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ABSTRACT
Extracting motifs from sequences is a mainstay of bioinfor-
matics. We look at the problem of mining structured mo-
tifs, which allow variable length gaps between simple motif
components. We propose an efficient algorithm, called ex-

Motif, that given some sequence(s), and a structured motif
template, extracts all frequent structured motifs that have
quorum q. Potential applications of our method include the
extraction of single/composite regulatory binding sites in
DNA sequences. exMotif is efficient in terms of both time
and space and outperforms RISO, a state-of-the-art algo-
rithm.

1. INTRODUCTION
Analyzing and interpreting sequence data is an important
task in bioinformatics. One critical aspect of such inter-
pretation is to extract important motifs (patterns) from se-
quences. The challenges for motif extraction problem are
two-fold: one is to design an efficient algorithm to enumer-
ate the frequent motifs; the other is to statistically validate
the extracted motifs and report the significant ones.

Motifs can be classified into two main types. If no variable
gaps are allowed in the motif, it is called a simple motif. For
example, in the genome of Saccharomyces cerevisiae, the
binding sites of transcription factor, GAL4, have as con-
sensus [25], the simple motif, CGGN[11]CCG. Here N[11]
means that there is a fixed “gap” (or don’t care charac-
ters), 11 positions long. If variable gaps are allowed in a
motif, it is called a structured motif. A structured motif
can be regarded as an ordered collection of simple motifs
with gap constraints between each pair of adjacent simple
motifs. For example, many retrotransposons in the Ty1-
copia group [17] have as consensus the structured motif:
MT[115,136]MTNTAYGG[121,151]GTNGAYGAY. Here MT,
MTNTAYGG and GTNGAYGAY are three simple motifs;
[115,136] and [121,151] are variable gap constraints ([min-
imum gap, maximum gap]) allowed between the adjacent
simple motifs. More formally, a structured motif, M, is
specified in the form:

M1[l1, u1]M2[l2, u2]M3 . . . Mk−1[lk−1, uk−1]Mk

where Mi, 1 ≤ i ≤ k, is a simple motif component; and li
and ui, 1 ≤ i < k, are the minimum and maximum number
of gaps allowed between Mi and Mi+1, respectively. The
number of simple motif components, k, is also called the

length of M. Let Wi, 1 ≤ i < k, denote the span of the gap
range, [li, ui], which is calculated as: Wi = ui − li + 1.

In the structured motif extraction problem, the component
motifs Mi are unknown before the extraction. However, we
do provide some known parameters to restrict the structured
motifs to be extracted, including: (i) k – the length of M; (ii)
|Mi| – the length of each component Mi ∈ M, for 1 ≤ i ≤ k;
and (iii) [li, ui] – the gap range between Mi and Mi+1, for
1 ≤ i < k. All these parameters define a structured motif
template, T , for the structured motifs to be extracted from
a set of sequences S. A structured motif M matching the
template T in S is called an instance of T .

Let δS(M) denote the number of occurrences of an instance
motif M in a sequence S ∈ S. Let dS(M) = 1 if δS(M) > 0
and dS(M) = 0 if δS(M) = 0. The support of motif M
in the is defined as π(M) =

P

S∈S dS(M), i.e., the number
of sequences in S that contain at least one occurrence of
M. The weighted support of M is defined as πw(M) =
P

S∈S δS(M), i.e., total number of occurrences of M over
all sequences in S. We use O(M) to denote the set of all
occurrences of a structured motif M. Given a user-specified
quorum threshold q ≥ 2, a motif that occurs at least q times
will be called frequent.

There are two main tasks in the structured motif extraction
problem: a) Common Motifs – find all motifs M in a set
of sequences S, such that the support of M is at least q,
b) Repeated Motifs – find all motifs in a single sequence S,
such that the weighted support of M is at least q. Further-
more, the structured motif extraction problem allows several
variations:

• Substitutions: O may consist of similar motifs, as mea-
sured by Hamming Distance ([13]), instead of exact
matches, to the simple motifs in M. We can either
allow for at most ǫi errors for each simple motif Mi,
1 ≤ i ≤ k, or at most ǫ errors for the whole structured
motif M.

• Overlapping Motifs: The variable gap constraints (li
and ui) can take on negative values, allowing extrac-
tion of overlapping simple motifs.

• Motif Length Ranges: Each simple motif Mi in a tem-
plate M can be of a range of lengths, i.e., |Mi| ∈ [la, lb],
where la and lb are the lower and upper bounds on the
desired length.

Table 1 shows four example DNA sequences S1, S2, S3, S4 ∈
S; a structured motif template T , where M1 = NNN, M2 =
NN and M3 = NNNN (’N’ stands for any of the four DNA
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Table 1: Structured Motif Extraction

Sequence S1 (∈ S): CCGTACCGAACCTCAAA
Sequence S2 (∈ S): CCGTTATAGGAACCATT
Sequence S3 (∈ S): TAT GGAACCATCTT
Sequence S4 (∈ S): TAACGGATCCCTTT
Structured Motif Template (T ): NNN[0,3]NN[1,3]NNNN
Quorum (q): 2

bases: A,C,G,T), and [0,3] and [1,3] are the intervening gap
ranges between the components; and a quorum threshold
q = 2. The length of the template T is k = 3. The span
of gap ranges are: W1 = u1 − l1 + 1 = 2 and W2 = u2 −
l2 + 1 = 2. If no substitutions are allowed, there are five
frequent structured motifs in S matching the templateT ,
namely M1 = CCG[0,3]TA[1,3]GAAC (shown in bold) and
M2 = CCG[0,3]TA[1,3]AACC which occur in S1 and S2;
M3 = TAT[0,3]GG[1,3]ACCA (shown underlined), M4 =
TAT[0,3]GA[1,3]CCAT and M5 = TAT[0,3] GG[1,3]CCAT
which occur in S2 and S3. If substitutions are allows, say,
e1 = 1 = e3, then the occurrence of M6 = TAA[0,3]GG[1,3]
CCCT (shown underlined) in S4 will be considered to match
motif M5.

In this paper, we propose exMotif, an efficient algorithm
for both the structured motif extraction problems. It uses
an inverted index of symbol positions, and it enumerates all
structured motifs by positional joins over this index. The
variable gap constraints are also considered at the same time
as the joins, resulting in considerable efficiency. In order to
save time and space, we only keep the start positions of each
intermediate pattern during the positional join.

2. RELATED WORK
Many simple motif extraction algorithms have been pro-
posed primarily for extracting the transcription factor bind-
ing sites, where each motif consists of a unique binding site
[19; 20; 15; 14; 3; 18; 11] or two binding sites separated by
a fixed number of gaps [22; 10; 9]. A pattern with a single
component is also called a monad pattern. Structured motif
extraction problems, in which variable number of gaps are
allowed, have attracted much attention recently, where the
structured motifs can be extracted either from multiple se-
quences [12; 6; 7; 16; 8; 5; 2; 1] or from a single sequence
[24; 4]. In many cases, more than one transcription factor
may cooperatively regulate a gene. Such patterns are called
composite regulatory patterns. To detect the composite reg-
ulatory patterns, one may apply single binding site iden-
tification algorithms to detect each component separately.
However, this solution may fail when some components are
not very strong (significant). Thus it is necessary to detect
the whole composite regulatory patterns (even with weak
components) directly, whose gaps and other possibly strong
components can increase its significance.

Several algorithms have been used to address the compos-
ite pattern discovery with two components, which are called
dyad patterns. Helden et al. [22] propose a method for dyad
analysis, which exhaustively counts the number of occur-
rences of each possible pair of patterns in the sequences and
then assesses their statistical significance. This method can
only deal with fixed number of gaps between the two compo-
nents. MITRA [10] first casts the composite pattern discov-

ery problem as a larger monad discovery problem and then
applies an exhaustive monad discovery algorithm. It can
handle several mismatches but can only handle sequences
less than 60 kilo-bases long. Co-Bind [21] models com-
posite transcription factors with Position Weight Matrices
(PWMs) and finds PWMs that maximize the joint likelihood
of occurrences of the two binding site components. Co-Bind
uses Gibbs sampling to select binding sites and then refines
the PWMs for a fixed number of times. Co-Bind may miss
some binding sites since not all patterns in the sequences are
considered. Moreover, using a fixed number of iterations for
improvement may not converge to the global optimal dyad
PWM.

SMILE [12] describes four variants of increasing generality
for common structured motif extraction, and proposes two
solutions for them. The two approaches for the first prob-
lem, in which the structured motif template consists of two
components with a gap range between them, both start by
building a generalized suffix tree for the input sequences and
extracting the first component. Then in the first approach,
the second component is extracted by simply jumping in the
sequences from the end of the first one to the second within
the gap range. In the second approach, the suffix tree is
temporarily modified so as to extract the second compo-
nent from the modified suffix tree directly. The drawback
of SMILE is that its time and space complexity are expo-
nential in the number of gaps between the two components.
In order to reduce the time during the extraction of the
structured motifs, [8] presents a parallel algorithm, PSmile,
based on SMILE, where the search space is well-partitioned
among the available processors.

RISO [6; 7; 16] improves SMILE in two aspects. First,
instead of building the whole suffix tree for the input se-
quences, RISO builds a suffix tree only up to a certain level
l, called afactor tree, which leads to a large space saving.
Second, a new data structure called box-link is proposed to
store the information about how to jump within the DNA se-
quences from one simple component (box) to the subsequent
one in the structured motif. This accelerates the extraction
process and avoids exponential time and space consumption
(in the gaps) as in SMILE. In RISO, after the generalized
factor tree is built, the box-links are constructed by exhaus-
tively enumerating all the possible structured motifs in the
sequences and are added to the leaves of the factor tree.
Then the extraction process begins during which the fac-
tor tree may be temporarily and partially modified so as to
extract the subsequent simple motifs. Since during the box-
link construction, the structured motif occurrences are ex-
haustively enumerated and the frequency threshold is never
used to prune the candidate structured motifs, RISO needs
a lot of computation during this step.

For repeated structured motif identification problem, the
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Table 2: Pos-lists (Sequence identifiers (i) and cardinality of P(X, Si) are marked in bold)

X pos-lists
A {1,6,5,9,10,15,16,17, 2,5,6,8,11,12,15, 3,4,2,6,7,10, 4,3,2,3,7}
C {1,7,1,2,6,7,11,12,14, 2,4,1,2,13,14, 3,3,8,9,12, 4,4,4,9,10,11}
G {1,2,3,8, 2,3,3,9,10, 3,2,4,5, 4, 2,5,6}
T {1,2,4,13, 2,5,4,5,7,16,17 3,5,1,3,11,13,14, 4,5,1,8,12,13,14}

frequency closure property that “all the subsequences of a
frequent sequence must be frequent”, doesn’t hold any more
since the frequency of a pattern can exceed the frequency
of its sub-patterns. [24] introduces an closure-like property
which can help prune the patterns without missing the fre-
quent patterns. The two algorithms proposed in [24] can
extract within one sequence all frequent patterns of length
no greater than a length threshold, which can be either
manually specified or automatically determined. However,
the gap ranges between adjacent symbols are required to be
same, and approximate matches are not allowed.

3. THE exMotif ALGORITHM
We first introduce our basic approach for common struc-
tured motif extraction problem. We then successively opti-
mize it for various practical scenarios.

3.1 The Basic Approach
Let’s assume that we are extracting all structured motif
instances from n sequence S = {Si, 1 ≤ i ≤ n}, each of
which satisfies the template T and occurs at least in q se-
quences of S. We assume for the moment that no substi-
tutions are allowed in any of the simple motifs. We also
assume that all Si ∈ S, 1 ≤ i ≤ n and the extracted mo-
tifs are over the DNA alphabet, ΣDNA. exMotif first con-
verts each Si ∈ S, 1 ≤ i ≤ n into an equivalent inverted
format [23], where we associate with each symbol in the se-
quence Si its pos-list, a sorted list of the positions where
the symbol occurs in Si. Then for each symbol we combine
its pos-list in each Si to obtain its pos-list in S. More for-
mally, for a symbol X ∈ ΣDNA, its pos-list in Si is given
as P(X, Si) = {j | Si[j] = X, j ∈ [1, |Si|]}, where Si[j] is
the symbol at position j in Si, and |Si| denotes the length
of Si. Its pos-list across all sequences S is obtained by
grouping the pos-lists of each sequence, and is given as
P(X,S) = {〈i, |P(X, Si)|,P(X, Si)〉 | Si ∈ S}, where i
is the sequence identifier of Si, and |P(X, Si)| denotes the
cardinality of the pos-list P(X, Si) in sequence Si. For our
example sequences in Table 1, the pos-list for each DNA
base is given in Table 2. For example, A occurs in sequence
S1 at the positions {5, 9, 10, 15, 16, 17}, thus the entries in
A’s pos-list are {1,6, 5, 9, 10, 15, 16, 17}.

3.1.1 Positional Joins
We first extend the notion of pos-lists to cover structured
motifs. The pos-list of M in Si ∈ S is given as the set of start
positions of all the matches of M in Si. Let X, Y ∈ ΣDNA

be any two symbols, and let M = X[l, u]Y be a structured
motif. Given the pos-lists of X and Y in Si for 1 ≤ i ≤ n,
namely, P(X, Si) and P(Y, Si), the pos-list of M in Si can
be obtained by a positional join as follows: for a position
x ∈ P(X, Si), if there exists a position y ∈ P(Y, Si), such
that l ≤ y−x−1 ≤ u, it means that Y follows X within the

variable gap range [l, u] in the sequence Si, and thus we can
add x to the pos-list of motif X[l, u]Y . Let d be the number
of gaps between x ∈ P(X, Si) and y ∈ P(Y, Si), given as
d = y − x − 1. Then, in general, there are three cases to
consider in the positional join algorithm:

• d < l: Advance y to the next element in P(Y, Si).

• d > u: Advance x to the next element in P(X, Si).

• l ≤ d ≤ u: Save this occurrence in P(X[l, u]Y, Si), and
then advance x to the next element in P(X, Si).

The pos-list for X[l, u]Y can be computed in time linear
in the lengths of P(X, Si) and P(Y, Si). In essence, each
time we advance x ∈ P(X, Si), we check if there exists a
y ∈ P(Y, Si) that satisfies the given gap constraint. Instead
of searching for the matching y from the beginning of the
pos-list each time, we search from the last position used to
compare with x. This results in fast positional joins. For
example, during the positional join for the motif A[0,1]T in
S4, with l = 0 and u = 1, we scan the pos-lists of A and T
for S4 in Table 2, i.e. P(X, S4) = {2, 3, 7} and P(Y, S4) =
{1, 8, 12, 13, 14}. Initially, x = 2 and y = 1. This gives
d = 1 − 2 − 1 = −2 < l, thus we advance y to 8. Next,
d = 8 − 2 − 1 = 5 > u, thus we advance x to 3. Then,
d = 8−3−1 = 4 > u, thus we still advance x to 7. Next, d =
8−7−1 = 0 ∈ [l, u], so we store x = 7 in P(A[0, 1]T, S4). We
would advance x but since we have already reached the end
of P(A, S4), the positional join stops. Thus the final pos-list
of A[0,1]T in S4 is: P(A[0, 1]T, S4) = {7}. After we obtain
the pos-list of M in each Si for 1 ≤ i ≤ n, we can combine
them together to obtain the pos-list of M in S. For example,
the full pos-list of A[0,1]T for S is: {2,2,6,15, 3,2,2,10,
4,1,7}. Thus the support of A[0,1]T is 3. Note here for
each non-empty pos-list, we insert its sequence identifier and
length before it.

Given a longer motif M, the positional joins start with the
last two symbols, and proceed by successively joining the
pos-list of the current symbol with the intermediate pos-list
of the suffix. That is, the intermediate pos-list for a (l+1)-
length pattern (with l ≥ 1) is obtained by doing a positional
join of the pos-list of the pattern’s first symbol, called the
head symbol, with the pos-list of its l-length suffix, called
the tail. As the computation progresses the previous tail
pos-lists are discarded. Combined with the fact that only
start positions are kept in a pos-list, this saves both time
and space.

In order to enumerate all frequent motifs instances M in
S, exMotif computes the pos-list for each M and report
M only if its support is no less than the quorum (q). A
straightforward approach is to directly perform positional
joins on the symbols from the end to the start for each
M. This approach leads to much redundant computation
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since simple motif components may be shared among sev-
eral structured motifs. exMotif, in contrast, performs two
steps: it first computes the pos-lists for all simple motifs in
S by doing positional joins on pos-lists of its symbols (as
described in Section 3.1.2), and it then computes the pos-
list for each structured motif by doing positional joins on
pos-lists of its simple motif components (as described in Sec-
tion 3.1.3). exMotif handles both simple and structured
motifs uniformly, by adding the gap range [0, 0] between
adjacent symbols within each simple motif Mi. For our ex-
ample in Table 1, the structured motif template T becomes:
N[0,0]N[0,0]N[0,1]N[0,0]N[2,3]N[0,0]N[0,0]N[0,0]N. Also since
we only report frequent motifs, we can prune the candidate
patterns during the positional joins based on the closure
property of support (note however that this cannot be done
for weighted support).

3.1.2 Extraction of the Simple Motifs
Given a template motif T , we know the lengths of the simple
motif components desired. A naive approach is to directly
do positional joins on the symbols from the end to the start
of each simple motif. However, since some simple motifs
are of the same length and the longer simple motifs can
be obtained by doing positional joins on the shorter simple
motifs/symbols, we can avoid some redundant computation.
Note also that the gap range inside the simple motif is always
[0,0].

Let L = {Li, 1 ≤ i ≤ m}, where Li is the length of each sim-
ple motif in T and assume L is sorted in the ascending order.
For each Li, 1 ≤ i ≤ m, we need to enumerate |ΣDNA|

Li pos-
sible simple motifs. Let maxL be the maximum length in L.
We can compute the pos-lists of simple motifs sequentially
from length 1 to maxL. But this may waste time in enu-
merating some simple motifs of lengths that are not in L.
Instead, exMotif first computes the pos-lists for the simple
motifs of lengths that are powers of 2. Formally, let J be an
integer such that 2J ≤ maxL < 2J+1. We extract the pat-
terns of length 2j by doing positional joins on the pos-lists
of patterns of length 2j−1 for all 1 ≤ j ≤ J . For example,
when maxL = 11, exMotif first computes the pos-lists for
simple motifs of length 20 = 1, 21 = 2, 22 = 4 and 23 = 8.

exMotif then computes the pos-lists for the simple motifs
of Li ∈ L, by doing positional joins on simple motifs whose
pos-list(s) have already been computed and their lengths
sum to Li. For example, when Li = 11, exMotif has to
join motifs of lengths 8, 2, and 1. It first obtains all motifs of
length 8+2=10, and then joins the motifs of lengths 10 and
1, to get the pos-lists of all simple motifs of length 10+1=11.
At the end of the first phase, exMotif has computed the
pos-lists for all simple motif components that can satisfy the
template.

3.1.3 Extraction of the Structured Motifs
We extract the structured motifs by doing positional joins on
the pos-lists of the simple motifs from the end to the start in
the structured motif M. Formally, let H[l, u]T be an inter-
mediate structured motif, with simple motif H as the head,
and a suffix structured motif T as tail. Then P(H[l, u]T ) can
be obtained by doing positional joins on P(H) and P(T ).
Since P(H) keeps only the start positions, we need to com-
pute the corresponding end positions for those occurrences
of H, to check the gap constraints. Since only exact matches
or substitutions are allowed for simple motifs, the end posi-
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Figure 1: Indexed Full-position Recovery

tion is simply s + |H| − 1 for a start position s.

3.1.4 Full-position Recovery
In our positional join approach, to save time and space we
retain only the motif start positions, however, in some ap-
plications, we may need to know the full position of each
occurrence, i.e., the set of matching positions for each sym-
bol in the motif. In exMotif we “index” some information
during the positional joins in order to facilitate full position
recovery. Consider the example shown in Fig. 1 to recover
the full positions for M = CCG[0,3]TA[1,3]GAAC. Under
each symbol we show two columns. The left column cor-
responds to the intermediate pos-lists as we proceed from
right to left, whereas the right column stores the indices into
the previous pos-list. For example, the middle column gives
the pos-list P(TA[1, 3]GAAC) = {1,1, 4, 2,2, 5, 7, 3,1, 1}.
For each position x ∈ P(TA[1, 3]GAAC) (excluding the
sequence identifiers and the cardinality), the right column
records an index in P(GAAC) which corresponds to the first
position in P(GAAC) that satisfies the gap range with re-
spect to x. For example, for position x = 5 (at index 6), the
first position in P(GAAC) that satisfies the gap range [1,3]
is 10 (since in this case there are 3 gaps between the end of
TA at position 6 and start of GAAC at position 10), and
it occurs at index 6. Likewise, for each position in the cur-
rent pos-list we store which positions in the previous pos-list
were extended. With this indexed information, full-position
recovery becomes straightforward. We begin with the start
positions of the occurrences. We then keep following the
indices from one pos-list to the next, until we reach the
last pos-list. Since the index only marks the first position
that satisfies the gap range, we still need to check if the
following positions satisfy the gap range. At each stage in
the full position recovery, we maintain a list of intermedi-
ate position prefixes F that match up to the j-th position
in M. For example, to recover the full position for M =
CCG[0,3]TA[1,3]GAAC, considering start position 1 (with
F = {(1)}) in sequence 2, we follow index 6 to get position
5 in the middle pos-list, to get F = {(1, 5)}. Since the next
position after 5 is 7 which is also within the gap range [0,3],
so we update F = {(1, 5), (1, 7)}. For position 5, we follow
index 6 to get position 10 in the rightmost pos-list, to get
F = {(1, 5, 10)}; for position 7, we follow index 6 to get po-
sition 10 in the right pos-list, to get F = {(1, 7, 10)}. Like-
wise, we can recover the full-position in sequence 1, which
is F = {(1, 4, 8)}. During the full-position recovery, we can
also count the number of full-positions, i.e., occurrences, of
each structured motif. For example, there are 3 occurrences
of CCG[0,3]TA[1,3]GAAC.
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3.1.5 Overlapped Motifs & Length Ranges for Simple
Motifs

Our positional join approach can automatically handle over-
lapping simple motifs, by simply adjusting the minimum gap
value (i.e., allowing negative values). For example, a motif
template like M1[−6, 10]M2 allows M2 to overlap M1 by 6
positions.

exMotif also allows variation in the lengths of the simple
motifs to be found. For example, a motif template may
be specified as M1[5, 10]M2, |M1| ∈ [2, 4], and |M2| ∈ [6, 7],
which means that we have to consider NN, NNN, and NNNN
as the possible templates for M1 and similarly for M2. A
straightforward way for handling length ranges is to enu-
merate exhaustively all the possible sub-templates of T with
simple motifs of fixed lengths and then to extract each sub-
template separately. Instead, exMotif does an optimized
extraction. exMotif reuses the partial pos-lists created
when using a depth first search to enumerate and extract
the sub-templates.

3.2 Handling Substitutions
As mutations are a common phenomena in biological se-
quences, we allow substitutions in the extracted motifs. That
is two motif instances may be considered to be the same if
they are within the allowed substitution thresholds. ex-

Motif allows users to specify the number of substitutions
allowed for the whole motif (ǫ), and also a per simple motif
threshold (ǫi, i ∈ [1, k]). There are two types of substitu-
tions we consider.

3.2.1 Position-Specific Substitutions

Table 3: IUPAC Alphabet (ΣIUPAC)
Symbol A C G T
Bases A C G T

Symbol U R Y K
Bases U A,G C,T G,T

Symbol M S W B
Bases A,C G,C A,T C,G,T

Symbol D H V N
Bases A,G,T A,C,T A,C,G A,C,G,T

Here we allow a position (a DNA symbol) in the instance
motif M to be substituted with 1 or 2 other DNA sym-
bols. All such neighbors will contribute to the frequency
of M. For example, for M = ACG[4, 6]TT , if we allow
e1 = 1 substitutions in motif M1 = ACG, at position 2, then
AAG[4, 6]TT , ACG[4, 6]TT or AGG[4, 6]TT may contribute
to the frequency of M. Instead of enumerating all of these
separately, exMotif can directly mine relevant motifs using
IUPAC symbols (see Table 3). exMotif simply constructs
the pos-lists for the relevant IUPAC symbols by scanning
sequences in S once. Then it mines the motif instances as
in the basic approach, since all allowed substitutions have
already been incorporated into the relevant IUPAC sym-
bols. For example, if only e1 = 1 substitution is allowed in
the motif, then exMotif adds R,Y,K,M,S, and W as ba-
sic symbols. Thus instead of reporting M = ACG[4, 6]TT

as the instance, exMotif may report ASG[4, 6]TT as an
instance, where S stands for either C or G (see Table 3).
exMotif also allows the user to specify the maximum num-
ber of IUPAC symbols that can appear in a motif.

3.2.2 Arbitrary Substitutions
Here we allow a DNA symbol in M to be substituted with
other symbols across all positions (i.e., in a position inde-
pendent manner), up to the allowed maximum errors per
motif (or per component). To count the support for a mo-
tif, exMotif has to consider all of its neighbors as well,
which are defined as all the motifs (including itself) within
Hamming distance, ǫ (or per motif ei). Then the support
of an instance motif is calculated as the total number of se-
quences in which its neighbors (including itself) are present.
As always, the motif is frequent if its support meets the quo-
rum q, that is, its neighbors are present in at least q distinct
sequences.

The main challenge is that when arbitrary, position inde-
pendent substitutions are allowed, we cannot do support
checking during each positional join, since the support of
the current motif may be below quorum, but combined with
its neighbors it may meet quorum. Thus exMotif does sup-
port checking at two points. First, it checks for quorum after
the pos-lists of all the simple motifs in T have been com-
puted, provided the per motif error thresholds ei have been
specified. In this case each simple motif must be frequent
to be extended to a structured motif. Second, it checks for
quorum after the pos-lists of all the structured motifs that
satisfy T are computed. Only the frequent instances are
reported.

3.2.2.1 Determining Neighbors.
In order to quickly find all the existing neighbors of a mo-
tif within the allowed error thresholds, exMotif first com-
putes all the exact structured motifs, and stores them into a
hash table to facilitate fast lookup. Then for each extracted
structured motif M, exMotif enumerates all its possible
neighbors and checks whether they exist in the hash table.
One problem is that the number of possible neighbors of
M can be quite large. When we allow ǫi substitutions for
simple component Mi in M, for 1 ≤ i ≤ k, the number
of M’s neighbors is given as

Qk

i=1[
Pei

j=0

`

|Mi|
j

´

· 3j ]. For

example, for M = AACGTT[1,5]AGTTCC, when we al-
low one substitution for each simple motif, the number of
its neighbors is 361; when we allow two substitutions per
component, the number of its neighbors is 23,716. Instead
of enumerating the potentially large number of neighbors
(many of which may not even occur in the sequence set S)
for each structured motif M individually, exMotif utilizes
the observation that many motifs have shared neighbors,
and thus previously computed support information can be
reused. exMotif enumerates neighbors in two steps. In the
first step, for each M, it enumerates aggregate neighbor mo-
tifs, replacing the allowed number of errors ei with as many
‘N’ symbols (which stands for A,C,G, or T). The number

of possible aggregate neighbors is given as
Qk

i=1

`

|Mi|
ǫi

´

. In

the second step, it computes the support for each aggregate
neighbor by expanding each ‘N’ with each DNA symbol,
looking up the hash table for the support of the correspond-
ing motif, and adding the supports for all matching motifs.
Since the motifs matching an aggregate are also neighbors
of each other, the support of the aggregate can be re-used
to compute the support of other matching motifs as well.
Once the supports for all aggregate neighbors have been
computed, the final support of the structured motif M can
be obtained. Thus for each M, the number of “neighbors”
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to consider can be as low as
Qk

i=1

`

|Mi|
ǫi

´

!

For example, consider the example shown in Figure 2. Con-
sider the structured motif M = TAA[0,3]GG[1,3]CCTT (taken
from our example in Table 1); assume that ǫ1 = 1, ǫ2 =
0 and ǫ3 = 1. There are three possible aggregates for
TAA, namely TAN, TNA, and NAA, and four aggregates for
CCTT, namely CCTN, CCNT, CNTT, and NCTT, giving
a total of 12 aggregate neighbors for M, as illustrated in the
figure. exMotif processes each aggregate neighbor in turn.
Using a hash-table (or direct lookup table if there are only a
few neighbors), it checks if the aggregate neighbor has been
processed previously. If yes, it moves on to the next aggre-
gate. If not, it gathers the support information from all of
its matching structured motifs, to compute its total support.
Next, it also updates the neighbor support value for each of
the matching motifs, so that once an aggregate is processed,
we no longer require its information. All we need to know
is whether it has been processed or not. For example, once
the support of the first aggregate TAN[0,3]GG[1,3]CCTN
for the example motif M above is computed, exMotif also
updates the neighbor supports for all other matching struc-
tured motifs, such as M′ = TAC[0,3]GG[1,3]CCTG. Later
when processing M′, exMotif can skip the above aggre-
gate and focus on the not yet processed aggregates, e.g.,
NAC[0,3]GG[1,3]NCTG, and so on.

3.2.2.2 Counting Support.
There are two methods to record the support for each motif.
In the first method, we associate each motif with a bit vector,
V. Each bit, Vi for 1 ≤ i ≤ n (where n = |S|) indicates
whether the motif is present in the sequence Si ∈ S. The
support of the motif is the number of set bits in V. Thus
to obtain the support for a motif, we can simply union the
bit vectors of all its (aggregate) neighbors. Using one bit to
represent a sequence saves space, and also saves time via the
union operation. However, since we need n fixed bits for each
motif to store its bit vector, this is not efficient if there are
many sequences, and if a motif occurs only in a small number
of sequences, which leads to a sparse bit vector. Thus in
the second method, exMotif associates each motif with
an identifier array, A, to only store the sequence identifiers
in which the motif occurs. exMotif can then obtain the
support for a motif by scanning the identifier arrays of its
neighbors in linear time. For example consider again our
motif (from Table 1), TAT[0,1]GG[2,3]CCAT, which occurs
in S2 and S3, Its bit vector is thus V = {0110} and its
identifier array A = {2, 3}.

3.3 Solving Repeated Structured Motif Iden-
tification Problem

In repeated structured motif identification problem, the fre-
quency closure property (that all the subsequences of a fre-
quent sequence must be frequent), does not hold any more.
For example, the sequence GCTTT, has three occurrences of
pattern G[1,3]T, but it sub-pattern, G, has only one occur-
rence. Thus we can’t apply the closure property for pruning
candidates. Nevertheless, a bound on the frequency of a
sub-pattern can be established, which can be used for prun-
ing.

Theorem 1 1. Let M = M1...Mk be a structured mo-
tif and M′ = Mi...Mk be a suffix of M, for 1 ≤ i ≤ k.
If the weighted support of M is πw(M), then πw(M′) ≥

πw(M)
Qi−1

m=1
Wm

, where Wm = um − lm + 1 is the span of the gap

range for m ∈ [1, k − 1].

Proof. Let O(M) be the occurrence set of M and O(M′)
be the occurrence set of M′. For each occurrence of M′

in O(M′), we can extend it to get occurrences of M in
O(M) by adding M1 . . . Mi−1 before M′. This leads to at

most
Qi−1

m=1 Wm occurrences of M for any occurrence of M′.

Thus |O(M′)| ·
Qi−1

m=1 Wm ≥ |O(M)|, which immediately

gives πw(M′) ≥ πw(M)
Qi−1

m=1
Wm

.

With Theorem 1, exMotif can calculate a support bound
for any suffix M′ of M, given the quorum requirement q.
For example, assume that the motif template is NN[3,5]NNN
[0,4]NNN and q = 100, with W1 = 5 − 3 + 1 = 3 and W2 =
4− 0 + 1 = 5. When processing the suffix component M′ =
NNN, we require that πw(M′) ≥ 100

3×5
= 6; when processing

M′ = NNN[0,4]NNN, we require that πw(M′) ≥ 100
3

= 33.
Thus even the weaker bounds can lead to some pruning.

4. EXPERIMENTAL RESULTS
exMotif has been implemented in C++, and compiled with
g++ v4.0.0 at optimization level 3 (-O3). We performed ex-
periments on a Macintosh PowerPC G5 with dual 2.7GHz
processors and 4GB memory running Mac OS X v10.4.5.
We compare our results with the latest version of RISO [6;
7; 16] (called RISOTTO [16]; obtained from http://algos.

inesc-id.pt/∼asmc/software/riso.html), the best previ-
ous algorithm for structured motif extraction problem.

4.1 exMotif and RISO: Comparison
For comparison, we extract structured motifs from 1,062
non-coding sequences (a total of 196,736 nucleotides) lo-
cated between two divergent genes in the genome of B. sub-
tilis ([6; 7; 16]). Figure 3 and 4 compare the running time
(in seconds) for exMotif and RISO using exact matching
and approximate matching, respectively. Experiments were
done for different gap ranges, number of components, and
quorum thresholds. Note that exMotif has two options:
one (shown as “exMOTIF” in the figures) for reporting only
the number of sequences where the structured motifs occur,
the other (shown as “exMOTIF(#)”) for reporting both the
number of sequences where the structured motifs occur and
the actual occurrences. Also note that RISO does not report
the actual occurrences; it reports only the frequency.
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Figure 3: exMotif vs. RISO: Exact Matching
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4.1.1 Exact Matching
In the first experiment, shown in Figure 3 (a), we randomly
generated 100 structured motif templates, with k ∈ [2, 4]
simple motifs of length l ∈ [4, 7] (k and l are selected uni-
formly at random within the given ranges). The gap range
between each pair of simple motifs is a random sub-interval
of [0, 200]. The x-axis is sorted on the number of motifs
extracted. For clarity we plot average times for the meth-
ods when the number of motifs extracted fall into the given
range on the x-axis. For example, the time plotted for the
range [102, 103) is the average time for all the random tem-
plates that produce between 100 and 1000 motifs. We find
that the average running time for RISO is 120.7s, whereas
for exMotif it takes 88.4s for reporting only the support,
and 91.3s for also reporting all the occurrences. The median
times were 26.3s, 8.5s, and 9.2s, respectively, indicating a 3
times speed-up of exMotif over RISO.

In the next set of experiments we varied one parameter while
keeping the others fixed. We set the default quorum to 12%
(q = 127), the default gap ranges to [0,100], the default sim-
ple motif length to l = 4 (NNNN), and the default number of
components k = 3 (e.g., NNNN[0,100]NNNN[0,100]NNNN).
In Figure 3 (b), we plot the time as a function of the number
of simple motifs k in the template. We find that as the num-
ber of components increases the time gap between exMotif

and RISO increases; for k = 4 simple motifs, exMotif is
around 5 times faster than RISO. Figure 3 (c) shows the
effect of increasing gap ranges, from [0,0] to [0,200]. We
find that as the gap range increases the time for exMotif

increases at a slower rate compared to RISO. For [0,200],
exMotif is 3-4 times faster than RISO depending whether
only frequency or full occurrences are reported. In Figure
3 (d), as the quorum threshold increases, the running time
goes down for both methods. For quorum 24%, exMotif is
4-5 times faster than RISO. As support decreases, the gap
narrows somewhat, but exMotif remains 2-3 times faster.
Finally, Figure 3 (e) plots the effect of increasing simple mo-
tif lengths l ∈ [2, 6]. We find that the time first increases and
then decreases. This is because there are a large number of
motif occurrences for length 3 and length 4, but relatively
few occurrences for length 5 and length 6. Depending on the
motif lengths, exMotif can be 3-40 times faster than RISO
for comparable output, i.e., reporting only the support. ex-

Motif remains up to 5 times faster when also reporting the
actual occurrences.

To compare the performance for extracting structured mo-
tifs with length ranges, we used the template T = M1[50, 100]
M2[1, 50]M3[20, 100]M4 with q = 12%, where |M1| ∈ [2, 4],
|M2| ∈ [3, 4], |M3| ∈ [5, 6], |M4| ∈ [4, 5]. exMotif took
78.4s, whereas RISO took 1640.9s to extract 14,174 motifs.

4.1.2 Approximate Matching
In the first experiment, shown in Figure 4 (a), we randomly
generated 30 structured motif templates, with k ∈ [2, 3] sim-
ple motifs of length l ∈ [3, 6] (k and l are selected uniformly
at random within the given ranges). The gap range between
each pair of simple motifs is a random sub-interval of [10, 30].
The x-axis is sorted on the number of motifs extracted, and
average times are plotted for the extracted number of mo-
tifs in the given range. We find that the average running
time for RISO is 334.5s, whereas for exMotif it takes 59.3s
seconds for reporting only the support, and 176.7s for also
reporting all the occurrences. Thus exMotif is on average

5 times faster than RISO, with comparable output.

Figures 4 (b)-(e) plot the time for approximate matching
as a function of different parameters. We set the default
quorum to 12% (q = 127, out of |S| = 1062 sequences), the
default gap ranges to [12,22], the default simple motif length
to l = 6 (NNNNNN), and the default number of components
k = 2 (e.g., NNNNNN[12,22]NNNNNN). Figure 4 (b) shows
how increasing gap ranges effect the running time; for gap
range [8,26] between the two motif components, exMotif is
2-3 times faster than RISO. In Figure 4 (c), we increase the
numbers of arbitrary substitutions allowed for each simple
motif; a pair (ǫ1, ǫ2) on the x-axis denotes that ǫ1 substitu-
tions are allowed for motif component M1, and ǫ2 for M2.
We can see that exMotif is always faster than RISO. It
is 9 times faster when only frequencies are reported, and
it can be up to 5 times faster then full occurrences are re-
ported, though for some cases the difference is slight. Figure
4 (d) plots the effect of the quorum threshold. Compared
to RISO, exMotif performs much better for low quorum,
e.g., for q = 4% exMotif is 4-5 times faster than RISO.
Finally in Figure 4 (e), as the simple motif lengths increase,
the time for both exMotif and RISO increases, and we find
that exMotif can be 2-3 times faster.

4.2 Real Applications

4.2.1 Discovery of Single Transcription Factor Bind-
ing Sites

We evaluate our algorithm by extracting the conserved fea-
tures of known transcription factor binding sites in yeast.
In particular we used the binding sites for the Zinc (Zn)
factors ([22]). There are 11 binding sites listed for the Zn
cluster, 3 of which are simple motifs. The remaining 8 are
structured, as shown in Table 4. For the evaluation, we first
form several structured motif templates according to the
conserved features in the binding sites. Then we extract the
frequent structured motifs satisfying these templates from
the upstream regions of 68 genes regulated by zinc factors
([22]). We used the -1000 to -1 upstream regions, truncat-
ing the region if and where it overlaps with an upstream
open-reading frame (ORF). After extraction, since binding
sites cannot have many occurrences in the ORF regions, we
drop some motifs if they also occur frequently in the ORF
regions (i.e., within the genes). Finally, we calculate the Z-
scores for the remaining frequent motifs, and rank them by
descending Z-scores. In our experiments, we set the mini-
mum quorum threshold to 7% within the upstream regions
and the support threshold to 30% in the ORF regions. We
use the shuffling program from SMILE ([12]) to compute
the Z-scores. The shuffling program randomly shuffles the
original input sequences to obtain a new shuffled set of se-
quences. Then it computes, for each extracted frequent mo-
tif, its support (π) and weighted support (πw) in the shuffled
set. For a given frequent motif M, let µ and σ be the mean
and standard deviation of its support across different sets
(about 30) of shuffled sequences. Then the Z-score for each

motif is calculated as: Z = π(M)−µ

σ
. Likewise we can also

calculate the Z-score for each frequent motif by using the
weighted support (which is also applicable for the repeated
structured motif identification problem). As shown in Table
4, we can successfully predict GAL4, GAL4 chips, LEU3,
PPR1 and PUT3 with the highest rank. CAT8 and LYS
also have high ranks. We were thus able to extract all eight
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Table 4: Regulons of Zn cluster proteins. TF Name stands for transcription factor name; Known Motif stands for the known
binding sites corresponding to the transcription factors in TF Name column; Predicted Motifs stands for the motifs predicted
by exMotif; Num-Motifs gives the final(original) number of motifs extracted (final is after pruning those motifs that are also
frequent in the ORF regions); Ranking stands for the Z-score ranking based on support/weighted support.

TF Name Known Motif Predicted Motifs Num-Motifs Ranking

GAL4 CGGRnnRCYnYnCnCCG CGG[11,11]CCG 1634(3346) 1/1
GAL4 chips
CAT8 CGGnnnnnnGGA CGG[6,6]GGA 1621(3356) 147/13
HAP1 CGGnnnTAnCGG CGG[6,6]CGG 1621(3356) 111/146

CGGnnnTAnCGGnnnTA
LEU3 RCCGGnnCCGGY CCG[4,4]CGG 1588(3366) 2/1
LYS WWWTCCRnYGGAWWW TCC[3,3]GGA 1605(3360) 33/21
PPR1 WYCGGnnWWYKCCGAW CGG[6,6]CCG 1621(3356) 1/2
PUT3 YCGGnAnGCGnAnnnCCGA CGG[10,11]CCG 727(4035) 1/1

CGGnAnGCnAnnnCCGA

transcription factors for the Zinc factors with high confi-
dence. As a comparison, with the same dataset RISO can
only predict GAL4, LEU3 and PPR1.

4.2.2 Discovery of Composite Regulatory Patterns
The complex transcriptional regulatory network in Eukary-
otic organisms usually requires interactions of multiple tran-
scription factors. A potential application of exMotif is to
extract such composite regulatory binding sites from DNA
sequences. We took two such transcription factors, URS1H
and UASH, which are involved in early meiotic expression
during sporulation, and that are known to cooperatively reg-
ulate 11 yeast genes [21]. These 11 genes are also listed in
SCPD [25], the promoter database of Saccharomyces cere-
visiae. In 10 of those genes the URS1H binding site appears
downstream from UASH; in the remaining one (HOP1) the
binding sites are reversed. We took the binding sites for
the 10 genes (all except HOP1), and after their multiple
alignment, we obtained their consensus: taTTTtGGAG-
Taata[4,179]ttGGCGGCTAA (the lower case letters are less
conserved, whereas uppercase letters are the most conserved).
Table 5 shows the binding sites for UASH and URS1H for
the 10 genes, their start positions, their alignment, and the
consensus pattern. The gap between the sites are obtained
after subtracting the length of UASH, 15, from the position
difference (since the start position of UASH is given). The
smallest gap is l = 119 − 110 − 15 = 4 and the largest is
u = 288 − 94 − 15 = 179. Based on the on most conserved
parts of the consensus, we formed the composite motif tem-
plate: T = NNN[1,1]NNNNN[10,185]NNNNNNNNN (note
the 6 additional gaps added to [4,179] to account for the
non-conserved positions). We then extracted the structured
motifs in the upstream regions of the 10 genes. We used
the -800 to -1 upstream regions, and truncated the segment
if it overlaps with an upstream ORF. The numbers of sub-
stitutions for NNN, NNNNN and NNNNNNNNN were set
to ǫ1 = 1, ǫ2 = 2 and ǫ3 = 1, respectively. The quorum
thresholds was set to q = 0.7 with the upstreams, and the
maximum support within genes was set to 0.1% The rank of
the true motif TTT[1,1]GGAGT[10,185]GGCGGCTAA was
290 (out of 5284 final motifs) with a Z-score of 22.61.

5. CONCLUSION AND FUTURE WORK
In this paper, we introduced exMotif, an efficient algo-
rithm to extract structured motifs within one or multiple bi-
ological sequences. We showed its application in discovering
single/composite regulatory binding sites. In the structured
motif template, we assume the gap range between each pair
of simple motifs is known. In the future, we plan to solve
motif discovery problem when even the gap ranges are un-
known. Another potential direction is to extract structured
profile (or position weight matrix) patterns.
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