the alignment of
312 non-redundant proteins and an alignment threshold of
at least 56 atoms

ing two calcium-binding proteins, 1AHR and 5CPV, with
the inclusion of physio-chemical properties (amino acid con-
straints) and without. Our alignment was comparable to
one obtained through DALI and it should be noted that we
able to verify the existence of the calcium-binding site in our
results.

4.4 Alignment-Based Clustering

As an experimental test of our alignment algorithm, we ran
an all-against-all alignment of 312 non-redundant (sharing
less than 20 amino acids in sequence) proteins and then clus-
tered the results based on the number of atoms that can be
aligned between the molecules. We set an alignment thresh-
old of 56 (meaning at least 56 atoms can be aligned between
the molecules) and were left with 218 clusters. Most of the
clusters contained a single protein molecule, however there
were several clusters that contained multiple proteins, and
even more striking, the cluster proteins showed functional
similarity in addition to their structural similarity. The clus-
ters containing more than five proteins are shown in Table 3.
As mentioned above, the dataset uses only non-redundant
proteins. Thus, most of the closely related proteins are re-
moved from the dataset. However, antibodies are generated
through gene shuffling, which leads to large sequence di-
versity. The clustering results shows that these antibodies,
though different in sequence, still share structural similarity.

4.5 Comparison with DALI

In this work we present a new method for the alignment
of protein molecules based on local substructures as well as
sequence information. There are a number of other publicly-
available protein alignment methods that work based on
structure, DALI being one of the most popular. We reran
several of our experiments using DALI and DaliLite (a stand-
alone version of the DALI Server) [22] to see how our re-
sults compared to the results returned by those programs.
We found that our results were comparable to what was
returned by DaliLite, differing by only a few amino acid
residues at most. Aligning proteins pdbla2y B and pdbla4j_L
(discussed in Section 4.2) with DaliLite yielded the same
amino acid sequence that our program found (Figure 11,
bottom). In addition, the running time of our algorithm
was equivalent to the running time of DaliLite (or faster).
Our algorithm runs in a completely different fashion than
DALI (and DaliLite), so it is difficult to compare running
times. DALI works by computing a pair-wise distance ma-
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trix for each protein and then uses a Monte Carlo optimiza-
tion procedure to try and minimize the distance between
the matrices. The resulting alignment is returned as the
best alignment between proteins. Our algorithm works by
mining local substructures and then using the underlying
sequence information to determine conflicts between struc-
tures. Structures that do not conflict are aligned. Those
that do are not. It is interesting to note that although both
methods are orthogonal in nature, they produce consistent
results, provided that we do not include physio-chemical
properties. When we do include such properties, we achieve
results that, while more concise, still retain their biological
relevance.

5. CONCLUSIONS

In this work we present extensions to MotifMiner that al-
low for the efficient detection of substructures in protein
molecules using both biological and structural information.
These extensions enable us to detect substructures that vary
due to the noise inherent in protein data and to approximate
a molecule’s amino acid sequence based on varying physio-
chemical properties. We have tested our algorithm against a
well-established structural alignment tool, DALI, and found
that our work performs favorably, even providing some ben-
efits not available in DALI. One benefit that our algorithm
has over DALI is that we are able to handle the chirality
inherent in some protein molecules. Chirality refers to the
“handedness” of a protein. By only dealing with pair-wise
distances, DALI is not able to distinguish between chiral
proteins. Our algorithm can make such a distinction. In
addition, we have the ability vary the physio-chemical prop-
erties in our cost analysis. With further testing, we hope to
provide more examples as to the usefulness of our algorithm
as well as a statistical metric that can be used to determine
the quality of the results returned by our program.
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ABSTRACT

A novel method is presented for the prediction of protein
subcellular localization from sequence using Fourier analy-
sis and support vector machines. To extract the features of a
protein sequence, each amino acid is replaced by a value rep-
resenting its scale of hydrophobicity and then a fast Fourier
transform is applied to the numerically encoded sequence.
The transformed sequence data are then used as the input
for the training of support vector machines to predict sub-
cellular localization. The motivation for this method of en-
coding resides fundamentally on (1) the fact that period-
icities are critically important factors in protein structure
and (2) the ability of this method to capture information
about long-range correlations and global symmetries which
are completely missed by approaches based on global amino
acid composition. Our method is evaluated against the in-
tegrated system PSORT-B for the prediction of subcellular
localizations of proteins in Gram-negative bacteria. It is
demonstrated that the new method outperforms PSORT-B
in prediction for the inner membrane, the outer membrane,
and extra cellular localizations in a 5-fold cross-validation.
It is expected that integrated systems such as PSORT-B
may benefit from inclusion of the advanced individual pre-
dictor presented in this paper.

Keywords

Protein Subcellular Localization, Gram-negative bacteria,
Fourier Transform, Support Vector Machine.

1. INTRODUCTION

Advances in proteomics and genome sequencing are generat-
ing enormous numbers of genes and proteins. The develop-
ment of automated systems for the annotation of protein
structure and function has become extremely important.
Since many cellular functions are compartmentalized in spe-
cific regions of the cell, subcellular localization of a protein
is biologically highlighted as a key element in understanding
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its function. Specific knowledge of subcellular localization
can inform and direct further experimental studies of pro-
teins.

Several methods and systems have been developed during
the last decade for the predictive task of protein localization.
Machine learning methods such as Artificial Neural Net-
works, the k-nearest neighbor method, and Support Vector
Machines (SVM) have been utilized in conjunction with var-
ious modalities of feature extraction from protein sequences.
Most of the early approaches employed the amino acid com-
position and the di-peptide frequency [7; 13; 26] to rep-
resent sequences. This method may miss the information
on sequence order and the inter-relationships between the
amino acids. In order to overcome this shortcoming, it has
been shown that motifs, frequent-subsequences, and func-
tional domains, which are obtained from various databases
(SMART, InterPro, PROSITE) or extracted using Hidden
Markov Models and data mining techniques, can be used for
the representation of protein sequences for the prediction of
subcellular localizations [2; 3; 6; 28; 29]. Methods have also
been developed based on the use of the N-terminal sorting
signals [1; 5; 10; 20; 22; 23; 24] and sequence homology
searching [21].

It has become clear that no single method of prediction can
achieve high predictive accuracy for all localizations. There-
fore, most robust methods adopt an integrative approach by
combining several methods, each of which may be a suitable
predictor for a specific localization or a generic predictor for
all localizations. PSORT is an example of such a successful
system. Developed by Nakai and Kanehisa [23], PSORT,
recently upgraded to PSORT II [12; 22], is an expert system
that can distinguish between different subcellular localiza-
tions in eukaryotic cells. It also has a dedicated subsystem
PSORT-B for bacterial sequences [9]. Obviously, further im-
provement of the quality of such an integrated system relies
on advances in the individual predictors, namely, improve-
ments that arise from the employ of sophisticated protein
encoding schemes and powerful machine learning and data
mining techniques.

In this study, we describe a new approach for the prediction
of protein subcellular localization from protein sequences us-
ing Fourier analysis as the feature extracting tool and sup-
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port vector machines as the learning framework. In order
to extract the features from a given protein sequence, each
amino acid is replaced by a value representing its scale of
hydrophobicity and a fast Fourier transform is subsequently
applied to the numerically encoded sequence. These trans-
formed data are then trained by support vector machines.

Fourier analysis has been used for (1) the recognition of
protein folds [27] and gene-encoding regions of DNA se-
quences [8; 30] and (2) the detection of periodic patterns
and tandem repeats of residues in both DNA and protein
sequences [25]. The motivation for this method of encod-
ing resides fundamentally on the observation that period-
icities are critically important factors in protein structure
[27]. The approach based on the Fourier transform analysis
is capable of capturing information about long-range corre-
lations and global symmetries; both are completely missed
by approaches based on global amino acid composition. For
comparison, we also present another encoding method based
on the tri-peptide frequency. This encoding scheme is an ex-
tension of the method using the amino acid decomposition
and has been used for the prediction of protein folds [18].

Our method is evaluated against PSORT-B for the predic-
tion of subcellular localizations for Gram-negative bacte-
ria [9]. It is demonstrated by the result of a 5-fold cross-
validation that the new method outperforms PSORT-B pre-
dictions associated with the outer membrane, the inner mem-
brane, and extra cellular localizations. It is expected that
PSORT-B may benefit from the integration of this new pre-
dictor into the system.

2. METHOD

This section introduces two sequence encoding methods. One
is the encoding method based on the Fourier analysis of
protein sequences; the other is based on the tri-peptide fre-
quency. The latter approach has been used in protein fold
recognition [18], but has never been evaluated for the pre-
diction of subcellular localizations. We also present a short
description of support vector machines, the machine learn-
ing method used in this study.

2.1 Feature Extraction based on the Fourier
Transform

There are many ways to describe amino acids, most of which
are correlated to some degree. For example, the AAindex
database contains indices representing 434 different physico-
chemical and biological properties of amino acids [16]. We
concentrate on the amino-acid hydrophobicity in this work,
as it is the one of major properties influencing the struc-
ture and function of a protein [14]. A simple three-state
hydrophobicity scale is used to map hydrophobic residues
to 1, hydrophilic residues to —1, and “neutral” residues to
0 [27]. More precisely,

(A7C) F’ I’ L’ M7 V) — ]'7

(D7E)H)K5N7Q1R)_>_11
and
(G7P3‘S)T:W)Y) — 0.

Once a protein sequence has been encoded into the above nu-
merical format, it is converted to a sequence in the frequency
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domain with a Fourier transform. A common use of the
Fourier transform is the identification of frequency compo-
nents of a weak time-dependent signal buried in noise. Prior
to the application of the Fourier transform, the numerical se-
quences have to be lengthened by padding with zeros, since
the length of the input sequences is required to be a power of
two. Let n = 2™ denote the smallest number that is greater
than or equal to the length of the longest protein sequence
in a given set, where M is some integer. Let {z(1),...,z(n)}
be the numerically encoded sequence of a protein according
to the three-state hydrophobicity scale after padding. The
Fast Fourier Transform (FFT) will transform the encoded
sequence into another sequence {X(1),..., X(n)} in the fre-
quency domain. The procedure of the FFT used in this
research is based on the algorithm of Masters [19], which is
an implementation of the discrete Fourier transform (DFT)
given by
n
X(f) =Y () expli2ntf/n)] (f=1,..,n),

t=1

and
o(t) = %ZX(f) exp[—i(2ntf/n)] (t=1,..,n).
=1

Figures 1-3 present the encoded sequences before and after
the application of the FFT for two representative proteins
from extra cellular, inner membrane, and outer membrane
localizations, respectively. The sequences obtained from the
FFT display enhanced characteristics for each localization in
comparison with the sequences before the use of the FFT.

Another advantage of the FFT based feature extraction is
that the number of extracted features is almost the same as
the length of the longest protein sequence in the data. This
is a compact representation for protein sequences in contrast
to the features extracted based on the tri-peptide frequency
described below.

2.2 Feature Extraction based on the Tri-peptide
Frequency

In order to evaluate the FFT encoding method presented
above, an approach based on the tri-peptide frequency for
feature extraction has also been considered. This encoding
method extends the concept of the amino acid composition
and di-peptide frequency encoding methods. These have
been used intensively for the representation of protein se-
quences in numerous applications. These are, for example,
the prediction of (1) protein secondary structures, (2) pro-
tein folds, and (3) subcellular localizations, and the efficacy
of these encoding methods has been established.

In order to encode a protein sequence with the tri-peptide
frequency, a vector of 21% = 9261 dimensions is required.
Each entry of the vector is associated with a possible pattern
of three amino acids. Since the symbol “X” may appear
in some sequences, it is added to the set of the original
20 symbols of the amino acids to give a total of 21. A
window with a length of three is moved along the sequence
from the first amino acid to the third amino acid from the
end. Every 3-letter pattern that appears in the window is
recorded with increments of 1 in the corresponding entry
of the vector. Upon the termination of this procedure, the
vector provides the tri-peptide frequency of the sequence.
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The final vector is normalized by dividing the number of
window positions associated with that sequence. Note that
the resulting vector is sparse, as only a small collection of
the possible 3-letter patterns will appear in each protein
sequence.

2.3 Support Vector Machine

Suppose that we are given a set of m points &; (1 <7 < m)
in an n-dimensional space. Each point x; is labeled by y; €
{1, —1} denoting the membership of the point. An SVM is a
learning method for binary classification. Using a nonlinear
transformation ¢, it maps the data to a high dimensional
feature space in which a linear classification is performed. It
is equivalent to solving the quadratic optimization problem:

. 1 ™
w,b,réril,?.,em 5w-w+C;§,

yi((w:) - w+b) > 1-& (i=1,..,m),
&>0 (i=1,...,m),

subject to

where C is a parameter. The decision function is defined as
f(x) = ¢(x;) - w+ b, where w = 37" aip(e;) and o (i =
1,...,m) are nonnegative constants determined by the dual
problem of the optimization defined above. Therefore, the
function is

flx) = Zaid)(wi) cod(x) +b= ZaiK(wi, x)+b

through the definition of the appropriate kernel function K.
For details of SVMs refer to Cristianini and Shawe-Taylor

[4].

3. RESULTS AND DISCUSSION

We employed the SVMs in conjunction with the features
extracted by the methods described above for training and
testing. The evaluation of the methods was conducted on
the following dataset.

3.1 Dataset

The set of proteins from Gram-negative bacteria used in
the evaluation of PSORT-B [9] was considered (available
at http://www.psort.org/) in this experiment. It consists
of 1443 proteins with experimentally determined localiza-
tions. The dataset comprises 1302 proteins resident at a
single localization site: 248 cytoplasmic, 268 inner mem-
brane, 244 periplasmic, 352 outer membrane, and 190 extra
cellular; it additionally contains a set of 141 proteins res-
ident at multiple localization sites: 14 cytoplasmic/inner
membrane, 50 inner membrane/periplasmic, and 77 outer
membrane/extracellular. In our experiment, we considered
only the 1302 proteins possessing a single localization. The
longest protein sequence in this dataset is about 4000 amino
acids, so the length of the final FFT encoded sequences is
approximately, 2000.

3.2 Experiment and Results

We have compared the performance of our new methods
with that of PSORT-B, a powerful tool for the prediction of
protein subcellular localization for Gram-negative bacteria.

The system PSORT-B was designed to seek precision other
than recall to allow for confident predictions, and prevents
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the propagation of erroneous predictions. It utilizes six mod-
ules for the generation of an overall prediction of a localiza-
tion site:

(1) BLAST search based predictor SCL-BLAST for all lo-
calizations [21];

(2) Motif based predictor Motif for all localization sites
[23];

(3) Hidden Markov Model based predictor HMMTOP for
the inner membrane localization [28; 29];

(4) Motif based predictor OPT Motif for the outer mem-
brane localization [9];

(5) Amino acid composition based predictor SubLocC for
the cyctoplasmic localization [13];

(6) Signal peptide based predictor Signal peptides for the
non-cyctoplasmic localization [9; 24].

Based on the output from each module, the system uses a
Bayesian network to generate a final probability value for
each localization site. The system achieved an overall pre-
diction accuracy of 756% for all localizations, a significant
improvement over the previous results of PSORT 1.

Besides the tri-peptide and the FFT based methods, we also
implemented the method based on the amino acid composi-
tion. The experiment was carried out using a 5-fold cross-
validation for each specific localization. Each time, the rel-
evant dataset consisting of the proteins with the specific
localizations was designated as the positive set; the remain-
der of the proteins was denoted as the negative set. The
radial basis function was chosen as the kernel function for
the SVM, since a preliminary experiment indicated this ker-
nel exhibited better performance.

As the sizes of the positive and negative sets are substan-
tially different, the performance of SVM was evaluated for
precision (or sensitivity):

tp
tp+ fp’
and recall (or positive prediction value):

tp
tp+ fn’

where tp (resp. tn) is the number of the predicted positive
(resp. negative) proteins which are true positive (resp. neg-
ative), and fp (resp. fn) is the number of the predicted
positive (resp. negative) proteins which are true negative
(resp. positive). The precision and recall of the 5-fold cross-
validation were computed as the averages of the values from
5 folds.

precision =

recall =

The generalization performance of an SVM is controlled by
the following parameters:

(1) the trade-off C between the training error and the class
separation;

(2) the parameter g in the radial basis function, i.e.,
exp(—gllz: —x;*);

(3) the biased penalty J for error from positive and negative
training points.
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Table 1: Results obtained from four different methods for the proteins from Germ-negative bacteria. (The numbers represent

percentages.

Method Composition tri-peptide FFT PSORT-B
Localization Precision Recall | Precision Recall | Precision Recall | Precision Recall
Cytoplasmic 83.38 69.22 83.43 50.53 61.20 68.00 97.6 69.4
Inner membrane 98.65 83.57 99.52 80.75 96.12 87.30 96.7 78.7
Periplasmic 91.36 54.56 90.37 50.34 50.00 54.20 91.9 57.6
Outer membrane 87.21 84.12 95.28 83.66 95.70 94.30 98.8 90.3
Extra cellular 88.38 53.68 92.57 50.53 92.10 80.70 94.4 70.0

Composition : the method using SVM with the features from the amino acid composition ;
tri-peptide : the method using SVM with the features from the tri-peptide frequencys;

FFT : the method using SVM with the features from the FFT of hydrophobicity encoding;
PSORT-B : the integrated predictor in [9]. The results are from Gardy et al. [9].

The values of precision and recall of a 5-fold cross-validation
were computed for each triplet (C, g, J). The choices of the
parameters in the experiment for the composition and tri-
peptide encoding sequences are given as follows:

C: from 1 to 150 with an incremental size of 10;
g: 1 to 100 with an incremental size of 10;
J: from 0.1 to 3.0 with an incremental size of 0.2.

The FFT encoded sequences are dense, therefore, they de-
mand an intensive training time. Accordingly, a search over
the full range of parameters would be prohibited. In order
to deal with this problem, a two-step strategy for searching
was employed. In the first round, the procedure scanned
through all triplets (C, g,J) determined as follows.

C: from 278 to 27 with ¢ = 2 % ¢ for each step;
g: from 272 to 27 with g = 2 * ¢ for each step;
J: from 0.1 to 3.0 with j = j + 0.2 for each step.

After identifying the best g value g* from the first round,
a more intensive search localized around g* was performed.
More precisely, it searched all triplets determined as follows.

C: from 1 to 21 with C = C + 3 for each step;
g: from 29" —1 to 29" 4+ 1 with g = g+ 0.003 for each step;
J: from 0.1 to 3.0 with J = J + 0.2 for each step.

The SVMLight package was used as the SVM solver [15].
The best values of precision and recall for each method are
given in Table 1, where the results for PSORT-B are taken
from Gardy et al. [9]. Note that we compare the perfor-
mance of the single predictor against the integrated predic-
tive results from PSORT-B.

The FFT based method demonstrated superior performance
over that of PSORT-B for the prediction of all three local-
izations: the inner membrane, the outer membrane, and the
extra cellular case. While maintaining similar levels of pre-
cision, the improvement on the corresponding recall is from
78.7 to 87.3 for the inner membrane localization, from 90.3
to 94.3 for the outer membrane localization, and from 70.0
to 80.7 for the extra cellular localization. The FFT based
method achieved substantial improvement in recall for the
inner membrane and extra cellular localizations as compared
with the remaining three methods. However, the FFT based
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approach provided inferior findings for the cytoplasmic and
periplasmic localizations.

On the other hand, the tri-peptide based method demon-
strated good predictive power for the inner membrane lo-
calization as compared with PSORT-B. However, its ability
for the other localizations did not surpass that of PSORT-B.
Notably, the prediction of the periplasmic localization seems
to be the hardest for all methods.

Although the FFT encoding method generates a compact
set of features, we experienced longer times for training and
testing in comparison with the tri-peptide encoding method,
even though the tri-peptide frequency approach has a signif-
icantly larger number of features. We propose the following
interpretation of this behavior. The FFT encoded sequences
have a full dense structure while the tri-peptide encoded se-
quences are very sparse, although the lengths are longer.
A feature selection scheme using a cut-off value to discard
lower frequency features in the FFT encoded sequences may
be able to achieve a similar level of predictive quality.

4. CONCLUSIONS

This work has introduced a novel Fast Fourier Transform
based method for the feature extraction of protein sequences
in conjunction with the use of support vector machines for
the prediction of subcellular localizations. In addition, a tri-
peptide based encoding method was considered in parallel.

The performances of these methods were empirically eval-
uated on a set of proteins with experimentally determined
localizations from Germ-negative bacteria. Compared with
the integrated system PSORT-B, the experimental results
demonstrated that the SVM learned from the FFT encoded
sequences exhibited superior performance for the prediction
of the inner membrane, the outer membrane, and the ex-
tra cellular localizations, but was inferior for the prediction
of cytoplasmic and periplasmic localizations. This implies
that the hydrophobicity alone can not properly represent the
sequence information which characterizes these two localiza-
tions. Combination with the tri-peptide based method may
improve the predictive performance. This can be realized by
using a kernel that combines the information from the FFT
encoded sequences and the tri-peptide encoded sequences.
The use of a different hydrophobicity index of amino acids,
for example, the index shown in Table 2 [17], may also im-
prove the quality of prediction.
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Table 2: Hydrophobicity index of amino acids in Kyte and Doolittle.

amino acid I A% L F C M A Z T S
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ABSTRACT

There is an emerging trend in post-genome biology to study the
collection of thousands of protein interaction pairs (protein
interactome) derived from high-throughput experiments.
However, high-throughput protein interactome data, especially
when derived from the Yeast 2-Hybrid (Y2H) method, have been
generally believed to be irreproducible and unreliable, with an
estimated high “noise ratio” of more than 50%. In this work, we
performed a comprehensive study on approximately 70,000
protein interactions derived from a systematic yeast 2-hybrid
(SY2H) method. We performed a comprehensive analysis of
biases, reproducibility, statistical significance, and biologically
significant patterns in this data set. Surprisingly, we found these
protein interactions have a much higher quality. The data
represented a comprehensive survey of the entire human proteome
with no chromosomal location bias. The reproducibility rate of
interactions among replicated searches was quite good, i.e., at
78.5%. The false positive rate, 5.5e-5, was two orders of
magnitude better than that reported elsewhere. We further
developed several statistical measures and concluded that a
protein interaction only needs to appear in two different SY2H
searches to become significant. We also developed techniques to
show supporting evidence that “promiscuous” protein interactions
were not random noises; instead, they could be “network hubs” of
the cell signaling network. We also attributed the low noise in our
data to the adoption of standard control in the experimental data
generation process.

Keywords

Protein Interaction, Systematic Yeast 2-Hybrid, Reproducibility,
Significance, Data Mining.

1.INTRODUCTION

In post-genome systems biology, the study of protein
interactomes—comprehensive collections of all the expressed
proteins and their interactions within cells of model organisms,
has gained increasing popularity. Several protein interactome
mapping projects, including those of H. pylori [1], S. cerevisiae
[2, 3], D. melanogaster [4], H. sapiens [5], and C. elegans [6],
have reported significant progress in recent years. In these
projects, novel high-throughput experimental techniques, e.g.,
high-throughput yeast 2-hybrid (Y2H) screenings [7], protein
arrays, and mass spectrometry, have been developed to measure
physical bindings between proteins in parallel. This results in a
steady influx of protein interaction data in the public domain. By
understanding how proteins regulate each other through
interaction, biologists can compile novel molecular pathway
models, which they cannot normally derive from genomics
techniques. The collection of thousands of protein interactions
also enable system biologists to understand protein functions in a
molecular network context, through which they may identify
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protein biomarkers or drug targets for diagnosing and treating
human genetic diseases [8].

Nonetheless, there is a prevalent belief among many researchers
that experimental protein-protein data generated from the high-
throughput Y2H method equate to ‘“high errors” and “poor
reproducibility”. Much doubt about Y2H data might have
originated from a comparative analysis by Mrowka et al [9], who
suggested that high-throughput Y2H experiments may have a
false positive rate of greater than 50%. In a similar study, Bader et
al analyzed high-throughput protein interaction data obtained
from several sources and also concluded that these methods do not
show enough internal consistency to warrant complete acceptance
of the result [10]. Even more grim opinions exist [11]. Whether
perceived or real, the high data “noise” has presented immense
challenges for computational scientists to “mine” for biologically
significant protein interactions and for biologists to trust data
mining results from these efforts. Therefore, an imminent question
for any researcher who will study the protein interactome data
becomes,

(1) Can I trust the high-throughput protein interactome data
at all?

(2) If so, how do I mine for significant protein interactions?

In this work, we restore confidence in high-throughput protein
interactome data and the mining efforts, by investigating the
biases, reproducibility, statistical significance, and functionally
significant patterns of a human protein interactome data set. This
data set consists of approximately 7,500 human proteins and
70,000 protein interactions, which was generated from a high-
throughput Systematic Yeast 2-Hybrid Method (SY2H, refer to
the Method section) [5]. Some of us have been curating and
applying this data to biological discoveries for two years. We will
show that by using a systematic method (SY2H), in which
experimental conditions are enforced by standard protocols and
the same robots, one can achieve reasonably good data
reproducibility, keep false positive rate low, design reliable
statistical hypothesis tests, discover statistically significant
“interaction network hub proteins”, and identify biologically
significant interacting protein groups. We also show that
“promiscuous” protein interactions should perhaps be regarded as
“network hubs” instead of random noises—another explanation
for the discrepancy between our analysis and the widely-held
beliefs elsewhere. Our results may restore the confidence in
similar high-throughput protein interactome data sets, and
promote their application in subsequent molecular function
studies. In Table 1, we have summarized some key features of the
SY2H method by comparing it with the standard Y2H method.
For a detailed description of this method, refer to the next section.
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Table 1. A summary of comparisons between two Yeast 2-
Hybrid (Y2H) methods. Refer to the Method section for an
explanation of ‘baits”, ‘preys”, ‘searches”, and ‘positives”.

Standard Y2H Systematic Y2H
Bait Known Prior to
a Search Yes No
Bait Sequence Whole or partial Short sequence
Enlisted in a Search sequences fragments
Bait/Interaction Yes No
Selection Bias (by design) (random sampling)
Possible Replicated
Preys in a Search Yes Yes
Possible Replicated
Same-bait Searches No Yes
Sequences to be .
Identified from Prey only Bait and Prey
Positives
Global Assessment of
Interactions No Possible

2.METHODS

Systematic Yeast 2-Hybrid (SY2H). First, two Y2H cDNA
libraries from cDNA library samples from an organism are
prepared using random internal primers. The hybrid proteins,
which are derived by fusing a sample cDNA fragment with the
yeast transcription factor DNA-binding domain or with the yeast
transcription factor activation domain, are called “baif” and
“prey”, respectively. Second, haploid yeast bait and prey cDNA
libraries are isolated into individual colonies, each containing a
single bait or prey. Third, two types of haploid yeast cultures are
mixed, one containing single bait colonies and the other
containing colonies of the entire prey library, to allow mating to
happen. Each such an experiment is called a “search”. Fourth,
mated diploid yeast cultures are placed on dishes that contain
selective medium, which allows the mated yeast to grow only if
bait and prey interact. Each grown diploid yeast colony is called a
“positive colony”, or a “positive”. Fifth, up to a certain number of
positive colonies is selected for picking (“picked positives™).
Positives that are not picked are discarded. Sixth, DNA sequences
from picked positives are amplified by PCR and DNA sequencing
from both the 5° and 3’ directions is performed. Seventh and
lastly, interacting protein fragments are identified by comparing
bait and prey DNA sequence fragments with annotated mRNA
sequences from public sequence databases using the BLASTN
software program.

Protein Interactome Data Collections. We collected the human
protein interactome data from a high-throughput interactome
mapping project using the above described SY2H system [5].
There were two major data collection milestones for this project in
2002-3. In the first major milestone, 13,656 unique protein
interaction pairs were collected from approximately 50,000 SY2H
searches against a prey cDNA library from mRNAs in
homogenized human brain. This data set represented proteins
from approximately 4,473 human gene loci, or approximately
5,000 unique proteins. In the second and a recent milestone in
September 2003, approximately 70,000 unique protein interaction
pairs were collected from more than 200,000 searches against a
variety of human cDNA libraries. This interaction data set
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represented approximately 7,500 unique human proteins. We took
a series of data snapshots between the milestones to perform our
data analysis. The fact that we used slightly different data
snapshots for each analysis is not a concern, since all these
snapshots represented nearly random ‘Samples” of the same
protein interactome—a unique characteristic of the SY2H method
(refer to Results).

Bioinformatics Data Analysis. We performed large-scale
bioinformatics data analysis tasks to prepare and manage all the
protein interaction data using Oracle9i server and genomic data
modeling methods described in [12]. We integrated hundreds of
gigabytes of biological data from more than 20 different sources.
In particular, we integrated all the protein interaction pairs with
public REFSEQ, LocusLink, and Gene Ontology annotations [13,
14]. In our data analysis, we used a combination of software tools,
including the R statistical package and the Sportfire DecisionSite
Browser for statistical data analysis and data visualizations. For
this work, we developed several protein interaction data analysis
methods, which we would describe along with the discussion of
results next.

3.RESULTS

3.1 Comprehensive Protein Coverage and Bias
Due to the unique characteristics of the SY2H method and a
homogenized human brain tissue library source, we expect to
observe a wide spectrum of expressed proteins (a random sample
of the entire “proteome”) and interactions between them in the
data. In principle, the data should represent a comprehensive
survey of the entire human proteome with little sampling bias. In
Figure 1, we confirmed this expectation by showing a relative
frequency distribution for a snapshot of 5,619 proteins, binned by
their chromosomal locations. While the relative distribution of all
human REFSEQ proteins varies among different chromosomal
and mitochondrial locations, the interacting proteins follow the
varying distribution details quite well. Therefore, we can draw
two inferences from this analysis. One is that the SY2H method
indeed does a good job of randomly sampling the entire human
proteome with no bias in coverage. The other is that all human
proteins from different chromosomes and mitochondrion (perhaps
except for chromosomes 6, 12, X, and Y) seem to share the same
tendency to interact with each other.
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Figure 1. A comparison of the relative frequency distributions
between all human REFSEQ sequences and all interacting
proteins from the SY2H system, binned by their chromosomal
and organelle locations.
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Does a comprehensive coverage or a random sampling of the
proteome suggest that there should be no bias in whichever
proteins may become recruited in interactions? Not at all. If so,
proteins of all 3-dimensional shapes would have interacted with
each other equally. In Table 2, we showed an example of
observed biases based on protein functional categories. Here, we
listed eight protein functional categories. In each category, we
listed a count of all human proteins from the LocusLink database,
a count of interacting proteins identified with the SY2H method,
and a percentage of coverage of identified protein for the
category. In the last row of the table, we also showed several
sums. This data shows that there were 18% of all 33,673 human
proteins—a snapshot of 6,213 proteins derived from the SY2H
system. However, ‘protein phosphatases” and ‘protein kinases”

(CLASS 1 proteins) are highly enriched, at 29% and 26%
respectively; ‘receptor” and ‘teceptor : GPCR” proteins (CLASS
II proteins), however, are scarce, at 6% and 5% respectively. We
attribute this finding to a possible high functional bias towards
proteins playing essential functional roles. For example, compared
with other proteins, catalytic activities of enzymes (CLASS I
proteins) are more frequently modulated by regulatory proteins
through protein interactions; therefore, we observed an
enrichment of CLASS I proteins. CLASS 1I proteins are poorly
represented perhaps for a different reason--Y2H methods usually
cannot capture protein interactions among membrane proteins
(most CLASS II proteins).

Table 2. A breakdown of protein counts according to their
functional categories.

All Human Interacting  Percentage
Proteins Proteins of
Jfrom Identified Coverage
LocusLink by SY2H
Protein 240 70 29%
phosphatase
Protein kinase 400 102 26%
Polymerase 161 39 24%
Transcription 372 77 21%
factor
Channel protein 339 65 19%
Protease 233 33 14%
Receptor 3,294 203 6%
Receptor: 705 38 5%
GPCR
Total 33,673 6,213 18%

3.2 Data Reproducibility

We assessed the reproducibility of interaction data derived from
the SY2H system, and found it to be surprisingly good. For
reproducibility, we refer to the capability of a high-throughput
interaction discovery system to identify true interactions
consistently. In Figure 2, we show that interaction reproducibility,
calculated as the percentage of all interactions that can be
replicated across different SY2H searches, is 78.5%. Comparing
the our SY2H system with a standard Y2H system, we think it is
possible that the reproducibility rate estimated in previous
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publications (from 10% to 50%) [11] were based collections of
high-throughput data generated from different academic labs
without the setup of robotic machineries for consistent controls.
There is also a lack of report on replicated protein interaction pair
data from public sources.

Percent of Total

mmm === L
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T T
0 10 20 30 40 50

replicates

Figure 1. A relative frequency distribution of protein
interaction “replicates”. A ‘replicate” bin at x=1 indicates the
percentage of interactions (21.5%) that are identified only once.
All other ‘teplicate” bins with x > 1 refer to the percentage of true
replicated interaction (1-21.5%=78.5%) with an interaction
replication count of x. The protein interaction data in this graph
come from a random sample of 513 bait proteins, each of which is
identified in at least two separate SY2H searches.

This 78.5% may still be an under-estimate of the true data
reproducibly level for an SY2H system. This is because
identifying protein interactions from searches is also a sampling
process, in which the robots often pick a dozen top ‘positive
colonies” for DNA amplification and sequencing. Therefore, one
may not have exhaustively identified all replicated protein
interactions from replicate searches. In other words, we expect the
relative percentage for the ‘replicates”=l bin becomes smaller
than the 21.5% when the size of data increases.

3.3 Statistical Significance of Interactions

To identify statistically significant protein interactors (as preys)
and protein interaction pairs (as bait-prey pairs), we describe a
statistical data testing framework. First, we present a null
hypothesis, in which we presume that the interactions happen
randomly among all interactors. Therefore, the rate of interaction
discovery, p, can be estimated by the following:

1
N*M "~
Here, [ is the total number of observed unique interaction pairs, N
is the total number of searches performed, and M is the total
number of observed unique preys. To calculate p, for example,
using a data snapshot taken from the first milestone (refer to
Methods), we have I = 13,660, N = 50,000, M = 5,000, and
therefore p = 13,660/50,000/5,000 = 5.5¢-5. Similarly, using a

recent data snapshot taken from the second milestone, we have I =
70,000, N = 200,000, M = 7,000, and therefore p =

p= ey
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70,000/200,000/7,000 = 5.0e-5. The two estimates are very close
to each other.

We interpret p as an upper-bound estimate of the false positive
rate for protein interactions observed in an SY2H system. There
are two reasons for us to believe that p may be conservatively
estimated. First, many of these observed [ interactions may not be
discovered totally by chance (recall functional bias); therefore, p
should be smaller. We choose to treat interactions as ‘tandom”
events, also because we do not have sufficient ‘hegative” control
interaction data set, i.e., a set of known non-interacting protein
pairs. Second, the estimated prey number, M, may be higher than
we currently used, because a high-throughput SY2H system
sometimes may fail to amplify and identify a DNA sequence. The
conservative estimate of a p at 5.5e-5 is good, because we can be
confident later that the calculation of p-values, which we base on
p, will be reliable indicators of statistical significances for
replicated interactions.

Note, however, much higher false positive rates have been
estimated for several standard high-throughput Y2H systems. For
example, Gavin et al [15] reported a p=1.07¢-3 in their recent
study, and Ho et al also reported a p=1.37e-3 [16]. We attribute
the much smaller false positive rate for the SY2H system to the
high data reproducibility described in an earlier section.

Next, we describe two hypothesis test methods. In both methods,
we calculate the p-values, one for observing multiple preys
interacting with the same bait, and the other for observing the
same bait-prey interactions multiple times, given that the null
hypothesis is true, i.e. interactions to happen randomly. Our
methods are different from a Bayesian method recently developed
by Gilchrist et al [17], in which only the bait-prey protein
interaction hypothesis was discussed. Instead, our hypothesis test
methods belong to a ‘frequentist method”, which have the
advantage of not requiring a prior protein interaction distribution
for an alternative hypothesis.

In the first test method, we are concerned with whether a
particular bait tends to interact with many different preys. We
want to distinguish whether a bait protein ‘indiscriminately”
chooses an interaction partner by chance or by an un-characterized
statistically significant process. In this model, we use r (r>1)to

indicate the number of times that a search is replicated, i.e., the
number of times the same bait has been observed in different
searches. We use [/ to indicate the number of preys from all the
replicated searches sharing the same bait. We use p and M
according to the previously described definition. Under the null
hypothesis, we assume that every prey-bait interaction is an
independent Bernoulli trial with a success rate of p. There
are r X M trials among r replicated searches. Therefore, the
probability to obtain / or more preys by chance among r searches
(p-value) can be calculated through a binomial distribution,

pvaluey,,, =Pr(L20)=1- Y [fXM jpi(l -p) 2

i=0,Ll-1\

Where pvaluepwrg is the individual-wise type I error for a bait.
However, as a total of NV searches were performed, and each bait is
assumed to have r replicated searches, the family-wise type I error
can be controlled in (3) (Westfall),

pvalue gy =Pr(L 21) =1-{1- pvalue }NN 3)
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In Table 3, we tabulated the p-values under all the scenarios,
ranging in /=1 to 10 and r=1 to 4, where N=200,000, M=7,000,
and p=5.0e-5. Each cell in the table contains a ‘family -wise” p -
value, which measures the significance level for discovering /
preys in r replicated searches. For example, when only six
interactions or less are discovered in a non-replicated search (r=1
and /=6), this observation is not significant since p-value=0.314.
However, when [ increases from 6 to 7, 8, and >9 for a fixed r=I,
the p-value decreases to 1.86e-02, 8.15e-04, and <3.16e-05
respectively, suggesting the data being increasingly significant.
This table also confirms that for a fixed / number of preys, the less
search replications r it takes to observe all of them, the more
significant the observation becomes.

Table 2. A list of P-value that measures the significance of
observing / number of preys in r different searches. The
scenarios that are significant at a p-value threshold of < 0.05 are
highlighted by shade and a bold font.

r=1 r=2 r=3 r=4
=6 3.14e-01 1.00e-00 1.00e-00 1.00e-00
1=7 1.86e-02 5.88e-01 1.00e-00 1.00e-00
1=8 8.15e-04 7.39¢e-02 6.19¢-01 9.95e-01
1=9 3.16e-05 5.90e-03 1.05e-01 5.57e-01
=10 1.10e-06 4.11e-04 1.15e-02 1.06e-01
=11 3.49¢-08 2.60e-05 1.09e-03 1.40e-02
=12 1.02e-09 1.51e-06 9.48e-05 1.63e-03

If the statistical significant level is set as 0.05 the family-wise p-
value, there are many significant conclusions that we can derive
from this test result. For example, we can conclude that if we
observe at least 7 preys interacting with a single bait in any
search, the event is statistically significant (p-value=0.0186). For
another example, if the same bait has appeared 3 times in different
searches, we have to observe an additional 3 preys for these 10
(=743) preys to be taken as statistically significant (p-
value=0.0115). In a final example, if a bait interacts with
hundreds of other preys in a few different SY2H searches,
according to the above result, we say the bait must be selected
with a significant bias. This result supports many earlier findings
of ‘Sticky proteins” and highly interacting proteins serving as
‘interaction network hubs” [5, 18].

In the second test, we are concerned with the significance of
identifying a protein interaction pair from experimental results.
We want to know whether or not a protein interaction can be
‘trusted” for use in subsequent knowledge discovery tasks. We
use ¢ to indicate the number of times that a prey is discovered, and
use r, p, and M as described early in this section. Using a binomial
model, we can calculate the individual-wise type I error,
pvalue,,, for seeing the same prey appearing 7 times by chance

in r replicated searches as the following:
pvalue,y, =PrT20=1- Y (fﬂ]pi(l —p) “)
i=0, Lt -1\

However, as all M preys are available, the family-wise type I error
can be controlled in (5) (Westfall),
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pvalue,,,, =Pr(L>1)=1-{1— pvalue,,,, }" )
In Table 4, we tabulated the p-values under scenarios for r=1 to 4
and for r=1, 2, 3, 4, where N=200,000, M=7,000, and p=5.0e-5.
Each cell in the table contains a family-wise type I error p-value,
which measures the significance level for discovering the same
bait-prey interaction for ¢ times in r replicated searches. For
example, when an interaction is discovered only once in a single
non-replicated search (r=1 and #=1), this observation is not
significant since p-value=0.295. However, any replicated
interaction identified from at least two different SY2H searches
(r>2 and t=2 to 4) is going to be significant, because the
calculated p-value in all these scenarios are less than 0.05.

Table 3. A list of P-value that measures the significance of
observing the same interaction pair ¢ times in r different
searches. The scenarios that are significant at a p-value threshold
of <0.05 are highlighted by shade and a bold font.

r=1 r=2 r=3 r=4
r=1 2.95e-01  5.03e-01 6.50e-01 7.53e-01
=2 -- 1.74e-05 5.25e-05 1.05e-05
=3 -- - 8.75e-10 3.50e-09
t=4 -- -- -- 0.00e-00

3.4 Biological Significance of Interactions
Following the discovery of statistically significant patterns in the
‘raw” data set , the next question arises, ‘How does one identify
biologically significant protein interactions?” Not all statically
significant interactions discovered in the previous section are
biologically sensible, because a falsely identified human
interacting protein can appear in many searches simply because
this protein interacts with the yeast transcription factor in the
SY2H system. To address this issue eventually, significant
research efforts beyond this work is necessary, including efforts to
perform complementary or validation experimental studies,
conduct manual knowledge curations, and incorporate different
types of biological data into the current computational analysis. In
[19], we summarized the challenges and opportunities of
integrating biological data such as gene expression information,
functional annotations, homology information, and interaction
network modules.

In this section, we describe an example of such integrative data
analysis based on the annotations of protein’s interaction partners.
The null hypothesis is that proteins do not have specific functional
or localization preferences when choosing their interaction
partners. To collect statistics under the null hypothesis, we used a
numerical re-sampling method, in which we randomly rewired the
interaction network. Our randomization procedure, however,
preserved each node’s degree of connectivity and thus the overall
network node degree distribution. For each randomly rewired
network, we retrieved the interaction partners v(n) of each protein
n and calculated the frequency of occurrences of each annotation
term among all the annotations, A[v(n)], available for the proteins
in v(n). From this data, we computed the distribution functions for
the fractions of each annotation term among all the terms assigned
to protein’s interaction partners. Since we were interested in
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statistically significant co-occurrences of the annotation terms, we
actually calculated a conditional probability, p[IN(r)|=klt], to
observe k occurrences of term ¢ among A[v(n)], given
te A[lv(n)]. The continuous approximation (calculating
fractions instead of counts) is helpful for analyzing very small
number of proteins with very large number of interaction partners,
which would otherwise require expensive full network re-
sampling to analyze.

Table 4. A summary report showing that highly
interacting proteins, binned by their node degree range,
have significantly high shares of interaction partners in
diverse annotation categories (sampled).

Node Degree 20-30 31-40 41-80 >80
Range

Development 24 26 22 26
Chaperone 15 7 15 25
activity
Catalytic activity 48 16 4 2
Transporter 37 21 19 13
activity
Motor activity 12 9 23 27
Signal transducer 42 16 14 15
Translation 9 10 15 28
regulator activity
Extra-cellular 44 30 25 30
Enzyme regulator 14 15 6 9
activity
Transcription 24 32 29 27
regulator activity
Structural 24 19 44 118
molecule activity
Defense/immune 5 2 2 0
activity”
Cell adhesion 24 23 21 12
molecule activity”
Apoptosis ‘ 7 2 5 1
regulator activity”
Significant / 239/596 | 177/269 | 188/398 | 196/281
Total =40% =66% =47% =70%

* This term is obsolete in the current version of GO. Our
analysis is still consistent since we used the concurrent
versions of GO and the protein annotation mapping.

For annotations we used a vocabulary derived from the Gene
Ontology (GO) database. Since the GO has directed acyclic graph
quasi-hierarchical structure, for each annotation term we perform
a ‘roll -up” similar to [5] by tracing the term back to all its
“acestors” a the GO level [=2 (I=0 is for the root, I=1 is for
‘molecular function”, ‘biological process”, and “cdlular

component” labels). With this operation we generally avoid the
problem of many terms being too narrow and not sufficiently
represented to enable building robust statistics. It is also plausible
biologically to expect multiple interactions with related proteins,
belonging to the same general group (e.g. ‘structural’ or
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‘transcription factor’) rather than with a number of same very
specific functional modules.

In Table 5, we present a summary of our results. Here, we are
primarily interested in characterizing potentially self-activating
and ‘Sticky” false p ositive proteins—highly interacting proteins
that we define here as those having >20 interaction partners. We
selected four node degree ranges (20-30, 31-40, 41-80, and >81)
and calculated significance levels for each annotation term
according to the method outlined above. For instance, in the group
of proteins with 20 to 30 interaction partners (first row) that
consists of 596 proteins (see the ‘Significant/Total” column),
there are 24 proteins that interact with significantly high numbers
of proteins annotated with the ‘Development” GO term (or its
more specific descendants), 15 interact with the significantly high
numbers of proteins involved in ‘Chaperon Activities” etc. Total
of 239 (40% of 596) proteins in this group have at least one
annotation term overrepresented among their interaction partners
(note that many proteins have more than one significant term in
A(v(n))). From our result, we can conclude that 70% of the
promiscuously interacting proteins (node degree >80) have
statistically significant interaction patterns and thus can be
biologically significant and active ‘functional hubs”. Combined
with the evidence from previous work and previous results in this
work, we believe that they should not be recklessly dismissed, but
rather thoroughly analyzed with all the biological evidence
available. It should be noted that some proteins are involved in
various activities under different conditions, so that when the
whole set of interaction partners is analyzed regardless of the
source tissue, developmental stage, etc., no particular functional
category may seem to be overrepresented. Thus, our estimates can
be conservative.

4.DISCUSSION

In this study, we performed a comprehensive assessment of the
human protein interactome data, which were derived from the
SY2H method. We showed that this data set comprehensively
surveyed the human proteome without an apparent bias in source
chromosomal locations. We also showed that the data had a good
reproducibility above 78% and a low false positive rate at
approximately 5.5e-5. We developed several statistical data
mining techniques to assess both the statistical and biological
significance of interactions, especially for those data with
replications and annotated GO term labels. We showed evidence
were not random noises; instead, they could be ‘hetwork hubs” of
the cell signaling network. We also attributed the low noise in our
data to the adoption of standard control in the experimental data
generation process.

Several factors may have prevented similar insights into the
protein interactome data ‘hoise” issue from being developed until
this work. First, protein interactome data were scarce until very
recently. Not many researchers have access to this type of data;
even fewer have first-hand experience trying to extract useful
information from it. Second, there is a genuine lack of biological
understanding in how Y2H method works. This may have
presented the development of new concepts such as protein
‘hetwork hubs”. Third, many public data are produced in labs
without the modern robot equipments or proper enforcement of
standard operation protocols. Therefore, experimental variations
are prevalent. Fourth, even today, the public protein interactome
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data set does not contain essential information such as protein
interaction regions, interaction strengths, or replicated interactions
under similar experimental conditions. With an ongoing surge of
protein interactome data in the next few years, we hope our early
results will restore some assurance to forthcoming data miners of
this information.
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ABSTRACT

In the domain of gene expression data analysis, various
researchers have recently emphasized the promising ap-
plication of pattern discovery techniques like association
rule mining or formal concept extraction from boolean
matrices that encode gene properties. To take the most
from these approaches, a needed step concerns gene prop-
erty encoding (e.g., over-expression) and its need for the
discretization of raw gene expression data. The impact
of this preprocessing step on both the quantity and the
relevancy of the extracted patterns is crucial. In this pa-
per, we study the impact of discretization parameters by
a sound comparison between the dendrograms, i.e., trees
that are generated by a hierarchical clustering algorithm,
computed from raw expression data and from the vari-
ous derived boolean matrices. Thanks to a new similarity
measure and practical validation over several gene expres-
sion data sets, we propose a method that supports the
choice of a discretization technique and its parameters
for each specific data set.

1. INTRODUCTION

Thanks to a huge research effort and technological break-
throughs, one of the challenges for molecular biologists is
to discover knowledge from data generated at very high
throughput. For instance, different techniques (includ-
ing microarray [13] and SAGE [24]) enable to study the
simultaneous expression of (tens of) thousands of genes
in various biological situations. The data generated by
those experiments can be seen as expression matrices in
which the expression level of genes (rows) are recorded in
various biological situations (columns). A toy example of
some microarray data is the matrix in Tab. 1a.
Exploratory data mining techniques are needed that can,
roughly speaking, be considered as the search for inter-
esting bi-sets, i.e., sets of biological situations and sets
of genes that are associated in some way. Indeed, it is
interesting to look for groups of co-regulated genes, also
known as synezpression groups [19], which, based on the
guilt by association approach, are assumed to participate
in a common function, or module, within the cell. A set
of co-regulated genes and the set of biological situations
that gives rise to this co-regulation is called a transcrip-
tion module. Discovering transcription modules is one of
the main goals in functional genomics.

Various techniques can be used to identify a priori inter-
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I 2 3 4 5
a1 6 0 12 9
b3 2 3 3 1
clo 5 -1 6 6
dl4 1 2 =2 -1
e|3 9 1 10 6
fl5 3 3 6 0
gl4 4 3 71 0
h|l2 2 =2 8 5

—
o
N

1 2 3 4 5
al0 1 0 1 1
b|1 0 1 0 1
c|0O 1 0 1 1
dj{1 0 1 0 O
e|0 1 0 1 1
f{1 0 1 0 1
g1 0 1 0 1
h|fo O 0 1 1

®)

1 2 3 4 5
al0 O O 1 O
b1 0 1 0 O
c|0 O 0 1 1
d{1 0 0 0 O
e|/0 0 0 1 O
f{1 0 0 0 O
g|1 0 0 0 O
h|{0 O 0 1 O

(c)

Table 1: An example of gene expression matrix (a) with
two derived boolean matrices (b and c)

esting bi-sets. Biologists often use clustering techniques
to identify sets of genes that have similar expression pro-
files (see, e.g., [14]). Statistical methods can be used as
well (see, e.g., [16; 4]). It is also possible to look for these
putative synexpression groups by computing the so-called
frequent itemsets from boolean contexts that encode gene
expression properties [1]. Deriving association rules from
frequently co-regulated genes has been studied as well [3;
10]. Furthermore, putative transcription modules can be
provided by computing the so-called formal concepts (see,
e.g., [25]) in this kind of boolean data [21; 22].

A key issue for using these pattern discovery techniques
from boolean data concerns gene expression property en-
coding. Let O denotes a set of biological situations and
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P denotes a set of genes. The expression properties can
be encoded into r C O x P. (04, g;) € r denotes that gene
j has the encoded expression property in situation ¢. Dif-
ferent expression properties might be considered like, e.g.,
over-expression, up or down regulation, strong variation.
Generally, encoding is performed according to some dis-
cretization operators that, given user-defined parameters,
transform each numerical value from raw gene expression
data into one boolean value per gene property. Many
operators can be used that typically compute thresholds
from which it is possible to decide wether the true or the
false value must be assigned. For instance, in Tab. 1b, an
over-expression property has been encoded and genes a,
¢, and e are over-expressed together in situations 2, 4 and
5.

We consider that mining boolean gene expression data
sets is extremely useful thanks to the patterns that can
be extracted now with efficient algorithms (e.g., frequent
closed set [7; 20; 26] or concept extractors [5]). In this con-
text, the critical step of gene expression data discretiza-
tion has not been studied enough while its impact on both
the quantity and the relevancy of the extracted patterns
is crucial. For instance, the density of the discretized
data depends on the discretization parameters and the
cardinalities of the resulting sets (collections of itemsets,
association rules or formal concepts) can be very different.

In this paper, we propose a method that supports both
the choice for a discretization technique and an informed
decision about its parameters. We cooperate with molec-
ular biologists that are used to collect important informa-
tion about putative synexpression groups and transcrip-
tion modules by using the hierarchical clustering tech-
nique that has been popularized by the Eisen software
[14]. We decided to study the impact of discretization
parameters by a sound comparison between the dendro-
grams that are generated by the same hierarchical clus-
tering algorithm applied to both the raw expression data
and various derived boolean matrices. Comparing trees
by means of ad-hoc similarity measures has been studied
a lot, including in the bioinformatics domain for the anal-
ysis of phylogenies (see, e.g., [18; 23; 15]). Other measures
evaluate the quality of partitions w.r.t. a reference par-
tition of the data set. The difficulty is then to identify
on dendrograms the cut levels at which we can compare
the partition on the real data set with the one on boolean
data set.

The contribution of this paper is twofold. First, we pro-
pose a new similarity measure for binary trees (such as
dendrograms generated by any hierarchical clustering al-
gorithm), that is level independent, and depends for each
node on its subtree structure. Next, we have studied the
behavior of our measure on several gene expression data
sets in order to support the choice a discretization tech-
nique and the discretization parameters that have to be
used when encoding boolean gene expression properties
in order to perform efficient pattern discovery techniques
like association rule mining or formal concept discovery.

In Section 2, we define our similarity measure between
two binary trees. In Section 3, we study the behavior of
this measure for different gene expression data sets. Fi-
nally we consider in Section 4 the impact of our technique
on a KDD process which finds biologically relevant infor-
mation in a well-studied gene expression data set. Section
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5 concludes.

2. COMPARING BINARY TREES

The problem of finding the best comparison method for
trees is still open even though it has been considered in
various application domains. Considering the analysis of
phylogenies, distance measures between both rooted and
unrooted trees have been designed to compare different
phylogenetic trees concerning the same set of individu-
als (e.g., different species of animals having a common
ancestor). Various distance metrics between trees have
been proposed. The nni (nearest neighbor interchange)
and the mast (maximum agreement subtree) are two of
the most used metrics. nni has been introduced inde-
pendently in [18] and [23] and its NP-completeness has
been recently proved [11; 12]. mast has been proposed in
[15], and [9] describes an efficient algorithm for computing
this metrics on binary trees. These two approaches are
tailored for the problem of comparing phylogenies where
the goal is to measure some degree of isomorphism be-
tween two dendrograms representing the same species of
biological organisms.

In our data mining problem, we have sets of objects (vec-
tors of expression values for genes in various biological sit-
uations), that we want to process with a hierarchical clus-
tering algorithm. Depending on the different discretiza-
tion operations on raw expression data, a same clustering
algorithm working on encoded boolean gene expression
data can return (very) different results. We are looking for
a method that supports the comparison of these various
gene and/or situation dendrograms obtained on boolean
data w.r.t. the common reference dendrogram that has
been computed from the raw data. We need to measure
both the degree of similarity of their structures and the
similarity between the contents of their associated collec-
tions of clusters. We designed a simple measure which is
also easy to compute. Intuitively, it depends on the num-
ber of matching nodes between the two trees we have to
compare.

2.1 Definition of similarity scores

Let O = {o1,...,0n} denote a set of n objects. Let T
denote a binary tree built on O. Let £ = {l1,...,l.}
denote the set of n leaves of T" associated to O for which,
Vie[l...n],l; =0;. Let B={b1...bn—1} denote the set
of n — 1 nodes of T' generated by a hierarchical clustering
algorithm starting from £. By construction, we consider
bn—1 = r, where r denotes the root of T. We define the
two sets:

0 (bs) ={b; € B|bj isadescendent of b;},

7(b;) ={l; € L |l isadescendent of b;} .

An example of a tree for a set containing 8 objects (i.e.,
the genes from Tab. 1a) is given in Fig. 1. In this example,
T (b3) = {b7 d? f7 g} and § (b3) = {b17 bQ}

We want to measure the similarity between a tree 7" and a
reference tree Ty built on the same set of objects O. For
each node b; of T, we define the following score (denoted
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Figure 1: An example of binary tree

Sp and called BScore):

SB (b, Tref) = Z aj

b €5(b;)
1 .
EOE if
a; = Fop € Tres | 7 (by) =7 (bi) (1)
0, otherwise

In other terms, for a node b in T, its score depends both
on the number of its matching nodes in Trey (bi € Tres
is a matching node for b if 7 (b) = 7 (bx)) and |7(b)|. To
obtain the similarity score of T" w.r.t. Trcs (denoted St
and called TScore), we consider the BScore value on
the root, i.e.:

St (T, Tref) = Sp(r,Tres) (2)

As usually, it is interesting to normalize the measure to
get a score between 0 (for a tree which is totally different
from the reference) and 1 (for a tree which is equal to
the reference). For the TScore measure, since its max
value depends on the tree morphology, we can normalize
by St (TT€f> TTEf):

o St (T, Trey)

St (T, Treg) = St (Tres, Trer) )

St (T, Tres) = 0 means that T is totally different from
Tres, i.e., there are no matching nodes between 7' and
Trep. Indeed, Sr (T, Trey) = 1 means that T is totally
similar to Trey, i.e., every node in 1" matches with a node
in Trey. Given two trees 11 and T and a reference Ty,
if St (T1, Tres) < St (T2, Trey), then Ty is said to be more
similar to Tr.y than T1 according to TScore.

Let us now provide a constructive definition to compute
the BScores for every node of the tree, and retrieve its
value for the whole tree. Assume that functions ¢; (b;)
and ¢, (b;) respectively return the left and the right child
of b;. In Fig. 1 ¢; (b7) = b3 et ¢, (by) = bs. The BScore
measure can be redefined as follows:

Sp (biyTrep) = 0 (ci (b3) , Trep) + 0 (cr (b3), Trey)  (4)
where

m + SB (bk7T'ref)7 Zf

o (b, Trey) = 3bj € Trey | 7 (br) = 7 (b;)
SB (bi, Trey), otherwise
G(lk,Tref) = 0, Vire L
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This definition emphasizes that the BScore for each node
depends on the BScore values of its children. The fact
that each node “inherits” the similarity information of its
children is useful when comparing two trees that result
from a hierarchical clustering algorithm.

2.2 Comparison between gene dendrograms

Tab. 1ais a toy example of a gene expression matrix. Each
row represents a gene vector, and each column represents
a biological sample vector. Each cell contains an expres-
sion value for a given gene and a given sample. In this
example, we have O = {a, b, ¢, d, e, f,g,h}. A hierarchical
clustering using the Pearson’s correlation coefficient and
the average linkage method (see, e.g., [14]) on the data
from Tab. la leads to the dendrogram in Fig. 1.

Assume now that we discretize the expression matrix by
applying two different methods used for over-expression
encoding [3]. The first one considers the mean between
the max and min values for each gene vector. Values that
are greater than the average value are set to 1, 0 otherwise
(Tab. 1b). A second method takes into account the max
value for each gene vector. Values that are greater than
90% of the max value are set to 1, O otherwise (Tab. 1c).
Assume now that we use the same clustering algorithm
on the two derived boolean data sets. The resulting den-
drograms are shown in Fig. 2. Fig. 2a (resp. Fig. 2b)
represents the gene dendrogram obtained by clustering
the boolean matrix in Tab. 1b (resp. Tab. 1c).

a)

b)

Figure 2: Gene trees built on two differently discretized
matrices

We can now use the similarity score and decide which
discretization is better for this gene expression data set,
i.e., the one for which St (T, Tyrey) has the largest value.
The common reference (Tres) is the tree in Fig. 1. Let
To and Ty denote the trees in Fig. 2a and 2b respectively.
Using Equation 4, we obtain the results in Tab. 2.

To normalize the similarity scores, we just need to divide
the BScores of the root of the first two dendrograms,
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Node | Match T o SB
by - {b, [} 0 0
bo bo {b, f, g} 0.33 0
b3 b3 {b,d, f,g} | 0.58 | 0.33
by ba {a,c 0.5 0
bs bs {a,c,e} 0.83 | 0.5
be be {a,c,e,h} | 1.08 | 0.83
bz b7 @ - 1.67

Ty

Node | Match T o SB
b1 - {d, f} 0 0
by - | {dfgr | 0 |0
b3 b3 {b7 d, f?g} 0.25 0
by - a,e 0 0
bs - {a,e,h} 0 0
be b {a,c,e,h} | 0.25 0
by by - 0.5

Tref

Node | Match T o SB
b1 b1 {f, g} 0.5 0
bo ba {b, f, g} 0.83 | 0.5
bs b3 {b,d, f,g} | 1.08 | 0.83
ba by {a, c 0.5 0
bs bs {a,c, e} 0.83 | 0.5
be be {a,c,e,h} | 1.08 | 0.83
by b7 O - 2.17

Table 2: BScore values. Nodes matching in Ty are in
the Match columns.

by the BScore of the root of the reference dendrogram
(Equation 3):
- St (Ta, Trey) 1.67

TayTre = = -5 — U
St ( 7) Sp (Trep, Trep) 217 0.77

—_— St (Ty, Trey) 0.5

St (To, Trey) Sr (Tres Toeg) ~ 207 0.23
Since S_T(TG,TTef) > S_T(Tb7T7-ef), the first discretiza-
tion method is considered better for this data set w.r.t.
the performed hierarchical clustering. In fact, in Ty, only
node b1 does not match (i.e., it does not share the same
set of leaves) with any node in Ty, while in T}, there are
only two nodes (b3 and bs) that match with some nodes
in Tref-

The same process can be applied to situation dendro-
grams by considering now that the objects are the situa-
tions. In practice, we perform both processes to support
the choice of a discretization technique as illustrated in
the next section.

3. COMPARING DIFFERENT
DISCRETIZATION TECHNIQUES

Many discretization techniques can be used to encode
gene expression properties from expression values that
are either integer values (case for SAGE data [24]) or real
values (case for microarray data [13]). In this paper, we
consider for our experimental study only three techniques
that have been used for encoding the over-expression of
genes in [3]:

e “Mid-Ranged”. The highest and lowest expression
values are identified for each gene and the mid-range
value is defined. For a given gene, all expression
values that are strictly above the mid-range value
give rise to value 1, 0 otherwise.
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e “Max - X% Max”. The cut off is fixed w.r.t. the
maximal expression value observed for each gene.
From this value, we remove a percentage X of this
value. All expression values that are greater than
the (100 — X)% of the Max value give rise to value
1, 0 otherwise.

e “X% Max”. For each gene, we consider the situa-
tions in which its level of expression is in X% of the
highest values. These genes are assigned to value 1,
0 otherwise.

We want to evaluate the relevancy of a discretization al-
gorithm and its parameters according to the preserved
properties w.r.t. a hierarchical clustering of the raw data.
So, we have to compare the dendrograms obtained from
the three different boolean matrices with the reference
dendrogram.

We have considered three gene expression data sets: two
microarray data sets and a SAGE data set. The first
data set (CAMDA [8]) concerns the transcriptome of the
intraerythrocytic developmental cycle of the plasmodium
falciparum, a parasite that is responsible for a very fre-
quent form of malaria. We have the expression values
for 3 719 genes in 46 different time points. The second
data set (Drosophila [2]) concerns the gene expression of
drosophila melanogaster during its life cycle. We have the
expression values for 3 030 genes and 81 biological sam-
ples, including both male and female adult individuals.
The third one (human SAGE data from NCBI, see also
[17; 22]) contains the expression values for 5 327 human
genes in 90 different cancerous and not cancerous cellular
samples belonging to different human organs.

In Tab. 3, we report the densities (i.e., the ratio of true
values) of the boolean matrices produced with the “Mid-
Ranged” method. In Fig. 3, we provide the density curves
for the three data sets and depending on different thresh-
olds for the “Max - X% Max” method (densities for the
“X% Max” method are quite similar).

Resulting densiies or Wax - X5% Max binaiization method

Dty

Figure 3: Density values for different “Max - X% Max”
thresholds

We processed all the computed boolean matrices with a
hierarchical clustering algorithm based on the centered
Pearson’s correlation coefficient and the average linkage
method. The same algorithm with the same options has
been applied to the three original matrices. Finally, for
each data set, we have compared all the genes and situ-
ations trees derived from the boolean matrices with the
reference trees. The results in terms of TScore (Equa-
tion 4) for the “Mid-Ranged” method, are summarized in
Tab. 3. For the “Max - X% Max” and “X% Max” meth-
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ods we summarize the results depending on the variation
of the threshold X for the gene dendrograms in Fig. 4a
and Fig. 4c, for the situation dendrograms in Fig. 4b and
Fig. 4d. It is important to observe that, for each data
set, we obtained the highest values of similarity scores for
both the genes and the situations for almost the same
discretization thresholds.

Similarity score
Data set | Density Genes Situations
CAMDA 0.313665 | 0.034155 | 0.746437
Drosophila | 0.441146 | 0.059570 | 0.591343
SAGE 0.053958 | 0.110131 | 0.776736

Table 3: Similarity scores for clustering trees on Mid-
Ranged discretized matrices

We have also applied the same clustering algorithm on
various randomly generated boolean matrices based on
the same sets of objects. Then, we have compared the
resulting dendrograms with the reference. In the first
two data sets (CAMDA and Drosophila), the similarity
scores of the randomly generated boolean matrices are
always very low or equal to 0. In the SAGE data set,
given a density value, the gene scores resulting from ran-
domly generated matrices are always lower than the ones
obtained by any discretization method (while the situa-
tion scores are always negligible). One possible reason is
that the discretized matrices are here very sparse com-
pared to the first two data sets (see Fig. 3). Using a low
threshold to discretize such a matrix does not make sense:
obtained scores are similar to the scores which are com-
puted on random boolean matrices. Moreover, using a
high threshold value X for the “X% Max” discretization
method leads to similarity scores that are close to those
obtained for randomly generated matrices, though still
higher. We can observe the behavior of this particular
SAGE data set in Fig. 5.

To conclude this section, comparing dendrograms result-
ing from the clustering of different types of derived boolean
matrices enables to choose the “best” discretization method
and parameters for a given data set. If we analyze the
graphics of similarity scores w.r.t. the thresholds used
in the “Max - X% Max” and “X% Max” methods (see
Fig. 4), we observe the presence of either a max or an
asymptotic behavior. It means that the best choice for the
discretization threshold could be a trade-off between the
value for which we get the best similarity score, and the
value for which the data mining task remains tractable.

4. AN APPLICATION TO A REAL
PROBLEM

We have applied the proposed preprocessing technique to
a real gene expression data set to validate our approach
throughout a complete KDD process. We have decided
to mine the data described in [2]. It concerns the gene
expression of the Drosophila melanogaster during its life
cycle. The expression levels of 4 028 genes are evalu-
ated for 66 sequential time periods from the embryonic
state till the adulthood. The total number of samples
is 81 since the gene expression during the adult state is
measured for male and female individuals. For our ex-
periment we have used only a set of 20 time periods for
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adult individuals. This set is composed of 8 male adult
samples, 8 female adult samples, 2 male and 2 female tu-
dor samples. The set of genes we have used is derived
from the original set from which we removed those genes
that are under-expressed in all the 20 situations and over-
expressed in at least 11 biological situations. We have
obtained a 3 433 x 20 matrix which has been processed
according to our methodology. The raw expression matrix
has been discretized using the “Mid-Ranged” and “Max -
X% Max” methods. The resulting boolean matrices and
the original matrix have been processed with the same as-
cendant hierarchical clustering algorithm using Pearson’s
correlation coefficient and average linkage. Then, using
our tree comparison technique, we have compared the
gene and situation dendrograms. The similarity scores
are presented in Fig. 6.

Our goal was to identify a particular class of genes, the
so-called “male somatic genes”, that characterizes the
male adult individuals (see Table S30 in [2]). 31 of these
37 genes are present in our data set and we tried to
search them by mining formal concepts in the various
derived boolean matrices. Intuitively, formal concepts
are maximal rectangles of true values in boolean matri-
ces. For instance, in the boolean context from Tab. 1b,
({a,c,e},{2,4,5} is a formal concept, i.e., a strong asso-
ciation between two closed sets. We used the D-MINER
algorithm [5; 6]) which extracts all the concepts satis-
fying some user-defined monotonic constraints. We ex-
tracted all the concepts with at least 3 situations and
at least 20 genes. Then we have post-processed the ex-
tracted collection to keep those which concern only male
individuals. Finally, we measured the number of male
somatic genes which appear in the different sets of the
post-processed concepts. To better evaluate the results,
we also built two other sets of concepts: the collection of
concepts which concern only female individuals, and the
collection of concepts which involve at least one female
individual. We summarize the results in Fig. 7.

The discretization threshold that gives the best similar-
ity score and that we identify in both graphs from Fig. 6
(X = 54% for the “Max - X% Max” method), enables
to retrieve 25 of the 31 male somatic genes from the con-
cepts that concern only male individuals. Moreover, even
though higher thresholds enable to retrieve more somatic
genes, the slope of the curve, after the optimum, begins
to decrease, while the slope of the curves of male somatic
genes identified in concepts concerning female individuals
starts to increase. Choosing the discretization threshold
enables to control the trade-off between extraction com-
pleteness and noise impact.

5. CONCLUSION

We defined a new pre-processing technique that supports
the evaluation and assessment of different discretization
techniques for a given gene expression data set. The
evaluation is based on the comparison of dendrograms
obtained by clustering various derived boolean matrices
with the one obtained on the raw matrix while using the
same clustering algorithm. The defined metrics is simple
and we have validated its relevancy on different real data
sets and on a biological problem. This is a step towards
a better understanding of a crucial pre-processing step
when we want to apply the extremely promising pattern
discovery techniques based on set patterns.
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ABSTRACT

Massive publicly available gene expression data consisting of
different experimental conditions and microarray platforms
introduce new challenges in data mining when integrating
multiple gene expression data. In this work, we proposed a meta-
classification algorithm, which is called MIF algorithm, to
perform multi-type cancer gene expression data classification. It
uses regular histograms for gene expression levels of certain
significant genes to represent sample profiles. Differences
between profiles are then used to obtain dissimilarity measures
and indicators of predictive classes. In order to demonstrate the
robustness of the algorithm, 10 different data sets, which are
individually published in 8 publications, are experimented. The
results show that the MIF algorithm outperforms the simple
majority-voting meta-classification algorithm and has a good
meta-classification performance. In addition, we also compare our
results with other researchers’ works, and the comparisons are
impressive. Finally, we have confirmed our findings with
cancer/testis (CT) immunogenic gene families of heterogeneous
samples.

Keywords

Gene expression, meta-classification, heterogeneous, multi-type

1. INTRODUCTION

Although DNA microarray techniques bring breakthroughs to
cancer study, massive publicly available gene expression data,
which are conducted by different laboratories with various
experimental conditions and microarray platforms, introduce new
challenges to conduct data mining with an integration of multiple
and heterogeneous gene expression data. For gene expression data
in cancer study, the advance of data mining leads to the discovery
of global cancer profiling, patient classification, tumor
classification, tumor-specific molecular marker identification and
pathway exploration [15]. Different mining algorithms have been
proposed, and significant findings are exploited corresponding to
different algorithms. For most cases, validations of findings are
done by a series of biological experiments or laboratorial works.
However, in terms of efficiency and effectiveness of mining
algorithms with respect to clinical applicability and robustness,
the validations are mainly restricted by cross-validation or sub-
sampling within a single data set [4], [11]. This validation scheme
is not sufficiently to draw conclusions because of the problems of
over-fitting and homogeneity within a single data set. To avoid
these problems, there are two potential solutions: (1) it is required
to validate mining algorithms with heterogeneous data sets
consisting of different microarray platforms and experimental
conditions, and (2) meta-analysis is performed with a number of
heterogeneous data sets so that it can make meta-decisions with an
integration of these data sets, rather than with individual data sets
(51, [191.
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To perform classification of heterogeneous data consisting of
multi-type cancer, some common features (i.e. significant genes)
must be founded in various cancer types. Subsets of genes, which
are called cancer/testis (CT) immunogenic gene families, are
recently proposed to have associations with one or more than one
cancer type. Van der Bruggen et al. [23] suggested an approach to
identity the molecular definition of tumor antigens recognized by
T cells, and this approach leads to the discovery of various human
tumor antigens, such as MEGEA1 and BAGE. Discovered tumor
antigens are recently grouped into distinct subsets, and the subsets
are named as cancer/testis (CT) immunogenic gene families.
Currently, researchers have discovered 44 CT immunogenic genes
families consisting of 89 individual genes in total [20].

In our previous works, we proposed a measure called “impact
factors (IFs)” to improve the classification performance of
heterogeneous gene expression data [7], [8]. In this paper, we
extend the works and propose a meta-classification algorithm,
which is called Majority-voting with Impact Factors (MIF)
algorithm, to classify multi-type cancer gene expression data
consisting of both different cancer types and microarray
platforms. In order to validate the reliability and robustness of the
MIF algorithm, 10 gene expression data sets, which are published
in 8 different publications, are experimented, and the
classification performance of the MIF algorithm is not only
compared with the simple majority-voting meta-classification
algorithm, but also with results of other researchers in [2].

2. RELATED WORKS

Recent progress in mining gene expression data is to discover
knowledge from multiple and heterogeneous gene expression
data. Some works are concerning theoretical flexibility to
integrate gene expression data with various microarray platforms
and technologies. Lee et al. [10] and Kuo et al. [9], respectively,
described different approaches based on simultaneous mutual
validation of large numbers of genes using two different
microarray platforms. They used the NCI-60 data sets consisting
of spotted cDNA arrays and Affymetrix oligonucleotide chips.
Choi et al. [5] proposed a systematic integration of gene
expression data based on normalizing data with an estimated
means of other data sets.

For application level, classification is one of the common areas in
data mining of gene expression data. Ng et al. [13] proposed a
method to perform subtype classification with six different gene
expression studies on Saccharomyces cervisiae. Recently, Bloom
et al. [2] conducted a study of multi-platform, multi-type and
multi-site classification on cancer gene expression data. In the
study, 15 cancer types, published in 4 different publications, are
experimented.

Meta-classification approaches are mainly divided into three
categories [21]. The first category is to average individual
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Figure 1. Process overview of the MIF algorithm.

decisions of different element classifiers without altering the
original learning algorithms of the element classifiers. The second
category is to predict the right learning algorithm or classifier for
a particular problem from a set of element classifiers based on
analyzing the fitness of the characteristics of testing data sets. The
last category is to take a sub-sample of the entire data set and try
each algorithm on this sub-sample. Among these three categories,
the category of model averaging draws more attention in the
literatures. For gene expression data, most works also belong to
the category of model averaging. Some works include majority-
voting [3], Bayesian combination [4], weighted-voting [4] and
neural network ensembles [26].

3. MIF ALGORITHM

In this work, we proposed a meta-classification algorithm, called
Majority-voting with Impact Factors (MIF) algorithm, to perform
multi-type cancer gene expression data classification. It uses
regular histograms for gene expression levels of certain significant
genes to represent the profiles of samples. Differences between
profiles are then used to obtain dissimilarity measures and
indicators of predictive classes. The regular histograms are
constructed by the uniform partitioning technique with maximum
and minimum expression levels of the significant genes as upper
and lower bounds. It aims at estimating densities of expression
levels of significant genes in terms of relative positioning with
respect to the upper and lower bounds. For a new sample, it
compares its histograms with the histograms of individual classes
in training sets. The classes with smaller dissimilarity measures
are set as predictive classes for the new sample. As the same time,
the majority-voting meta-classification algorithm is performed
with the new sample too. If the decisions derived from the regular
histogram comparisons and the majority-voting algorithm are the
same, weighted scores corresponding to individual classes, which
are based on the impact factors (IFs), are accumulatively adjusted
the dissimilarity measures of the corresponding classes. On the
other hands, if their decisions are different, there are no such
weighted scores, and the dissimilarity scores are increased
according to the results of the majority-voting algorithm. Figure 1
shows the process overview.

Here, we describe the MIF algorithm in details. First of all,
individual regular histograms of every sample in each class in
training sets are constructed [12]. Suppose that there are m
training sets represented by the vector X=(X;, X,, ..., X,,), and
X,:(x,»,], Xip2 voes Xih Xil+D «ver -xi:n) be the training set i with [
normal samples and (n—I) cancer samples. The expression levels
of gene g in X; be represented by a vector g=(e;;, €,2 ... €pn)s
where ¢;; represents the expression level of g in sample j of set i
(i.e. X;), and c={Normal,Cancer} be the class vector such that x;.c
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representing the classes of sample j in set i. The algorithm for the
regular histogram construction for training samples is shown in
figure 2.

Inputs: aligned training samples sets X, number of bins ny,
number of significant genes n,

Outputs: pairs of regular histograms for all training samples sets
Hpyormar a0d Hegpeer, sets of significant genes for all training sets G

1. variables:

2. tempomar and temp c,ne.r be the temporary sets of regular
histograms for each candidate of X;, tempg;, be the temp set
of significant for X;, o be the percentage of bin candidates
to be trimmed

3. fori=1to size(X)

4. tempnomal = ¢;

5. temp cancer = ¢;

6. tempg;, = find_sig_genes (X;);

7. G = G + tempyg;y;

8. forj =1 to size(X;)

9. if (x;j.c = Normal)

10. 1empNormal = 1€MPNormal + hiSt_P”OC(xi,j: ny, tempSig);
11. else

12. 1emp cancer = 1€MP Cancer + hiSt_P'"OC(xi,jy np, tempsig);
13. end if

14. end for

15. HNarmal = HNormal + normalize (tempNormalr a);

16. HCcmcer = HCancer + normalize (tempCcmcen a);

17.  end for

Figure 2. Algorithm for calculating regular histograms for

training samples sets.
In figure 2, for each training set X;, where X;e{X/, significance of
genes in X; is calculated and ranked accordingly in the function
“find_sig_genes” at code line 6. The common and widely used
statistical method #-test is used to rank significance of the genes
[6]. In the rtest, its sign is determined by the numerator.
Therefore, the t-values are positive if the mean of normal class is
larger than that of cancer class and negative if the mean of normal
class is smaller than that of cancer class. Hence, taking genes
from both tails from the sorted list, including positive and
negative 7-values, can assume that the same proportions of genes
from both classes are considered. Extracted significant genes sets,
G={G,, G, .., G,J, where G; is the significant gene set in
training X;, are later used to construct and compare the histograms
of testing samples.

At code lines 10 and 12 in figure 2, the function “hist_proc” is
invoked to construct the regular histograms. The maximum and
minimum expression levels among those extracted significant
genes are set as the upper and lower bounds of the histograms.
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Samples belong to the same classes of the same training sets may
have different values for upper and lower bounds. However, we
are only interested in the densities of expression levels with
respect to sample-based maximum and minimum expression
levels, which is in relative positioning. Therefore, if the absolute
differences of a sample between two bounds are smaller than
other samples, their global differences among significant genes
will be smaller in a similar ratio as the bounds also. As a result,
the effects of the absolute differences can be eliminated.

The uniform partitioning technique is used to evenly divide the
distance between the upper and lower bounds into a required
number of bins n,. Each bin width is defined by (upper-lower)/n,,
Each data set should have / and (n—/) different regular histograms
for normal and cancer samples, and all histograms should have n,
bins because of the uniform partitioning. For example, figure 3
shows an example. Assume that there are 100 significant genes, n,
is 10 bins, and the upper and lower bounds are 4917 and -652. By
applying the uniform partitioning technique, each bin width is
[4917-(-652)]/10=557 to nearest integer. Expression levels of
identified significant genes are then mapped to different bins with
respect to their expression levels, and the results are shown in
figure 3. At the end, the regular histogram of the illustrated
sample is represented by the vector of (0.11, 0.76, 0.07, 0.02,
0.01, 0, 0,0.01, 0, 0.02).
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Figure 3. Example of regular histogram’s construction for
expression levels of significant genes.

After all the histograms corresponding to the same class of the
same training sets (i.e. the for loop at code line 8) have been
computed, % candidate bins with highest and lowest bin values
are trimmed to eliminate the effects of outliners. Remaining bins
are then accumulated to form a representative histogram of
individual classes in the data sets. Since some entries are
trimmed, the value of the sum of all bin values at the
representative  histograms can be unbounded. It causes
inconsistent scaling when comparing with other histograms. In
order to have consistent comparisons, normalization is done so
that the sum of all bin values in a single representative histogram
to have the sum equals to 1. Finally, all representative histograms
for individual training sets are added to Hyyma and Heype,r- TO use
the same example in figure 3, the resultant vector becomes (0.76,
0.07, 0.02, 0.01, 0, 0, 0.01, 0) after 5% of candidate bins with
highest and lowest bin values are trimmed. In addition, the
normalized vector becomes approximately (0.87, 0.09, 0.02, 0, 0,
0.02, 0) in order to have sum equals to 1.

With the computed Hyyma and Hegueer, comparisons of the
histograms between training and testing samples can be
performed. Figure 4 shows the algorithm of the comparisons.
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Inputs: pairs of regular histograms for all training sample sets
Hpyormar and Hegpeer sets of significant genes for all training sets G,
testing sample s, number of bins #,

Outputs: predictive classes by the regular histogram comparisons
CHixr
1. variables:

2. H, be the temporary variable of the regular histogram of the
testing sample

3. fori=1to size(Hyopmai)

4 H = hist_proc(s, n;, G;);

5 l,f(dls(Hw HNarma[, i) < dis(Hw HCnm‘er, l))
6. Chist = Chiy + {Normal);

7 else

8 Chise = Chiy + {Cancer};

9 end if

10. end for

Figure 4. Algorithm for the comparisons of regular
histograms between testing and training samples.

First of all, regular histogram of the testing sample s with respect
to the significant genes set G of the training sets is computed.
Then, dissimilarity measures between the testing sample and
individual classes of training sets are computed, respectively.
Assume that Hy(b) be the regular histograms of the testing sample
with bin b, and H (b) is the regular histograms of the classes in the
training sets with bin b, where c={Normal,Cancer}. Now, the
dissimilarity measures, dis, between two histograms are calculated
as:

|H (b)—H (b) (1)

dis(H ,H |c € {Normal,Cancer])=Y", H,(b)+ H (b)

The second step is to compare the histogram of the testing sample
to pairs of the histograms in each training set and determine
predictive classes of the new sample with respective to individual
training sets in the code segment from line 5 to line 9 in figure 4.
For each training set, there are two histograms corresponding to it,
one for each class. The dissimilarity measures of normal and
cancer classes are compared, and the classes with smaller values
of the measures are set as the predictive classes of the testing
sample, and assigned as a new element in set Cp;,,. Since there is a
single prediction for each training set, so there are m elements in
Chis; for m different training sets.

At the same time, the majority-voting meta-classification
algorithm is performed. In [8], we proposed an empirically-driven
model averaging method to integrate individual classification
decisions to form meta-decisions. Suppose that there is a data set
D, and the data are arisen from k possible models (i.e.
combinations of classifiers and data sets), M=(M,, .., M). If Ais
the quantity of interest (i.e. classification performance), then its
posterior distribution of A in data set D is:

pr(AID )= pr(A1B,,... B, D)= Y. (B, x pr(AIM,.D)) (2)
i=1

, where f; is the quantity of pre-knowledge for model M;, and it is
defined as:

Page 33




ace(DM,) xS (DM, )x S (DM, ) (3)

iT K

Y ace(p, M, ) xS, (D, M, )xS,(D,M,)

1=1

, where acc(D,M;), S,(D,M;) and S,(D,M;) are the classification
accuracy, specificity and sensitivity of model M; with data set D.

To perform the majority-voting algorithm, K is set to 1 in equation
2. Therefore, we only consider a single model each time, and
finally there are k individual decisions for k different models.
Hence, the equation is rewritten as:

pr(AID )= pr(41,D)=Y (B,x pr(AIM,, ) “
ieK

If there are m and k different training sets and classifiers, there
will be (mxk) individual decisions for the testing sample (i.e. each
model produce a decision). For each decision, it is determined by
a pair of A. Since we are interested in predictive classes of testing
sample s, represented as s.c, one way to make the prediction is to
compare the values of pr(s.c=NormallD) and pr(s.c=Cancer|D),
where ce{Normal, Cancer}. If pr(s.c=NormallD) is larger than
pr(s.c=Cancer|D), assigned predictive classes are normal.
Otherwise, it is assigned as cancer. In order form meta-decisions
among individual decisions, the majority-voting algorithm in
equation 5 assigns predictive classes, Cy,,, which are the most
often predictive classes of individual decisions s.c;.

(sclscefc,. D= arg max 5)

ce { Normal,Cancer }

iif s.c;=c}

21.  Cpreq = Cpreg + {Normal};

22. else
23.  Cpreq = Cpreg + {Cancer};
24. endif

Inputs: testing sample s, sets of significant genes for all training
sets G, number of bins n, predictive classes by the regular
histogram comparisons Cp;;, predictive classes by the majority-
voting algorithm Cy,,, impact factors for normal and cancer
classes IFyyma and IFcyc.,, pairs of regular histograms for all
training sample sets Hy,,,q and Hegpeer, pre-knowledge measures
corresponding to training sets S3.

Outputs: meta-decisions Cp,.y

1. variables:

2. ANormar A0d d e be the dissimilarity values to normal and
cancer classes, dace normar AN dace_cancer D€ the accumulative
dissimilarity values to normal and cancer classes

3. fori=1to size(Cyiy)

4. if (Chiist, i = Cvore, i)

5. if (Chis. i = Normal)

6. ANormal = ﬁi X IF Norma, i/IFCancer, i X dis (hist_proc(s, ny,
Gi)’ HNnrmaI, i) / dis (hisr_PrOC(S, np, Gi)) Hszcer, i);

7. else

8. deancer = ﬁi X IF cancer, i / IFNormai, i X dis (hist_proc(s, ny,
Gi)’ HCancer, i) / dis (hisr_PVOC(S, np, Gi)) HNormal, i);

9. end if

10.  else

11. if (Cyiy, i = Normal)

12. dNnrmaI = ﬁi X IFCancer, i/IFNormal, is

13. else

14 dCancer = ﬁi XIFNnrmaI, i/IFCancer, ir

15. end if

16. endif

17 dAchmrmal = dAchmrmal + lOg2 (dNnrmaI);
18 dAccicancer = dAccicancer + lOg 2 (dszcer);
19. end for

20. l:f(dAcc normal < dACC czmcer)
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Figure 5. MIF algorithm.

Figure 5 shows the MIF (Majority-voting with Impact Factors)
algorithm. It is an adoption of the decisions of the regular
histogram comparisons, impact factors and majority-voting
algorithm. In the figure, the combined meta-decisions are Cp,,,. In
the regular histogram comparisons, there are m individual
decisions since there is a single decision corresponding to each
training set. In contrast, there are (mxk) individual decisions from
the majority-voting algorithm since there is a single decision
corresponding to each training set together with a type of
classifiers. Therefore, the decisions of the regular histogram
comparisons are compared k times with that of the majority-
voting algorithm of the same training set. IFy,,y and IF ¢, .. are
measures proposed in [7]. They define inter-experimental
variations of a heterogeneous testing sample to normal and cancer
classes of training samples, and they are expressed as IFy,,;,,; and
IF, Cancer*

Individual decisions of the regular histogram comparisons and the
majority-voting algorithm are compared in the code segment from
line 4 to line 16 in figure 5. If they are in the same decisions,
equation 6 and 7 are applied for decisions of normal and cancer.

dNormulzﬁiX[FNormul, i/IFCancer, iXdis(ax HNormul, i)/dis(arHCancer, i) (6)
, where a=dis (hist_proc(s,n;,G;)

dCancerzﬁiXIFCancer,i /IFNormal, iX dis(a’HCancer,i)/dis(a’HNnrmaI,i) (7)
, where a=dis (hist_proc(s,n;,G;)

For both equations, f; is the magnitude of pre-knowledge for
model M;, which is calculated by equation 3. The factors of
(IF.; /IF,;), given that cl,c2e{Normal, Cancer} and cl#2, are
linear scaling factors which minimize variations between two
classes among different training sets. In fact, d.’s, where
ce{Normal, Cancer}, are measures with respect to overall gene
expression levels in various training sets, but the ratio of gene
expression levels between two classes in individual training sets
are varied. Hence, d.’s should be rescaled accordingly in order to
reduce the impacts of differential ratios between the two classes
among various data sets. As a result, individual decisions are
insensitive to bias of either class and variations of gene expression
levels among training sets.

For the ratio of two different dis’s, it weights the results of the
majority-voting algorithm by taking the similarity of shapes
between two histograms. Remind that candidate i in the set Cyq,;
is defined as:

Chrisi = (cI1dis( cl,s )< dis(c2,s ) ncl,c2 € { Normal,Cancer } Acl #c2) (8)

Hence, the factor of dis(cl,s)/dis(c2,s) makes f5; become smaller,
and thus a higher degree of similarity is contributed to meta-
decisions because of similarity of the regular histograms.

In contrast, if the two decisions are different, the factors,
representing the similarity of the regular histogram comparisons,
are excluded. The factors of (IF.;/IF.;) aim at minimizing
variations between classes and bias of either class. Therefore, the
factors are also used to adjust the values of . However, the
factors of dis(cl,s)/dis(c2,s) are weighted factors which give
higher ranks to decisions because of similarity of the regular
histograms. For the case of different decisions between two
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algorithms, the previous method is not appropriate. In fact, the
histograms are constructed by a set of significant genes, which are
selected and extracted after the accession numbers alignment.
Also, the significant genes are ranked in terms of their differential
gene expression levels between two classes, which is independent
on variations of gene expression levels among different data sets.
Therefore, it is possible that (1) some significant genes are
omitted during the accession numbers alignment, and (2) selected
and extracted significant genes, based on training sets, may cause
misleading results. As a result, we use another method and have
the following equations for the case of different decisions:

dNnrmnl = ﬁi X IFCancer, i/IFNnrmal,i (9)
dCancer = ﬁi X[FNormal, i/IFCancer, i (]0)

Finally, calculated dyyme and degne.r are adjusted on log2 scale,
and individual results corresponding to their training sets are
added together, expressed as dacc normar AN dace_cancer fOr normal
and cancer classes. Their magnitudes are compared, and the
classes with smaller magnitudes become meta-decisions of the
testing sample.

Table 1. Information of data sets.

Data set  Cancer Authors Accessign Norma? sample Cance;j sample Training datdlesting datc
1D type annotation size size
1 Bladder Ramaswamy et al. [18] Hu35K 7 11 \/
2 Brain Pomeroy et al. [16] Hu35K 4 10 \/
3 Colon Notterman et al. [14] GenBank 4 4 v
4 Lung Bhattacharjee et al. [1] U95A 17 126 \ v
5 Lung Ramaswamy et al. [18] Hu35K 7 8 \/ \/
6 Ovary Welsh et al. [25] Hu35K 3 30 v
7 Prostate Singh et al. [22] U95A 9 25 v v
8 Prostate Welsh et al. [24] U95A 50 52 v v
9 Prostate Ramaswamy et al. [18] Hu35K 9 10 v
10 Uterus Ramaswamy et al. [18] Hu35K 6 10 v
Table 2. Number of common genes between training and testing data sets.
Testing data set ID
I 2 3 5 6 7 8 9 10
4 | 7091 | 6153|6045 | 12599 | 7091 | 6153 | 12249 | 12599 | 12249 | 7091
Training data set ID 5 | 13774 | 8391 | 7840 | 7091 | 13774 | 8391 | 6808 | 7091 | 6808 | 13774
7 | 6808 | 5949 | 5841 | 12249 | 6808 | 5949 | 12625 | 12249 | 12625 | 6808
8 | 7091 | 6153 | 6045 | 12599 | 7091 | 6153 | 12249 | 12599 | 12249 | 7091
Table 3. Experimental results compared wit the majority-voting meta-classification.
Y;e;;t;an Type Approach Accuracy (%) Sensitivity (%) Specificity (%) COStsZJ; ll;g:mng
| Bladd Majority-voting 73.611£9.49 39.29431.68 95.45%5.25 543.92
adder .
MIF algorithm 84.72+2.78 60.71%+7.14 100.00+0 8.5t1
) Brain Majority-voting 75.0017.14 25.00+35.36 95.00£5.77 1.542.38
MIF algorithm 83.9343.57 68.75%12.5 90.00+8.16 4.540.58
3 Colon Majority-voting 87.5010 75.00£0 100.00£0 610
MIF algorithm 87.5010 75.00+0 100.00+0 610
4 Lung Majority-Vf)ting 96.50+0.81 94.1210 96.8310.92 28+1.15
MIF algorithm 94.76£1.21 97.06£5.88 94.44+1.71 26+1.83
5 Lung Majority-Vf)ting 75.00£3.21 42.86120.2 95.45+9.09 5.5+1.91
MIF algorithm 91.67£3.56 85.71£0 95.4549.09 11.5+1
6 Ovary Majority-Vf)ting 80.30+5.25 0.00£0 88.33+5.77 -3.5%£1.73
MIF algorithm 84.85+2.47 33.3310 90.00+2.72 -110.82
7 Prostate Majority-voting 100.00£0 100.00£0 100.0020 18
MIF algorithm 96.3242.82 91.6715.56 98.00+2.31 16+1.41
g Prostate Majority-voting 63.16£11.37 33.33439.54 90.00+14.14 545.72
MIF algorithm 57.11£5.85 15.50£12.58 97.12%1.11 14+12.25
9 Prostate Majority-voting 75.00+3.21 42.86120.2 95.4519.09 5.5+1.91
MIF algorithm 68.42+11.37 52.78429.22 82.50+15 7.75+4.57
10 Uterus Majority-Vf)ting 81.2545.1 66.67£23.57 90.00£11.55 72
MIF algorithm 81.2510 75.0019.62 85.00+5.78 7.540.58
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4. EXPERIMETNS & DISCUSSIONS

To measure the classification performance, four measurements are
used as performance indicators. Classification accuracy,
sensitivity, specificity and learning cost savings are defined in
terms of true positive (TP), true negative (TN), false positive (FP)
and false negative (FN), and their definitions are [4], [13]:

® Accuracy (acc) — acc=(TP+TN)(TP+TN+FP+FN)

e Sensitivity (S,) — S, =TP/TP+FN)

* Specificity (Sp) — S,=TNATN+FP)

® Learning cost savings (sav) — sav=[(FN+TP)*2]-(FP+2*FN)

4.1. Data sets

In order to demonstrate the robustness of the MIF algorithm, 10
different data sets, which are individually published in 8
publications, are experimented. They are heterogeneous since they
were conducted by different laboratories with different
experimental objectives, microarray platforms and human genome
arrays. Table 1 shows their information. Among all of them, two
lung cancer (Bhattacharjee and Ramaswamy) and two prostate
(Singh and Welsh) cancer data sets are arbitrarily selected as
training data sets for extension and continuity of our previous
works in [7], and all of them are used for testing.

As stated in table 1, there are three different accession numbers
annotations, and therefore a process of standardization is required.
We map the Hu35K and GenBank annotations into the U95A
annotation according to the mapping table done by Ramaswamy
et al. [17]. In fact, the mapping is not simply one-to-one mapping.
There may be duplicated accession numbers in the mapped data
set. Thus, an extra pre-processing step is performed to combine
the expression levels by averaging all expression levels of the
same accession numbers. After the standardization, it is required
to find out those commonly existed genes for pairs of
heterogeneous data sets and align their expression levels. In fact,
the numbers of gene among different data sets are varied.
Unavoidably, some expression levels are omitted because of
missing data in either data set of pairs. Hence, the number of
genes in aligned sets is either smaller or equals to the number of
genes in the original data sets. Finally, we have table 2, which
shows the number of commonly existed genes between training
and testing data sets.

4.2. Results

In this section, we first compare the results of the MIF algorithm
with that of the majority-voting algorithm, and then the results are
compared with the works done by Bloom et al. [2]. Bloom’s
method is to perform multi-platform and multi-site microarray-
based tumor meta-classification, and they used the measurement
of classification accuracy as performance indicator. For
parameters settings, the numbers of required bins n, and
significant genes n,, are set as 25 and 100. In addition, &%, which
is the percentage of candidate bins to be trimmed, is set to 10%
for achieving the optimal performance after some empirical
studies. For classifiers training scheme, 70% of samples in each
training data sets are selection for individual training at random,
and all samples in testing data sets are used for performance
measurements. In order to estimate the standard deviation of the
performance, each training set is trained 100 times with different
training candidates selected randomly.
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In table 3, it shows that the MIF algorithm outperforms the
majority-voting algorithm in terms of classification accuracy,
sensitivity, specificity and cost of learning savings. Except for the
cases of prostate cancer, the MIF algorithm achieves around 85%
of accuracy, 65% of sensitivity, 90% of specificity and
comparatively higher savings on learning cost.

For the classification accuracy, the data sets of lung cancer have
the highest performance, but all cases of prostate cancer have little
performance reduction. For lung cancer, the accuracy is higher
than 90% for both cases (i.e. Bhattacharjee and Ramaswamy).
Although there is 2% reduction for the data set Bhattacharjee, the
accuracy for the data set Ramaswamy is increased from 75% to
91%. However, all data sets of prostate cancer have different
degrees of performance degradation. There are reductions of 7%,
6% and 7% for the accuracy of the data set Singh, Welsh and
Ramaswamy. In addition, it shows that two of them, which are
Welsh and Ramaswamy, perform worse than other cases not only
with the majority-voting algorithm, but also with the MIF
algorithm. They only achieve around 60% for the accuracy, which
is 20% lower than the average cases. For other cancer types,
including bladder, brain, colon, and uterus, their average accuracy
is around 85%. For the standard deviations of the accuracy, the
MIF algorithm achieves smaller standard deviations for most
cases. For the cancer types of bladder, brain, ovary and uterus
cancers, the improvement is more than 50%. For the cancer types
of lung and prostate cancers, the significance results are varied.

For the classification sensitivity and specificity, the MIF
algorithm can have better balanced recall rates between normal
and cancer samples, except for the cases of prostate cancer.
Classification algorithms should have similar recall rates for
samples in both classes so that the algorithms are unbiased to
either class. Euclidean distance of sensitivity, S,, and specificity,
Sp, can be used to show the balance of recall rates between
samples in two classes, and the distance is:

Euclidean(s,, S,)=4/S,’ +8,’ (11)

In table 4, it shows that the MIF algorithm outperforms the
majority-voting algorithm for 6 cases (i.e. 1, 2, 5, 6, 8 and 10) and
maintains the same performance for 2 cases (i.e. 2 and 3). Similar
to the measurement of classification accuracy, the data sets of
prostate cancer do not have impressive results. Testing set 7 and 9
show performance degradation (i.e. the majority-voting algorithm
outperforms the MIF algorithm.).

Table 4. Balanced recall rates between normal and
cancer sample.
Testing set ID  Type  Majority-voting MIF algorithm

1 Bladder 1.03 1.17
2 Brain 0.98 1.13
3 Colon 1.25 1.25
4 Lung 1.35 1.35
5 Lung 1.05 1.28
6 Ovary 0.88 0.96
7 Prostate 1.41 1.34
8 Prostate 0.96 0.98
9 Prostate 1.05 0.98
10 Uterus 1.12 1.13

In addition, we have also compared our results with bloom’s
results in [2]. In table 5, it shows that the MIF algorithm
outperforms Bloom’s works for bladder and uterus cancers, and
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maintains the same performance for lung cancer. However, there
is performance reduction for prostate cancer.

Table 5. Comparison of results with other works.
Classification accuracy (%)

Testing set ID Type Bloom’s results  our results
1 Bladder 77 84
5 Lung 91 91
9 Prostate 94 68
10 Uterus 74 81

4.3. Cancer/testis (CT) immunogenic gene

families

Cancer/testis (CT) immunogenic gene families are subsets of
genes, which are commonly existed in various cancer types. Some
works show that most CT immunogenic gene families are
expressed in more than one cancer types, but with various
expression frequencies. In [20], Scanlan et al. have reviewed the
expression frequencies of them in numerous cancer types
consisting of bladder, brain, breast, colon, gastric, and etc. It
shows that lung and melanoma cancers contain a higher
percentage of CT genes examined at expression frequencies
greater than 20%. In contrast, prostate and brain cancers have a
relatively lower percentage of the CT genes examined at the same
frequencies.

Table 6. Comparisons of the cancer/testis (CT)
immunogenic gene families in various cancer types.

Cancer type

Bla |Bra|Col | Lun |Ova|Pro

No. of included lowly-expressed
CT genes with a low expression | I7 | 5 |12 | 29 |11 |11
frequency, <= 20%

No of included CT highly-
expressed genes with a high |11 |4 |3 | 17 |7 | 6
expression frequency, >20%

Proportions  of  commonly
existed highly-expressed genes
to lung cancer

7/1113/4 |2/3 29/29|5/7 | 2/6

Proportions  of  commonly
existed highly-expressed genes
to prostate cancer

4/11\1/4 |1/3 | 2/29 | 2/7 |6/6

# Abbreviations: Bla, bladder; Bra, brain; Col, colon; Lun, lung;
Ova, ovary; Pro, prostate.

In our studies, we have analyzed how the proportions of shared
highly-expressed CT genes between training and testing samples
play a vital role in meta-classification performance of
heterogeneous data. We investigated how the number of included
lowly- and highly-expressed CT genes is varied with the
classification performance. Table 6 shows the number of included
lowly- and highly-expressed CT genes in various cancer types.
Lung cancer has the highest proportions of both types of CT
genes, and brain cancer has the lowest one. However, in [20], it
has mentioned that the studies of brain cancer to the CT genes are
insufficient in this moment. Therefore, brain cancer is exceptional
and hence prostate and ovary cancers belong to the same family of
having small proportions of both types of CT genes.

From our experiments, the data sets of prostate cancer only
achieve classification accuracy of 75% in average, but the data set
of ovary cancer can achieve 84% instead. Hence, it may be
deduced that there is no direct and linear relationship between the
number of included lowly- and highly-expressed CT genes and
the classification performance.

Further, we have investigated how the number of shared highly-
expressed CT genes between training and testing samples is in
relation to the classification performance. In table 6, the last two
rows show the proportions of the highly-expressed CT genes
between the corresponding samples, and both lung and prostate
cancers, respectively. If we consider the proportions together with
the corresponding classification performance, we will have figure
6. In the figure, the classification performance has the same
increasing and decreasing trends as the proportions of the CT
genes to lung cancer, but reversed trends for the proportions to
prostate cancer, except for the case of brain cancer.

Together with figure 6 and table 6, we can see that the proportions
of shared highly-expressed CT genes between training and testing
samples has impacts on classification performance, and the data
sets of lung cancer have dominated roles at meta-decisions
because of higher proportions of shared highly-expressed CT
genes between training and testing samples. In the figure, lung
cancer always has higher proportions of shared highly-expressed
CT genes with other cancer types, except for the prostate cancer.
The classification accuracy is higher than 80% in average.
However, the classification accuracy for prostate cancer has been
dropped significantly. It may be evidence to show that the
decrease of the performance for prostate cancer is caused by lack
of shared highly-expressed CT genes between training and testing

== % of shared highly-expressed CT genes to lung cancer
% of shared highly-expressed CT genes prostate cancer
classification performance

100% o
75% — ,/ \\
& 50% v
25%
0%

Bladder

Brain Colon Lung Ovary Prostate

Cancer type

Figure 6. Relationship between shared highly-expressed CT genes and classification performance.
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samples. Also, it is observed that the highly-expressed CT genes
of prostate cancer in training samples are compromised with the
lack of the genes between lung and prostate cancers. The possible
explanation is that the number of included lowly- and highly-
expressed CT genes in various cancer types. The fact is that the
number of both included lowly- and highly-expressed CT genes to
lung cancer is almost 3 times higher than that of prostate cancer,
causing that data sets of lung cancer may have higher weights at
meta-decisions. In addition, in figure 6, the decreasing rate of the
performance for prostate cancer is less than that of the proportions
of shared highly-expressed CT genes to lung cancer because of
the increase of shared CT genes in prostate cancer (i.e. the
ordinary type).

5. CONCLUSIONS

With the innovation of DNA microarray technologies, different
mining algorithms have been proposed to discover knowledge in
cancer gene expression data. Significant findings are recently
exploited. However, most works are done with a single data set. In
terms of efficiency and effectiveness of mining algorithms with
respect to clinical applicability and robustness, it is too weak to
draw conclusions because of the problems of over-fitting and
homogeneity within a single data set.

In this work, we proposed the MIF algorithm to perform multi-
type cancer gene expression data classification, which uses
differences of regular histograms for gene expression levels of
certain significant genes as parts of dissimilarity measures and
indicators of predictive classes. In the experiments, we have
intensively used 10 different data sets to show the reliability and
robustness of the MIF algorithm. The results are impressive. The
classification accuracy is around 85% in average for most cases,
except for the data sets of prostate cancer.

To investigate the frustrated performance for prostate cancer, we
have looked into the cancer/testis (CT) immunogenic gene
families. We have discovered that the numbers of shared highly-
expressed (i.e. expression frequencies > 20%) CT genes between
training and testing samples have impacts on the classification
performance of heterogeneous samples.
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ABSTRACT

Unsupervised identification of patterns in microarray data has
been a productive approach to uncovering relationships between
genes and the biological process in which they are involved.
Traditional model-based clustering approaches as well as some
recently developed model-based mining approaches for
integrating genomic and functional genomic data rely on one’s
ability to determine the correct number of clusters or modules in
the data. In this paper we demonstrate that the performance of
such methods in general can be significantly improved by
accounting for uncertainties inherent to the process of identifying
the optimal number of clusters in the data. We demonstrate that
the Bayesian averaging approach to clustering via infinite mixture
model offers a more robust performance than the traditional finite
mixture model in which the optimal number of clusters is
determined using the Bayesian Information Criterion. This
performance improvement is demonstrated through a simulation
study and by the analysis of a relatively large microarray dataset.
Finally, we describe the novel heuristic modification of the Gibbs
sampler used to fit the infinite mixture mode that effectively deals
with issues of slow mixing.

Keywords
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1.INTRODUCTION

Unsupervised identification of patterns in microarray data has
been a productive approach to uncovering relationships between
genes and the biological process in which they are involved.
Conceptually, unsupervised learning from microarray data can be
done by identifying genes with similar expression patterns across
different experimental conditions, identifying groups of
experimental conditions or biological samples with similar
expression profiles, or the two dimensional clustering that
simultaneously clusters genes and biological samples. In this
paper we will be talking mostly about identifying groups of genes
with similar expression patterns (profiles) across different
biological samples. Groups of such genes are said to be co-
expressed and they define patterns of expression. The utility of
identifying such groups of co-expressed genes is in the
assumption that the co-expression is a reflection of a shared
regulatory mechanism driving similarities of expression profiles.
Consequently, such groups of genes can be used as a starting point
for dissecting expression regulatory mechanisms [23], or
functional annotation by assuming that functionally-related genes
are most likely to be co-regulated [5].

Clustering methods used for unsupervised identification of co-
expressed genes can be loosely grouped into heuristic methods
based on various distance measures, and model-based methods
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which are based on the probabilistic model of the data generation
process. Given a distance measure, various heuristic methods
proceed to organize gene expression profiles in a hierarchical
fashion [3] or by partitioning them into a pre-specified number of
clusters of co-expressed genes (e.g. K-means algorithm and Self-
organizing maps).

In a model-based approach to clustering, the probability
distribution of the observed data is approximated by a
probabilistic model. Parameters in such a model define clusters of
similar observations and a cluster analysis is performed by
estimating these parameters from the data. The Finite Mixture
(FM) model is the most common model-based approach to
clustering [11]. In the context of microarray data, the FM model
was introduced by [24]. In this approach, similar individual
profiles are assumed to have been generated by a common
underlying “pattern” represented by a multivariate Gaussian
random variable. Given the correct number of mixture
components (clusters) one can use an EM algorithm to estimate
parameters of this model and then use the parameter estimates to
assign individual profiles to appropriate clusters. Recently,
various generalizations of the Bayesian mixture approach in terms
of sophisticated Bayesian probabilistic models have been used to
integrate various pieces of additional information in the process of
identifying co-expressed genes [21;22], and to identify “modules”
of co-regulated genes through the integrated modeling of
combinatorial regulation mechanisms and gene expressions via
context-specific Bayesian networks [19].

The common denominator of the above-mentioned model-based
methods is that they rely on the prior specification of the number
of clusters in the data or on one’s ability to determine the correct
number of clusters from the data. When the correct number of
clusters is determined in the data analysis (e.g. by calculating
Bayesian Information Criterion — BIC for models with different
number of clusters), uncertainties related to its selection are
generally not taken into account in the subsequent analysis.
Previously we described the Bayesian Infinite Mixture (IM)
model for the clustering of gene expression profiles [12] which
effectively circumvents the problem of identifying the “correct”
number of clusters. In our approach, the clusters are formed based
on the posterior distribution of clusterings, which is generated by
a Gibbs sampler. The clusterings generated by the Gibbs sampler
can vary from one cycle to the next. Consequently, posterior
probabilities with various features of the posterior distribution of
clusterings are obtained after averaging over models with all
possible number of clusters.

In this paper we describe a new simulated annealing-motivated
algorithm for sampling from the posterior distribution of
clusterings that effectively solves the severe mixing problem
exhibited by Gibbs sampler in high-dimensional situations. More
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importantly, we demonstrate dramatic positive effects that
Bayesian averaging can have on discovering patterns in
microarray data through both a simulation study and the analysis
of a relevant real-world microarray dataset. These results are
likely to bear on further development of model-based
unsupervised learning methods that rely on either the specification
of the correct number of clusters or its estimation from the data.

2.FINITE AND INFINITE MIXTURES
MODEL BASED CLUSTERING FOR
MICROARRAY DATA

Suppose that T gene expression profiles were observed across M
experimental conditions. If y; represents the expression
measurement for the i™ gene under j™ experimental condition then
yi=(Yi1»Yizs- - -»Yim) represents the expression profile for the ith gene.
In a mixture model, each gene expression profile is viewed as
being generated by one out of Q different underlying expression
patterns. Expression profiles generated by the same pattern form
a cluster of similar expression profiles. If c; is the classification
variable indicating the pattern that generates the i" mean
expression profile (c;=q means that the i expression profile was

| Figure 1: Bavesian mixture model |
L1 OO0 O O
«¥ W v

M 0[]
R A

Yi
generated by the q™ pattern), then a “dustering” is defined by a
set of classification variables for all genes C=(c,, cy,..., C7).

Underlying patterns generating clusters of expression profiles are
represented by multivariate Gaussian random variables. Profiles
clustering together are assumed to be a random sample from the
same multivariate Gaussian distribution.

The hierarchical structure of the model is described in terms of a
Directed Acyclic Network in Figure 1. Nodes (squares) in this
diagram represent random variables and directed arcs (arrows)
specify conditional dependences between variables in terms of the
directed Markov property, which states that a variable is
conditionally independent of its non-descendants given its parents
in the model. M=(L,,.., lo) and r=(c,1,.., GQZI) denote means
and variance-covariance matrices of multivariate Gaussian
random variables defining Q underlying patterns respectively (I
denotes the identity matrix). Variables (A, 1), (B,0), and o are
hyper-parameters in prior distributions of model parameters M, X
and C respectively. In the case of an FM model, the number of
mixture components (Q) is considered fixed, while the IM model
represents the limiting case when Q-—oo. Details of the
development of IM models and their relationship to mixtures with
a Dirichlet process prior [4] are described elsewhere [15;17]. We
have previously described Bayesian versions of both finite and
infinite mixtures and corresponding Gibbs samplers [12;14]. In
this paper, finite mixtures model were treated from a frequentist
perspective and estimated using the EM algorithm as implemented
in the MCLUST software [6]. The Gibbs sampler for estimating
the posterior distribution of clusterings in the IM model is
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described below. The specification of the prior distribution for
classification variables (C) determines whether the model
represents finite or infinite mixtures.

2.1Gibbs Sampler

Gibbs sampler [7] is a general procedure for sampling
observations from a multivariate distribution. A Gibbs sampler
proceeds by iteratively drawing observations from complete
posterior conditional distributions of all components. As the
number of iterations approaches infinity, such a sequence
describes observations from the joint multivariate distribution. In
our case, we use the Gibbs sampler to estimate the joint posterior
distribution of all parameters in our hierarchical model, given the
data. We then use the marginal posterior distribution of
clusterings to calculate posterior pairwise probabilities of
coexpression (PPPC) for all pairs of expression profiles. Suppose
that the sequence of clusterings (CB, CB*L,.., C%) was generated
by the Gibbs sampler after B ‘burn-in” cycles. The pair-wise
probabilities for two genes to be generated by the same pattern are
estimated as:

#of samples after "burn -in" for which ¢; = ¢,
! S-B

Using these probabilities as a similarity measure, clusters of
similar expression profiles are created using a traditional
agglomerative hierarchical clustering with similarities between
groups of profiles being defined using the complete linkage.
Complete descriptions of the posterior conditional distributions
used by the Gibbs sampler can be found in [12], with the slight
modification of using an independent, equal variance, covariance
structure while in the original model we used the different
variance elliptical model.

2.2Convergence of the Gibbs sampler

Two aspects of the Gibbs sampler convergence that generally
need to be assessed are the appropriateness of the ‘burn-in”
period, after which a Gibbs sampler has attained its stationary
distribution, and the mixing of the sampler, which describes how
well a finite sample obtained by Gibbs sampler approximates the
target distribution. It has generally been well documented that the
simple Gibbs sampler often has very poor mixing properties in
both FM and IM models [2;14], probably due to the multi-
modality of the posterior distribution. In such a situation, the
sampler will be unable to describe the whole posterior distribution
in a computationally feasible number of steps. The sampler will
get trapped in a sub-optimal mode of the posterior distribution
resulting in sub-optimal clustering results; or, because the sampler
fails to visit all areas with significant posterior probabilities,
confidence estimates in the generated clustering will be biased.
Previously, we described a heuristic algorithm for ‘heating up”
the Markov chain described by the Gibbs sampler by using
‘teverse annealing.” The optimal annealing schedule was chosen
based on running a significant number of independent chains with
different maximum annealing constants. Here we describe a new
heuristic algorithm that adjusts the annealing exponent
dynamically. Consequently, only a single run is needed to
estimate the posterior distribution.

If m(.) is the target posterior distribution, ‘teverse annealin g”
refers to ‘flattening” of the posterior distribution using the

7 (x)
K&)'

transformation 77®’(x) = E <1, where K() is the
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normalizing constant. Based on this general idea, if p(c=jIC,;, ®)
is the conditional posterior probability of placing the i profile
into the j™ cluster then ‘flattened probabilities” are defined as

_p(e; =jIC,,0)°
K($)

Since the mixing problem with the Gibbs sampler for the IM
model can be particularly pronounced in its inability to generate
new clusters, we keep track of the posterior probability of placing
a profile in a new cluster. If this probability pye, is below the
given threshold pp,, we decrease & by the value Egep. If ppeyw is
above ppin, We increase & by &g, Possible values of & are further
constrained by the requirement that 0<&;<€<€ <1, Our
modified Gibbs sampler now proceeds by generating n.q samples
from the unmodified conditional posteriors (cold cycles). It then
generates a single sample using ‘heated” dassification
probabilities (heated cycle). The p, from the heated cycle is
used to increase or decrease the value of § by &, However, only
the sample from the last cold cycle (n.,q cycles after the heated
cycle) is used in the estimation of the posterior distribution of
clusterings. In our simulations, we used ng =5, &min=0.1, &max=1,
Pnew=0.01 and pge,=0.1. Due to the high computational complexity
in the analysis of the cancer data, we used n,4=3.

p(ci=j|C7i,®)<§) , & <1,

2.3Finite mixture model and EM algorithm

We used the MCLUST package’s EMclust procedure to fit
finite mixture models to our simulated and real-world data sets.
The optimal number of clusters was selected by calculating the
Bayesian Information Criterion (BIC) [18] for models for
different number of clusters. The only model used in this study
was the equal variance, independent, spherical shape (EII)

Q
Py =) p(c; =k)p(e; =K),
k=1

where p(ci=k) is the posterior probability of the profile i being
generated by component k.

3.SIMULATION STUDY

First, we assessed the importance of Bayesian model-averaging in
a simulation study. The study was designed to assess the
performance of both FM and IM models in the frequentist sense.
That is, we assessed the power of the two clustering methods to
separate two different clusters in repeated experiments. We
simulated 100 datasets each representing the clustering structure
depicted in Figure 2. The heat map represents the values of the
mean vectors for mixture components generating each profile.
Red represents the value of 1 and the black represents the value of
0. For example, in each dataset, profile ‘g1” was randomly drawn
from the 15-dimensional Gaussian random distribution whose
mean vector is equal to 1 in first 5 dimensions (ey,...e 5) and 0 in
other 10 dimensions (e,...¢ ;5). The covariance matrix 6°I was
used so that the data is compatible with our model assumptions.
Data was simulated for cec. This range allowed us to assess the
performance of the two approaches in easy and progressively
more difficult (i.e. noisier) situations.

3.1Results

Both methods performed very well in separating two larger
and most divergent clusters (Cluster2 and Cluster4) under the
conditions of our simulation study. Therefore, we are focusing on
the more difficult task of separating clusters 1 and 2. Profiles from
these two clusters differ only within first 5 dimensions

each dataset.

Figure 2: Heat map of the clustering structure for the simulated data. Total of
20 15-dimensional profiles belonging to 4 unbalanced clusters are generated in

El E2 E3 E4 ES E6 E7 E8 E9 ELO0 E1l E12 E13 E14 E15

—

covariance model [6]. The EMclust procedure fits the finite
mixture model by first performing an appropriate model-based
hierarchical clustering (in the case of the EIl model this amounts
to the Ward’s clustering algorithm). Resulting parameters are used
as a starting point for the EM algorithm. Given the maximum
likelihood estimates of the model parameters, profiles are
assigned to clusters based on the posterior probabilities being
generated by different mixtures components and the Maximum A
Posteriory (MAP) hypothesis. To compare the performance of the
FM model to the IM model, we also calculate FM model based
PPPC’s as
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(“experiments”) and Cluster] is defi ned by only two profiles. The
major question we are asking is how often can we expect the two
clusters to be separated. We are assessing this question by
observing the distribution of PPPC’s for the two profiles in
Clusterl in relation to PPPC’s between profiles in Clusterl and
Cluster2. In a sense we are assessing the ability of our clustering
methods to correctly conclude that profiles in Cluster]l are
different from profiles with Cluster2. However, unlike traditional
statistical hypothesis testing procedures, we do not supply the
labels for profiles that we are comparing.
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Results of this simulation study support our thesis that FM
model-based clustering in which the number of clusters is chosen

and profile 2 from Cluster]l do not belong in the same cluster if
p(ci=c;)<X. The true positive rate (TPR) is the proportion of times

Figure 3: Histograms of PPPC’s for pairs of profiles belonging to the same cluster (Within Cluster) and pairs of
profiles belonging to different clusters (Between Cluster) in 100 simulated datasets for 6 different noise levels.
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by the BIC criterion suffers because of its inability to incorporate
in the results of the analysis the uncertainty inherent in the process
of determining the number of clusters. Histograms in Figure 3
show the ‘over-confidence” of the FM-based PPPC’s which is
typical of a statistical analysis that fails to take into account all
sources of uncertainty (i.e. variability). The majority of the
PPPC’s generated by the FM model are clustered around 0 and 1
indicating the high confidence in the separation or non-separation
in all situations, even when they are wrong. For example, for the
highest noise level, close to 70% of between cluster PPPC’s are
greater than 0.9 indicating high confidence in the false conclusion
that these profiles belong to the same cluster. On the other hand,
PPPC’s seem to be more reflective of the level of evidence for
separating the two clusters present in the data. While the level of
confidence in the separation is being reduced as we move from
the low-noise to high-noise data, the fraction of PPPC’s offering a
high confidence in the false conclusion remains low even in the
noisiest situation.

We can further drive the analogy with traditional statistical
hypothesis testing procedures by constructing Receiver Operating
Characteristic (ROC) curves that assess the ability of a clustering
method to correctly separate profiles from different clusters. We
are again focusing of ability to separate profiles in Cluster]l from
profiles in Cluster2. For a fixed cut-off point X, we consider that
the clustering procedure is correctly concluding that a profile i
from  Cluster] does not belong to Cluster2 if
max {p(cj=c; for all profiles j from Cluster2 }<X. We consider that
the clustering procedure is incorrectly concluding that profile 1
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that a correct decision is made and the false positive rate (FPR) is
the proportion of times that an incorrect decision is made. As the
cut-off X is increased from O to 1, both TPR and the FPR will
increase. The area under the curve relating the TPR and FPR as X
is increased from O to 1 describes the efficiency of a statistical
procedure with the random decision-making having an area of 0.5
while the ideal statistical procedure would have an area equal to 1.
ROC’s for the FM and IM models for different noise levels are
given in Figure 4. It seems that for each, except the lowest noise
level, the IM model significantly outperforms the FM procedure.

4.CANCER DATA ANALYSIS

While the simulation study seems to indicate the importance
of model averaging in the model-based cluster analysis, the
question remains whether these advantages make any difference
in the context of analyzing real-world data. Demonstrating
advantages of one clustering method over another in the context
of real-world data is complicated by the uncertainties related to
the “oorrect” dustering which is generally not known. To address
this question we reproduced the analysis described by [10]. They
demonstrated how human cancer databases of microarray data
could be used to study a molecular mechanism of cancer
induction. In their study, they first identified 21 cyclin D1 target
genes in in-vitro laboratory experiments. They followed up with
an investigation of the relationship between CD1 and these 21
genes in a cancer gene expression database [16]. The statistical
significance of that association in the cancer data was established
by showing that the distribution of Euclidian distances between
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expression profiles of these gene and CD1 were higher then
expected by chance (p-value=0.048 using a resampling version of
the Kolomogorov-Smirnov test). The conclusion was that the in-
vitro signature of the CD1 overexpression is preserved in primary
human tumors. We clustered the cancer expression data using the
Euclidian distance, IM and FM models with the optimal number
of clusters (56), elected by the BIC as described before (Figure 5).
Based on results of these cluster analyses, two important points
can be made: (1) just by a visual inspection of heat maps, it is
apparent that model-based clustering approaches (both FM and
IM) created “deaner” groupings of genes with similar expression
patterns than the Euclidian distance-based hierarchical clustering
procedure. (2) the over-confidence of the FM model, noted in the
analysis of the simulated data, is evident in this analysis as well.
The consequence of such an over-confidence is that the FM model
identifies only 2 of the 21 genes of interest to be significantly

S.DISCUSSION

In this paper we demonstrated the utility of Bayesian model
averaging in model-based clustering of microarray data in a
simulation study and as it is applied to answer a relevant
biological question using a relatively large microarray dataset. We
demonstrated that the performance of the traditional finite mixture
clustering approach in which the optimal number of clusters is
chosen using the BIC suffers from over-confidence in false
conclusions probably due its inability to account for uncertainties
related to the choice of the right number of clusters. The
significantly better performance of the equivalent IM model in
both the simulation study and the analysis of the real-world data is
most likely due to its ability to estimated the posterior distribution
of clusterings by effectively averaging over models with all
possible number of clusters. The consistency and the precision of
the results obtained by the IM approach also suggest that our

Figure 4: ROC curves describing the abilitv of the two models to senarate the Cluster] from Cluster2. |
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associated with CD1. On the other hand, the IM model identifies 7
of them.

The distribution of the Euclidian distances also seems to suggest
that only the associations between CD1 and three of the 21 genes
of interest are above the experimental noise. In the context of the
Kolmogorov-Smirnov (KS) analysis of Euclidian distances
(Figure 3A in Lamb et al. 2003), there are indications that actually
7 to 10 of the 21 genes are contributing to the significance of the
association. However, the statistical significance of this
observation is impossible to assess within their framework. These
results suggest that the IM model is capable of identifying most
biologically meaningful relationships in the data by integrating the
power of the model-based approach to pull information from the
whole dataset while accounting for the uncertainty introduced by
not knowing the number of clusters in the data.
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heuristic modification of the Gibbs sampler effectively alleviates
the problem of slow mixing.

We have previously demonstrated the advantages of using
model-based clustering approaches over the traditional distance-
based heuristic algorithms [14;25]. Model-based methods allow
for the precise treatment of the statistical characteristics of the
data under investigation, such as replicated observations.
Furthermore, when compared to traditional distance measure-
based hierarchical clustering algorithms, they are more efficient in
using the information from the whole datasets instead of using
two vectors of observations at a time. This advantage has been
nicely demonstrated in our analysis of cancer data in Figure 5 as
well. Additionally, when compared to partitioning heuristic
algorithms, such as the K-mean algorithm and the SOM’s, they
allow for estimation of the number of clusters by assessing the
relative fit of models with different numbers of clusters.
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Recently introduced generalizations of the traditional mixture solution for this problem could be the adaptation of the IM
models, based on the context-specific Bayesian networks [20], paradigm for such complex models. Another possible solution
allow for identifying more complex relationships between could go along the line of averaging results obtained by fitting

Figure 5: A) Cluster analysis based on the Euclidian distances (left), IM model PPPC’s (middle), and FM
model PPPC’s (right). B) Histograms of corresponding similarity measures for all genes with CD1. Circles
renresent the similaritv measures for the 21 genes identified in the laboratorv exneriments.
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different genes as well as incorporating other types of the data in models with different number of components in a post-hoc
the analysis [21;22]. In this respect, our analysis strongly suggests analysis.
that the general practice of fixing the number of clusters, It is important to notice that the uncertainties in the process
components, or modules in terms of [19], before fitting of identifying the correct number of clusters are not necessarily
appropriate models might need some modifications. One possible the only source of uncertainties that are not taken into account by
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the traditional FM approach. In high-dimensional situations, such
as the cancer data analyzed in this paper, the log-likelihood
maximized by the EM algorithm is almost certainly multi-modal
and using any kind of strategy for choosing the ‘Optimal” starting
position will not guarantee that the solution will be globally
optimal. Since the BIC calculation is based on results of the EM
algorithm, these types of computational inadequacies will
contribute to the overall uncertainty in the selection of the
‘optimal” number of clusters. Furthermore, such computa tional
problems can result in sub-optimal clustering given the ‘optimal”
number of cluster. Using different variants of the EM algorithm
designed to alleviate this problem [13] can sometimes help, but
the convergence to the globally optimal solution is still never
guaranteed. In this respect, a properly mixing Gibbs sampler can
offer another advantage due to its ability to describe the whole
posterior distribution instead of searching for the highest mode of
the likelihood function. We performed a limited evaluation of the
convergence properties of the overall estimation approach (data
not shown) and determined that EM convergence issues were
probably not a factor in our simulation study due to the relatively
simple clustering structure, but they were likely an additional
source of uncertainty in the analysis of the cancer data.

The purpose of our analysis was not to disparage the BIC as the
criterion for choosing the right number of clusters, but rather to
demonstrate the problem of the whole approach in which the right
model is chosen based on a preliminary analysis of the data, and
where the uncertainties inherent in this process are not propagated
into the final estimates of uncertainties about conclusions made
based on the whole analysis process. Empirical studies have
shown that the criterion works quite well in identifying the correct
number of mixture components [1]. On the other hand some
recent evaluations showed that an alternative approach of
statistical hypothesis testing-based determination of the number of
clusters [8] is more robust with respect to the deviation from the
assumption of the models for individual mixture components.
Unfortunately, these evaluations were made assuming only the
simplest possible model for the calculation of the BIC, as implied
by the K-means algorithm. It remains unclear if these advantages
persist after using the complete FM approach for choosing the
right covariance structure as well as the right number of clusters
as proposed by the authors of MCLUST [6], or in the situation
when the basic covariance structure implied by the K-means
algorithm is correct, as was the case in our simulation study.
Altogether, the BIC approach remains one of the dominant criteria
for choosing models in statistical practice, and it is not clear that
any alternative method for choosing the right number of clusters
will significantly improve the overall FM performance. On the
other hand, we showed that the IM model offers an elegant way
around the issue of selecting the right number of clusters in the
context of model-based clustering.

Finally, although our heuristic Gibbs sampler modification has
been performing very well in all situations we encountered so far,
it is not clear how closely does the modified sampler approximate
the posterior distribution defined by the IM model. This is
problematic since some of the nice conceptual features of the
Bayesian IM framework depend on being able to sample from the
true posterior distribution defined by the model. For example, the
meaning of the posterior pairwise probabilities is not clear unless
we can claim that they are derived from the hierarchical statistical
model in Figure 1. We can still use them as a high-quality
distance measure, but their direct probabilistic interpretation is
lost. Some work has been done on developing alternative MCMC
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methods for fitting conjugate infinite mixture models [9].
However, to the best of our knowledge, alternative MCMC
samplers for non-conjugate models, such as the model described
here, have not yet been developed.
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ABSTRACT

This paper presents two standard machine learning algo-
rithms, one used in a non-standard way, for predicting the
biological functions of essential genes in a systematic and
comprehensive manner. We used gene expression and phe-
notype data from Saccharomyces cerevisiae. Determining
gene function is simplified to a series of binary classification
problems and one of the challenges of this learning task lies
in the extremely small number of positives, compared with
large amounts of negatives samples. We develop a method
based on unsupervised hierarchical clustering used with la-
beled data to search for regions of high concentrations of
positives and make predictions for the unlabeled genes. We
also investigate the supervised logistic regression classifier
as a baseline for comparing to our technique. Both of these
methods are based on different views of the data and we
found that depending on the biological processes being pre-
dicted, one or the other of these approaches performs better,
although our method makes more confident predictions for
more biological processes. The outcomes of the research are
twofold: first we build a new biological data mining method
based on existing machine learning tools that are readily
accepted in the biological community. Second we make bio-
logical predictions of gene functions, each associated with a
level of confidence and all above 50% precision.

1. INTRODUCTION

This paper investigates data mining and machine learning
techniques for predicting, in a systematic and comprehensive
manner, the possible functions of all putative and known
genes (a gene may have several biological functions) in a
yeast organism called Saccharomyces cerevisiae. We focused
more intensely on making predictions for unlabeled genes,
and decided to analyze the predictions of labeled genes in
the future. Unlabeled genes are genes for which no function
has yet been determined, whereas labeled genes are known
to have at least one function. Systematic approaches for
identifying the biological functions of genes, especially the
unlabeled, are needed to ensure rapid progress from genome
sequence to directed experimentation and applications (such
as drug discovery).

The functions we learned are biological processes. Since rel-
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atively few genes are involved in a typical biological process,
there are far more negatives than positives (as little as 0.01%
of positives in the genome for certain biological processes),
although some biological processes involve up to 60% of the
genes in the genome. The learning task is made even harder
by the fact that the samples we have comprise only about
10% of the genes in the genome (but required tremendous
amounts of biological work to obtain nonetheless), 15% of
which are unlabeled. So the number of positives available
in our samples can be extremely small for some biological
processes.

We examined two different methods based on two views of
the data. The first view is that the positives and negatives
can be separated by a hyperplane, which we fit using logistic
regression. In the second view, the data constitutes as a sea
of negatives with some small islands of positives of unknown
size and number. We identify these concentrations of posi-
tives using hierarchical clustering on labeled data, which is
not the standard unsupervised way of using this algorithm.
‘We found that for some biological processes, one or the other
method performs better, although our hierarchical method
produces more confident predictions for more biological pro-
cesses. Also, the method we develop allows the analysis of
biological processes for which we have as little as 5 positive
samples, unlike logistic regression which was unable to make
predictions when the number of positives was below 20.

In this application, the cost associated with experimentally
testing predictions lead us to performing leave-one-out cross-
validation, not only to control how well the classifiers are
behaving and draw ROC curves, but really to build decision
rules for classifying samples. This is a main point in our
methodology and we will explain it’s details later.

Our analysis uses two types of data, gene expression from
cDNA microarrays and growth phenotype data. Whole-
genome expression profiling, facilitated by the development
of DNA microarrays [12; 21], represents a major advance in
genome-wide functional analysis. A single assay can mea-
sure the transcriptional response of thousands of genes, and
often a full genome, to a change in cellular state such as dis-
ease, cell-cycle, cell division, response to stress and chemical
compounds, or genetic perturbation and mutations. The sci-
entific community agrees that gene expression alone cannot
give a full picture of the cell state, because transcripts such
as mRNAs need to be translated into proteins which some-
times need to be activated and each of these steps can be
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regulated. Therefore more data types are needed to analyze
regulation of the cell at a finer level of granularity. This is
another reason why we chose to include sources of phenotype
data in this study.

A lot of the classification work using machine learning has
been done in cancer classification [1; 2; 9; 14; 15; 17; 19; 24]
rather than predicting ontologies. This task is investigated
in [5] but only for 6 classes (which were not defined by the
Gene Ontology). Our approach is designed for making pre-
diction for any of the classes in the Gene Ontology (on the
order of a thousand different classes).

2. OVERVIEW OF THE DATA AND PRE-

PROCESSING

The data used in this paper was gathered at Hughes Lab at
the Banting and Best Department of Medical Research in
the University of Toronto. In order to investigate the func-
tion of essential genes, which are required for survival and
therefore cannot be knocked out, Hughes lab constructed
a particular type of mutant yeast strains for two thirds of
all the essential genes [16]. Construction was suspended be-
cause of project deadlines and financial reasons. These 602
mutants allow direct experimentation on the essential genes.
There is a one-to-one correspondence between an essential
gene and a mutant strain. The following datasets were col-
lected and used for predicting gene function :

e gene expression from DNA microarrays measuring the
abundance of gene transcripts of the mutant cells rela-
tive to the wild-type strain for the entire genome. The
291 samples, corresponding to 218 essential genes with
replicates (out of the 602 constructed mutants), are
publicly available on NCBI Gene Expression Omnibus
(http://www.ncbi.nlm.nih.gov/geo/) through accession
number GPL1229. After quantification, hybridized
samples were normalized using background subtrac-
tion, followed by a LOWESS smoother to correct for
dye discrepancies and by a high pass filter to remove
any sorts of spatial artifacts (scratches, dust, gradient
across the array or red corners ...) After investigat-
ing several techniques for imputing missing values, we
used BPCAfill [18], which performed the best (using
normalized root mean squared error as the measure of
goodness of fit) on simulated datasets with the same
proportion of missing data (approximately 13%). In
the end the dimensionality of the data was reduced
from 6307 genes on the arrays to 20 using principal
components analysis (PCA) [11; 20] by selecting the
eigenvectors associated with the 20 largest eigenvalues
of the covariance matrix.

e size distribution measures the distribution of cell sizes
for 591 of the 602 mutant strains. Normalization pro-
cedure: strains were grown by batches and this dataset
was normalized so as to make the median of the me-
dian distribution of strains grown on the same batch
to coincide for all batches. Validation of this nor-
malization was done by verifying that the distribu-
tion of control wild-type strains grown in all batches
coincided. The distributions were measured at 256
points, and the dimensionality was reduced to 8 by
PCA. All growth phenotype datasets are available at
http://hugheslab.med.utoronto.ca/Mnaimneh.
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e Drug Response looks at the sensitivity of the mutant
strains to different chemical compounds in 27 experi-
mental conditions. 685 mutant strains, corresponding
to 585 mutant strains with replicates, were grown on
plates with one drug and the size of the colonies were
compared to wild-type grown with the same drug. The
value reported in the dataset was the log P-value that
a difference existed between the two groups.

e Morphology represents the morphological features of
the mutant cells which were visually inspected for 17
different characteristics such as elongated, budded or
pointed cells. This data is the only type which is cat-
egorical. A 1 indicates that the feature was slightly
observed for all mutant cells, a 0 indicates it was not.
On rare occasion other types appear, 0.5 means the
feature was slightly observed but the phenotype was
not penetrant, 2 moderately observed for all cells, 2.5
moderately observed but the phenotype was not pen-
etrant, 3 severely observed for all cells.

Each dataset covers a different set of the 602 constructed
mutants , although these sets intersect, and the number of
positive samples for a particular biological process depends
on the dataset being used. A simple solution was to use
these datasets independently.

Finally the gene labels we learned, which are organized in
a hierarchical manner according to the Gene Ontology (GO)
[23], were downloaded from the (SGD) Saccharomyces Genome
Database [6; 7]. We used the biological process type of the
GO database as our labels for gene function because the bi-
ologists we work with were interested in these rather than
molecular function or cellular component. Almost 40% of the
genes in the genome have no label for all of the the biological
processes, we call these genes unlabeled. 15% of the 602 con-
structed mutants were uncategorized. Some GO biological
processes are so broad and general that they involve thou-
sands of genes, such as protein metabolism [GO:0019538]
or cell organization and biogenesis [GO:0016043]. In fact,
large top-level (high in the GO hierarchy) categories involv-
ing hundreds of genes are often not specific enough to verify
experimentally. Therefore we have restricted this study by
not showing biological processes that clearly involved too
many genes to be interesting.

3. CLASSIFICATION BY HYPERPLANE

In this section we examine the case where the two classes
are separable by a hyperplane. This is a strict assumption
about the data, but it leads to predictions with high level
of confidence for some biological processes nonetheless and
represents a baseline for comparing the results obtained with
the second view which we describe in the next section. We
choose to fit the hyperplane using logistic regression [11] be-
cause of it’s simplicity and also because it is well understood,
and accepted in the biology community [3]. In 3.1 we inves-
tigate a method by which we can easily build decision rules
customized to a particular biological process for classifying
samples, precision being the only user-defined parameter.
We apply these decision rules to the unlabeled samples in
3.2

Each gene can be involved in several biological processes and
therefore this is not the classical machine learning approach
in which samples can belong to one class only, and of course
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several genes can be involved in a biological process. We
learned biological processes independently, which simplified
the problem to discriminating between two classes for each
biological process: either a gene is involved or it is not.

3.1 Cross Validation For Customized Decision
Rules

We trained logistic regression classifiers by leave-one-out
cross-validation on the labeled samples of each of the bio-
logical processes we chose to learn. Each time we computed
the posteriors P(Y = 1|X = z) where z was the sample set
aside, Y denotes the class label (which takes the value 1 if a
gene is involved in the biological process, and 0 otherwise).
We had little choice but to use leave-one-out cross validation
because, having so few positives in our samples (as little as
5 positives), we could not afford to waste labeled data by
separating it into training and test sets.

In order to classify a sample we need to build a decision
rule. One very simple rule could be to classify as positive
any sample for which the posterior probability is above 0.5.
Here we are faced with a decision making problem which
needs a little more attention because of the cost associated
with making false predictions. In molecular biology, run-
ning experiments is very expensive and we want to be very
confident about the prediction being true before testing it in
wet lab. All the cost of decisions is biased toward false pre-
dicted positives in this application and false negatives aren’t
given as much importance. As a result to increase our confi-
dence on the predicted positives, we computed conservative
thresholds for discriminating between classes, each depend-
ing on the particular biological process. A sample will be
classified as positive if it’s posterior is above that threshold
P(Y = 1|X = z) > t. In the logistic regression setting,
the classes are separated by the hyperplane defined by the
equation 87z = 0. When the input z is on the hyperplane,

PY=1X=2)=PY =0|X=2)=05 (1)

Raising the threshold, corresponds to translating that hy-
perplane in the direction of 8 (or —6). Our procedure con-
sists of translating the hyperplane toward the positive sam-
ples until the ratio of true positives to false positives is suf-
ficiently high. Therefore we use cross validation, not only to
control how well the classifiers are performing, but really to
build decision rules for classifying the unlabeled samples.
The measure of satisfaction we used for translating the hy-
perplane is precision, which is the ratio of true positives to
predicted positives, i.e.

true positives =~ TP
predicted positives TP + FP

(2)

Predicted negatives cannot be confirmed experimentally (at
least at Hughes Lab which is providing us with the data),
so knowledge is gained only when predicted positives are
confirmed and it is indeed precision biologists are interested
in and not overall classification performance.

For a particular biological process, one approach could be to
choose the threshold that leads to the maximum precision
computed using all labeled samples, but we prefer to take a
more conservative approach by setting a user-defined preci-
sion. That way predictions will only be made for biological
processes for which the classifier reaches that precision at
some threshold. For biological processes for which logistic
regression performed poorly, no predictions will be made.

precision =
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Because precision is not a monotonic function in ¢, we chose
the lowest threshold leading to the desired precision since
this solution maximizes the recall (also known as sensitivity
in the signal processing and biological worlds), which is the
percentage of positives which are predicted positives:

true positives TP

Il = =
reca all positives TP + FN

3)

We computed five thresholds for each GO biological process,
corresponding to precision levels of 100%, 85%, 75%, 60%
and 50% based on the labeled data. The precision level used
to classify a sample, along with the distance of that sample
to the translated hyperplane leads to different of confidence
levels.

3.2 Predicting functions for the unlabeled genes

For classifying the unlabeled samples, we trained a logistic
regression classifier per biological process using all the avail-
able labeled samples and then computed the posterior prob-
abilities P(Y = 1|X = z) where = were the unlabeled sam-
ples. Unlabeled samples were classified as positive whenever
their posterior was greater than the threshold, and predicted
positives were reported.

Predictions were grouped by the precision level used and by
biological process and are separated into batches depend-
ing on which dataset was used. Each prediction has four
fields: a GO biological process, a systematic gene name,
the precision level used for computing the threshold and fi-
nally the difference between the gene’s posterior probability
and the threshold which characterizes the distance from the
translated hyperplane. All this data was assembled in tab
delimited files available as supplementary data.

For increasing the significance of the precisions computed,
we forced them to be based on a minimum of 10 predicted
positives. We call confident prediction one that satisfies that
constraint. We only reported confident predictions based
on thresholds corresponding to 50% precision and above,
this means that we can never make predictions for biological
processes involving fewer than 5 genes.

It is worth underlying the fact that precision levels reported
are minimums. A sample being predicted positive at a preci-
sion level could also have been predicted positive at a higher
precision level. Summaries of these predictions are shown in
Table 1-3. In these tables we report the number of unlabeled
genes predicted grouped by biological process and by preci-
sion level. We indicate the number of known genes involved
in each biological process as well as the number of positive
samples available in the dataset used.

We observed that the procedure of fitting a hyperplane us-
ing logistic regression converged only for biological processes
having more than 10 positive in our samples. In fact we ob-
served that no confident predictions were made for biological
processes involving fewer than 20 positives in our samples.
The method we develop in the next section does not have
this limitation.

4. HIERARCHICAL CLUSTERING ON LA-
BELED DATA

In this section we investigate a method based on a different
view of the data. We consider here that positive samples
represent small islands among a sea of negatives, but we
don’t know how many islands there are nor their size. One
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Number of predictions for GO-BP:

transcription [GO:0006350]

transcription, DNA-dependent [GO:0006351]
cell proliferation [GO:0008283]

RNA metabolism [GO:0016070]

cell cycle [GO:0007049]

RNA processing [GO:0006396]

biosynthesis [GO:0009058]

mitotic cell cycle [GO:0000278]

ribosome biogenesis and assembly [GO:0042254]
ribosome biogenesis [GO:0007046]
macromolecule biosynthesis [GO:0009059]
protein biosynthesis [GO:0006412]

DNA replication and chromosome cycle [GO:0000067]
transcription from Pol I promoter [GO:0006360]

known in GOBP | # pos in samples | precision .6 | precision .5
534 39 6
505 39 6
571 37 5 8
336 34 10
494 33 4 6
297 33 4
803 30 5
288 30 5
186 26 18
151 24 17
449 21 1 1
442 21 1 1
219 20 1
149 20 7 8

Table 1: Summary of confident predictions made by logistic regression on the gene expression data

Number of predictions for GO-BP: known in GOBP # pos in samples precision .6 precision .5
transcription [GO:0006350] 534 142 4
transcription, DNA-dependent [GO:0006351] 505 141 4
RNA metabolism [GO:0016070] 336 128 4 15
RNA processing [GO:0006396] 297 127 17
cell proliferation [GO:0008283] 571 116 5
ribosome biogenesis and assembly [GO:0042254] 186 85 3 15
ribosome biogenesis [GO:0007046] 151 79 3 15
transcription from Pol I promoter [GO:0006360] 149 76 14
rRNA processing [GO:0006364] 121 65 12
organelle organization and biogenesis [GO:0006996] 550 61 2

Table 2: Summary of confident predictions made by logistic regression on the cell size distributions

possibility would be to use k-nearest neighbors (KNN), but
unfortunately we have no idea what to expect for k, and
a simple majority vote would not work because of the high
number of negatives almost everywhere (including regions of
relatively high concentrations of positives). We develop an
algorithm based on hierarchical clustering that circumvents
these problems.

Clustering has been used extensively in functional genomics
to analyze gene expression data [2; 4; 8; 13; 22] and is prob-
ably what biologists use and trust most. Biologists often
use hierarchical clustering on gene expression data. For ex-
ample, they usually display the resulting dendrogram imme-
diately beside the gene expression data from which it was
derived, and label the leaves of the dendrogram with gene
names and/or biological processes. The method we develop
here is based on this methodology, but extends it to an au-
tomated process. It also has the advantage of using all of
the known functions of the genes in the hierarchical tree and
not just their main function.

Our method looks for regions in the data space of high con-
centrations of positives. All that is required is some notion
of “distance” between all pairs of elements. In contrast, lo-
gistic regression does not work for the morphology dataset
because, although the data is technically real valued, it is
still too categorical for the fit to converge.

4.1 Details of the Procedure

We first build a hierarchical tree on all available labeled and
unlabeled samples using hierarchical agglomerative cluster-
ing [10] with average linkage. In constructing the tree, we
ignore the labels on the data. In this way, we can include
both labeled and unlabeled data in the tree, and more im-
portantly, we can use the same tree for each biological pro-
cess, thus saving on computing time, since the tree need
only be built once. Thus, the construction of the tree can
be viewed as a preprocessing step whose cost is amortized
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over all the biological processes. However, after the tree is
constructed, it is not possible to add new unlabeled samples
to the data.

‘We used the correlation coefficient between two samples as a
measure of the distance between them rather than Euclidean
distance. This is because the actual level of expression of
two genes is less important than their profiles being corre-
lated among a set of experiments. For example, the mea-
sured expression of a gene might be twice that of another
gene in the same pathway because of experimental factors
such as oligonucleotide probe quality (folding into a stable
secondary structure, melting temperature etc).

Following the construction of the tree, we use it to build a
classifier for each biological process. Recall that each such
process provides a different set of labels for genes. Since the
leaves of our tree represent genes, each leaf is assigned the la-
bel of the gene it represents. Leaves for unlabeled genes are
labeled as negative, since it is likely that an unlabeled gene
is not involved in any particular biological process. (We also
flag such leaves, so as to remember that they are unlabeled).
We can now look in the tree for regions of high concentra-
tions of positive leaves, after which we assign labels to all the
unlabeled genes that fall in such regions. These assignments
represent our classifiers predictions.

To make these assignments, the algorithm computes a score
o for each internal node in the tree, reflecting the concen-
tration of positives at the leaves under the node.

o= # of positives at leaves y (1 e ot positives) (4)
# of leaves

The first factor in this formula is the proportion of positive
leaves under the node, it reflects the concentration of posi-
tives in the region of the data space in which the leaves are.
The second factor tends to one when the number of posi-
tives raises, and tends to zero as the number of positives

page 51



Number of predictions for GO-BP: known in GOBP | # pos in samples | precision .6 | precision .5
RNA metabolism [GO:0016070] 336 140 1
RNA processing [G0O:0006396] 297 139 1
cell proliferation [GO:0008283] 571 127 3 5
ribosome biogenesis and assembly [GO:0042254] 186 93 5
ribosome biogenesis [GOQ:0007046] 151 86 6
rRNA processing [G0:0006364] 121 71 3

Table 3: Summary of confident predictions made by logistic regression on the drugs dataset

Build hierarchical tree on all labeled and
unlabeled samples.
For each GO biological process GO-BPi do {
Label the leaves according to GO-BPi.
Label unlabeled samples as negatives.
For each sample Sj do {
Relabel Sj as negative.
Compute the score of all internal nodes.
Compute the score of 5j as maximum score of
all it’s ancestors.
}
Find lowest threshold that achieves
user-specified precision.
Classify unlabeled samples using this threshold.
Report predicted positives.

Figure 1: Algorithm Pseudo-code

decreases. It gives more importance (higher score) to nodes
with more positive leaves, i.e., to larger regions of positive
concentration, since we regard such regions to be more sta-
tistically significant. We have used @ = 0.5 and haven’t
investigated tweaking this parameter nor using other func-
tions for the second factor of this equation. We then define
the score of a leaf to be the maximum score of all it’s an-
cestors (internal nodes). Since unlabeled samples are leaves
in the tree, they automatically receive a score, which we use
to classify them.

Before building decision rules, we use a technique similar to
the cross validation of the previous section. At each itera-
tion, we effectively remove a labeled sample by treating it as
unlabeled. The scoring process described above is repeated
each time. This provides a score for the labeled sample be-
ing treated as unlabeled. Each labeled leaf is scored in this
way.

It is now easy to build a decision rule. We simply set a
threshold, and a leaf is classified as positive if its score is
above the threshold. To evaluate the rule, we apply it to
labeled leaves, and compare each leaf’s true label to its pre-
dicted label. A threshold that achieves a user-specified pre-
cision is then chosen. Finally, using this threshold, we use
the decision rule to classify all the unlabeled data.

The pseudo-code for this algorithm is given in Figure 1. A
toy example of how the tree is reused for each biological pro-
cess is given in Figure 2. Our method is very fast, the whole
process from building the tree to reporting predicted posi-
tives in all biological processes took a few seconds for each
dataset on a Pentium IV 2GHz. This should be contrasted
with the logistic regression methodology which required ap-
proximately a half hour for each dataset.
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Figure 2: Toy hierarchical tree reused with labels from two
biological processes

4.2 Results

Predicted positives were reported for all four datasets and
assembled in tab delimited files. A prediction has four fields:
a GO biological process, the gene systematic name, the
difference between the score of the unlabeled leaf and the
threshold used, and the precision corresponding to that thresh-
old. The precision and the difference between the score and
the threshold represent the confidence we have in the pre-
diction. Summaries of these predictions (except for the mor-
phology dataset) are shown in Table 4-6. We did not show
the summaries for the morphology dataset, the number of
confident predictions made were approximately the same as
in Tables 5 and 6.

Comparing the two methods for identical datasets (Table 1
vs. 4, Table 2 vs. 5 and Table 3 vs. 6), we observe that
our method produces many more confident predictions, at
precision levels 50% and 60% ( even 75% with the drugs
dataset), and for more biological processes. In particular,
our hierarchical method made prediction for 18 biological
processes involving fewer than 20 positive in the samples
whereas logistic regression produced none.

In Figure 3 we show the ROC curves of a couple of the clas-
sifiers used for making predictions, obtained by the method
we developed. We clearly see that our method performs
better than guessing the majority class, i.e. classify as neg-
ative every time, and achieves very high true positive rates
at thresholds for which the false positive rates are still very
low. For example, the classifier used for predicting genes
involved in glycerophospholipid biosynthesis reaches a true
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Number of predictions for GO-BP: known in GOBP | # pos in samples | precision .6 | precision .5
transcription [GO:0006350] 534 39 18
transcription, DNA-dependent [GO:0006351] 505 39 18
RNA metabolism [GO:0016070] 336 34 9 11
RNA processing [GO:0006396] 297 33 11 11
ribosome biogenesis and assembly [GO:0042254] 186 26 19 21
ribosome biogenesis [GO:0007046] 151 24 12 19
protein modification [GO:0006464] 361 23 3
organelle organization and biogenesis [GO:0006996] 550 22 1
macromolecule biosynthesis [GO:0009059] 449 21 9
protein biosynthesis [GO:0006412] 442 21 9
transcription from Pol I promoter [GO:0006360] 149 20 11 11
rRNA processing [G0:0006364] 121 18 8
catabolism [GO:0009056] 276 16 2
cytoskeleton organization and biogenesis [G0:0007010] 255 14 2
mRNA processing [GO:0006397] 124 14 4
macromolecule catabolism [GO:0009057] 176 12 1
lipid metabolism [GO:0006629] 190 11 1
lipid biosynthesis [GO:0008610] 111 11 1
RNA splicing [GO:0008380] 112 10 4
mRNA splicing [GO:0006371] 92 10 4
microtubule-based process [GO:0007017] 94 8 1
microtubule  cytoskeleton organization and biogenesis 86 8 1
[GO:0000226]

M-phase specific microtubule process [GO:0000072] 62 8 1
membrane lipid metabolism [GO:0006643] 85 6 1
membrane lipid biosynthesis [GO:0046467] 62 6 1
phospholipid metabolism [GO:0006644] 64 5 1
phospholipid biosynthesis [GO:0008654] 48 5 1
glycerophospholipid metabolism [GO:0006650] 34 5 1
glycerophospholipid biosynthesis [GO:0046474] 30 5 1

Table 4: Summary of confident predictions made by our clustering method on the gene expression data

positive rate of 100% for less than 2% false positive rate.

S. CONCLUSION & FUTURE WORK

We developed a method based on hierarchical clustering
for labeled data to find regions in the data space of rela-
tively high concentration of positives. This technique allows
the analysis of biological processes involving very few genes.
With this method, we were able to make confident predic-
tions at precisions of 50% and above for biological processes
for which our samples contained as few as 5 positives. The
methodology developed here is not restricted to learning es-
sential genes, but could be applied to any set of genes.

We used correlation as a measure of similarity between pairs
of elements and average linkage to build the hierarchical
tree. It would be interesting to investigate different distance
metrics and especially other linkage strategies such as sin-
gle linkage, which produces clusters that aren’t necessarily
compact.

We focused on making predictions for unlabeled genes. How-
ever, it would be biologically interesting to report cases in
which a gene’s true label is negative but whose predicted
label is a confident positive. This is because negative labels
in our dataset are sometimes wrong. A more challenging
task would be to use datasets concurrently for the inter-
secting samples and independently for disjoint sets of sam-
ples. Also finding methods for learning biological processes
concurrently rather than independently is one of our future
goals. We are thinking of using the Gene Ontology hierar-
chy to propagate up the hierarchy predictions made lower
down, because if a gene is involved in a biological process,
it is also involved processes above it in the hierarchy. This
isn’t completely trivial because the hierarchy is not a tree
and a process can have several parents. More interestingly, if
a prediction is made in a biological process having children,
we would like to find methods for making the prediction
more specific by propagating it down the hierarchy as far as
possible.
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Figure 3: ROC curves for some of the classifiers we used for making predictions
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ABSTRACT

Machine learning approaches are frequently used to solve
name entity (NE) recognition (NER). In this paper we pro-
pose a hybrid method that uses maximum entropy (ME) as
the underlying machine learning method incorporated with

dictionary-based and rule-based methods for post-processing.

Simply using ME for NER, inaccurate boundary detection
of NEs and misclassification may occur. Some NEs are
partially recognized by ME. In the post-processing stage,
we use dictionary-based and rule-based methods to extend
boundary of partially recognized NEs and to adjust classifi-
cation. We use GENIA corpus 3.01 to conduct 10-fold cross-
verification experiments. To evaluate the performance, we
consider the longest NE annotations. We evaluate our ap-
proach using standard precision (P), recall (R), and F-score,
where F-score is defined as 2PR/(P+R). The precision, re-
call and F-score ([P, R, F]) of our ME module for overall
23 categories is [0.512, 0.538, 0.525], and after the post-
processing the performance becomes [0.729, 0.711, 0.72] for
[P, R, F]. For protein, DNA and RNA classes, our method
achieves [P, R, F] of [0.77, 0.80, 0.785], [0.653, 0.748, 0.7],
and [0.716, 0.788, 0.752], respectively. The post-processing
stage significantly improves the performance of our ME-
based NER module.

1. INTRODUCTION

The amount of biomedical literature available on the Web
is rapidly increasing. There is a pressing need for biomed-
ical information extraction. To extract useful information
from natural language text, we must first recognize biomed-
ical named entities in the text. In fact, named entity (NE)
recognition (NER) is a fundamental research topic in natural
language processing (NLP), which involves entity identifica-
tion and classification.

Unlike NER in the newswire domain, NER in the biomedi-
cal domain remains a perplexing challenge. Biomedical NEs
in general do not follow any nomenclature, and can be com-
prised of long compound words or short abbreviations. Some
even contain various symbols or spelling variations. In sum-
mary, difficulties of NER in the biomedical domain are as
follows:

(1) Unknown word identification:
Unknown words can be acronyms, abbreviations, or
words containing hyphens, digits, letters, and Greek
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letters. Examples of NEs with unknown words in-
clude: alpha B1, GM-CSF, Adenyly cyclase 76F, and
4 ’-mycarosyl isovaleryl-CoA transferase.

(2) Named entity boundary identification:

The boundary of an NE can be a regular English word,
unknown word, Roman numeral, or digit. For exam-
ple, MHC Class II, latent membrane protein 1, NF-
kappaB consensus site, cyclin-like UDG gene product
all have different types of boundaries. Additionally,
nested NEs (an NE embedded in another NE, referred
to as cascaded NEs by Shen et al. [9]) further compli-
cate this problem. Consider the named entity kappa 3
binding factor. Its annotation <PROTEIN> <DNA>
kappa 3 </DNA> binding factor </PROTEIN> has
two right boundaries at 3 and factor, which correspond
to the embedded NE in the DNA category and the
nested NE of the Protein category, respectively.

(3) Named entity classification:

Once an NE is identified, it is then classified into a
category such as protein, DNA, RNA, and so on. Am-
biguity and inconsistency are often encountered at this
stage. NEs with the same orthographical features may
fall into different categories. For example, BRIX and
SCOP both have the AllCaps feature, but the former is
a gene and the latter is a protein. An NE may belong
to multiple categories, e.g., ELK1 is both a DNA and
a protein. p53 is an another example. p53 is a syn-
onym for the gene TP53 in HUGO nomenclature; but
in the GENTA corpus, p53 is also tagged as a protein.
Such ambiguity is intrinsic. Another complication is
that a nested NE of one category may contain an NE
of another category. For instance, a protein name may
contain the gene coding for this protein. For exam-
ple, A27L protein is a protein name containing A27L
which is the gene coding for this protein. We need to
properly distinguish A27L from A27L protein.

To tackle these challenges, researchers use NLP techniques
such as machine learning, dictionary-based methods and
rule-based methods. Tsuruoka et al. [11] and Hanisch et al.
[3] present dictionary-based approaches. Since new biomed-
ical NEs keep being generated in literature, the machine
learning approach prevails. After the release of GENIA cor-
pus [6], machine learning approaches using GENIA corpus
as training corpus are reported [10; 5; 13; 9; 14]. GENIA
corpus provides a benchmark for evaluating different meth-
ods. The overall F-scores on 23 categories in GENIA corpus
reported by these systems were at most 0.67.
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The performance of machine learning approaches has big
room for improvement. This fact can be attributed to small
size of training corpora. Though GENIA corpus is the largest
corpus for NER, it is rather small in comparison with the
size of biomedical NEs. Various strategies are proposed to
enhance the performance. In this paper, we use maximum
entropy (ME) as our underlying machine learning method.
Unexceptionally, the F-score of pure ME is 0.525 over the
23 categories of GENIA corpus. Our post-processing of ME
output aims to resolve boundary detection problems and
correct misclassification problems. Dictionary-based and
rule-based methods are used, which significantly improves
the performance.

2. ME-BASED BIOMEDICAL NER FRAME-
WORK

Our recognition method consists of two stages: (1) ME-
based recognition, (2) post-processing including boundary
extension and reclassification. We first use ME for NER.
Then we use a dictionary and rules to correct boundary
identification errors by boundary extension. After bound-
ary error correction is performed, the results are reclassified.
Our method is depicted in Figure 1.

2.1 Maximum Entropy

We regard each word as a token. Since a named entity can
have more than one token, each token is associated with a
tag that indicates the category of the NE and the location
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of the token within the NE, for example, z_begin, z_continue,
z_end, r_unique where z is a category. The first three tags
denote respectively the beginning, the middle and the end
of an NE in category x. The fourth tag denotes that a to-
ken itself is an NE of category z. In addition, we use the
tag unknown to indicate that a token is not part of an NE.
The NER problem can then be rephrased as the problem of
assigning one of 4n + 1 tags to each token, where n is the
number of NE categories. In our ME module, there are 23
named entity categories and 93 tags. For example, one way
to tag the phrase IL-2 gene expression, CD28, and NF-kappa
B in a paper is “othername_begin, othername_continue, oth-
ername_end, unknown, protein_unique, unknown, unknown,
protein_begin, protein_end.”

ME is a flexible statistical model which assigns an outcome
for each token based on its history and features. Outcome
space is comprised of the 93 tags for an ME formulation of
NER. ME computes the probability p(o|h) for any o from
the space of all possible outcomes O, and for every h from
the space of all possible histories H. A history is all the
conditioning data that enables one to assign probabilities to
the space of outcomes. In NER, history can be viewed as
all information derivable from the training corpus relative
to the current token.

The computation of p(o|h) in ME depends on a set of binary-
valued features, which are helpful in making predictions about
the outcome. For instance, one of our features is: when all
characters of the current token are capitalized, it is likely to
be part of a biomedical NE. Formally, we can represent this
feature as follows:

1 if Current-Token-AllCaps(h) = true
and o = protein_begin; (1)
0 otherwise.

f(h7 0) =

Here, Current-Token-AllCaps(h) is a binary function that
returns the value true if all characters of the current token
in the history h are capitalized. Given a set of features and
a training corpus, the ME estimation process produces a
model in which every feature f; has a weight a;. From [1],
we can compute the conditional probability as:

plolh) = g [Tl ™ )

The probability is given by multiplying the weights of ac-
tive features (i.e., those fi(h,0) = 1). The weight «; is
estimated by a procedure called Generalized Iterative Scal-
ing. This method improves estimation of weights at each
iteration. The ME estimation technique guarantees that,
for every feature f;, the expected value of a; equals the em-
pirical expectation of a; in the training corpus.

As noted in Borthwick [2], ME allows users to focus on find-
ing features that characterizes the problem while leaving
feature weight assignment to the ME estimation routine.

2.2 Decoding

After having trained an ME model and assigned the proper
weights «; to each feature f;, decoding (i.e., marking up)
a new piece of text becomes simple. First, the ME module
tokenizes the text. Then, for each token, we check which
features are active and combine a; of the active features
according to Equation 2. Finally, a Viterbi search is run
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Table 1: Orthographical features

Orthographical features Example Orthographical features Example
AllCaps EBNA, NFAT, LMP || AlphaDigit p50, p65
AlphaDigitAlpha IL23R, E1A ATGCSequence CCGCCC, ATGAT
CapLowAlpha Srec, Ras, Epo CapMixAlpha NFkappaB, EpoR
CapsAndDigits 1.2, STAT4, SH2 DigitAlpha 2xNFkappaB, 2A
Digit AlphaDigit 32Dc13, 2D3 DigitCommaDigit 1,25

Digits 1,2, 3, 1.1 Greek Letter alpha, beta
Hyphen - LowMixAlpha mRNA, mAb
Roman Numeral I, IT, 111 SingleCap A-Z

Stop word at, in Other “rser Lo,y

Table 2: Head nouns
Head nouns

factor, protein, receptor, alpha,
NF-kappaB, IL-2, cytokine, AP-1,
kinase, IL.-4, transcription, domain,
complex, TNF-alpha, IFN-gamma,
Nuclear, p50, p65, beta, NFAT,
CD28, TNF, PKC, -calcineurin,
molecules, GM-CSF, GATA-1, IL-
12, subunit, cell, STAT3, family,
antibody, TCR, CIITA, chain, tu-
mor, gamma, factor-alpha, expres-
sion, interleukin, TkappaBalpha
NF-kappa B, transcription factor,
I kappa, kappa B, nuclear factor,
protein kinase, B alpha, kinase C,
tumor necrosis, T cell, glucocor-
ticoid receptor, colony-stimulating
factor, binding protein, factor al-
pha, necrosis factor-alpha, adhe-
sion molecule, monoclonal anti-
body, necrosis factor, T lympho-
cyte, cytoplasmic domain, gene
product, binding domain

Unigram

Bigram

Table 3: Morphological features

~ase ~blast ~cin ~cyte
~kin ~lin ~lipid ~ma
~mide | ~peptide | ~phil ~rin
~rogen | ~sor ~tin ~tor
~virus | ~vitamin | ~zole anti~
cyto~ dehydr~ | erytho~ | hemo~

to find the highest probability path through the lattice of
conditional probabilities that does not produce any invalid
tag sequences. For instance, the sequence [protein_begin,
othername_continue] is invalid because it does not contain
an ending token and these two tokens are not in the same
category. Further details on the Viterbi search can be found
in [12].

2.3 Related Studies of NER Using ME

Raychaudhuri et al. [8] uses ME to assign Gene Ontology
tags to genes appearing in biomedical literature. They re-
port that ME outperforms the Naive Bayes method and the
nearest-neighbor method. ME is also used for acronym and
abbreviation normalization in medical texts. Pakhomov [7]

BIOKDDO04: 4th Workshop on Data Mining in Bioinformatics (with SIGKDD Conference)

and Kazama et al. [4] report that SVM outperforms ME
for biological NER. In Kazama et al. [4], the comparison is
made using GENIA corpus version 1.0. The precision, re-
call and F-score ([P, R, F]) of the SVM-based system was
[0.562, 0.528, 0.544] for overall categories and [0.492, 0.664,
0.565] for protein. The ME-based system reports [P, R, F]
of [0.534, 0.530, 0.532] for overall performance and [0.491,
0.621, 0.548] for protein. Nevertheless, the authors also state
that one advantage of the ME model is that it allows flexible
feature selection. When new features, e.g., syntax features
are added to ME, users do not need to reformulate the model
like in the HMM model and ME estimation routine can auto-
matically calculate new weight assignment. Thus we choose
ME as the underlying machine learning model.

3. FEATURES

Feature selection is critical to the success of machine learning
approaches. Orthographical features, head noun features,
morphological features, and part-of-speech (POS) features
are frequently used for token identification. We use POS
features annotated in the GENIA corpus and report the re-
maining features below.

3.1 Orthographical Features

Table 1 lists some orthographical features used in our sys-
tem. In our experience, AllCaps, CapMixAlpha, LowMix-
Alpha, SingleCap are more useful than others.

3.2 Head Nnouns

The head noun is usually the major noun or noun phrase
of an NE that describes its function or the property, e.g.,
transcription factor is the head noun for the NE NF-kappa B
transcription factor. Compared with the other words in NE,
head noun is a decisive factor for distinguishing the NE class.
For instance, the classifications of <Protein> NF-kappa B
transcription factor </Protein> and <DNA> IFN-gamma
activation sequence </DNA> are determined by the head
nouns transcription factor and sequence. In this work, only
unigram and bigram head nouns are considered. We use
training corpus to obtain 960 frequently used head nouns,
and some are listed in Table 2.

3.3 Morphological Features

We consider morphological features of at least three charac-
ters in length. Some are listed in Table 3.

4. POST-PROCESSING AND RECLASSIFI-
CATION FOR ERROR CORRECTION
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Using ME, we find some NEs are partially recognized or
mistakenly classified. In the post-processing stage, we aim to
resolve boundary detection problems of partially recognized
NEs by a boundary extension method. Afterwards, we use
a re-classifier to resolve NE misclassification. Dictionary-
based and rule-based methods are used for post-processing.
The dictionary is constructed from the training corpus.

4.1 Boundary Extension

For those partially recognized NEs, we deal with two types of
boundary detection problems that arise from (1) nested NEs
and (2) brackets for name alias and slash for concatenated
names.

Nested NEs may cause boundary detection problems. Con-
sider the example “[E1A]/protein gene” — “[E1A gene] /pna.”
A straightforward right(R)-boundary extension rule is to ex-
tend the boundary if the NE is followed by NEs and/or
head nouns. In the example “{GATA-1]/protein activity” —
“[GATA-1 activity] /othername,” the word activity is not a
head noun. How do we determine whether the right bound-
ary should be extended to activity? Consider another exam-
ple: “type [I receptor] /protein” — “[type I receptor]/protein-”
Should the left boundary extend to the word type? For the
left(L)-boundary extension, we consider extension to include
a modifier. What modifiers are allowed?

To resolve the abovementioned problems, we compile two
lists of the leftmost (L) and the rightmost (R) context words
of NEs in the training corpus. To construct these lists, we
calculate the frequency of each context word candidate and
determine a cutoff threshold to include candidates into the
lists. The threshold is expected to affect the content of the
lists and thus, the performance of post-processing. However,
in our experiments, we have tried different threshold values
and found that the threshold does not significantly affect
the performance. We thus include all the candidates in the
lists. Note that these context words may not be head nouns,
but unigram head nouns surely belong to the lists.

In the previous example, activity is in the R-context word
list and thus the right boundary can be extended to activity.
We use context word lists to examine un-tagged tokens that
are adjacent to ME-recognized NEs. If these tokens appear
in the L- & R-context word lists, then they are concatenated
with ME’s output. But simply using context word lists to
determine boundary extension may fail in some cases. For
example, binding is in the R-context word list. But binding
can be tagged as a verb, an adjective or a noun. If binding
is tagged as a verb, it is unlikely to be a part of an NE. Only
few tokens tagged as a verb are included in NEs of GENTA
corpus. We thus consider only adjective and noun as valid
POS tags for the token in consideration. To further improve
boundary extension accuracy, we examine the validity of the
POS tag of the token. If this token appears in a context word
list and its POS is valid, we will concatenate this token with
the NE.

In summary, our boundary extension algorithm to resolve
nested NEs goes as follows:

Step 1. Check R-boundary extension: Extend the bound-
ary of an NE recognized by ME repeatedly if the NE is
followed by another NE or a token in R-context word
list with valid POS tag.

Step 2. Check L-boundary extension: Repeat similar pro-
cedure as in Step 1.
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Step 3. Repeat Step 1 and 2 until no extension occurs.

Our algorithm can handle six patterns of nested NE con-
struction presented in Zhou et al. [14].

The second type of boundary detection problem occurs when
NEs contain brackets for name alias and slash for concate-
nated names which are not well handled by maximum en-
tropy. For example, basic heliz-loop-heliz (VHLH) motif is
an NE. Our ME module recognizes both basic heliz-loop-
heliz and bHLH as protein. Since “(” and “)” are not valid
context words, the previous algorithm cannot extend the
boundary of ME’s output. Our solution is to detect whether
motif is a valid context word. If yes, basic heliz-loop-helix
(bHLH) motif will be concatenated as one named entity.
After performing boundary extension for nested NEs, we use
rule-based approach to extend boundary of the second type
problem. The rules are given as follows:

1. NE := NE (+ NE) + R-context word,;
2. NE := NE + / + NE (+ / + NE) + R-context word.

Inspecting the results generated by ME, we found that some
human names were identified as NEs. A special module
developed by our laboratory was introduced to filter these
errors. This module is originally designed to extract authors,
paper titles and journal names from citations.

4.2 Re-classifi er

In boundary extension stage, we do not change the classi-
fication. Our re-classifier aims to resolve two types of clas-
sification errors. The first type is associated with bound-
ary extension, for example, “{GATA-1]/0tein activity” —
“[GATA-1 activity] /othername.” The other type is intrinsic
ambiguity caused by abbreviations. Orthographical features
of AllCaps and CapsAndDigits are sometimes insufficient to
distinguish between abbreviations of protein and DNA. For
example, CD28 is a protein, and PS1 a DNA.

The re-classifier performs two steps. The first step is dic-
tionary lookup. If the named entity is in the dictionary, we
assign new class according to the dictionary. If the NE is
not in the dictionary, we take the second step to adjust the
classification according to R context word. We assign the
class according to the context word.

5. EXPERIMENTS
5.1 GENIA Corpus

We use GENIA corpus version 3.01 to evaluate our system.
The GENIA corpus contains 2,000 abstracts extracted from
the Medline database and these abstracts are annotated
with Penn Treebank part-of-speech tags. The annotation of
the NEs is based on GENIA ontology. In our experiments,
we use 23 distinct NE categories of GENIA corpus.

5.2 Experimental Results

We conduct 10-fold cross validation experiments and divide
2000 abstracts into 10 collections. Each collection contains
not only abstracts but also paper titles. We evaluate our
approach using standard precision (P), recall (R), and F-
score, where F-score is defined as 2PR/(P+R). To evaluate
our method, we consider the longest word annotation, since
these NEs are useful for relation extraction.
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Table 5: NE recognition performance

Config | Boundary Extension Reclassify NE Recognition
BE-1 | BE-2 | BE-3 | RC-1 | RC-2 P/R/F
Baseline 0.512/0.538/0.525
Conf4 Vi Vi Vi 0.645/0.634/0.639
Conf5 Vv Vv Vi Vv 0.67/0.658/0.664
Conf6 Vi Vi Vi Vi 0.707/0.695/0.701
Conf7 Vi Vi Vi Vi vV 0.727/0.715/0.721
Table 7: Partial matching performance
Task NE Identification NE Recognition
Measurement Precision | Recall | F-Score | Precision | Recall | F-Score
Exact Match 0.776 0.763 | 0.769 0.727 0.715 | 0.721
LD=1, ER > CR | 0.802 0.788 | 0.795 0.74 0.728 | 0.734
LD=2, ER > CR | 0.818 0.804 | 0.811 0.754 0.741 | 0.747
LD=1, CR > ER | 0.804 0.791 | 0.797 0.744 0.731 | 0.737
LD=2, CR > ER | 0.809 0.795 | 0.802 0.748 0.735 | 0.741
RD=1, ER > CR | 0.805 0.79 0.797 0.733 0.72 0.726
RD=2, ER > CR | 0.813 0.798 | 0.805 0.737 0.724 | 0.73
RD=1, CR > ER | 0.808 0.791 | 0.799 0.735 0.721 | 0.728
RD=2, CR > ER | 0.811 0.802 | 0.806 0.736 0.723 | 0.729

Table 4: NE identification performance

Config | Boundary Extension NE Identification
BE1 | BE2 | BE3 P/R/F
Baseline 0.56/0.589/0.574
Confl V| 0.582/0.597/0.594
Conf2 Vi 0.591/0.6/0.595
Conf3 Vv 0.757/0.746/0.751
Confd | / v V[ 0.776/0.763/0.769

Table 6: System performance comparison (measured in F-
Score)

Category Overall | Protein | DNA | RNA
Our system 0.721 0.785 0.700 | 0.752
Zhou et al, 2004 | 0.666 0.758 0.633 | 0.612

In Table 4, we report the named entity identification (re-
gardless of classification) performance. We use BE-1 to de-
note the nested boundary extension algorithm, BE-2 to de-
note the boundary extension for brackets and slashes, and
BE-3 to denote the module to remove human names. From
the figures, we can see that each method yields different de-
gree of improvement in NE identification (boundary detec-
tion) performance. BE-1, which improves the NE identifi-
cation performance by 0.177, is the most effective boundary
extension method among the three methods.

In Table 5, we report the named entity recognition (includ-
ing classification) performance. We use RC-1 to denote the
re-classifier using dictionary lookup and RC-2 to denote the
re-classifier using R context word. In Table 6, we show the
performance of our system in overall 23 categories and in
protein, DNA and RNA classes, and compare them with
those reported in Zhou et al. [14]. We can see that our
system has advantage over Zhou’s system in each main NE
category and in overall performance. In Table 7, we report
the partial matching results. We use LD = i (RD = i) to
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mean that the recognized NE differs from the annotation by
only 7 words at the left (right) boundary. ER and CR denote
the length of the recognized NE (the experiment result) and
the length of the annotation (the correct result).

6. CONCLUDING REMARKS

In this paper, we propose a hybrid method using maximum
entropy and dictionary /rule-based methods. Currently, dic-
tionary is only used in the post-processing stage. In the fu-
ture, we shall improve our system by also using dictionary in
the preprocessing stage. However, we need to overcome the
difficulty arising from integration of dictionary preprocess-
ing with ME. In the post-processing stage, we shall explore
more extensively on determining rules for boundary exten-
sion and entity concatenation. In addition, we shall try to
automatically generate good rules to enhance our system.
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ABSTRACT

We present a method for finding relationships between ap-
proximate patterns in contact maps. We examine contact
maps generated from protein data in order to discover spa-
tial relationships among the connected patterns contained in
those maps. We discuss our criteria for determining whether
two patterns are approximately equivalent as well as the mo-
tivation behind our work. Finally, we provide results that
validate our efforts.
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1. INTRODUCTION

Discovering important structures in molecular datasets has
been the focus of many recent research efforts in biologi-
cal and chemical informatics. These efforts have targeted,
for example, substructure analysis in small molecules and
macromolecules such as proteins and nucleic acids, as well
as material defect analysis in molecular dynamics simula-
tions [13; 24; 7; 36; 11; 12; 26; 31]. Most of the work in
discovering substructures in molecules has focused on rep-
resenting the molecule as a 3-D graph and finding frequent
subgraphs that are contained within [16; 33; 17; 21; 14; 6; 5;
32]. A problem occurs, however, when trying to determine
whether two subgraphs are equal. In general, the problem
of subgraph isomorphism is NP-complete, and as such, any
efficient solution will require the use of heuristics or similar
techniques to keep the running time manageable. Another
approach used recently has been to represent a molecule as a
contact map. The principle behind a contact map is to only
represent the interactions between points, as opposed to an
entire three-dimensional structure. Using such a represen-
tation reduces the dimensionality of the problem down to a
more manageable size. A contact map is essentially an ad-
jacency matrix, where matrix position A(%,j) will be set to 1

*This work was supported by NSF Career Grant 11S-0347662
and NSF Grant CCF-0234273
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if residues (or atoms, depending on the resolution used) are
“in contact” and 0 otherwise. The definition of “in contact”
can change depending on the data being examined, but most
applications use the Euclidian distance between two atoms,
with a user-specified distance as a cutoff threshold.

We are interested in using contact maps to represent pro-
tein molecules. A protein is composed of a series of amino
acids. This sequence is commonly referred to as the pro-
tein’s primary structure. When placed in aqueous solution,
a protein will “fold” into a three-dimensional structure, with
the structure uniquely determined by the protein’s sequence.
While the exact steps that a protein undergoes while folding
is unknown, it is known that a protein will fold into a se-
ries of substructures (a-helices and (-sheets), referred to as
secondary structures and these substructures will fold into
larger structures, called tertiary structures. Trying to deter-
mine the steps, or the pathway that a protein follows while
folding remains an open problem in biology. In the protein
domain, contact maps are useful in that they provide a vi-
sual representation of the secondary structures that make
up a protein molecule. For instance, a-helices show up as
thick bands on the main diagonal and [S-sheets appear as
bands either parallel or anti-parallel to the main diagonal,
depending on the conformation of the secondary structure.
In addition to reducing the dimensionality of the dataset and
providing a method of visualization, representing a molecule
as a contact map also allows for the efficient use of bit-wise
operations during implementation.

In the protein domain, contact maps have been used for
a number different applications, including molecular align-
ment, fold prediction, and the discovery of non-local struc-
tures (or patterns) [10; 9; 18; 29]. We are also interested in
mining contact maps to discover non-local structures, how-
ever, we intend to look for spatial relationships between the
patterns across multiple contact maps, not just within a
single map. In a contact map, non-local patterns are in-
dicative of interactions between the tertiary structures of a
protein molecule. Thus, if we can find relationships between
non-local patterns across several different contact maps, we
might be able to shed some insight into the protein folding
problem. Finally, we would like to cluster a set of proteins
based on the relationships that we generate to determine
whether there is any correlation between those relationships
and a molecule’s function. By incorporating information
from a database like the Structural Classification of Pro-
teins (SCOP) database [23], which classifies proteins based
on their 3-D structure, we would like to make predictions
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about a molecule’s function based on its contact map. In
addition, we would also like to see if the reverse is true:
whether we can use the spatial relationships we discover to
generate rules that can be used to describe a protein’s func-
tion.

One problem with protein data is that it is inherently noisy.
Therefore, one cannot treat the distances between atoms as
absolute. Two different crystallizations of a protein might
yield slightly different coordinates for a molecule and lead to
different contact maps. Thus, we need to derive a method
to discover approximate patterns, and define a notion of
approximate equivalence.

In this paper we present an algorithm for generating spatial
associations based on approximate patterns within a contact
map. We give an overview of the related work in this field
in Section 2. Our algorithm is presented in Section 3. We
show our experimental results in Section 4 and provide our
conclusions and future goals in Section 5.

2. RELATED WORK

A great deal of work has gone into the area of using contact
maps in the protein domain. Hu et al. have looked into min-
ing contact maps to generate frequent dense patterns [10].
Additional work has gone into mining non-local patterns in
contact maps [9]. A number of researchers have attempted
to structurally align two protein molecules by solving the
the Maximum Contact Map Overlap problem [18; 4]. Oth-
ers have shown that it is possible to reconstruct a protein’s
structure from a contact map even in the presence of a large
amount of noise [30]. Zhao and Karypis have developed
a technique to predict a molecule’s contact map using Sup-
port Vector Machines (SVM), which can be beneficial in fold
recognition and structure determination [35]. Several groups
have looked into using contact maps and the principles of
energy minimization to create a system to recognize a pro-
tein’s folds [28; 19; 3]. Finally, contact maps have been used
to create a heuristic solution to the protein fold prediction
problem [29].

A number of researchers have been looking into the area of
spatial association mining. Koperski et al. [15] have used the
technique to find association rules in geographic information
system (GIS) databases. The Spatial Mining for Data of
Public Interest (SPIN!) project’ has looked into the mining
of GIS databases as well as other areas such as census data.
These efforts have primarily looked at defining associations
based on a set of spatial predicates. Others have proposed
methods to discover metric-based spatial associations [22;
8], though these metrics are defined over points, not over
objects.

3. ALGORITHM

In this section, we describe the major steps taken towards

generating approximate pattern-associations in contact maps.

An overall description of our algorithm is given in Figure 1.
We will now describe each step in further detail.

3.1 Contact Map Generation

When generating a contact map, one can examine the dis-
tances between individual atoms, between residues, or even
secondary structures, depending on the resolution desired.

"http:/ /www.ccg.leeds.ac.uk/spin/index.html
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1. Generate contact maps for protein molecules.

2. Identify maximally connected patterns for each map
and represent each pattern as a feature vector.

3. Cluster the feature vectors into approzimately
equivalent groups using a k-means-based
clustering method.

4. Choose the optimal number of clusters based on the
clustering entropy.

5. Re-label each pattern in a contact map with its
corresponding cluster label.

6. Create an occurrence vector for each occurrence of a
labeled pattern.

7. Generate spatial pattern-associations based on the

occurrence list

Figure 1: Pattern-Association Mining Algorithm

We chose to look at the distances between the a-carbons
(Cq) of each amino acid. Thus, for a protein with N amino
acids, we will generate a binary matrix of size N x N. We
define each position C(4,j) in the contact map in the follow-
ing manner: Given two amino acids a; and a;, if d(as,a;),
the Euclidian distance between the C, atoms of a; and aj,
is less than a user-specified threshold ¢, then C(i,7) = 1.
Otherwise, C(¢,j) = 0. Since a contact map is symmet-
ric across the diagonal, we only examine half of the matrix
when running our experiments. In addition, we ignore the
protein backbone (the 1s on the diagonal) in all of our tests.

3.2 Extracting Maximal Connected Patterns
Every non-edge position (4,j) in a contact map has eight
neighbor bits at locations (i1, j+1), (¢+1,5), and (z,j£1).
For edge positions, we assume the out-of-bound neighbor
bits to be 0. We define a bit pattern or simply, a pattern,
to be an arbitrary collection of 1 and 0 bits. A connected
pattern is a pattern where, for every position that contains
a 1, there is a neighboring bit that is also set to 1. The min-
imum bounding rectangle (MBR) is the minimum rectangle
that encloses a pattern. We define a mazimally connected
pattern (also referred to as a feature in this article) to be
a connected pattern p where every neighbor bit not in p is
0. We apply a simple region growth algorithm to identify
all mazimally connected patterns within every protein con-
tact map in a dataset. Connected patterns of size 1 are not
considered.

3.3 Generation of Feature Vectors

One of the issues raised when working with contact maps is
how to represent a feature. Several different methods have
been employed, each with varying success. One simple ap-
proach is to represent a feature as a set of positions (%,5)
where each position in the set corresponds to a 1 in the
original pattern [9]. This method works best when the pat-
terns are sparse and spread over a large area. An alternative
approach is to represent a pattern as an array of bit strings
[10]. Both of these approaches work well when the patterns
examined are relatively small. When the number of pat-
terns and the patterns themselves are large, however, both
representation methods require an unacceptable amount of
storage space.

In this work, we often deal with features that contain thou-
sands of 1s and since we are attempting to identify non-local
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features across a large set of contact maps, we must store
thousands of unique (and potentially large) patterns. It is
clear that representing every 1 in a pattern is not a viable
option. Therefore, we must use an approximate representa-
tion, one that captures a feature’s major characteristics, is
storage-efficient and is easily explainable and interpretable.
We propose a method using the following fields to represent
a pattern:

e Height: the number of rows contained in a pattern’s
MBR.

e Width: the number of columns in a pattern’s MBR.

o NumOmnes: the number of 1s in a pattern.

e Angle: the general linear distribution trend of all the
1s in the pattern within its MBR.

e zStdDev: the standard deviation of all the 1s’
x-coordinates (this quantifies how the 1s spread along
the x dimension).

e yStdDev: the standard deviation of all the 1s’
y-coordinates.

Thus, a feature vector is a 6-tuple consisting of the above
fields. The reason that we require both the height and
width of a pattern’s MBR instead of simply using the area
is that we believe two patterns should be considered “dif-
ferent” when one MBR has a different number of rows or
columns than the other, even if both MBRs have the same
area. To compute the angle of a connected pattern we use
the least-squares method to estimate the slope of a linear
regression line. For a pattern containing n 1s, we denote
the positions of the 1s as: (1, y1)...(Zn, yn). The least-
squares method then estimates the slope (81) as:

n

Br=3 (i —2)* (yi — 7))/ Z((mi -17)%)

i=1

Notice that (; is a real number in the range +oco. This
makes the comparison of two patterns’ 81 values difficult.
Therefore, we convert the (1 value of each pattern to its
corresponding angle off the x-axis. After this conversion,
the values of an angle are in the range of [0, 180). After
the feature generation step, we are left with a set of feature
vectors. We then normalize those vectors to decrease the
impact of attributes with a large range of values.

3.4 Clustering

Our next step is to place the maximally connected patterns
into approximately equivalent groups. Two common meth-
ods can be used to do this: classification and clustering.
Classification is a supervised procedure which requires the
user to pre-label a set of connected patterns in order to build
up a set of decision rules. Such a requirement is difficult to
meet because it requires a domain expert’s participation,
which is impractical in this case due to the large number
and variety of features that are generated. Thus, clustering
is used to group the features into approzimately equivalent
groups. Besides being an unsupervised procedure, by using
an appropriate similarity metric, a clustering algorithm can
place similar elements together while separating dissimilar
items. We consider each group generated from the clustering
procedure to be an approximately equivalent pattern group.
A pattern is assigned to the group to which its feature vector
has the highest similarity.
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When determining the similarity between two patterns, we
believe the most significant parameters of the feature vec-
tor to be the dimensions of the MBR. As a result, similar
patterns should have similar-sized MBRs. We ensure this
property by weighing the height and width attributes more
than the others when clustering the feature vectors.

Once all the vectors have been clustered, we re-label each
pattern with its corresponding cluster label. By re-labeling
the patterns, we are left with a much smaller set of feature
types, as opposed to a large number of individual features.
This enables us to study the spatial relationship between
patterns in a more effective and efficient manner. We are
guaranteed that the information “lost” by our clustering
method is minimized by our clustering scheme, discussed
next.

Quantitatively Measuring the Clustering Quality

After the completion of any clustering algorithm, one should
measure the “goodness” of the clusters. Informally, a “good”
cluster is one that has high intra-cluster similarity and low
inter-cluster similarity. If one takes the opposite view and
measures the quality of a cluster based on the dissimilar-
ity of the features within that cluster, one is left with the
quality measure of entropy. The higher a cluster’s entropy,
the greater the degree of dissimilarity among the members
of that cluster. Given a set of events e1,ea,. . ., €,, where the
probability of an event e}s occurrence is p;, then the entropy
(H) of the set is defined as:

H = —p; *log2(pi)

Each feature vector in our dataset is composed of 6 at-
tributes. When computing the entropy of a cluster, we need
to compute it in such a way that ensures every attribute
contributes to the final entropy value. In addition, once we
have computed the entropy for each cluster, we cannot sim-
ply sum them to determine the goodness of a clustering run
because some clusters are larger than others and thus should
not carry the same weight. We propose a goodness measure
that weighs each individual cluster’s entropy by that clus-
ter’s size in relation to the size of the entire dataset. Thus,
for a dataset of N records, partitioned into k clusters, ci,. ..,
¢k, where a cluster ¢; (1 < ¢ < k) has an individual entropy
H; and contains N; elements, then the total entropy of this
clustering is given by the following formula:

k
H =) H;*(Ni/N)
i=1

Now we look at computing the individual entropy of a clus-
ter. We compute the entropy of a cluster using the non-
normalized feature vectors. As stated previously, each fea-
ture vector is composed of 6 attributes. The first three at-
tributes, Height, Width and NumOnes are discrete, while
the remaining attributes, Angle, zStdDev and yStdDev are
continuous. For a discrete attribute, we take every unique
value of that attribute in the cluster as a single event. We
count the total number of occurrences for that value and
then compute the probability of this value by dividing the
number of times it occurred by the number of feature vectors
in the cluster. For the Angle attribute, we assume it has a
uniform distribution and compute its entropy as follows:

1. For all the vectors in a cluster, compute the mini-
mum and maximum angle values, denoted Anglemirn
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and Anglemaz-
2. Partition the interval [Anglemin, Anglemas] into equi-
width intervals of length 30.

Each interval is treated as a single event, and we are able
to compute the entropy for the Angle attribute exactly the
same way as we compute it for a discrete attribute. For
the other two attributes, zStdDev (0,) and yStdDev (o),
we assume they follow a Gaussian distribution and therefore
their entropy can be computed by the following formula [27]:

H(z) = log,(V2me % 03,)

Finally, the entropy of a cluster is computed as:

6
H;, = ZH(Attributei)

i=1
Choosing the Cluster Size

In order to pick the “optimal” number of clusters for group-
ing our feature vectors, we run the k-means clustering al-
gorithm [20] on different k values. We then compute the
entropy for each run using the method described above and
finally, we plot the entropy vs. the number of clusters and
choose a value k where the entropy plot begins to show a
linear trend.

3.5 Mining Spatial Pattern-Associations

Creation of an Occurrence Dataset

Once the number of clusters has been chosen, we re-label
each pattern with its cluster label, i.e. the cluster ID, and
for each occurrence of a pattern in a contact map, we create
an entry with the following fields:

e p;: the cluster ID of the pattern.

e m;: the contact map ID where the pattern is located.

e 7;: the row number of the pattern’s MBR’s upper left
bit within the contact map.

e ¢;: the column number of the pattern’s MBR’s upper
left bit within the contact map.

e h;: the height of the pattern’s MBR at location (r;, ¢;)
within the contact map.

e w;: the width of the pattern’s MBR at location (r;,¢;)
within the contact map.

The above representation is analogous to the vertical format
structure used for frequent association mining [34]. The ver-
tical format allows us to efficiently generate spatial pattern
associations, as we will see shortly. From this point on, we
only deal with the re-labeled patterns.

Computing Pattern Distance

Before we define the problem of spatial pattern-set mining,
let us first define how to compute the distance between two
connected patterns. The distance between two patterns p;
and ps is defined only if they occur in the same map. Two
types of metrics can be used to compute the distance be-
tween two patterns, with the first type defined over their
feature vectors and the second over their spatial shapes and
locations in a map. We do not consider the first type as
it does not reflect the spatial distance between two pat-
terns. Several distance metrics are available based on spatial
shape and location. They include the Hausdorff distance [1],

BIOKDDO04: 4th Workshop on Data Mining in Bioinformatics (with SIGKDD Conference)

the distance between the center 1-bits in both patterns, the
shortest distance between two 1-bits from each pattern, and
the distance between two patterns’ MBRs.

In this work, we use the last metric, the distance between
two patterns’ MBRs. There are several reasons that we use
such a distance metric. It gives an approximate spatial dis-
tance between two patterns and is easy to explain. Also, it
has a better scalability compared to other metrics such as
the Hausdorff distance. There are three different cases that
can occur when computing the distance between two MBRs:

e Case 1 (Overlap): If two MBRs are overlap, then the
distance between them is 0

e Case 2 (Parallel): If two MBRs are parallel to each
other, then the distance between them is the Euclidian
distance between the two closest edges.

e Case 8 (Other): If two MBRs are neither overlapping
nor parallel, the distance between them is the mini-
mum Euclidian distance between any pair of vertices.

Spatial Pattern Creation

Given n spatial patterns P = {p1,p2,...,pn}, and k 2-D
maps M = {mi, ma,...,my}, a spatial dataset D can be
described as: D = {E;},

where E; =<p;, mj, 73, ¢, hi,w; >, and p; €EP and mj; e M
In the context of contact maps, each E; corresponds to one
occurrence of a maximal connected pattern, with p; being
the pattern’s cluster ID. Given a spatial dataset D as de-
scribed above, we define the problem of spatial association
mining as the identification of associations which are not
only frequent over the 2-D maps in M, but also meet a
user-specified pattern distance criterion.

A pattern association or pattern-set S of size k is one that
consists of k patterns {po,p1,...,pr—1}, where p; € P and
0 < i < (k—1) and distance(po,p;) < mazxDist, where
0 < j < (k—1) and mazDist is a user-specified distance
threshold. Thus, a pattern-set S covers a circular area on
a 2-D map, with its center located in po and its radius no
greater than maxz Dist. po is also called the center pattern of
S. Unless otherwise noted, the first pattern in S is its center
pattern. A pattern-set of size k is denoted as a k-set. The
support of a pattern-set is the percentage of contact maps in
the dataset in which it occurs. A frequent pattern-set is one
whose support is greater than or equal to a user-specified
parameter minSupport. Note that when we say a pattern
association is in a given map, we currently do not consider
its specific occurrences in the map, just that it exists. We
plan to integrate information regarding in-map occurrences
into our future work.

A pattern set Si is a sub-pattern-set of So, if: Vp; € S1,p; €
S> and they have the same center pattern. Accordingly,
S> is a super-pattern-set of S;. For instance, <A,B,C> is
a sub-pattern-set of the set <A,B,C,D>. A mazimal fre-
quent pattern-set is one that does not have a frequent super-
pattern-set.

Pattern-Set Generation: Basic Algorithm

The basic principle of our pattern-set generation algorithm
is to generate pattern-sets in an increasing level-wise man-
ner, starting with pattern-sets of size 1. The first step is
to identify all the individual patterns that reside in at least
minSupport contact maps. Given that all pattern occur-
rences are organized in the vertical format representation,
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this step is fairly easy to implement. The second step is to
generate all frequent 2-sets, the third step to generate k-sets
where k£ > 2, and the last step is to generate only maximal
pattern sets, which is optional.

The anti-monotonicity property of a frequent spatial pattern-
set is used to facilitate the generation of frequent k-sets with
k > 2. The property of anti-monotonicity states that a
pattern-set cannot be frequent if one of its sub-pattern-sets
is infrequent. Therefore, when generating k-sets, we only
need to consider those where all the (k-1)-sub-pattern-sets
are also frequent. We define a candidate pattern-set as one
where all its sub-pattern-sets are frequent.

In the basic algorithm, for a candidate 2-set < p;,p; >, a
brute-force method is used to check whether it is frequent
by examining all possible location combinations of p; and
pj in a map. Such a method has very poor performance,
given that a pattern can occur at multiple locations within
a contact map.

A similar process is used to generate all frequent k-pattern-
sets of size k > 2 by first generating candidate k-sets based
on the frequent (k—1)-sets, then computing their support to
see if they meet the minSupport threshold. Since only cir-
cular pattern-sets are considered in this work, we do not
need to compute the pattern distance in this step. For
example, if we know both < A;B > and < A,C > oc-
cur at location (m;,r,c), where m; is the ID of a map,
and (r,c) is the location of the upper left bit of the MBR,
then we know <A,B,C> must also occur at (m;,r,c), as
we are sure that both B and C are within the distance of
maxzDist from A at (ms,r,c). By the same token, if both
S1 = {so0,81,...,8k—1,p} and S> = {so, $1,- .., Sk—1,q} OC-
cur at position (mg,r,c), then Sz = {so,s1,...,8k—1,p,¢}
must also occur at (m;, r,c).

Pattern-Set Generation: Optimizations

Two optimization techniques are employed to improve per-
formance when generating all 2-pattern-sets. One quickly
eliminates the maps that do not contain a certain candidate
pattern-set, the other prunes patterns that are sure not to
be within mazDist of a pattern.

To eliminate maps that do not contain a certain candidate
2-set, we assign each map in the dataset a unique ID that re-
mains fixed throughout the entire algorithm. By doing this,
we can record the IDs of the first and last map where a pat-
tern or pattern-set appears, denoted as M min and Mmpmaqs. We
can then define an interval [Mmin, Mmaz] Which represents a
superset of the maps in which a pattern or pattern-set exists.
For a 2-set <p;,p; >, we intersect p;’s [Mmin ,Mmaz] interval
with that of p;’s. Then we decide whether a further step is
needed to determine this set’s support. If the intersected in-
terval spans fewer than minSupport maps, such a set can be
immediately discarded; otherwise, a further step is needed
to decide whether it is frequent, which can be done much
faster than the non-optimized version since we now have a
much smaller set of maps to examine.

In order to prune away patterns that are certain to be greater
than maxDist from a given pattern, the following method
is used. For a given pattern p;, we order its occurrences by
(ri, ¢;) values. Once we have all of a single pattern’s loca-
tions ordered in a map, the following step can be taken to
prune far-away patterns. For a pattern p at location (r,c)
in a map, where h is the height of p’s MBR . at this location
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and (r,c) is the location of the upper left bit of p’s MBR, we
first divide the map into the following 3 areas:

e A;-the area above the row

with row number =[(r-maxDist)]
e As-the area under the row
with row number =[(r+h+mazDist)]

e Ajs-the remaining area
We determine into which of these three areas another pat-
tern q is located before computing its distance to p. If q lies
in either in A; or As, we are sure that it cannot be close to
p. Since a pattern’s occurrences in a map are ordered, we
can use a binary search to mark the last occurrence of ¢ in
A; and the first occurrence of g in A3. Once this marking is
complete, we only need to compute the distances from p to
q between the two marked occurrences (i.e. if g lies in Aj).
The other optimization technique introduced to improve the
performance is the usage of equivalence classes. An equiv-
alence class is a collection of frequent pattern-sets, where
all sets have the same prefiz. A set’s prefix is composed
of all the patterns in a set except the last one. The size
of an equivalence class is defined as the size of its corre-
sponding pattern-sets. Obviously, all sets in an equivalence
class have the same center pattern. For instance, suppose
P = {A,B,C}. P would have the following size-2 equiv-
alence classes: {< A, A> <A B> <AC>}, {<B/A>
,<B,B><B,C>}, and {<C,A>,<C,B><(C,C>}
(Note: we assume all the pattern-sets are frequent). One
potential size-3 equivalence class for P is {< 4,4, A > <
AA,B>,<A A C>}.
The optimized algorithm to generate frequent pattern sets
of size greater than 2 is as follows: We first partition all
frequent 2-sets into equivalence classes. As demonstrated
in [25], all equivalence classes are independent of one an-
other. Therefore, we can work on one equivalence class a
time to generate larger frequent sets. This allows us to effi-
ciently mine frequent spatial associations in a large dataset,
as we are dealing with equivalence classes individually in-
stead of the whole dataset.

Evaluating Frequent Pattern-Sets

For a frequent pattern-set, one would like to define a mea-
sure of “usefulness.” This measurement is often subjective
and domain-specific. In the protein context, we propose
using a pattern-set’s entropy to measure its “usefulness.”
We do this by integrating the SCOP lineage information
of a pattern-set’s associated proteins. We realize several
other public databases also provide a method of structure-
based protein classification, and that their classifications for
a given protein may disagree, but for the time being, we use
the SCOP classification.

For each frequent pattern-set, we identify the list of pro-
teins contained in that pattern-set. We then classify these
proteins into different groups based on a protein’s SCOP
lineage. A protein’s SCOP lineage is organized into 6 lev-
els: Ly : class, L2 : fold, L3 : super-family, Ls : family,
Ls : protein, and Lg : species. In our experiments, we look
at the first 4 levels.

Once the N proteins contained in a pattern-set S are clas-
sified at a certain SCOP level, we compute the entropy to
measure how well these proteins are distributed among dif-
ferent SCOP categories. Take L1: class as an example.
L, is divided into 11 sub-classes, denoted {c1,c2,...,c11}-
When computing the entropy for S at this level, we first
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count the number of proteins in each sub-class, denoted
{ni,n2,...,n11}. The entropy is computed as:
11

H(S) =3 —(ni/N) x logs(n/N)
i=1

The pattern-set generation algorithm provides a parameter
that allows a user to specify a maximum entropy at a given
SCOP level. As with other user-specified parameters, the
value of this parameter differs from dataset to dataset and
is determined empirically.

As we discussed in Section 2, there has been a great deal
of work toward the mining of spatial associations. We feel
that our work differentiates itself from existing efforts in a
number of areas:

e Vertical format data representation: To the best of our
knowledge, there has not been any work in spatial data
mining that represents a database using a vertical for-
mat. Accordingly, we are the first to use “equivalence
classes” to expedite the process of mining spatial data.
Metric-based spatial associations: Unlike the spatial
associations proposed in [15], where a spatial associa-
tion is defined over a set of spatial predicates (such as
close_to() and west_of(), which are pre-defined and can
only approximately describe the relationships between
spatial objects), in our work, the relationship between
spatial objects in a pattern-set is accurately quantified
by Euclidian distances.

based spatial association mining algorithms [22; 8],
have defined their distance metrics over points instead
of objects. In this case, however, using points instead
of objects can lead to information loss. The distance
metric implemented here functions over actual 2-D ob-
jects; in this case, MBRs. The metric quantifies the
topological relationship between two MBRs when they
overlap or are parallel to each other and takes into ac-
count the size of the MBRs otherwise.

Quantitative measurement of “interestingness”: An
entropy-based measurement is proposed to indicate
whether a particular pattern-set is “interesting.”

4. EXPERIMENTAL RESULTS

In this section, we present the experimental results carried
out on 3 different datasets.

4.1 Datasets

To generate our contact maps, we used proteins taken from
the Protein Data Bank (PDB) [2]. We generated three
different sets of contact maps using a cut-off distance be-
tween amino acids of 4.5A, 6A, and 7.5A. Table 1 shows the
datasets generated. Also given in the table are the num-
ber of unique feature vectors, the total number of feature
occurrences and the average number of features per protein.

4.2 Clustering Results

To cluster the feature vectors, we used a k-means-based clus-
tering algorithm, where the Euclidian distance between two
feature vectors is used as the similarity metric. As men-
tioned previously, in order to choose an optimal number of
clusters, we ran the clustering algorithm multiple times for
each dataset with different values for k. Once we obtained
the clustering results, we computed the entropy for each
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2-D object-oriented spatial associations: Existing metric-

cluster and plotted the weighted sum of the entropy versus
the number of clusters (k). Based on the plot, we chose
the value of k where entropy became approximately linear.
When this criterion leads to multiple solutions, we chose
the one that has smaller H(Height) and H(Width), i.e. the
one that gives a tighter clustering solution in terms of a
connected pattern’s height and width.

Figure 2 shows the entropy plots for the three datasets.
Based on the entropy values and H(Height) and H(Width),
24 and 32 clusters are the k values selected for all three
datasets. We evaluated both and the results using 24 clus-
ters were always worse in terms of the quality of pattern-sets
than those obtained using 32 clusters (see Section 4.3). One
possible explanation for this result is that placing the fea-
tures into 24 approximate equivalence groups eliminates the
information that can distinguish one pattern from the other
when 32 groups are used.

4.3 Evaluation of Circular Spatial Pattern Sets

‘We only consider frequent pattern-sets whose SCOP lineage-
based entropy is less than a certain threshold. In addition,
when both a pattern-set and its super-pattern-set have an
entropy below threshold, only the latter is kept for analysis.
We denote the pattern-sets retained after these two steps
as low entropy mazximal pattern-sets, or quality pattern-sets.
Three parameters are used to generate low entropy maxi-
mal pattern-sets, minSupport, maxDist, and the maximal
pattern-set entropy at one or more SCOP levels. For conve-
nience, we refer the last parameter as the entropy cut-point.
If max Dist is fixed, one can observe that the set of frequent
pattern-sets derived at a lower minSupport value must be
a superset of the set of frequent pattern-sets derived with
a higher minSupport. Therefore, in order to get a larger
collection of pattern-sets, we set the minSupport to a rel-
atively low value of 0.02. As for the maxDist parameter,
various values were applied to each dataset. Based on the
experimental results (SCOP-based entropy used as the main
leverage), we empirically chose the following values for the
3 datasets: 32 for the 4.5A dataset, 45 for the 6.0A dataset
and 55 for 7.5A. Like the other parameters, the maximal
SCOP-based pattern-set entropy is selected empirically. In
our experiments, we only look at the first 4 SCOP levels.
At a given SCOP level, we prefer a pattern-set that has a
lower entropy, since a lower entropy usually indicates that a
large percentage of the cluster’s proteins belong to the same
SCOP group. The entropy cut-points we chose correspond-
ing to SCOP levels L; and L» are 2.0 and 3.2, respectively.
For the other two levels, the entropy cut-point is 3.7.

Table 2 presents the number of low entropy maximal pattern-
sets generated in each dataset. In order to compare results
between the datasets, minSupport is set so that the value of
(Numbero fproteins) x minSupport is the same across all
datasets. Thus, 0.02 is used for the 6.0A dataset and 0.01
for the other two.

A closer look at the results shows that the pattern-sets
demonstrate different clustering ability. Nearly all the sets
from the 4.5A dataset consist of Small proteins, a sub-class
at SCOP level Li. In other words, for most pattern-sets,
their associated proteins are classified as small proteins in
SCOP. One example is the pattern-set (10 1 22) (Note that
each value in a pattern-set corresponds to a clusterID ob-
tained by clustering the individual feature vectors). Such a
pattern-set was found in 22 proteins, which had the follow-
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Threshold Number of Number of

Number of Total Average Number of

Distance Proteins Unique Features Feature Occurrences Features per Protein
4.5 2,169 23,148 74,396 34
6.0A 1,090 36,967 175,525 52
7.5A 2,122 53,817 410,041 122

Table 1: Contact Map Datasets

Entropy vs. Cluster Size.

“enitopy” ——

Entropy
Entropy

Entropy vs. Cluster Size

Entropy vs. Cluster Size

"entropy” —— entiopy” ——

Entropy

(a) (c)
Figure 2: Clustering results: (a)4.5 A (b)6 A (c)7.5 A
dataset | H(L1) <2.0 | H(L1) <2.0andH(L2) <32 | #:H(L:) <15 | #:H(L1)<1.5 and H(L2) <1.7)
4.5A 433 142 19 0
6.0A 214 93 47 11
7.5A 1102 468 314 13

Table 2: Low entropy maximal pattern-sets

ing SCOP L; distribution: 2 all-8, 2 a + 8, 17 small and
1 designed. Unlike the 4.5A dataset, the pattern-sets from
the 7.5A dataset tend to favor all-3 proteins.

One other observation to be drawn about the pattern-sets
generated for the 4.5A dataset is that very few of them have
H;, < 1.5. Empirically, we found that if a pattern set’s en-
tropy at a certain SCOP level was less than 1.5, then nearly
all of its associated proteins belonged to the same SCOP
sub-group. In addition, we found that the 4.5A pattern-
sets generally occur in very few proteins. One possible ex-
planation for this behavior might be that the 4.5A contact
maps are too sparse to capture most structural information,
while the 7.5A maps are so dense that they introduce too
much noise which would confuse the structural distinction
for other types of proteins such as all-a, a + 3, etc.

The pattern-sets from the 6.0A dataset have a relatively bal-
anced distribution in terms of the number of protein groups
they are able to distinguish. For instance, the pattern set
(5 510 25 26), was found in 23 proteins with the following
SCOP L, distribution: 21 all-, 1 all-B and 2 a/B. (Please
see Figure 3(b) for a visualization of the above pattern-set
in the all-a protein 1a2f (ID from the PDB)). On the other
hand, the pattern set (3 3 7 18) is good at distinguishing all-
B proteins. Among the 49 proteins where this set occurs, the
following SCOP L; distribution was found to exist: 1 all-o,
39 all-B, 2 a/B, 5 @+ B, 1 membrane and cell surface, and
1 designed. (Please see Figure 3(a) for an illustration of the
above pattern-set in the all-3 protein 1a25 (ID from PDB)).
One property illustrated by the pattern-sets from the 6.0A
dataset that does not exist in the the 4.5A dataset is that
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there exists a collection of maximal pattern-sets that have
low entropy (< 1.5) at the SCOP level Li (some are even
close to 0) and that there exists a collection of maximal
pattern-sets that have low entropy across the first four SCOP
levels (see Table 2). An example pattern-set that presents
both of these properties is (10 5 10 28). There are 23 pro-
teins that contain this pattern-set, and their distribution at
each of the first four SCOP levels is shown in Table 3.

4.4 Performance

In Figure 1, we give an overview of our mining algorithm.
In this section, we provide a high-level analysis of the algo-
rithmic running time of each step in that algorithm. Please
note that we provide this analysis without proof. Before
proceeding, however, we define several variables that will be
used to help quantify the running time of each step. Let M
be the number of protein molecules in a given dataset, and
N, be the number of amino acid residues contained in the
largest protein molecule. Ny is defined to be the maximum
number of occurrences of a feature in a contact map, NV, the
total number of unique features in the dataset, and N, the
total number of occurrences of all the features in a dataset
of M contact maps.

e The generation of contact maps occurs in order
O(MN,?) time.

e The time required to identify all the features in a
dataset is O(MN,?) + O(N,). Of this, O(MN,?) is
the time required by the region growth algorithm to
extract all the maximally-connected patterns in the
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Figure 3: (a) The locations of pattern-set (3 3 7 18) in protein 1a25. (b) The locations of pattern-set (5 5 10 25 26) in protein
la2f.

Ly:class Ly:fold Lj:super family L4:family
lall 8 1 SH3-like barrel 1 SH3-like barrel 1 SH3-domain
20 o/ 20 PLP-dependent transferases 20 PLP-dependent transferases 20 AAT-like
1 Peptides 1 Amyloid peptides 1 Amyloid peptides 1 Amyloid peptides
1 designed 1 Alpha-t-alpha 1 Alpha-t-alpha 1 Alpha-t-alpha

Table 3: The distribution of 23 protein containing the maximal pattern-set (10 5 10 28) with a low entropy across the first
four SCOP levels.
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maps and O(N,) is the time needed to identify the
unique features. For the 7.5A dataset, which contains
over 400,000 feature occurrences, the time to complete
this step was less than 20 minutes.

e The time required by one iteration of the k-means-
based clustering algorithm is O(kN, ) with k being the
number of clusters. Of all the steps in the algorithm,
this step took the longest, as we must collect a set
of cluster solutions before we can decide on an opti-
mal number of clusters. For each value of k, we let
the algorithm run for 300 iterations to make sure any
solution is approximately optimal. The time for one
clustering run ranged from from 1 to 2 hours. The
larger the dataset, the longer the clustering would take
to complete, but the running time is not affected by
the number of clusters that were generated. Once the
number of clusters has been selected, it is possible to
re-use the clustering solution to label the features for
a new set of proteins, provided that the same distance
threshold is used when generating the contact maps.

o The fourth step of the algorithm selects an optimal
number of clusters based on the clustering entropy of
a clustering run. It requires O(V,) time to compute
the entropy for a given run.

o Re-labeling each pattern and creating an occurrence
vector requires a running time of O(N,) for a particu-
lar dataset.

e The final step of the algorithm involves the actual gen-
eration of frequent spatial pattern-associations. The
time required in this step can be decomposed into 3
phases:

1. Discover all frequent 1-sets. This takes O(N,)
time.

2. Generate all frequent 2-sets, which can be done in
O(MN;?) time. This is so because in the worst
case, one needs to compute the distance between
every pair of feature occurrences in a map.

3. Generate all pattern-sets of size greater than 2.
It is hard to quantify the time required to gener-
ate a candidate set and all the frequent pattern-
sets of a given size, because the time is not only
impacted by the two user-specified parameters,
minSupport and maxDist, but is also dataset-
specific. As a result, we provide only the time
required to confirm whether a candidate pattern-
set is frequent, which is O(MNy). The time is
linear to the number of occurrences since there
is no need to compute the distance between two
feature occurrences in this step.

Please note that the performance analysis given here
assumes the worst-case scenario. In practice, the two
threshold parameters, minSupport and maxzDist, can
play a significant role in affecting the performance of
this step.

S.  CONCLUSIONS AND ONGOING WORK

In this paper we present our algorithm for discovering spatial
relationships between approximately equivalent patterns in
contact maps. While this work is still in the preliminary
stages, we were able to find several interesting relationship
rules. With further tuning of the algorithm parameters, we
hope to find even more biologically-meaningful results.
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We are currently extending this work in several aspects:
First, we are implementing the other distance metrics de-
scribed in this paper and intend to run an exhaustive com-
parison between them. Second, we plan to extend the pattern-
set mining algorithm so that it can also generate pattern-sets
of other spatial relationships. For example, we are inter-
ested in finding pattern-sets that have all pairs of involved
patterns within a certain distance, and those that can be
spatially arranged as a sequence, with the distance between
any two adjacent patterns below a certain threshold. Fi-
nally, we plan to take into account a pattern-set’s intra-map
occurrences, including both the number of occurrences and
the locations of those occurrences in a given map.

In addition, we would like to expand this work to other do-
mains. We have access to several datasets containing infor-
mation about the agricultural yield of farm fields for specific
crops over a series of years. By generating contact maps for
this dataset and applying our algorithm, it might be possi-
ble to determine whether there is any relationship between
certain areas and specific crops.
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ABSTRACT

Protein-protein interactions are of great interest to biolo-
gists. A variety of high-throughput techniques have been
devised, each of which leads to a separate definition of an
interaction network. The concept of differential association
rule mining is introduced to study the annotations of pro-
teins in the context of one or more interaction networks.
Differences among items across edges of a network are ex-
plicitly targeted. As a second step we identify differences
between networks that are separately defined on the same
set of nodes. The technique of differential association rule
mining is applied to the comparison of protein annotations
within an interaction network and between different interac-
tion networks. In both cases we were able to find rules that
explain known properties of protein interaction networks as
well as rules that show promise for advanced study.

General Terms

association rule mining, protein interactions, relational data
mining, graph-based data mining, redundant rules

1. INTRODUCTION

Association Rule Mining (ARM) is a popular technique for
the discovery of frequent patterns within item sets [1; 2;
13]. The technique has been generalized to the relational
setting [18; 10; 22] including the study of annotations of
proteins within a protein-protein interaction network [22].
In many bioinformatics problems, biologists are interested in
comparing different sets of items. Rather than identifying
patterns among protein annotations, biologists often want
to contrast annotations of interacting proteins [25]. Going
one step further, is also a want to contrast different network
definitions to understand which experimental technique to
use for which purpose.

Several definitions of protein-protein interactions have been
introduced. For our study we concentrate on three: Physical
interactions are determined through experiments such as the
yeast-two-hybrid method [16; 30] and indicate a level of bio-
chemical interaction. Genetic interactions are derived from
in-vivo experiments in which the lethality associated with
mutation of two genes is tested [26]. Domain-fusion inter-
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actions are detected in silico by comparing different species
[19; 28]. Two genes in one species are labeled as interacting
if they have homologs in another species and those homologs
are exons of the same gene. Previous approaches to network
comparison have studied each network in isolation and have
compared statistics between networks [25; 27]. We use dif-
ferential association rule mining techniques to identify rules
that directly contrast the differences in annotations across
interactions, and between different types of interactions.
Can differences be identified from standard ARM output?
Assume, for example, that proteins with ”transcription” as
annotation are found to frequently interact with proteins
that are localized in the "nucleus”. This rule may be due to
two independent rules, one that associates ”transcription”
and "nucleus” within a single protein, and others that rep-
resent a correlation of ”transcription” and/or "nucleus” be-
tween interacting proteins. In fact, since trascription takes
place in the nucleus this would make sense. We would not
consider this a sign of a difference between interacting pro-
teins. The same type of rule could, however, indeed stand
for a difference. Consider the rule that proteins in the ”nu-
cleus” are found to interact with proteins in the "mitochon-
dria”. It can be expected that a single protein would not
simultaneously be located in the ”nucleus” and in the ”"mito-
chondria”. We can therefore assume that the rule highlights
a difference between interacting proteins and may identify
an instance of compartmental crosstalk. This rule is signifi-
cantly more interesting to a biologist than the rule relating
”nucleus” and ”transcription”. It is much more expressive
of the properties of the respective interaction network.

So far we have distinguished between the two examples on
the basis of our biological background knowledge. Two ap-
proaches could be taken to translate the idea into a useful
ARM algorithm. We could devise a difference criterion in-
volving correlations between neighboring nodes and/or rules
found within individual nodes. Such an approach would not
benefit from any of the pruning that has made ARM an
efficient and popular technique. Our algorithm takes an ap-
proach that makes significant use of pruning: Only those
items are considered for the ARM algorithm for which each
item in a set is unique to only one of the interacting nodes.
The rule associating ”transcription” and ”nucleus” would
thereby only be evaluated on those ”transcription” proteins
that are not themselves in the ”"nucleus”, and those ”nu-
cleus” proteins, that are not themselves involved in ”tran-
scription”.

There are other reasons why a focus on differences is more

page 72



Node
ORF Annotations

Edge
ORFO ORF1

YPR184W {< cytoplasm >}
YER146W  {< cytoplasm >}

YNL287TW  {< SensitivityT Oaaaod >}
YBL026W  {< transcription >, < nucleus >}
YMR207C  {< nucleus >}

YPR184W YER146W
YNL287W  YBLO026W
YBL026W  YMR207C

Figure 1: Initial Tables

effective for association rule mining in networks than a stan-
dard application of ARM on joined relations. Traditionally
association rule mining is performed on sets of items with
no known correlations. Interacting proteins are, however,
known to often have matching annotations [27]. Using asso-
ciation rule mining on such data, in which items are expected
to be correlated may lead to output in which the known
correlations dominate all other observations either directly
or indirectly. This problem has been observed when rela-
tional association rule mining is directly applied to protein
networks [22; 4]. Excluding matching items of interacting
proteins is therefore commonly advisable in the interest of
getting meaningful results alone [4]. Matching annotations
can be studied by simple correlation analysis, in which co-
occurrence of an annotation in interacting proteins is tested.
In the presence of such correlations, association rules are
likely to reflect nothing but similarities between interacting
proteins.

We use the concept of including only items that are unique to
one of a set of interacting nodes to further address the task
of comparing different interaction networks. In principle
networks can be compared by studying each individually
and comparing the results. When applying association rule
mining to annotations in protein interaction networks, such
an approach faces two difficulties. First, not all biological
experiments have been done on all proteins. It is, therefore,
safest to base a comparison of two networks only on proteins
that show both types of interaction. Second, association
rule mining gains its computational efficiency from item set
pruning. Any test that is done at a later time removes rules
that were produced unnecessarily. If the selection process
can be converted to act on item sets themselves, pruning is
restored. We demonstrate how the concept of unique items
can be used to extract differences between networks.

2. DIFFERENTIAL ASSOCIATION RULES

We assume a relational framework to discuss differences
within and between networks. The concept of a network
may suggest use of graph-based techniques. Graph-theory
typically assumes that nodes and edges have at most one
label. Relational algebra on the other hand has the tools for
the manipulation of data associated with nodes and edges.
A relational representation of a graph with one type of nodes
requires one relation for data associated with nodes, which
we will call node relation, and a second relation that de-
scribes the reflexive relationship between nodes, the edge
relation. To compare networks we will use multiple edge
relations. Association rule mining is commonly defined and
implemented over sets of items. We combine the concept
of sets with the relational algebra framework by choosing
an extended relational model similar to [13] . Attributes
within this model are allowed to be set-valued, thereby vio-
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lating first normal form. We go one step further by allowing
sets of tuples, i.e. relations themselves, as attribute values.
Consider a database with node relations Ry (7, D) where T'
is a tuple identifier and D is a set of descriptors. Tuples in
Ry have the form < t;, D; > where D; is a relation of de-
scriptors < d; > (see figure 1 table Node for representation).
Descriptors are tuples with just one attribute of domain D.
We call the < d; > descriptors to distinguish them from
items. Items have a second attribute to identify their node
of origin, see definition (3). We will call the sets of items
that form the basis for association rule mining basis set.

Definition 1. A single-node basis set is identical to a set
of descriptors D; C D. This definition is equivalent to the
basic definition of an item set used in association rule mining

1.

Our goal is to mine relational basis sets that will be con-
structed from multiple descriptor sets that belong to the
same tuple of a joined relation. An edge relation has two
attributes Rg(T3,Tr), with T; as well as T being foreign
keys that refer to identifiers in one or more node relations
(see figure 1 table Edge for representation). Edge relations
can, in principle, have the alternate form Rg(T}, T, D))
with D) being a set of edge descriptors. We could split
such a relation into a separate node relation as well as a
standard edge relation as in [7].

Joined-relation basis sets are formed in multiple steps. Edge
and node relations are joined through a natural join opera-
tion (). Attribute names are changed [11] such that they
are unique. We use this step to ensure that information
about the origin of different attributes is maintained. At-
tributes are identified by consecutive integers to which we
will refer as origin identifiers g € G = {0, ..., (n — 1)} where
n is the number of node relations. This information will be
used in a later step to actually modify the descriptors ac-
cording to their origin before joined-relation basis sets are
constructed from multiple descriptor sets.

Definition 2. A joined-relation basis set is derived through
the following steps. A 2-node joined-relation is created by

Ran  «— poro.0(Rn(T, D)) * por17(Re(T1,Tr))
*p1.7.1.0(Rn(T, D)). (1)

Generalization to n-node joined-relations is straight forward.
Note, however that we can have multiple alternatives. For
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Figure 2: Representation of basis sets.
TID Join
1 {< 0, cytoplasm >} {< 1, cytoplasm >}
2 {< 0, SensitivityT Oaaaod >} {< 1,transcription >, < 1,nucleus >}
3 {< 0, transcription >, < 0, nucleus >} | {< 1, nucleus >}
TID Unique
1 NULL NULL
2 {< 0, SensitivityT Oaaaod >} {< 1,transcription >, < 1,nucleus >}
3 {< 0, transcription >} NULL

Figure 3: Join and Unique

a 4-node joined-relation we can have

Rinvi —  po.t1,0.0(RN(T, D)) * po.r1.7(Re(Ty,Tr))
*p1.7,1.0 (R~ (T, D)) * p1.7,2.7(Re(T1, T"))
xp2.7,2.0 (R~ (T, D)) * p2.73.7(Re(T1,Tr))
*p3.1,3.0(RN (T, D)) (2

Ring <« poro.p(Rn(T,D))* por1r(Re(Ti,T))

x pr.72.7(Re(Ti,Tr))

xp1.7,1.0 (RN (T, D))
) * prrar(Re(Ti, 1))
).

xp2.7,2.0 (RN (T,
xp3.7,3.0 (R~ (T, D

SRS

®3)

Notice that in equation (2) the joining corresponds to a chain
of 0-1-2-3 and in equation (3) there is a branch 1-2 and 1-
3. Figure (2) illustrates forming basis sets given a simple
network, we can see the alternatives at the 4-node join. At-
tribute renaming pa,...a,, is used as defined in [11]. We then
apply a Cartesian product of a relation consisting of a sin-
gle tuple containing the origin identifier < g > with each
descriptor set individually. It converts the descriptors d;
into tuples < g,d; >. ¢ is the same origin identifier that is
used as prefix in the attribute name

<g>x{<do>,..,<dp>}
{< g,do >,...,< g,di >}. (4)

g.Ii

Definition 3. An item is defined as a tuple < g,d; >
where ¢ is an integer which is the origin identifier and d;
is the descriptor value of an attribute.

Note that we will use an abbreviated notation for items in
the results section (g.d; instead of < g¢,d; >). A joined-
relation basis set B; is derived as the union of descriptor
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sets for each tuple identified by ¢; of the joined relation. For
a 2-node joined-relation basis set or 2-node basis set we have

Vt; B; =0.1; Ul.1;. (5)

The set of all basis sets is C' = {Boy, ..., Bm } where m is the
number of tuples in the joined relation an example of the
product can be seen in figure (3 table Join) as the result of
the operations to the relations in figure (1).

Definition 4. A uniqueness operator U is defined as fol-
lows. For each set-valued attribute on which it operates the
set difference is computed between that attribute and the
union of all other attributes of that domain.

U(Run (t:,{0.1, ..., (n — 1).I})) :
(n—1)
vt VWU inl =il — | kI (6)
k=0,k#j

with g.I; defined as in equation (4).

Figure (3 table Unique) shows the results of the unique op-
eration on the joined portion. In this paper the uniqueness
operator is applied to all set-valued attributes of a joined-
relation but other choices are possible, such as requiring
uniqueness only across a subset of edges.

Definition 5. A unique item basis set is defined through
the following steps. An n-node joined-relation is created as
described in definition (2). The uniqueness operator is ap-
plied to all set-valued attributes. Then the Cartesian prod-
uct is used to create item tuples, and the process continues
as for joined-relation basis sets.
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Figure 4: Left: Two graphs defined over the same set of nodes, Right: Network comparison basis set

Definition 6. A network comparison basis set differs from
a unique node item basis set through the use of different edge
relations. In the current paper we limit ourselves to 3-node
network comparison basis sets. We only consider those edges
that are unique to one of the network definitions. Edges that
are represented in both networks are removed since they
cannot give us information on differences between networks.

Rsne «— poro.p(Rn(T,D))*por1r(Rei(Ti,Tr))
#p1.7,1.0 (R~ (T, D)) * p1.7,2.7(RE2(T1, 7))
*p2.1,2.0 (Rn(T, D)) (7)

Compare Figure (4) for a graphical representation of the ex-
traction of a network comparison basis set. The other steps
are done as for unique node item basis sets. The unique-
ness operator is applied to all nodes. Assume for example
a protein with a physical interaction between 0 and 1 and
a genetic interaction between 1 and 2. Assume further a
standard basis set as {0.A, 0.B, 1.C, 2.A, 2,D}. This would
lead to a network comparison basis set of {0.B, 1.C, 2.D}.
Examples of reported rules would be 0.B — 1.C which is
specific to the physical interaction and 1.C' — 2.D which is
specific to the genetic. We limit the scope of our algorithm
to rules that involve only one of the networks as definition
(8). Any such rule will automatically represent a property
that is in contrast to the other network.

Definition 7. Given the above definitions of basis sets, as-
sociation rules are defined in their standard way. A rule has
the form X — Y where X and Y are sets of items (see defi-
nition 3). The support of a rule is the probability P(X UY)
within the set of all basis sets C. The confidence of a rule
is the conditional probability P(Y|X). The set of all items
in the rule is an item set ] = X UY.

It is important to understand that any relational association
rule depends on the context in which it was generated. A
rule that involves only two nodes related by one edge can, in
principle, be found in a 2-node join-relation and any higher
order relation. The support and confidence will however
vary depending on that context, and a rule that is strong
in one context may not be so in another. We follow [7] in
always using the lowest order possible. For network compar-
ison purposes we need three entities to derive 2-node rules.
See definition (6). The problems associated with multiple
contexts leads us to the following definitions.
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Definition 8. An item set J has network comparison scope
if it represents all nodes that are related through one edge
relation and no nodes that are related through a different
edge relation. If the item set is furthermore unique, support
and confidence based on this item set will reflect network
properties that are specific to one type of network and not
to any other network involved in the comparison. For in-
stance given we have network A covering origin identifiers
0,1 and network B covering identifiers 1,2 then the itemset
{0.nucleus,1.cytoplasm,2.transferase} would not be in net-
work comparison scope but itemsets {0.nucleus,1.cytoplasm}
and {1.cytoplasm,2.transferase} would be.

Definition 9. An item set J is out-of-scope if one or more
nodes are not represented, i.e., if |rg(J)| < n where || in-
dicates the cardinality, 7 is the relational projection opera-
tion, G is the identifier attribute of the item tuples, and n
is the number of node relations that were joined. In figure
(3 table Unique) item sets for TID 1 and 3 are considered
out-of-scope on the transaction level.

Definition 10. An item set J is repetitious if at least one
descriptor occurs more than once, i.e., if |7p ()| < |J| where
mp is the projection on the descriptor attribute. Two items
are considered repetitious if they belong to the same joined-
relation basis set, their origin identifier differs, and their
descriptors are equal. Figure (3 table Join) item sets for
TID 1 and 3 have repetitious items.

3. RELATED WORK

Oyama et al. [22] apply association rule mining to joined-
relations of physical protein interactions and their annota-
tions. This work notes the problem of what we term repe-
titious item sets but does not resolve it. Relational associ-
ation rule mining has more generally been addressed in the
context of inductive logic programming [10; 18; 17]. These
approaches are very flexible and leave most choices up to the
user. This paper, on the other hand, addresses the question
of what specifications allow extracting meaningful rules. It
is useful to notice that the major portions of differential rule
mining can be imported to different frameworks including
ILP.

Some biological publications have touched on the concept
of comparing networks. The authors in [27] address aspects
such as density of the networks and how well the genetic in-
teractions predict physical interactions. Another work [23]
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looks at correlation and interdependency characteristics be-
tween the genetic and physical networks. The distribution
of annotations on an individual network is discussed in [25].
These approaches fall short of contrasting annotations in
different networks. A further related research area is graph-
based ARM [15; 21; 31; 6]. Graph-based ARM does not
typically consider more than one label on each node or edge.
The goal of graph-based ARM is to find frequent substruc-
tures in that setting.

Removal of a class of redundant rules is an important part
of differential rule mining. Redundant rules have been stud-
ied, and closed sets [8; 33] have proven a successful approach
to their elimination. Closed sets alone do not, however, ad-
dress the problem of contrasting different nodes or networks.
Since we know what kinds of rules we want to eliminate, it
is significantly more efficient to do so at the relational join
level. This strategy has the added benefit of correcting sup-
port and confidence of all rules to reflect only the contribu-
tion that is non-redundant to a combination of repetitious
and out-of-scope item sets.

There are other areas of research on ARM in which related
transactions are mined in some combined fashion. Sequen-
tial pattern or episode mining [2; 32; 24; 34] and inter-
transaction mining [29] are two main categories. Some sim-
ilarities in the formalism can be observed since we are also
interested in mining across what can be considered transac-
tions. A tuple in a joined-relation can ultimately be com-
pared with sequences of transactions. Overall the goals of
these approaches are too different to be applicable to our
setting in any direct way.

4. IMPLEMENTATION

The differential association rule mining algorithm was im-
plemented in a modular fashion. Three major parts are dis-
tinguished. Preprocessing (steps 1.-3.) includes application
of the uniqueness operator U (see definition 4 in section 2).
The actual item set generation (step 4.) is done based on
sets of items that appear as regular sets to the ARM pro-
gram. Results in this paper use the Apriori algorithm from
Christian Borgelt [5]. Postprocessing (steps 5.,6.) does ad-
ditional filtering at the item set and rule level.
Preprocessing includes the following tasks. For undirected
graphs only one direction is typically included in data sets.
We create both directions to ensure correct representation
and then join the relations. Joined relations were created
with different methods depending on the comparison type
for input.

The uniqueness operator, U, from equation (6) was applied
to all basis set relations (step 8.). If the operator U has
removed all items related to any one of the entities the basis
set is marked as deleted (steps 9.,10.). Such basis sets can
never contribute to in-scope item sets or rules. The basis set
is therefore not passed to the ARM method. We do, how-
ever, calculate support and confidence based on the full set
of joined table basis sets by counting all basis sets. Once the
basis sets are processed into the unique basis sets, standard
Apriori is applied (step 4.).

Frequent item sets or closed item sets are returned as the
usual result of Apriori. For undirected graphs symmetric
versions of each item set are returned and have to be re-
moved (step 5.). Input from Apriori is sent to the rule gen-
eration phase (step 6.). Item sets are tested if all entities
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Number of nodes in the join relation: n
n-entity joined relation basis set: B;
Set of basis sets C:{By,...,Bm}

Diff-ARM(n,mincon f ,minsup,C)

For undirected graphs represent each direction
Join relations and eliminate cycles
CY=U_0P(n,C)
FreqSets=Apriori:Freqltemset_Gen(CY minsup)
For undirected graphs remove symmetric
contributions
U_SCOPERULE(FreqSet,n,minconf)

CUik 0 o=

e

U_OP(n,C) Returns— CY
7. foreach transaction, B; € C
8. BY =U(B;i({0.1;, ..., (n — 1).1,}))
9. foreach j.IY € BY
10. if(j.I == () — mark tuple as deleted
1. oY+=n8Y

U_SCOPERULE(FregSet, n, minconf)
12. foreach J; € FreqSet
13. if(|ra ()| ==n)
14. Apriori:Rule_Gen(J;,minconf)
15.  Apply rule filtering

Figure 5: Differential ARM Algorithm

are represented (step 13.). If not, the item set is removed
as being out-of-scope. Rules are then produced as in stan-
dard ARM by processing the frequent item sets (step 14.).
The algorithm concludes with a set of rules that satisfy the
requirements from section 2. Rule results are additionally
filtered so that any node does not have items in both the
antecedent and the consequent of the rule after the final set
(step 15.). The following equation defines this step for a
given rule A—C:

re(A) N7ra(C) == 0 (8)

4.1 Data sets

Our data consist of one node relation gathered from the
Comprehensive Yeast Genome Database at MIPS [20; 9],
gene_orf. The gene_orf node relation represents gene anno-
tation data. Annotations are hierarchically structured, with
hierarchies for function, localization, protein class, complex,
enzyme commission, phenotype and motif. In any category,
attributes are multi-valued and we pick the highest level
in each hierarchy as descriptors. The relation contains the
ORF identifier as key and the set of annotations related to
that ORF as attribute (descriptor set).

We used three different definitions for protein-protein in-
teractions which are undirected edges for yeast: physical,
genetic and domain fusion. The physical edge relation was
built from the ppi table at CYGD [9] where all tuples with
type label of ”"physical” were used. The genetic edge relation
was taken from supplemental table S1 of genetic interactions
from [27] where both Synthetic Sick and Synthetic Lethal
entries are used. Our third edge relation was the domain
fusion set built from the unfiltered results posted from [28;
14]. The set was filtered to reflect only ORFs contained in
our node relation.
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Figure 6: Left: Processing time, Right: Reduction in Number of Rules

4.2 Performance

Three contributions to the complexity have to be distin-
guished: preprocessing, Apriori and postprocessing. The
most important contribution is the Apriori step. Since we
did not modify the algorithm itself, changes in performance
come from data reduction. The resulting improvement is
highly significant. Figure (6) shows the processing time of
the Apriori algorithm under a performance trial. Recorded
is the time to generate frequent item sets for unique item
basis sets of one to 4 nodes. We did not include time to
load the database or print the rules. As seen, the differen-
tial ARM algorithm outperforms ARM by a factor of 100 in
the 4-node setting. The reduction in the number of rules is
even more significant. The difference between the number
of rules in differential and standard ARM demonstrate how
correlations dominate standard ARM output and thereby
render it useless.

S. RESULTS

We will first look at an example of a rule that is strong based
on the application of a standard ARM algorithm on joined
tables but not so if only unique items are considered. A
clear example is the rule mentioned in the introduction:

{0.transcription} — {l.nucleus}
support = 0.29% confidence = 28.38% (9)
This rule is a consequence of a strong single-node rule to-

gether with correlations that are documented by a repiti-
tious rule

{0.transcription} —  {0.nucleus}
support = 0.70% confidence = 69.59%

—  {l.nucleus}
confidence = 29.02%

{0.nucleus}
support = 5.74%

Using the uniqueness operator changes the support of rule
(9) to 0.02% and a confidence of 2.08%. We expect support
and confidence to be lower when the uniqueness operator is
applied, since annotations are removed. Strong rules in our
data set do, however, in general have a support around 0.2-
2% and confidence around 6-20%. Based on these numbers
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the rule (9) cannot be considered strong and ranks much
lower in the new results.

For the remainder of this section we will report differential
association rules and no standard ARM results. The follow-
ing rule was found to be strong in the physical interaction
network

{1.mitochondria} — {0.cytoplasm}
support = 1.2% confidence = 27.3%

This rule clearly corresponds to annotations that would not
be expected to hold within a single protein but may hold
between interacting ones. A protein located in the mito-
chondria would not have localization cytoplasm. We do,
however expect compartmental crosstalk as studied in a pa-
per by Schwikowski et al.[25] between those two locations.
The observation confirms to us that we see rules that are
sensible from a biological perspective. Comparison with [25]
further helped us confirm some less expected rules such as

{1.mitochondria} — {0.nucleus}
support = 0.72% confidence = 16%.

We also found rules that have not yet been reported in the
literature. The following rule was also observed within the
physical interaction network

{1.ER}
support = 0.21%

—  {0.mitochondria}
confidence = 6%

This rule was of interest particularly due to its compara-
tively high support. From a biological perspective one would
not expect proteins in the endoplasmatic reticulum (ER) to
physically interact with proteins in the mitochondria. To an-
alyze the significance of the result we looked at some ORF's
that support the rule. One pair was

(0.YLR423C: ER)

(1.YOR232W: mitochondria,
GrpE_protein_signature(PDOC00822),
Molecular_chaperones).

On further investigation it was found that GrpE along with a
Molecular_chaperone is involved in protein import into the
mitochondria [3]. This information leads to a hypothesis

page 77



Table 1: Statistics

Table int/orf max int #>20  #int
physical 3.55 289 73 14672
genetic 7.88 157 93 8336
domain fusion 44.6 231 305 28040

that YLR423C could be aiding the import mechanism or be
interacting with the chaperone. This example demonstrates
how differential association rules can provide insights into
the functioning of the cell and can lead to further studies.

5.1 Differences Between Interaction Types

We will now look at rules that derive from the network com-
parison formalism of definitions (6) and (8) (inter-network
comparison). Given multiple types of protein-protein in-
teractions we look for significant differences to aid in the
understanding of cellular function and as well as the prop-
erties and uses of the networks. In this paper we consider
pairs of networks for inter-network comparisons (physical
and genetic, physical and domain fusion, domain fusion and
genetic) and join the two edge relations to form a network
comparison joined relation (definition 6).

The networks do not show a significant overlap, i.e., it is
very common that for any given physical interaction be-
tween two proteins there will be no genetic interaction [27].
Strict network overlap for each network pair is: physical-
genetic 14 transactions, physical-domain fusion 52 transac-
tions, genetic-domain fusion 128 transactions. There are
no transactions that overlap for all three. Our compari-
sion instead uses partial overlap of the networks. Table 1
shows that even the statistical properties of the networks
differ significantly: the average number of interactions of
proteins that show at least one interaction varies from 3.55
in the physical network to 44.5 in the domain fusion net-
work. Comparison of annotations across those networks has
to compensate for such differences. The process of joining
relations ensures that each protein that is considered for a
physical interaction will also be considered for a genetic in-
teraction.

Before looking at details of individual rules we will make
some general observations regarding the number of rules we
observed for different combinations of networks. When com-
paring physical and genetic networks we found about one
order of magnitude more strong rules relating to the phys-
ical network compared with the genetic network. Physical
interactions also produce the stronger rules when compared
with domain fusion networks. That means that the physi-
cal network allows the most precise statements to be made.
When comparing the domain fusion and the genetic network
no major difference was found. That suggests that physical
interactions reflect properties of the proteins better than ei-
ther of the other two.

These rules are among the top 100 generated for the physical-
domain fusion set. Some specific examples of interesting
rules from this study are as follows:

{1.Fungal Zn(PDOC00378)} —
{2.Zinc_finger_C2H2 _type_domain(PDOC00028) }
support = 0.48% confidence = 76%

This rule was found to be supported in the domain fusion
interaction set but not among the physical interactions. The
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motif of ORF 1 is a fungal Zinc-cysteine domain present in
many transcription activator proteins which bind DNA in a
zinc-dependent fashion. The motif of ORF 2 is a zinc fin-
ger which also binds DNA and commonly has cysteines and
Histidine residues in them [12]. This rule tells us that the
confidence of assuming a domain-fusion interaction between
the fungal zinc domain and the zinc finger motif is 76%, not
considering cases in which a zinc finger is also involved in
a physical interaction. Further studies would be necessary
to decide if the absence of a physical interaction is due to a
problem with annotations or if those two proteins really do
not interact. The second rule is supported by the physical
network but not the domain fusion network

{0.ABC_trans_family_signature(PDOC00185)} —
{1.ATP/GTP_binding_site_motif_A(PDOC00017)}
support = 0.45% confidence = 90%

ORF 0 has the motif of an ABC transporter signature which
implies it is an ABC transporter coding sequence. ABC
transporters have conserved ATP binding domains as the
motif in ORF 1 and help in either the import or export
of molecules utilizing ATP as the energy molecule for the
process [12]. From the rule we can see that these two do-
mains physically interact but are never represented by a
single gene. This supports the observation that the ATP
binding domain is found in many other proteins as well [12]
and both functions are combined through interactions at the
protein level rather than at the genetic level. This observa-
tion would also warrant further studies.

6. CONCLUSIONS

We have described the novel concept of differential associa-
tion rules. The goal of this technique is to highlight differ-
ences between items belonging to different interacting nodes
or different networks. We demonstrate that such differences
would not be identified by application of standard relational
ARM techniques. Our technique is highly efficient and ef-
fective. It follows the ARM spirit by gaining its efficiency
from a pruning step that is included even before the fre-
quent item set generation step. We apply our framework
to real examples of protein annotations and interactions.
Results were able to confirm expected biological knowledge
as well as identifying as yet unknown associations that were
successfully supported by further inspection of the data. We
have thereby provided a new tool that has potential for most
network settings, and have demonstrated its successful ap-
plication to bioinformatics.
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