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Opening Remarks
Data Mining is the process of automatic discovery of novel
and understandable models and patterns from large amounts
of data. Bioinformatics is the science of storing, analyzing,
and utilizing information from biological data such as se-
quences, molecules, gene expressions, and pathways. Devel-
opment of novel data mining methods will play a fundamen-
tal role in understanding these rapidly expanding sources of
biological data.

The goal of this workshop is to encourage KDD researchers
to take on the numerous challenges that Bioinformatics of-
fers. The workshop will feature invited talks from noted
experts in the field, and the latest data mining research in
bioinformatics. We encourage papers that propose novel
data mining techniques for tasks like:

• Gene expression analysis

• Protein/RNA structure prediction

• Phylogenetics

• Sequence and structural motifs

• Genomics and Proteomics

• Gene finding

• Drug design

• RNAi and microRNA Analysis

• Text mining in bioinformatics

• Modeling of biochemical pathways

These proceedings contain 6 papers, out of 18 submissions,
that were accepted for presentation at the workshop. Each
paper was reviewed by three members of the program com-
mittee. Along with two keynote talks, by David Roos and
Sridhar Hannenhalli, we were able to assemble a very excit-
ing program.

We would like to thank all the authors, invited speaker, and
attendees for contributing to the success of the workshop.
Special thanks are due to the program committee for help
in reviewing the submissions.
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ABSTRACT
Cellular functions are coordinately carried out by groups of genes
and proteins forming functional modules. Detection of such func-
tional modules from protein-protein interaction (PPI) networks is
one of the most challenging and important problem in post genomic
era. Moreover, the sparse connectivity of protein-protein interac-
tion data sets makes identification of functional modules more chal-
lenging. After careful observations of the properties of functional
modules in the PPI network, we have found that the actual topologi-
cal shapes and properties, including the graph density and diameter,
of the functional modules in the PPI network have exposed unex-
pected phenomena, e.g., low intraconnectivity and longish shapes.
Many different clustering approaches have been proposed to extract
functional modules from PPI networks. Most of them concentrated
only on densely connected regions topologically and ignored bio-
logical characteristics of the network to be dealt with, even though
they were working on biological networks. Therefore, they could
find only the clusters with certain density, and failed to find ef-
fective functional modules which are biologically significant. Fur-
thermore, they produced many small size clusters, which have less
than 5 members or even singletons, and it resulted in discarding
huge number of proteins during the clustering process. To con-
quer these problems effectively, we develop an algorithm, termed
STM, which utilizes the degree of influence between proteins to de-
termine the cluster representatives. Clusters can then be formulated
by an iterative merging process. STM is compared to six competing
approaches including the maximum clique, quasi-clique, minimum
cut, betweeness cut and Markov Clustering(MCL) algorithms. The
clusters obtained by each technique are compared for enrichment of
biological function. Identified clusters by STM are shown to be en-
riched for biological function better than the clusters identified by
other existing approaches. Topological evaluation of the identified
clusters by our method demonstrated that our method can success-
fully identify arbitrary shape clusters with large size that the other
methods cannot. In addition to the above, an important strength of
our approach is that the percentage of proteins that are discarded to
create clusters is much lower than the other approaches which have
an average discard percentage of 59% on the yeast protein-protein
interaction network.

Keywords
Signal Transduction, Protein-protein interaction network, Functional

module detection

1. INTRODUCTION
Since the first complete genome was sequenced in 1995, more than
300 prokaryotic genomes and more than 20 eukaryotic genomes
have been sequenced[17]. Discovering the functional roles of gene
products after the completion of sequencing the Saccharomyces
Cerevisiae genome has been in the spotlight of post-genomic era.
High-throughput techniques[5; 11; 12; 25] for protein-protein in-
teractions (PPI) detection have attracted researchers’ attention since
interacting proteins are likely to serve together as a group in cel-
lular functions[10]. In recent years, high-throughput techniques
in a genomic scale such as yeast-two-hybrid, mass spectrometry,
and protein chip technologies have multiplied the volume of pro-
tein interaction datasets exponentially and also have provided us a
genomic level view of molecular interactions. The cumulative PPI
dataset of, for example, S. Cerevisiae in DIP (Database of Inter-
acting Proteins) [2] now lists over 4900 proteins and 18,000 inter-
actions from over 22000 experiments; however, nearly half of the
proteins remain unannotated. Effective computational systems for
storage, management, visualization and analysis are necessary to
cope with these fast growing complex datasets.
PPI data provide us the good opportunity to systematically analyze
the structure of a large living system and also allow us to use it
to understand essential principles like essentiality, genetic interac-
tions, functions, functional modules, protein complexes and cellu-
lar pathways. Cellular functions and biochemical events are coor-
dinately carried out by groups of proteins interacting each other in
functional modules, and the modular structure of complex networks
is critical to function[7; 10; 20]. Identifying such functional mod-
ules in PPI networks is very important for understanding the struc-
ture and function of these fundamental cellular networks. There-
fore, developing an effective computational approach to identify
functional modules should be highly challenging but indispensable.
Clustering analysis helps us understand the topological structure of
the PPI networks and relationships among its components better.
And, the principal function of each cluster can be inferred from the
functions of its member. Functions for unannotated members of a
cluster can be predicted by the functions of other annotated mem-
bers[18].
PPI adjacency matrices can be represented as graphs whose nodes
represent proteins and edges represent interactions. The cluster-
ing of a PPI dataset can be thereby reduced to graph theoretical
problems. But, the binary nature of the current PPI data sets im-
poses challenges in clustering using conventional approaches. In
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the maximal clique approach, clustering is reduced to identifying
fully connected subgraphs in the graph [24]. To overcome the rel-
atively high stringency imposed by the maximal clique method,
the Quasi Clique [2], Molecular Complex Detection (MCODE) [1],
Spirin and Mirny [24] algorithms identify densely connected sub-
graphs rather than fully connected ones by either optimizing an
objective density function or using a density threshold. The Re-
stricted Neighborhood Search Clustering Algorithm (RNSC) [16]
and Highly Connected Subgraphs (HCS) algorithms [9] harness
minimum cost edge cuts for cluster identification. The Markov
Cluster Algorithm (MCL) algorithm finds clusters using iterative
rounds of expansion and inflation that promote the strongly con-
nected regions and weaken the sparsely connected regions, respec-
tively [26]. The line graph generation approach [20] transforms
the network of proteins connected by interactions into a network of
connected interactions and then uses the MCL algorithm to cluster
the interaction network. Samantha and Liang [22] employed a sta-
tistical approach to clustering of proteins based on the premise that
a pair of proteins sharing a significantly larger number of common
neighbors will have high functional similarity.
However, currently used approaches encounter challenges because
the relationship between protein function and PPI is characterized
by weak connectivity and unexpected topological phenomena, such
as low intraconnectivity and longish shapes of actual topological
shapes of MIPS functional categories [19]. In our experimental
analysis, subgraphs of each functional categories in MIPS database
[19] are extracted from the Yeast PPI network, and the density of
each subgraph is measured by Equation 7. The density of those
subgraphs is averaged about 0.0023 which is fairly lower than we
expected. Most functional categories have low connectivity within
them in the PPI network and the majority of members in functional
categories do not have direct physical interaction with other mem-
bers of the functional category they belong to. Furthermore, it is not
difficult to find singletons in the extracted subgraphs of functional
categories which means that some proteins do not have any inter-
action with other proteins in the functional category they belong
to. Let the average diameter of a graph be the length of the longest
path among all pair shortest paths in the graph. The average diam-
eter of the subgraphs of all MIPS functional categories is approxi-
mately 4 which is close to the average shortest paths length, 5.47,
of the whole PPI network. In other words, the subgraphs of actual
MIPS functional categories in the PPI network generally are not
closely congregated as we expected, they have longish shapes. Due
to such low density within the modules, the existing approaches
have produced a number of clusters with small size and singletons
and mercilessly discarded many weakly connected nodes since they
can only handle the strongly connected regions. Such incomplete-
ness of clustering is a serious drawback of the existing algorithms.
Discarding the sparsely connected nodes could be a hazardous loss
of important information of the PPI network.
Biological networks, including PPI networks, illustrate the bio-
chemical relationships of components in biochemical processes.
Clustering of biological networks should be able to identify clusters
of any arbitrary shapes and any density if the members of a cluster
share important biochemical properties from the point of view of
biochemical processes. To cope with this necessity and overcome
those drawbacks of existing approaches, we propose a novel strat-
egy to analyze the degree of biological and topological influence
of each protein to other proteins in a PPI network. We model PPI
networks as a dynamic signal transduction system and demonstrate
the signal transduction behavior of the perturbation by each protein
on PPI networks. This behavior should also reflect the topological
properties of the network. The overall signal transduction behavior

function between any two proteins will be formulated to evaluate
the perturbation caused by a protein on other proteins biologically
and topologically in the network. STM successfully identified the
clusters with bigger size, arbitrary shape, low density, and biologi-
cally more enriched than other existing approaches did.

2. METHOD

2.1 The Signal Transduction Model
The proteins and the protein-protein interactions in a PPI data set
were, respectively, represented by nodes and edges of a graph. The
graph representation was modeled using a pharmacodynamic signal
transduction network model. Specifically, the signal transduction
behavior of the network was modeled using the Erlang distribution,
a special case of the Gamma distribution.
Graph definitions: An undirected graph G = (V, E) consists of
a set V of nodes and a set E of edges, E ⊆ V × V . An edge
e = (i, j) connects two nodes i and j, e ∈ E. The neighbors N(i)
of node i are defined to be the set of directly connected nodes of
node i. The degree d(i) of a node i is the number of the edges
connected to node i. A path is defined as a sequence of nodes
(i1, . . . , ik) such that from each of its nodes there is an edge to
the successor node. The length of a path is the number of nodes
in its node sequence. A shortest path between two nodes, i and j,
is a minimal length path between them. The distance between two
nodes, i and j, is the length of its shortest path.
Signal transduction model: We propose to model the dynamic re-
lationships between proteins in a PPI network using a signal trans-
duction network model. Specifically, the signal transduction be-
havior of the network is modeled using the Erlang distribution, a
special case of the Gamma distribution. The Erlang distribution
function is:

F (x) = 1 − e−
x
b ×

c−1X
k=0

(x
b
)k

k!
(1)

where c > 0 is the shape parameter, b > 0 is the scale param-
eter, x ≥ 0 is the independent variable, usually time. The Er-
lang distribution has several characteristics, which are appropriate
for describing the protein-protein interaction network, including its
positive range and its important reproductive property [14]. The
Erlang distribution with x/b = 1 is used and the value of c is set
to the number of edges between source protein node and the target
protein node. Setting the value of x/b to unity assesses the pertur-
bation at the target protein when the perturbation reaches 1/e of its
initial value at the nearest neighbor of the source protein node.
Erlang distribution models have been used in pharmacodynamics
to model signal transduction and transfer delays in a variety of sys-
tems including the production of drug induced mRNA and protein
dynamics [21] and calcium ion-mediated signaling in neutrophils
[8]. Figure 1 shows the corresponding pharmacodynamic signal
transduction model whose bolus response is an Erlang distribution
with parameters b and c, respectively. Statistically, the Erlang dis-
tribution represents the time required to carry out a sequence of
c tasks whose durations are identical, exponential probability dis-
tributions. The Gamma distribution is also excellent for approxi-
mating population abundances fluctuating around equilibrium [4].
Thus in the context of the PPI network, the Erlang distribution can
be viewed as a mechanistically motivated measure of the perturba-
tion caused by the sudden introduction of the source protein to a
target protein in the network.
The Erlang distribution needs to be further modified to reflect net-
work topology. The perturbation induced by the source protein
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Figure 1: The pharmacodynamic signal transduction model whose bolus response is an Erlang distribution. The b is the time constant for
signal transfer and c is the number of compartments.
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Node A
A: 5.0
F: 4.0
G: 0.4741
H: 0.0881

Node B
A: 5.0
F: 0.5057
G: 0.0396
H: 0.0054Node C

A: 5.0
F: 0.5057
G: 0.0396
H: 0.0054

Node D
A: 5.0
F: 0.5057
G: 0.0396
H: 0.0054

Node E
A: 5.0
F: 0.5057
G: 0.0396
H: 0.0054

Node F
A: 5.0
F: 4.0
G: 3.0
H: 0.8428

Node L
A: 0.7902
F: 4.0
G: 0.4741
H: 0.0881

Node G
A: 0.7902
F: 4.0
G: 3.0
H: 4.0

Node N
A: 0.7902
F: 4.0
G: 3.0
H: 0.8428

Node K
A: 0.0084
F: 0.0881
G: 0.4741
H: 4.0

Node H
A: 0.1101
F: 0.8428
G: 3.0
H: 4.0

Node J
A: 0.0084
F: 0.0881
G: 0.4741
H: 4.0

Node I
A: 0.0084
F: 0.0881
G: 0.4741
H: 4.0

Node M
A: 0.0009
F: 0.0133
G: 0.0991
H: 1.2642

Figure 2: A simple network. Each box contains the numerical values obtained from Equation 2 from nodes A, F, G, and H to other target
nodes. Results for other nodes are not shown.

node should be proportional to its degree and to follow the shortest
path to the target protein node. During transduction to the target
protein node, the perturbation should dissipate at each intermediate
visiting node to each incident edge. The overall signal transduction
behavior function from node v to node w (v �= w) is thus:

S(v → w) =
d(v)Q

i∈P (v,w) d(i)
× F (x) (2)

where d(i) is the degree of node i, P (v, w) is the set of the all nodes
visited en route from node v to node w, excluding the source node
v and the target destination node w, and F (x) is the signal trans-
duction behavior function. When v = w and distance(v, w) = 0,
we define S(v → w) = d(v). The numerator of the first term
in the right hand side of Equation 2 represents the degree of the
source node v, and the denominator represents the dissipation on
each visiting node on the shortest path from source node v to target
node w. Our choice of the shortest path is motivated by the finding
that the majority of flux prefers the path of least resistance in many
physicochemical and biological systems. So, the first term in the
right hand side of Equation 2 represents the topological effect of
source node v on target node w. The second term in the right hand
side of Equation 2 represents the biological effect of source node v
on target node w in the signal transduction view point. Therefore,
the nodes that score the highest value on target node w will be the
most influential nodes on node w biologically and topologically.
Figure 2 demonstrates the signal transduction behavior of a small
example network according to Equation 2. For the ease of under-
standing, only the signals from node A, F, G, and H are presented,
although signals should be propagated from each node in the net-
work. Each box in Figure 2 contains the signal assessed by the
Equation 2 from nodes A, F, G, and H to other target nodes, e.g.,
5.0, 0.5057, 0.0396, 0.0054 are the signals assessed from nodes
A, F, G, and H, respectively, on node E. These numerical values
illustrate overall effects of combining the network topology with

the signal transduction model from source nodes A, F, G, and H
on node E. Consequently, node A, which has scored the highest
value, will be the most influential node on node E biologically and
topologically.

2.2 Clustering Model
STM algorithm simulates the perturbation from each node to the
other nodes in a network using Equation 2, which reflects the bi-
ological and topological properties of the node. Module represen-
tatives are the nodes that record the highest scores by Equation 2
on every node in a module, i.e., they are the most influential nodes
in a module biologically and topologically. After the signal trans-
duction simulation, each node selects the most influential nodes as
the representatives of modules. From these representatives, prelim-
inary modules can be formed by aggregating each node into each
module that each of its representatives stands for. Finally, these
preliminary modules are merged if there are substantial intercon-
nections between them.
The pseudocode for the STM algorithm, which employs the signal
transduction function of Equation 2 and a democratic representa-
tives selection algorithm, is shown in Algorithm 1. The algorithm
involves four sequential processes:

Process 1: Compute signals transduced between all node pairs.
Process 2: Select cluster representatives for each node.
Process 3: Formation of preliminary clusters.
Process 4: Merge preliminary clusters.

Process 1 propagates signals from each source node and records the
signal quantities on each target node for all node pairs according to
Equation 2. The implementation of Process 1 is shown on lines
6-10 of the STM algorithm in Algorithm 1.
In Process 2, each node elects the nodes from which it receives
the highest signal value as the representatives of the clusters that
the node will belong to. For example, in Figure 2, nodes A, B,
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Algorithm 1 STM(G)
1: V: set of nodes in graph G
2: F (x): Transduction behavior function
3: S(v, w): arrived signal from node v to node w
4: C: the list of final clusters
5: PreClusters: the list of preliminary clusters
6: for each node pair(v, w) v, w ∈ V, v �= w do
7: distance(v, w) ← the shortest path length from node v to

node w
8: set parameter c in function as distance(v, w)
9: signal(v, w) ← S(v → w)

10: end for
11: for each node v ∈ V do
12: v.representative← select the best scored node w for node

v
13: if cluster w == null then
14: make cluster w
15: cluster w.add(v)
16: PreClusters.add(cluster w)
17: else
18: cluster w.add(v)
19: end if
20: end for
21: C ← Merge(PreClusters)

Procedure 1 Merge(C)

1: C: the cluster list
2: MaxPair: the cluster pair(c, k) with max interconnections

among all pairs
3: Max.value: interconnections between cluster pair c and k
4: MaxPair ← findMaxPair(C,null)
5: while Max.value≥threshold do
6: newCluster ← merge MaxPair c and k
7: Replace cluster c with newCluster
8: Remove cluster k
9: MaxPair ← findMaxPair(C,newCluster)

10: end while
11: return C

C, D, E, and F will choose node A and nodes L, G, and N will
choose node F, which are the best scored nodes on those nodes, as
the representatives.
Each preliminary cluster is initialized by taking its representative
as its initial member. Preliminary clusters are then augmented by
accumulating each node toward each cluster that each of the rep-
resentatives, which are chosen by the node, stands for. Lines from
11-20 in Algorithm 1 contain the representative selection process
and the preliminary cluster formation process. Notice that STM
allows overlaps among clusters by opening the possibility of mul-
tiple representatives which have the tie score on a node, etc. For
example, node G picks nodes F and H, which have the tie score on
node G, as its representatives in Figure 2. Then, G will belong to
the cluster formed by nodes F and the cluster formed by H. There-
fore, overlaps occur between the cluster formed by node F, {F, G,
L, N}, and the cluster formed by node H, {G, H, I, J, K, M}. STM
identified three preliminary clusters, {A, B, C, D, E, F}, {F, G, L,
N}, and {G, H, I, J, K, M}, based on the choice of representatives
in Figure 2.
Some preliminary clusters may be merged if they have substantial
interconnections. We propose to measure the degree of intercon-
nectivity between clusters by the similarity of two clusters i and j

defined below:

Similarity(i, j) =
interconnectivity(i, j)

minsize(i, j)
(3)

where interconnectivity(i, j) is the number of connections be-
tween clusters i and j, and minsize(i, j) is the size of the smaller
cluster among clusters i and j. The Similarity(i, j) between two
clusters i and j is the ratio of the number of the connections be-
tween them to the size of the smaller cluster. Highly intercon-
nected clusters are iteratively merged based on the similarity of the
clusters. The pair of clusters that have the highest similarity are
merged in each iteration and the merge process iterates until the
highest similarity of all cluster pairs is less than a given threshold.
The selection of the threshold for merging clusters is a critical fac-
tor for the final cluster outcome. Theoretically, we can see when
interconnectivity(i, j) ≥ minsize(i, j), clusters i and j have
substantial interconnections. Three clusters, {A, B, C, D, E, F},
{F, G, L, N}, {G, H, I, J, K, M}, are obtained after the Process 4
when 2.0 is used as the merge threshold. Two clusters, {A, B, C,
D, E, F, G, L, N}, {G, H, I, J, K, M}, are obtained after the Merge
process when 1.0 is used as the merge threshold.

2.3 Cluster Assessment
The structures of the clusters identified by STM and other compet-
ing alternative approaches are assessed using several metrics.
The clustering coefficient, C(v), of a node v measures the connec-
tivity among its direct neighbors:

C(v) =
2 | Si,j∈N(v)(i, j) |

d(v)(d(v) − 1)
(4)

In Equation 4, N(v) is the set of the direct neighbors of node v
and d(v) is the number of the direct neighbors of node v. Highly
connected nodes have high values of clustering coefficient.
Degree centrality orders nodes by the number of their direct neigh-
bors, and betweenness centrality measures the nodes’ importance
from the information flow point of view in a network. Degree and
betweenness centrality commonly used to measure the importance
of a node in a network. The Betweeness Centrality, CB(v), is a
measure of the global importance of a node that assesses the pro-
portion of shortest paths between all node pairs that pass through
the node of interest. The Betweeness Centrality, CB(v) for a node
of interest, v, is defined by:

CB(v) =
X

s �=v �=t∈V

ρst(v)

ρst
(5)

In the Equation 5, ρst is the number of shortest paths from node s
to t and ρst(v) the number of shortest paths from s to t that pass
through the node v.
The extent to which the clusters are associated with a specific bi-
ological function is evaluated using a p-value based on the hyper-
geometric distribution [2]. The p-value is the probability that a
cluster would be enriched with proteins with a particular function
by chance alone. The p-value is given by:

p = 1 −
k−1X
i=0

„
C
i

«„
G − C
n − i

«
„

G
n

« (6)

In Equation 6, C is the size of the cluster containing k proteins
with a given function; G is the size of the universal set of proteins
of known proteins and contains n proteins with the function. Be-
cause the p-values are frequently small numbers with positive val-
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Figure 3: Accumulation of lethal proteins for various percentiles of
degree (gray line), betweeness centrality (dashed line) or the STM
signal transduction metric (solid line). The results are shown for
the top 555 proteins obtained from the yeast PPI network and are
ordered; the highest values of these metrics are closest to the origin.

ues between 0 and 1, the negative logarithms (to base 10, denoted
-log p) are used. A -log p value of 2 or greater indicates statistical
significance at α = 0.01.
The density of a subgraph s in a PPI network is measured by:

Ds =
2e

n(n − 1)
(7)

In Equation 7, n is the number of proteins and e is the number of
interactions in a subgraph s of a PPI network.

3. EXPERIMENTAL RESULTS

3.1 Protein Interaction Data
The core data of S. Cerevisiae was obtained from the DIP database
[3]. This dataset include 2526 proteins and 5949 filtered reliable
physical interactions. Species such as S. Cerevisae provide im-
portant test beds for the study of the PPI networks since it is a
well-studied organism for which most proteomics data is available
for the organism, by virtue of the availability of a defined and rel-
atively stable proteome, full genome clone libraries, established
molecular biology experimental techniques and an assortment of
well designed genomics databases [3; 10].

3.2 Biological Significance of the Putative Mod-
ule Representatives

Our signal transduction model of Equation 2 provides a vehicle
to quantitatively measure the degree of biological and topologi-
cal influence of each protein on other proteins in the PPI network.
The most influential proteins, that is, the highest scored nodes, are
highly important proteins. To evaluate the biological significance
of the most influential proteins, we annotated the lethality of each
protein in the yeast PPI network according to the MIPS lethality
data. Lethality is a crucial factor to characterize the biological es-
sentiality of a protein. It is determined by examining whether a
module is functionally disrupted when the protein is knocked out.
We obtained the protein lethality information from MIPS database

[19], which reports whether a protein is lethal or viable. We found
that 233 proteins out of the top scored 555 proteins are lethal.
Figure 3 plots the cumulative number of lethal genes vs. the num-
ber of protein nodes included for increasing percentiles of the de-
gree, betweeness or the STM signal transduction metric. The data
are shown for 555 genes, obtained from the yeast PPI network, with
the highest values of each of these metrics. In each case, the results
are sorted and highest values are placed closest to the origin. Fig-
ure 3 shows that the performance of the STM metric in predicting
lethality is comparable to that of degree and betweeness approaches
for up to 150 nodes.

3.3 Clustering Performance Analysis
Experimentally, we performed STM algorithm on the yeast PPI
data set using various merge threshold values to find the best thresh-
old value for each data set. Experiments using 0.5, 1.0, 1.5, 2.0,
2.5, and 3.0 as the merge threshold were performed on each data
set. The results show that when the merge threshold is less than
1.0, clusters that do not have substantial similarity are merged; and
when the merge threshold is greater that 1.5, merging seldom oc-
curred. There is no much performance difference when the values
between 1.0 and 1.5 are used. The experiment when 1.0 is used as
the merge threshold showed the best performance.

3.3.1 Cluster Analysis
555 preliminary clusters are obtained from the yeast PPI network
and merged using 1.0 as the merge threshold. In Table 1, all 60
clusters that have more than 4 proteins are listed, and it also shows
their topological characteristics and their assigned molecular func-
tions from MIPS functional categories. To facilitate critical assess-
ments, the percentage of proteins that are in concordance with the
major assigned function (hits), the discordant proteins (misses) and
un-known are also indicated. Among these 60 clusters, the largest
one contains 210 proteins and the smallest one contains 5 in them.
On average, we have 40.1 proteins in a cluster, and the average den-
sity of the subgraphs of the clusters extracted from the PPI network
is 0.2145. The -log p values of the major function identified in each
cluster is also shown and these values provide a measure of the rela-
tive enrichment of a cluster for a given functional category: higher
values of -log p indicate greater enrichment. The results demon-
strate that the STM method can detect large but sparsely connected
clusters as well as small densely connected clusters. The high val-
ues of -log p (values greater than 2.0 indicate statistical significance
at α < 0.01) indicate that clusters are significantly enriched for bi-
ological function and can be considered to be functional modules.
As a result, our method can clearly identify larger modules that
have low density but still biologically enriched as we can see from
the size, the density, and the P-value of the clusters in Table 1.
Figure 4 exhibits the distribution of the hit, miss, and unknown
percentage of member proteins with the assigned function for each
cluster in Table 1 for better understanding visually. We found that
most of the proteins in a cluster have the same functions that are
assigned as a main function for the cluster as shown in Figure 4.

3.3.2 Comparative Analysis
The results in Table 2 and 3 for the yeast PPI dataset show that
STM generates larger clusters; the clusters identified had p-values
that are 2.2 orders of magnitude or approximately 125-fold lower
than Quasi clique, the best performing alternative clustering method,
on biological function. The p-values for the cellular localization are
also shown in the last column of Table 2 and 3. It is clear that the
clusters identified by STM despite being larger have low p-values.
Although p-values generally decrease with increasing cluster size,

BIOKDD06: 6th Workshop on Data Mining in Bioinformatics (with SIGKDD Conference) page 7



Distribution
Cluster Size Density H D U -Logp Function

1 214 0.019 24.7 69.6 5.6 43.9 Nuclear transport
2 188 0.015 69.1 25.0 5.8 36.4 Cell cycle and DNA processing
3 181 0.022 22.0 72.3 5.5 17.2 Cytoplasmic and nuclear protein degradation
4 170 0.028 46.4 42.9 10.5 31.6 Transported compounds (substrates)
5 131 0.028 37.4 55.7 6.8 28.6 Vesicular transport (Golgi network, etc.)
6 125 0.030 60.8 33.6 5.6 32.2 tRNA synthesis
7 113 0.027 19.4 71.6 8.8 11.8 Actin cytoskeleton
8 79 0.045 17.7 73.4 8.8 12.3 Homeostasis of protons
9 78 0.033 26.9 62.8 10.2 12.5 Ribosome biogenesis

10 76 0.041 38.1 59.2 2.6 20.2 rRNA processing
11 72 0.030 5.6 84.7 9.7 6.2 Calcium binding
12 68 0.064 66.1 25.0 8.8 44.5 mRNA processing
13 61 0.041 40.9 52.4 6.5 11.5 Cytoskeleton
14 58 0.064 72.4 27.6 0.0 37.4 General transcription activities
15 53 0.048 15.0 71.6 13.2 7.9 MAPKKK cascade
16 50 0.064 66.0 32.0 2.0 33.5 rRNA processing
17 45 0.055 24.4 73.3 2.2 11.1 Metabolism of energy reserves
18 44 0.058 59.0 36.3 4.5 5.1 Metabolism
19 39 0.072 10.2 89.7 0.0 7.3 Cell-cell adhesion
20 36 0.125 58.3 36.1 5.5 16.9 Vesicular transport
21 29 0.091 55.1 44.8 0.0 8.3 Phosphate metabolism
22 28 0.074 14.2 78.5 7.1 4.5 Lysosomal and vacuolar protein degradation
23 27 0.119 29.6 66.6 3.7 7.3 Cytokinesis (cell division)/septum formation
24 26 0.153 53.8 46.1 0.0 28.6 Peroxisomal transport
25 25 0.090 28.0 68.0 4.0 4.6 Regulation of C-compound and carbohydrate utilization
26 25 0.116 68.0 28 4.0 12.9 Cell fate
27 22 0.151 59.0 36.3 4.5 11.4 DNA conformation modification
28 21 0.147 76.1 19.0 4.7 23.9 Mitochondrial transport
29 20 0.200 75.0 20.0 5.0 24.0 rRNA synthesis
30 19 0.228 78.9 15.7 5.2 17.9 Splicing
31 17 0.220 70.5 29.4 0.0 19.7 Microtubule cytoskeleton
32 17 0.183 23.5 76.4 0.0 8.2 Regulation of nitrogen utilization
33 15 0.304 86.6 13.3 0.0 31.3 Energy generation
34 14 0.142 50.0 42.8 7.1 9.0 Small GTPase mediated signal transduction
35 13 0.564 76.9 23.0 0.0 15.9 Mitosis
36 13 0.358 84.6 15.4 0.0 12.4 DNA conformation modification
37 13 0.410 69.2 23.0 7.6 17.6 3’-end processing
38 13 0.179 61.5 30.7 7.6 6.7 DNA recombination and DNA repair
39 12 0.196 16.6 75.0 8.3 3.9 Unspecified signal transduction
40 12 0.363 58.3 41.6 0.0 14.7 Posttranslational modification of amino acids
41 12 0.166 16.6 75.0 8.3 2.4 Autoproteolytic processing
42 11 0.218 54.5 45.4 0.0 2.9 Transcriptional control
43 11 0.200 72.7 27.2 0.0 8.2 Enzymatic activity regulation / enzyme regulator
44 10 0.466 80.0 20.0 0.0 14.8 Translation initiation
45 9 0.361 77.7 22.2 0.0 12.8 Translation initiation
46 8 0.321 50.0 37.5 12.5 5.6 Metabolism of energy reserves
47 8 0.321 75.0 25.0 0.0 9.0 Modification by ubiquitination, deubiquitination
48 8 0.321 37.5 62.5 0.0 3.7 Mitosis
49 7 0.333 42.8 57.1 0.0 3.5 DNA damage response
50 7 0.333 57.1 28.5 14.2 4.1 Vacuolar transport
51 7 0.285 28.5 71.4 0.0 4.4 Biosynthesis of serine
52 6 0.333 50.0 33.3 16.6 2.38 Modification by phosphorylation, dephosphorylation, etc.
53 5 0.400 100 0.0 0.0 7.0 Meiosis
54 5 0.600 100 0.0 0.0 7.0 Vacuolar transport
55 5 0.400 100 0.0 0.0 8.5 ER to Golgi transport
56 5 0.400 20.0 40.0 40.0 1.8 cAMP mediated signal transduction
57 5 0.500 40.0 40.0 20.0 3.1 Oxidative stress response
58 5 0.500 80.0 20.0 0.0 4.4 Intracellular signalling
59 5 0.600 40.0 60.0 0.0 4.2 Tetracyclic and pentacyclic triterpenes
60 5 0.400 60.0 40.0 0.0 4.1 Mitochondrial transport

Table 1: Clusters obtained using STM for the yeast PPI network. The first column is a cluster identifier; the Size column indicates the number of proteins
in each cluster; the Density indicates the percentage of possible protein interactions that are present; the H column indicates the percentage of proteins
concordant with the major function indicated in the last column; the D column indicates the percentage of proteins discordant with the major function and U
column indicates percentage of proteins not assigned to any function. The -log p values for biological function are shown.
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Figure 4: Distribution of the three classes of 60 clusters: the hit percentage with the assigned function, discordant percentage from the
assigned function, and unknown percentage

these decreases in p-values can occur only when the null hypothe-
sis is false. The p-values reflect the confidence that the differences,
if present, are not due to chance alone. The confidence in any given
result increases when these are obtained in a larger sample and in
this context. So, the dependence of p-values on sample size is intu-
itive. The p-values express the strength of evidence against the null
hypothesis to account for both the sample size, the amount of noise
in measurements. Therefore, the STM clusters have low p-values
because they are enriched for function and not simply because they
are larger.
Tables 2 and 3 demonstrate that STM outperforms the other exist-
ing approaches. We made a comparison with 6 other existing ap-
proaches, Maximal cliques [24], Quasi cliques [2], Samantha [23],
Minimum cut [14], Betweenness cut [6], and MCL [26]. The com-
parison on the cluster size more than 4 is in Table 2 and on the
cluster size more than 9 in Table 3. Both tables show that our sig-
nal transduction model based method generates considerably larger
clusters, and the identified clusters by our method have at least 2 or-
ders of magnitude higher P-value than the others on both function
and localization categories.
Quasi clique and Maximal clique discarded 80.8% and 98.4% nodes
during clustering process, even though they identified the clusters
with relatively high p-values in Table 2. Quasi clique and Saman-
tha discarded 86.7% and 93.3% nodes, even though they identified
the clusters with relatively high p-values in the clusters with size
more than 9 in Table 3. Another important strength of STM is
that the percentage of proteins that are discarded to create clusters
is 7.8%, which is much lower than the other approaches, which
have an average discard percentage of 59%. The yeast PPI dataset
is relatively modular and the bottom-up approaches (e.g., maximal
clique and quasi clique methods) generally outperformed the top-
down approaches (exemplified by the minimum cut and betwee-
ness cut methods) on functional enrichment as assessed by -log
p. However because bottom-up approaches are based on connec-
tivity of dense regions, the percentages of discarded nodes for the
bottom-up methods are also higher than STM and the top-down ap-
proaches. But, we already have shown that the functional modules
have fairly low density and arbitrary shapes with long diameter.
So, discarding those sparsely connected proteins could be a fatal
decision which might resulted in the important biological informa-
tion losses. Consequently, STM is versatile and its performance on
biological function and localization enrichment, cluster size, and

discard rate is superior to the best of the other six methods on both
data sets.

3.3.3 Topological Analysis
To analyze the clustering results visually, we observed the topo-
logical shapes of the detected clusters by STM and their associated
functional categories that were assigned from MIPS database. 4 ex-
ample clusters which have visually recognizable size are selected
from the 60 clusters in Table 1. The subgraphs of these chosen
clusters were extracted from the yeast PPI network and displayed
on the left column on each row in Figure 5. The MIPS function
categories that were assigned to each of these clusters were also
extracted from the yeast PPI network and displayed on the right
side of its associated cluster. Most of the detected clusters have
similar backbone structures with their associated functions. No-
tice that we can easily find out that the diameter and the density of
those example clusters and their assigned functions are fairly long
and sparse. Also notice that it is not difficult to find singletons
in each functional category subgraphs, which means that there are
members which do not have a direct physical interaction within the
functional category that they belong to.

3.4 Computational Complexity Analysis
STM is fundamentally established on all pairs shortest path search-
ing algorithm to measure the distance between all node pairs. This
problem can be solved in O(V 2logV + V E) time if it is imple-
mented using Johnson’s algorithm [13], where V is the number of
nodes and E is the number of edges in a graph. After measuring the
distance between all node pairs, formation of preliminary clusters
takes O(V ) time. The amount of time required to find the best clus-
ter pair that has the most interconnections is O(k2logk) by using
heap-based priority queue, where k is the number of preliminary
clusters [15]. The Merging process needs to find the cluster pair
which has the most interconnections, and it takes O(k2logk) time
only for the initial iteration. From the second iteration, finding the
best cluster pair takes O(klogk) time since the cluster pair com-
parisons are needed only between the newly merged cluster and
the other clusters. And the maximum k, the number of prelimi-
nary clusters, is at most O(V ) in the case of the fully connected
graph, therefore the Merging process takes O(V 2logV ) time. But
k is much smaller than V in sparse networks like the Yeast PPI
network. So the total time complexity of our algorithm is bounded
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Method Number Size Discard(%) Function Location
STM 60 40.1 7.8 13.7 7.42

Maximal clique 120 5.65 98.4 10.6 7.93
Quasi clique 103 11.2 80.8 11.5 6.58

Samantha 64 7.9 79.9 9.16 4.89
Minimum cut 114 13.5 35.0 8.36 4.75

Bwtweenness cut 180 10.26 21.0 8.19 4.18
MCL 163 9.79 36.7 8.18 3.97

Table 2: Comparison of STM to competing clustering methods for the yeast protein-protein interaction data set for clusters with 5 or more
members. The Number column indicates the number of clusters identified by each method, the Size column indicates the average number
of proteins in each cluster; the Discard% indicates the percentage of proteins not assigned to any cluster. The -log p values for biological
function and cellular location are shown.

Method Number Size Discard(%) Function Location
STM 45 52.4 11.5 16.8 9.01

Maximal clique N/A N/A N/A N/A N/A
Quasi clique 46 16.7 86.7 15.3 9.34

Samantha 17 12.3 93.3 15.9 7.65
Minimum cut 44 24.3 55.0 14.8 8.78

Bwtweenness cut 78 14.4 50.5 11.3 6.05
MCL 55 16.7 69.4 11.5 5.42

Table 3: Comparison of STM to competing clustering methods for the yeast protein-protein interaction data set for clusters with 9 or more
members. The Maximal clique does not identify clusters with 9 or more members. The footnote is the same to Table 2.

by the time consumed in computing the distance between all node
pairs, which is O(V 2logV + V E).

4. DISCUSSION
We have studied that the topological shapes of the subgraphs of
MIPS functional categories extracted from the PPI network are
arbitrary and the density of them is fairly low. These two unex-
pected properties of functional categories prohibited other exist-
ing approaches from detecting functional modules from PPI net-
works effectively. A relative excess of emphasis on density and
interconnectivity in the existing methods can be preferential for
detecting clusters with relatively balanced round shapes and limit
performance. The incompleteness of clustering is another distinct
drawback of existing algorithms, which produce many clusters with
small size and singletons. The preference for strongly connected
nodes results in many weakly connected nodes being discarded.
Moreover, considering only the topological properties and ignoring
the biological characteristics of the network also can damage the
effectiveness of clustering.
In this paper we have proposed a novel clustering method based
on the signal transduction model for the Yeast PPI network. In
head-to-head comparisons, the STM outperformed competing ap-
proaches and is capable of effectively detecting both dense and
sparsely connected, biologically relevant functional modules with
fewer discards. To our knowledge, this is the first description of the
use of signal transduction based approach for this application.
Overwhelming performance of our approach has been demonstrated
in several criteria including visual inspection. STM generated big-
ger size clusters with arbitrary shape, and those identified clusters
are more biologically enriched, i.e., higher P-value, even though
they have low density. There are more than 5% of unannotated
proteins in the identified clusters. The function of those unanno-
tated proteins can be predicted according to their assigned main
functions by our method. Completeness of our clustering method
is another distinct strength compared to the other methods. Our

method discarded only about 7.8% of proteins which is tremen-
dously lower than the other approaches did, 59% in average. In
conclusion, STM has strong pharmacodynamics-based underpin-
nings and is an effective, versatile approach for analyzing protein-
protein interactions. The STM approach contains a framework for
rationally incorporating reaction rates, protein concentrations and
interaction stoichiometry should these become available. It could
therefore have potential applications in the drug discovery and de-
velopment.
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Figure 5: The subgraphs of 4 example clusters identified by STM and their assigned functional categories. The subgraphs of 4 example
clusters detected by STM are extracted from yeast PPI network and displayed on the left column in each row. The subgraphs of their
associated functional categories, which are assigned from MIPS database for each of these clusters, are also extracted from yeast PPI
network and displayed on the right column of their associated clusters.
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ABSTRACT
Molecular dynamics simulations are employed to explain the for-
mation of 3D protein structures, a fundamental yet unsolved prob-
lem in computational molecular biology. Effective comparison and
representation of the simulation data is a major step in understand-
ing and characterizing the folding process. In this paper, we ex-
plore the use of spatio-temporal association patterns to discover
meaningful information in protein folding trajectories. We pro-
pose an approach that employs the simplicity of contact maps to
effectively analyze and utilize information in 3D folding simula-
tions. Our method also allows one to perform cross comparison
of multiple trajectories to identify critical events or partial folding
pathways common to every trajectory. Our empirical results on the
folding trajectories of the protein BBA5 demonstrate the efficacy
of the proposed approach.

1. INTRODUCTION
The three dimensional (3D) native structures of proteins have im-
portant implications in proteomics. Understanding the structure of
a protein enables us to explore the function of the protein, explain
substrate and ligand binding, perform realistic drug design and po-
tentially cure diseases caused by misfolding. The protein folding
problem is therefore one of the most fundamental yet unsolved
problems in computational molecular biology. One major chal-
lenge in simulating the protein folding process is its complexity.
Snow et al. [15] state that performing a Molecular Dynamics (MD)
simulation on a mini-protein for just 10 μs would require decades
of computation time on a typical CPU. The Folding@home dis-
tributed computing project [14] recently proposed using worldwide
distributed computing to tackle protein folding simulations.
With the increasing number of trajectories produced by distributed
computing, there is a need to analyze, understand, and manage the
available data. Previously, researchers have examined several sum-
mary statistics(e.g. radius of gyration, root mean square deviation
(RMSD)) for this purpose. Although summary statistics are com-
monly used for comparison, they can only capture a biased and
limited global property of the conformation. Recently, Russel et al.
[13] suggested using geometric spanners for mapping a simulation
to a more discrete combinatorial representation. They consider us-

∗Contact author.

ing geometric spanners to discover the proximity between different
segments of a protein across a range of scales, and track the changes
of such proximity over time.
To overcome the difficulties in managing and analyzing the large
amount of simulation data, Berrar et al. [2] proposed designing
a data warehouse system. They embed their warehouse in a grid
environment to enable the sharing of the actual simulation data.
They also propose implementing a set of data mining algorithms to
facilitate commonly needed data analysis tasks.
In this paper, we propose a method to analyze folding trajecto-
ries of the mini protein BBA5 produced by the Folding@home
project. We utilize the spatio-temporal data mining framework that
we have developed and described earlier for the purpose of man-
aging and analyzing such data [21]. As mentioned in [21], this
framework is designed to analyze spatio-temporal data produced
in several scientific domains. In our previous work, we have ap-
plied this framework to 8732 proteins taken from the Protein Data
Bank to identify structural fingerprints for different classes of pro-
teins [19]. Each protein is associated with a set of objects that are
extracted from their contact maps. To effectively capture spatial
relationships among objects, we define Spatial Object Association
Patterns (SOAP). Furthermore, by associating SOAPs with proteins
in different protein classes, we establish the connections between
different types of SOAPs and protein classes.
It is apparent that protein folding trajectory data have both spa-
tial and temporal components. Each protein in a MD simulation
consists of a number of residues spatially located in the 3D space
that move over time. Each frame of the trajectory can be repre-
sented as a contact map in 2D, capturing the pair-wise 3D distance
of residues. Similar to our previous work [19], we extract non-local
bit-patterns from these contact maps. We then use an entropy-based
clustering algorithm to cluster such bit-patterns into groups. These
bit-patterns are further associated to form spatial object associa-
tion patterns (SOAPs). By the use of SOAPs, we effectively repre-
sent and analyze folding trajectories produced by MD simulations.
A major advantage of this representation is its appropriateness for
cross-comparison across different simulations. Key benefits of our
framework include:

• Effective, informative and scalable representation of fold-
ing simulations: We represent each frame by a set of SOAPs,
where each SOAP in turn characterizes the spatial relation-
ship (or interactions in the folding case) among multiple bit-
patterns. SOAPs are not only easily obtainable but also, as
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we will show, are able to capture landmarks along a folding
trajectory.

• Cross-analysis of trajectories to reveal a consensus par-
tial pathway: By representing each frame as a set of SOAPs,
one easily carry out analysis across different trajectories. Such
analysis includes detecting critical events and identifying con-
sensus partial folding pathways across trajectories.

2. ANALYSIS OF PROTEIN FOLDING TRA-
JECTORIES

2.1 Protein Folding Trajectories
Advances in high-performance computing technologies and molec-
ular dynamics have led to successful simulations of folding dynam-
ics for (small) proteins at atomistic level [12]. Such simulations
result in a large number of folding trajectories, each of which con-
sists of a series of 3D conformations of the protein under simu-
lation. These conformations are usually sampled regularly (e.g.,
every 200fs) during a simulation. In this paper, we also refer to
each conformation as a folding frame or simply a frame. Further-
more, to represent a protein conformation, we adopt one of the
commonly adopted representation schemes, where a conformation
is represented as a sequence of α-carbons (Cα) located in 3D space.
As mentioned earlier, we obtained two folding trajectories of the
designed mini-protein BBA5 (Protein Data Bank ID) from the
Folding@home research group at Stanford University1. BBA5 is
a 23-residue protein that folds at microsecond timescale. The native
structure (or fold) of BBA5 shows a β-hairpin involving residues 1-
10 and centering about residues 4-5. It also includes an α-helix in-
volving the remaining residues 11-23. By convention, residues are
numbered increasingly from the N-terminal to C-terminal of a pro-
tein. Figure 1(a) illustrates the native conformation of BBA5. The
two folding trajectories, referred to as T23 and T24 respectively,
are of different length. T23 consists of a series of 192 conforma-
tions (or frames), while T24 150 frames2. Each conformation is
described at atomistic level in PDB format adopted by the Protein
Data Bank programs.

2.2 Comparing Conformations of BBA5 Across
Trajectories

Although both trajectories start from the same extended confor-
mation as shown in Figure 1(b), when we examine the visualized
frames, they seem to identify two very different folding processes.
Figures 1(c) and (d) illustrate the last frame in T23 and T24 respec-
tively. This seeming difference might be attributed to the stochas-
tic nature of the folding simulation process [12; 16]. However, it
is also desirable to characterize the similarities (or dissimilarities)
across multiple trajectories.
To compare two trajectories, a key issue that must be addressed
is: how can we compare two protein conformations? Several mea-
sures have been commonly used to do such comparison, includ-
ing RMSD (root mean squared distance) [22], contact order [9],
and native contacts [4]. However, all these measures are designed
to quantify the global topology of a conformation. Furthermore,
based on our empirical analysis of these measures, we notice that
they are generally too coarse and thus can often be misleading.
Even more important, such measures fail to identify similar local
structures (or motifs) between conformations. This is especially

1http://folding.stanford.edu/
2Please refer to [12; 16] for details on the simulation model em-
ployed to produce such trajectories.

crucial for small proteins like BBA5. As demonstrated in both ex-
perimental and theoretical studies, small proteins often fold hierar-
chically and begin locally [1]. For instance, it has been shown that
BBA5 tends to first form secondary structures such as β-turns and
α-helix, then conform to its global topology [16]. Finally, as sug-
gested by Pande [12], both sterics (local motifs) and global topol-
ogy might play an important role in protein folding. Therefore,
to compare conformations of (small) proteins, a more reasonable
comparison should consider both local and global structures. More-
over, it should also take the native topology of the protein under
study into account.
To meet these requirements, we propose the following approach to
compare conformations of BBA5. First, we loosely partition the
23 residues of BBA5 into four fragments: (i) F1: N-terminal 1-10
β-hairpin; (ii) F2: C-terminal 11-23 α-helix fragment; (iii)F3: the
first half of F1 and the second half of F2; and (iv) F4: the sec-
ond half of F1 and the first half of F2, i.e., the middle section in
the primary sequence. Second, we recognize the secondary struc-
ture propensity in each fragment. Two conformations are said to be
similar if they demonstrate the same secondary structure propen-
sity in the same fragment. For instance, the conformation pair in
Figure 6(a) are similar as residues in F1,F2 and F4 from both con-
formations indicate a β-turn like local motif. Please note that the
orientation of local motifs does not affect the comparison. For in-
stance, in Figure 6(d), we say the two conformations have a similar
structure in F1 fragment, even though the β-turn motifs have dif-
ferent orientations.
To realize the comparison of conformations, two more issues must
still be addressed. First, how can we effectively capture and repre-
sent local motifs? Second, how can we represent the global topol-
ogy of a conformation in terms of local motifs? To address the first
issue, we leverage the non-local patterns in protein contact maps.
For the second, we characterize the spatial arrangement among
non-local patterns. Please see Section 3 for details.

2.3 Folding Trajectory Analysis: Objectives
There are two goals we would like to achieve in analyzing the
folding trajectories. First, we would like to address the follow-
ing folding issues for a given trajectory: (1) to detect (or even
predict) significant folding events, including the formation of β-
turns, α-helices, and native-like conformations; and (2) to recog-
nize the temporal ordering of important folding events in the tra-
jectory. For instance, between the two secondary structures α-helix
and β-hairpin in BBA5, which forms earlier? What is ordering of
the two events preceding a β-hairpin formation: formation of two
extended strands or formation of the turn?
If the first goal concerns individual trajectories, the second goal
concerns multiple trajectories. Specifically, we would like to iden-
tify a sub-sequence of similar conformations in both trajectories.
This sub-sequence of conformations is referred to as the consensus
partial folding pathway. This is analogous to the Longest Com-
mon Sub-sequence (LCS) problem [5], but much more challeng-
ing in two important ways. First, we are dealing with time series
of 3D protein structures. Second, we are not looking for an ex-
act match between conformations across different trajectories. In-
stead, we are looking for similar conformations across trajectories.
We would like to point out that this work is closely related to our
previous work on protein structural analysis [18] and our work on
mining spatio-temporal data [21].
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Figure 1: Different conformations of BBA5, where each point corresponds to an α-carbon. (a)The native NMR structure of BBA5 based on
data from the SCOP website. (b)The initial conformation of both folding trajectories. (c)The last conformation in the first trajectory. (d)The
last conformation in the second trajectory.

3. ALGORITHM
In this section, we describe in detail our approach for analyzing
protein folding trajectories. As shown in Figure 2, this analysis
consists of three main phases: (I) Data preprocessing, (II) Spatio-
temporal object association pattern mining, and (III) Trajectory anal-
ysis. We next discuss each phase in further details.

3.1 Data Preprocessing
As in our previous studies on protein structural analysis [18; 19],
we represent 3D protein conformations by contact maps. Thus, in
this work, we use similar measures to create and process such maps.
In order for this algorithm to be self-contained, we briefly go over
these preprocessing steps here. We refer to readers to [18] for more
detail. In addition, we will also explain the rationale behind several
key steps in the context of protein folding.

Contact Map Generation

When generating contact maps, we consider the Euclidean dis-
tances between α-carbons (Cα) of each amino acid. Two α-carbons
are considered to be in contact if their distance is within 8.5Å.
Thus, for a protein of N residues, its contact map is an N × N
binary matrix, where the cell at (i, j) is 1 if the ith and jth α-
carbons are in contact, 0 otherwise. Since contact maps are sym-
metric across the diagonal, we only consider the bits below the di-
agonal. Furthermore, we also ignore the pairs of Cα atoms whose
distance in the primary sequence is ≤2, as they are sure to be in
contact. This step essentially transforms the two BBA5 trajectories
into two series of contact maps, with each map of size 23×23.

Identifying Maximally Connected Bit-patterns

Every bit in a contact map has eight neighbor bits. For an edge
position, we assume its out-of-boundary positions contain 0. In a
contact map, a connected bit-pattern is a collection of bit-1 posi-
tions, where for each 1, at least one of its neighbors is 1. Cor-
respondingly, we define a maximally-connected bit-pattern (also
referred to as a bit-pattern in this article) to be a connected pat-
tern p where every neighbor bit not in p is 0. We apply a sim-
ple region growth algorithm to identify all maximally-connected
patterns to every contact map in the two trajectories. A total of
352 maximally-connected bit-patterns were extracted from the two
folding trajectories of BBA5.
As discussed in our previous work and elsewhere [7; 8; 10; 17],
such bit-patterns can effectively capture the secondary structures
of proteins. In the context of protein folding, we have observed
that they are powerful enough to represent a wide range of local

structural motifs. We can even measure approximately the strength
of secondary structure propensity in a conformation based on the
bit-patterns. For instance, we have identified bit-patterns that cor-
respond to “premature” α-helices and native-like α-helices respec-
tively. Henceforth, we refer to the 3D structure formed by all the
participating residues of a bit-pattern as the 3D motif of the bit-
pattern.

Clustering Bit-patterns into Approximately Equivalent
Groups

We apply an entropy-based clustering algorithm to group the bit-
patterns into l clusters, where the bit-patterns in a cluster show
similar geometric properties (e.g., shape and size). The value of
l is determined using an entropy-based measure that quantitatively
indicates the quality of a clustering result. (Please refer to [18] for
details.) For the BBA5 folding data, the clustering step groups the
352 bit-patterns into 10 clusters (or types).
Intuitively, the 3D motifs of the bit-patterns in a cluster will also
have similar 3D geometric properties. This is verified based on our
analysis on the BBA5 trajectories. Figure 3 illustrates the repre-
sentative 3D motifs for 9 of the 10 types of bit-patterns. We omit
type 0, as bit-patterns of this type, unlike the others, correspond to
a wide variety of 3D motifs.
This demonstrates, to a certain extent, the advantage of using 2D
contact maps to analyze 3D protein conformations. Undoubtedly,
using contact maps greatly reduces the computational complexity
of our algorithm, though at the cost of loss in structural information.
More importantly, by exploiting different features in contact maps
(bit-patterns in this work), we are able to connect 2D features with
features in 3D space. In our case, by identifying 10 types of bit-
patterns in contact maps, we indirectly recognize 10 different 3D
structural motifs in the folding conformations.

Re-labeling Bit-patterns with The Corresponding Clus-
ter Label

In this step, we re-label all the previously identified bit-patterns
with their corresponding cluster label. Let p be a labeled bit-pattern.
It can be represented as follows: p = (trajID, frameID, listCα,
label). Here, trajID identifies a folding trajectory, and frameID
indicates the frame where p occurs, listCα consists of all par-
ticipating α-carbons of p, identified by their position in the pri-
mary sequence. Finally, label is the cluster label of p. For BBA5,
label ∈ {g0, g1, · · · , g9}, corresponding to the 10 approximately
equivalent groups (or types).
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I: Data preprocessing
1.1 Generate contact maps for every conformation in the two folding trajectories
1.2 Identify maximally connected bit-patterns in all contact maps
1.3 Cluster bit-patterns into approximately equivalent groups based on geometric properties
1.4 Re-label each bit-pattern with its corresponding cluster label

II: Discovering frequent spatio-temporal object association patterns (SOAPs)
2.1 Discover frequent (minLink=1)-SOAPs of bit-patterns in either folding trajectory

III: Folding trajectory analysis
3.1 Summarize each folding trajectory based on frequent SOAPs
3.2 Detect folding events and recognize the ordering of folding events in a trajectory
3.3 Identify the consensus partial folding pathway across trajectories

Figure 2: Main steps to analyze protein folding trajectories
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Figure 3: Mapping between different types of bit-patterns and 3D motifs in conformations of BBA5 folding trajectories. The bit-patterns and
3D motifs shown here were randomly selected from their respective group for illustration purpose.

BIOKDD06: 6th Workshop on Data Mining in Bioinformatics (with SIGKDD Conference) page 16



3.2 Mining Spatio-temporal Object Associa-
tion Patterns

The preprocessing steps transform a 3D protein conformation into
a set of labeled 2D bit-patterns, that indirectly capture the local 3D
structural characteristics of the conformation. For the two BBA5
trajectories, each conformation contains an average of 6 bit-patterns.
As BBA5 folds, the dynamics among its 23 residues will be con-
stantly changing until it reaches an equilibrium3. This means that
two residues previously in contact may become out of contact later.
As a result, bit-patterns present in one conformation may be absent
in the next. The evolving nature of contacting residues and in turn
bit-patterns, is essentially the consequence of a variety of weak in-
teractions among amino acids at different levels. Such weak inter-
actions include hydrogen bonds, electrostatic interactions, van der
Waal’s packing and hydrophobic interactions [6]. To capture these
(potential) interactions, a simple yet effective method is to consider
how close two amino acids are located from each other in 3D. We
also adopt this method here. Specifically, we consider interactions
between local 3D motifs captured by labeled bit-patterns. We de-
note such interactions as “interactions among bit-patterns”. Let pi

and pj be two bit-patterns in a protein conformation, and pi.listCα

and pj .listCα be the list of α-carbons involved in pi and pj , re-
spectively. We define pi and pj as interacting bit-patterns if at
least one pair of α-carbons from pi.listCα and pj .listCα, respec-
tively, are located within a short distance δ. (The value of δ should
be greater than the distance that is being used to identify contacting
α-carbons when generating contact maps.) In our analysis, we set
δ = 10Å.
So far, we have discussed our approach of using bit-patterns in con-
tact maps to characterize local 3D motifs and further represent a
protein conformation during folding. We also define the notion
of interacting bit-patterns in the folding context. We are ready to
present our method of summarizing folding trajectories to fulfill the
two objectives described in Section 2.3. The main idea is that we
can summarize a folding trajectory by characterizing the evolution-
ary behavior of interactions among different types of bit-patterns
and in turn, the interactions among local 3D motifs.

Definition of (minLink=1) SOAP

As proposed in our previous work [21; 20], such interactions can be
modeled and captured by discovering different types of spatial ob-
ject association patterns (SOAPs). Essentially, SOAPs characterize
the specific way that objects, bit-patterns in this case, are inter-
acting with each other at a given time. Among the proposed SOAP
types, after a careful evaluation, we empirically select (minLink =
1) SOAPs to model the interacting bit-patterns in the folding pro-
cess. Let p = (g1, g2, · · · , gk) be a (minLink=1) SOAP of size
k, where gi is one of the 10 types of bit-patterns described above.
In the context of folding trajectories, p prescribes that there exists
k bit-patterns b1, b2, ..., bk in a conformation, where bi.label = gi

(1 ≤ i ≤ k). Furthermore, for each bi, it interacts with at least
one of the remaining (k − 1) bit-patterns. Note that the k labels
in p are not mutually exclusive. For instance, one can have SOAPs
such as (7 9 9), which involves one type 7 bit-pattern and two type
9 bit-patterns.
We further restrict ourselves to focus only on SOAPs that occur fre-
quently during the folding process (frequent SOAPs), since rarely-
occurring SOAPS are unlikely to provide reliable insights on the

3According to the ”folding funnel” theory [11; 3], an equilibrium
(or the native folded conformation) has the global minimum en-
ergy. However, this might not be the case for simulated folding
trajectories.

folding process. A SOAP is said to be frequent if it appears in no
fewer than minSupp frames in a trajectory. In our studies, we set
minSupp = 5.

SOAP Episodes

The next step is to capture the evolutionary nature of the fold-
ing process. We do this by identifying the evolutionary nature
of SOAPs. As mentioned earlier, small proteins like BBA5 of-
ten fold hierarchically and begin with local folded structures. As
BBA5 folds, new SOAPs can be created and existing one can dissi-
pate. To capture such evolutions, we proposed the concept of SOAP
episodes, which provide an effective approach to model the evolu-
tion of interactions among spatial objects over time [21]. To reiter-
ate, a SOAP episode E is defined as follows: E = (p, Fbeg, Fend),
where p is a SOAP composed of one or more bit-patterns, p was
created in frame Fbeg and persisted till frame Fend. Note that for
a given p, it can be created more than once during protein folding,
and thus can have more than one episode.
To discover frequent (minLink=1) SOAPs and their episodes in ei-
ther of the BBA5 trajectories, we apply our SOAP mining algo-
rithm as explained in our previous work [21].
In summary, this mining phase produces the following results: (i)
A list of (minLink = 1) SOAPs of bit-patterns that appeared in at
least 5 conformations in each folding trajectories; and (ii) A list of
episodes, ordered by beginning frame Fbeg , associated with each
of these SOAPs.

3.3 Folding Trajectory Analysis
In this section, we describe our strategy on utilizing SOAPs to sum-
marize a folding trajectory and address the two folding analysis is-
sues described in Section 2.3.

SOAP-based Trajectory Summarization

The previous mining phase discovers a collection of frequent (min-
Link=1) SOAPs and the associated episodes in each trajectory. There-
fore, it identifies all the conformations in the trajectories that con-
tain at least one frequent (minLink = 1) SOAPs. For instance,
the last conformation in trajectory T23 (Figure 1(c)) has two SOAPs
of size 2: (5 8) (i.e., association of a type 5 and a type 8 bit-pattern)
and (7 8), and three SOAPs of size 1: (5), (7), and (8), while the
last conformation in trajectory T24 has three SOAPs: (7 8), (7)
and (8). This leads to our SOAP-based approach for folding trajec-
tory summarization.
To summarize a folding trajectory, we perform the following three
steps. First, for each conformation, we identify all the frequent
SOAPs that appear in it and use these SOAPs to represent this
conformation. Note that not every conformation contains frequent
SOAPs, especially when minSupp is set high. Second, for each
SOAP-representable conformation, we carry out the following two
tasks on its associated SOAPs. First, for each SOAP, we mark
the relative location of each involved bit-pattern in the primary se-
quence of BBA5. This is done by identifying the segment of BBA5
where the majority of a bit-pattern’s α-carbons are located. The
segment can be one of the following as described in Section 2.2:
F1, residues 1 − 10; F2, residues 11 − 23; F3, residues 6-17; and
F4: residues 1-5 and 18-23. Let us again take the last conforma-
tion in T24 as an example. It can be summarized by three SOAPs:
(7 8), (7) and (8). When we look at the list of α-carbons involved
in these bit-patterns, we find out that 7 is mainly located in F2 and
8 in F1. Therefore, we mark the three SOAPs as follows: (8.1 7.2),
(7.2) and (8.1). (We re-arrange the bit-patterns in a SOAP by rela-
tive location in BBA5.) This super-imposes BBA5-specific spatial
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T23 T24

frame ID SOAP
. . . . . .
100 (8.1 5.4 )
101 (5.2 5.2 1.4 )
103 (6.1 5.2 5.4 )
110 (5.4 1.4 )
111 (1.1 3.2 )
112 (2.2 )
. . . . . .

frame ID SOAP
. . . . . .
48 (1.1 5.4 )
50 (5.2 5.2 6.4 )
63 (1.1 5.2 5.4 )
69 (1.4 5.4 )
71 (1.1 2.2 )
72 (2.2 )
. . . . . .

T23 T24

frame ID SOAP
. . . . . .
100 (β.1 ‖.4 )
101 (β.4 ‖.2 ‖.2 )
103 (β.1 ‖.2 ‖.4 )
110 (‖.4 β.4 )
111 (β.1 a.2 )
112 (b.2 )
. . . . . .

frame ID SOAP
. . . . . .
48 (β.1 ‖.4 )
50 (‖.2 ‖.2 β.4 )
63 (β.1 ‖.2 ‖.4 )
69 (‖.4 β.4 )
71 (b.2 β.1 )
72 (b.2 )
. . . . . .

(a) (b)

Figure 4: SOAP-based trajectory summarization: a segment in either BBA5 folding trajectory. (a) After superimposing the relative location
of each bit-pattern and pruning away redundant SOAPs. (b) After further generalizing each bit-pattern by corresponding 3D motif.

information to a SOAP. The next step is to prune away redundant
SOAPs after marking each bit-pattern with its relative location in
BBA5. A SOAP is redundant if it is embedded in another SOAP.
For instance, in the previous example, we can prune away (8.1)
and (7.2) as both are embedded in (7.2 8.1). After pruning, most
conformations in such a small protein can often be represented by
a single SOAP. We can even take this summarization a step fur-
ther, where we replace a bit-pattern with its corresponding 3D mo-
tif, as illustrated in Figure 3. For instance, SOAP (7.2 8.1) will
be transformed into (β.1 α.2). We refer to such SOAPs as gen-
eralized SOAPs, and the corresponding trajectory as a generalized
trajectory. Note that in a generalized trajectory, multiple types of
bit-patterns can be mapped into a single type of 3D motif. For in-
stance, the α-motif corresponds to three types of bit-patterns 4, 7,
and 9(Figure 3). Figure 4 shows a segment in each summarized
BBA5 folding trajectory before and after being generalized with
3D motifs.

Detecting Folding Events and Recognizing Ordering
Among Events

Once each folding trajectory is summarized into generalized SOAPs,
it is fairly straightforward to detect folding events such as the for-
mation of α-helix or β-turn like local structures. This can be done
by simply locating the frames that contain the local motif(s) of in-
terest. We can also easily identify native-like conformations, by
finding those that contain the generalized SOAP (β.1 α.2). Finally,
based on the summarization, one can quickly identify the ordering
of folding events in a trajectory. For instance, to check which sec-
ondary structure forms more rapidly, α-helix or β-hairpin, one can
simply compare the first occurrence of these structures in the sum-
marized trajectory (Figure 4(b)).

Identifying theConsensusPartial FoldingPathwayAcross
Trajectories

To do this, we simply compute the longest common sub-sequence
(LCS) in the two summarized trajectories. One can utilize the sum-
marization either before the 3D motif generalization (Figure 4(a))
or after(Figure 4(b)). We use the latter in our analysis. Based on
the LCS of generalized SOAPs, we construct the consensus folding
pathway by identifying pairs of conformations, one from each tra-
jectory, associated with those generalized SOAPs in the LCS4. The
resulting consensus pathway is a sequence of conformation pairs of
similar 3D structures.
Notice here that the comparison between 3D protein conformations
(as described in Section 2.2) is done by using bit-patterns to model
4Ambiguity might arise in this process as different conformations
can be represented by the same generalized SOAPs. However, this
can be easily resolved by taking temporal dimension into account.

local structural motifs, and associations of bit-patterns (SOAPs) to
characterize the global structure. It is a hierarchical comparison,
which matches the hierarchical folding process of BBA5.

4. PRELIMINARY RESULTS
In this section, we report preliminary results on analyzing the two
trajectories of protein BBA5. We have described this protein, its
trajectories, and the concepts employed in the analysis process in
great details earlier. Such information is summarized in Table 1.

4.1 Detecting and Ordering Folding Events
We summarize both folding trajectories with a sequence of SOAPs
as illustrated in Figure 4. Coincidently, both summarized trajecto-
ries consist of 64 conformations.
Based on these summarized trajectories, we can quickly identify all
the conformations where the first α-helix-like or β-turn-like local
motifs were formed. For trajectory T23, the first α-helix-like mo-
tif was identified in frame 26, and the first β-turn-like local motif
was formed in frame 63. For the other trajectory T24, the frames
were 29 and 38. This is in accordance with experimental results
that α-helices generally fold more rapidly than β-turns. However,
since we only consider frequent SOAPs, it is very possible that we
might miss the actual first formation of such local motifs. This can
easily be overcome by locating the first occurrence of bit-patterns
associated with the type of local motif of interest.
For the two events related to β-turn formation, formation of two
extended strands and formation of the turn, we found that for both
trajectories, the formation of extended strands preceded the forma-
tion of the turn.
Also, we identify two conformations in each trajectory that show
native-like structure. We do this by locating the conformations as-
sociated with the generalized SOAP (β.1 α.2). Figure 5 presents
the 3D structure of these native-like conformations along with the
native conformation of BBA5. One can see that our SOAP-based
comparison does well in identifying similar 3D conformations.

4.2 Partial Consensus Folding Pathway Across
Trajectory

Based on the generalized trajectory summarization, we identify a
consensus partial folding pathway of length 71. In other words,
71 pairs of conformations, one from each trajectory, are considered
similar to each other. Furthermore, they evolve from one to the
next in the same order. Figure 6 displays four such pairs along
this consensus folding pathway. Note that by using bit-patterns, we
naturally realize a rotation-invariant comparison. For instance, in
Figure 6(d), even though the two β-turns at the N-terminal are of
very different orientation, the two conformations are still identified
as similar.
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Protein PDB Identifier: BBA5; Primary sequence: 23 residues; Designed protein;
Native fold: N-terminal 1-10 β hairpin, C-terminal 11-23 α-helix

Trajectory Two trajectories: T23 and T24;
T23: 192 conformations; T24: 150 conformations

Contact map Based on contacts between α-carbons.
Two α-carbons are in contact if their Euclidian distance is ≤ 8.5Å

Bit-patterns A total of 352 unique maximally connected bit-patterns were identified from all conformations;
Average number of bit-patterns per conformation is 6;
Bit-patterns are further classified into 10 approximately equivalent types

Interacting If at least one pair of α-carbons, one from each bit-pattern,
bit-patterns is of Euclidian distance≤ 10Å
Frequent SOAPs A SOAP is frequent if it appears in ≥ 5 conformations;

A total of 444 frequent SOAPs identified in trajectory T23, and 258 in T24
Consensus partial We identified a consensus partial folding pathway across the two trajectories.
folding pathway It is composed of 71 pairs of similar conformations, one from each trajectory

Table 1: A summary of BBA5 folding analysis.
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Figure 5: Native-like conformations in both trajectories based on generalized SOAPs.
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Figure 6: Four pairs of similar conformations on the consensus folding pathway of BBA5.
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Currently, we rely on visual tools to justify this pathway. We did at-
tempt to use several measurements that have been used previously
to quantify the similarity between 3D protein conformations, but
to no avail. These measurements include RMSD, contact order,
and native contacts. If we identify the pathway based on the best
match given by any of the above measurements, where two con-
formations are a best match if they have the lowest RMSD or have
the smallest difference in contact order or native contacts, for in-
stance, we often ended up with a very short consensus pathway
(as short as 10 frames). Sometimes, the two conformations along
this consensus pathway were visually dissimilar. Moreover, differ-
ent best-matched measurements rendered very different consensus
pathways. We are investigating alternative methods for quantitative
validation.

5. CONCLUSIONS AND FUTURE WORK
In this article, we present a novel approach to analyze protein fold-
ing trajectories and a case study using the small protein BBA5. We
capture a variety of local motifs in the 3D protein conformations
by non-local bit-patterns identified in their contact maps. Further-
more, by modeling the interactions or spatial relationships among
bit-patterns as SOAPs, we effectively characterize the evolutionary
nature of the folding process. We also describe two methods to
summarize folding trajectories by super-imposing BBA5-specific
information and 3D local structures onto SOAPs. Utilizing the
summarized trajectories, we demonstrate that we can detect folding
events and the ordering between events, and also identify a consen-
sus folding pathway across trajectories.
We realize that protein folding is a very hard problem. Based on
the results of our analysis, we are not in the position to make any
general comments on the protein folding problem. However, the
approach presented here is meant to be general. It is applicable to
any folding trajectories.
There are several issues we plan to address in the future. First, we
would like to realize an automatic mapping between bit-patterns
and 3D motifs. Second, we will further analyze the consensus fold-
ing pathway and validate it through other means. Third, it is well-
known that the side chains of a protein play a very crucial role in the
folding process. So, we would like to investigate ways to involve
side chains in our analysis. We also plan to apply such approach to
trajectories of another protein obtained from the Folding@home
group. Finally, we plan to study whether bit-patterns can be used
to index protein folding simulation data.

Acknowledgment: We thank Dr. Yusu Wang for providing the
folding simulation data and sharing many constructive and insight-
ful thoughts with us during the project.
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ABSTRACT
Biclustering has emerged as a powerful algorithmic tool for
analyzing measurements of gene expression. A number of
different methods have emerged for computing biclusters in
gene expression data. Many of these algorithms may output
a very large number of biclusters with varying degrees of
overlap. There are no systematic algorithms that create
a two-dimensional layout of the computed biclusters and
display overlaps between them.

We develop a novel algorithm for laying out biclusters in a
two-dimensional matrix whose rows (respectively, columns)
are rows (respectively, columns) of the original dataset. We
display each bicluster as a contiguous submatrix in the lay-
out. We allow the layout to have repeated rows and/or
columns from the original matrix as required, but we seek
a layout of the smallest size. We also develop a web-based
search interface for the user to query the layout for genes and
samples of interest. We demonstrate the usefulness of our
approach on gene expression data for two types of leukemia
and on protein-DNA binding data for two growth conditions.
The software implementing the layout algorithm is available
at http://bioinformatics.cs.vt.edu/˜murali/papers/bivoc.

1. INTRODUCTION
Measurement of gene expression using DNA microarrays [13;
31] have revolutionized biological and medical research. Since
gene expression plays an important role in cell differenti-
ation, development, and pathological behavior, computa-
tional analysis of DNA microarray data has the potential
to assign functions to newly-discovered genes, unravel the
structure of biological pathways, and assist in the develop-
ment of new medicines. Biclustering has emerged as a pow-
erful algorithmic tool for analyzing gene expression data.
A bicluster in a gene expression data set is a subset of
genes and a subset of conditions with the property that
the selected genes are co-expressed in the selected condi-
tions; these genes may not have any coherent patterns of
expression in the other conditions in the data set. Biclus-
ters have a number of advantages over clusters computed by
more traditional algorithms such as k-means and hierarchi-
cal clustering [11]. Since a bicluster includes only a subset of

∗This author performed the research at the Virginia Poly-
technic Institute and State University.

genes and samples, it models condition-specific patterns of
co-expression. Traditional clusters may miss such patterns
since they operate in the space spanned by all the condi-
tions. Further, many biclustering algorithms allow a gene
or a sample to participate in multiple biclusters, reflecting
the possibility that a gene product may be a member of
multiple pathways.

A number of different methods have emerged for comput-
ing biclusters in gene expression data [6; 5; 9; 14; 17; 20;
22; 28; 32; 33; 34; 35; 36]; two papers survey these tech-
niques [26; 37]. These algorithms use a number of different
strategies to compute biclusters such as exhaustive enumer-
ation [8; 24; 36], iterated improvement [5; 9], repeated ran-
dom sampling [28], and expectation maximization [32]. An
issue all these algorithms deal with is trying to avoid out-
putting two or more biclusters with nearly the same set of
samples and/or genes. A common approach is to remove a
bicluster from the output if it shares a large fraction of genes
and/or samples (based on a user-defined threshold) with an
already computed bicluster. In spite of these measures, bi-
clustering algorithms may compute tens, hundreds, or even
thousands of biclusters with varying degrees of overlap.

Organising, manipulating, and querying the potentially large
number of biclusters computed by these algorithms is a data
mining task in itself, which has not been adequately ad-
dressed. In this paper, we develop a novel algorithm for
laying out biclusters in a manner that visually reveals over-
laps between them. We lay out the biclusters in a two-
dimensional matrix whose rows (respectively, columns) are
rows (respectively, columns) of the original dataset. We dis-
play each bicluster as a contiguous submatrix in the layout.
We allow the layout to have repeated rows and/or columns
from the original matrix, but we seek a layout of the smallest
size. In addition, we develop a web-based search interface
that allows the user to query the results for genes and sam-
ples of interest and visualise the layout of the biclusters that
match the search criteria.

The layout algorithm is general enough to be applied to bi-
clusters computed in real-valued, binary, or categorical data.
For instance, the combination of biclustering algorithms and
our layout algorithm can be used to analyze measurements
of the concentrations of other types of molecules, including
proteins and metabolites. We demonstrate our approach on
two types of data. First, we compute layouts for biclus-
ters extracted from leukemia microarray data by the xMotif
biclustering algorithm [16; 28]. Second, we analyze protein-
DNA binding data in S. cerevisiae and demonstrate how
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biclustering in combination with the layout algorithm can
visually demonstrate differences in the transcriptional reg-
ulatory network that is activated in different growth condi-
tions.

Figure 1 displays a layout computed by our algorithm on a
toy binary matrix. Figure 1(a) displays a dataset in which
rows represent dates and columns represent weather con-
ditions in Blacksburg. A cell has a one (the cell is drawn
shaded) if the weather condition corresponding to the cell’s
column (e.g., “Rainy” or “> 75◦ F”) is true on the date
corresponding to the cell’s row. In this dataset, we define a
bicluster to be an itemset, i.e., a subset of rows and a subset
of columns with the property that the submatrix defined by
these rows and columns only contains ones. We computed
all the closed biclusters in this binary matrix, i.e., biclus-
ters with the property that every row (respectively, every
column) not in the bicluster contains a zero in at least one
column (respectively, one row) in the bicluster. Figure 1(b)
displays the layout computed by our algorithm of the seven
biclusters in this dataset. .

1/01/2004

1/02/2004

1/03/2004

1/04/2004

7/01/2004

7/02/2004

7/03/2004

7/04/2004

<3
5 
F

<5
0 
F

>6
0 
F

>7
5 
F

Ra
in
y

Cl
ou
dy

Wi
nd
 >
 5
MP
H

Da
yl
ig
ht
 >
 1
0h

(a) Weather conditions in
Blacksburg.
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(b) Layout of the biclusters
in the weather data.

Figure 1: An example of a bicluster layout for weather data
in Blacksburg, VA.

The bicluster layout problem, which we formally define in
Section 3.1, is very similar to the hypergraph superstring
problem studied by Batzoglou and Istrail study in the con-
text of physical mapping of genomes. Batzoglou and Istrail
prove that the hypergraph superstring problem is MAX-
SNP Hard, i.e., it is computationally intractable to obtain
a bicluster layout whose size is smaller than a constant fac-
tor of the optimal size. In this work, we present a heuristic
that minimizes the size of the layout well in practice. In
the special case when there is a solution involving no re-
peated rows or columns, the algorithm computes the layout
of smallest size. Our algorithm runs in O(mn2 + n2 log n)
where n is the number of biclusters and m is the number
of rows and columns in all the biclusters; the running time
of the algorithm is independent of the size of the original
dataset. We lay out the rows and columns of the biclus-
ters independently. Our algorithm to lay out the rows is
similar to a bottom-up hierarchical clustering of the rows of
the biclusters. At each stage, we merge two biclusters if the
submatrix induced by them in the original matrix has the
“consecutive ones property” (see Section 3.2). Finally we
generate the two-dimensional layout by combining the row
and column layouts.

2. RELATED WORK
A binary matrix has the Consecutive Ones Property (COP)

for rows if its columns can be permuted such that all the
ones in each row are consecutive [7]. See Figure 2 for an
example of a matrix with the COP. Determining whether
a matrix has the COP and computing the permutation of
the columns that proves this property has applications in
a number of areas including testing for graph planarity [7]
and recognizing interval graphs [7; 18]. Booth and Leuker [7]
describe a data structure called the PQ tree which they use
to represent all legal permutations of column orderings in
a matrix with the COP property. They prove that the PQ
tree and the correct column permutation can be computed
in time linear in the number of ones in the matrix.

0
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0 0 1 1 1
1 0 1 0 0
1 1 1 1 1
0 0 0 1 1

1
CCCA

(a) A matrix that
has the COP with
the first two columns
highlighted.
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1
CCCA

(b) Swapping the first
two columns of the
matrix demonstrates
that the matrix has
the COP.

Figure 2: An illustration of the COP.

Researchers have studied a number of generalizations of the
COP problem; however, most of these generalizations are
NP-complete or NP-Hard. For example, seeking the column
ordering for a non-COP matrix that minimizes the number
of gaps between the ones in each row can be reduced to the
traveling salesman problem [12]. An important generaliza-
tion studied in bioinformatics is one where we are allowed
to repeat as well as rearrange columns in order to ensure
that the consecutive ones of every original row occur in at
least one contiguous set of columns in that row. As men-
tioned earlier, in their study of physical mapping of chro-
mosomes, Batzoglou and Istrail prove that this problem is
MAXSNP-Hard [3]. The most common application of this
generalization of the COP is physical mapping of chromo-
somes with probes. We can represent physical mapping data
as a binary matrix where the rows represent clones (short
overlapping sections of a chromosome), the columns repre-
sent DNA probes, and a cell in the matrix has a one if the
corresponding probe hybridizes to the corresponding clone.
Constructing a physical map of the chromosome is equiva-
lent to finding an ordering of the probes such that all the
probes matching a clone appear consecutively and the total
length of the ordering is as small as possible.

Algorithms for constructing physical maps from hybridiza-
tion data typically exploit the Lander-Waterman model [21],
which assumes that clones are distributed uniformly across
the chromosome and that probes are distributed according
to independent Poisson processes. Some algorithms make
additional domain-specific assumptions [3; 12; 19; 25; 27].
For instance, Batzoglou and Istrail compute an ordering
whose length is at most twice the length of the optimal or-
dering under the requirement that each clone must contain
a probe that does not hybridize to any other clone. None
of these algorithms are applicable to our problem since the
biclusters we want to lay out may not have the required
properties.
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3. ALGORITHM
We present our approach in four stages. First, we define
some useful notation. Second, we introduce the PQ-tree, a
data structure that is fundamental to our approach. Third,
we present our layout algorithm. Finally, we discuss its im-
plementation and the web interface.

3.1 Definitions
We denote the input matrix by D and use R and C to denote
the set of rows and columns of D, respectively. Given subsets
R′ ⊆ R and C′ ⊆ C, we define a bicluster B(R′, C′) to be
the sub-matrix of D spanned by the rows in R′ and the
columns in C′.1 A layout L(R, C) of the matrix D is a two-
dimensional matrix specified as follows:

1. R is the ordered list of rows of L with the property
that each element of R is an element of R; a row in R
can appear multiple times in R.

2. C is the ordered list of of columns of L with the prop-
erty that each element of C is an element of C; a col-
umn in C can appear multiple times in L.

3. Lij , the element in the ith row of R and the jth col-
umn of C is equal to Di′j′ , where i′ is the row of D
corresponding to the the ith row of L and j′ is the
column of D corresponding to the jth column of R.

The size of L is |R||C|. It is appropriate to consider L to
be a layout of D since L specifies an order for the rows and
columns of D. In the example in Figure 1(b), the layout
does not contain any repeated rows or columns. The layout
does not contain the column titled “< 35 F” that is in the
original matrix either.

A bicluster B(R′, C′) is contiguous in a layout L(R, C) if and
only if the elements of R′ (respectively, C′) appear consec-
utively at least once in R (respectively, C). We say that the
layout L(R, C) is valid with respect to a set of biclusters S
if every bicluster B ∈ S is contiguous in L(R, C). For ex-
ample, the layout in Figure 1(b) is valid with respect to the
bicluster ({7/04/2004, 7/03/2004, 7/02/2004 }, { > 60F,
Daylight > 10h, Cloudy, Rainy }) since the bicluster spans
rows four to six and columns two to five in the layout. We
now formally define the bicluster layout problem: Given a
matrix D and a set S of biclusters in D, find a layout L of D
such that L is valid with respect S and L has the smallest
size among all valid layouts of D.

3.2 PQ Trees
Booth and Leuker [7] developed a data structure called the
PQ tree, which they used to compute a column ordering
that proves that that a binary matrix M has the COP. To
define the PQ tree, it is convenient to reformulate the COP
problem as follows: Let U be the set of columns of M . Let r
be the number of rows in M . For each i, 1 ≤ i ≤ r, define
the set Si to be the set of columns in U that have a one
in row i. We seek a permutation of the elements of U that
satisfies r restrictions, where restriction i, 1 ≤ i ≤ r requires
that the elements of Si be consecutive in the permutation.

1This simple definition is sufficient for this paper. An al-
gorithm that computes biclusters in gene expression data
is likely to use a more complex definition relevant to the
patterns to be mined.

A PQ tree can represent all legal permutations of U that
satisfy the restrictions {Si, 1 ≤ i ≤ r}. Each leaf of the
PQ tree corresponds to a column in U . The PQ tree con-
tains two types of internal nodes: P-nodes and Q-nodes.
The children of a P-node can be permuted in any way while
still satisfying the restrictions. A valid permutation of the
children of a Q-node is either the order in which they ap-
pear in the PQ tree or the reversal of this order. A PQ tree
supports the Reduce operation. This operation inserts a
restriction S into a PQ tree T . The operation modifies T
such that T satisfies S in addition to all the previous re-
strictions inserted into T . The Reduce operation fails if
there are no legal permutations of U that can satisfy S and
the previously inserted restrictions. The Reduce operation
takes time linear in |S|. Figure 3 displays a PQ tree on
four elements {a, b, c, d} after two Reduce operations: Re-
duce(T ,{a, c}) and Reduce(T ,{b, c}). Inserting the restric-
tion {c, d} into the tree next will result in a failed Reduce
operation.

To solve the COP problem, start with an empty PQ tree T .
For each i, 1 ≤ i ≤ r, invoke the operation Reduce(T, Si).
To obtain an ordering that satisfies the restrictions, perform
a breadth-first traversal of T starting at the root. At each
internal node of T , visit the children of the node in an order
specified by the type of the node. At a leaf node of T ,
append the column corresponding to the leaf to the required
ordering.

3.3 The Bicluster Layout Algorithm
We are now ready to describe our algorithm for the bicluster
layout problem. To minimize the size of L, we can minimize
the length of R and the length of C independently. There-
fore, we construct the layout L by determining R and C
independently. In the rest of this section, we describe the
algorithm to construct C, the ordered list of the columns in
the layout L. We can compute R, the ordered list of rows
in the layout, analogously.

We describe the algorithm in two stages. We first trans-
form the problem of constructing C to a generalization of
the COP problem. We then present an algorithm to solve
this transformed problem. This transformation allows us to
describe our algorithm in terms of operations on PQ trees.
The PQ tree cannot solve this generalization directly since
the matrix we construct may not have the COP.

We start by constructing a new binary matrix M that repre-
sents the columns of the biclusters in S. Each column on M
corresponds to a column of the input matrix D. M contains
one row for each bicluster in S; thus, M has n rows. The
entry Mij is 1 if the ith bicluster in S contains the column j
in D; otherwise, Mij is 0. We can now reformulate the
problem of constructing C as follows: find the shortest lin-
ear ordering C of the columns of M such that C can contain
repeated columns of M and for every row of M , the columns
containing the ones in that row appear consecutively at least
once in C.

Before describing the algorithm, we define some more no-
tation. The leaves of each PQ tree constructed by the al-
gorithm correspond to a subset of the columns of M . We
use CT to denote the set of columns in a PQ tree T . Given
two PQ trees T and T ′, let σ(T, T ′) denote the set sim-

ilarity
|CT ∩CT ′ |
|CT ∪CT ′ | between the columns in T and T ′. Our

algorithm executes the following steps:
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(a) Initial PQ tree T formed
from set {a, b, c, d}.

(b) The PQ tree T after
the Reduce(T ,{a, c}) oper-
ation, requiring that a and c
be consecutive.

(c) The PQ tree T after the
Reduce(T ,{b, c}) operation,
requiring that b and c be
consecutive.

Figure 3: An example of a PQ tree. Circles represent P nodes and rectangles represent Q nodes. Valid permutations
represented by the tree in Figure 3(c) are the sequences acbd, bcad, dacb, and dbca.

1. For each row i of M , 1 ≤ i ≤ n, construct a PQ tree Ti

consisting of a single P-node, whose children are the
columns in M that contain ones in row i of M . Let T
be the set of these n PQ trees.

2. For every pair 1 ≤ i < j ≤ n, compute the set similar-
ity σ(Ti, Tj).

3. Compute Σ, the list of values in {σ(Ti, TJ), 1 ≤ i <
j ≤ n} sorted in descending order.

4. Repeat the following steps until Σ is empty:

(a) Remove the largest element from Σ. Let T and
T ′ be the PQ trees in T with this similarity value.

(b) Set T ′′ = T .

(c) For each restriction r inserted into T ′, invoke the
operation Reduce(T ′′, r). If any reduce opera-
tion fails, go to Step 4a.

(d) Delete T and T ′ from T .

(e) For each tree U ∈ T , insert σ(U, T ′′) into Σ.

(f) Insert T ′′ into T .

5. For each PQ tree T in T , traverse T to compute a valid
permutation of the columns in CT .

6. Output the column layout formed by concatenating (in
any order) the permutations computed in Step 5.

The algorithm starts by storing each row of M (recall that
each row of M corresponds to a bicluster) in a separate PQ
tree in the set T (Step 1). Next, the algorithm performs
a series of Reduce operations to hierarchically cluster the
rows of M . Inductively, each PQ tree in T corresponds to
a set of rows of M with the property that the submatrix
of M defined by these rows has the COP. To decide which
two sets of rows to merge next, in Step 4a, the algorithm
picks the two PQ trees T and T ′ in T that are the most
similar and attempts to merge them. To effect the merger,
the algorithm adds the restrictions added to one of these PQ
trees to the other PQ tree (Step 4c). If this step succeeds,
the algorithm deletes T and T ′ from T , inserts the similari-
ties between the new PQ tree T ′′ and each of the remaining
PQ trees in T into Σ, and inserts T ′′ into T (Steps 4d–4f).

In Step 4c, the failure of a Reduce operation means that
the restrictions in T are not compatible with the restrictions
imposed by T ′. Hence, the submatrix of M induced by the
union of rows in T and in T ′ does not have the COP. An
example of such a situation is when T corresponds to the
tree in Figure 3(c) and T ′ contains the restriction {c, d}. In
this case, the algorithm aborts the merger of T and T ′ and
moves on to the next most similar pair of PQ trees. Due to
such conflicts, T may contain more than one PQ tree when
the algorithm completes. Finally, generating the required
layout is a simple matter of traversing each PQ tree in T
(Step 5) as described in Section 3.2 and concatenating the
resulting permutations into a single order (Step 6). A col-
umn of M appears as many times in this order as there are
PQ trees in T that includes this column.

We now analyze the running time of the algorithm. Let m
be the number of ones in the matrix M . In Step 1, comput-
ing the PQ trees takes O(m) time. Computing the similarity
between a pair of PQ trees takes O(c) time, where c is the
number of columns of M . In Step 2 and 3, computing and
sorting the O(n2) similarity values takes O(cn2 + n2 log n)
time. We execute Step 4 O(n2) times. The running time of
each iteration is proportional to the size of the new PQ tree
constructed. A naive upper bound on this size is m, the
total number of columns in all the biclusters. Hence, the
total running time of Step 4 is O(mn2). Finally, traversing
all the PQ trees in T and concatenating the permutations
takes O(m) time. Keeping in mind that c ≤ m, the total
running time of the algorithm is O(mn2 + n2 log n). The
space occupied by the algorithm is O(m + n2), with O(m)
space taken to store all the biclusters and the PQ trees
and O(n2) required for Σ, the sorted list of similarities.

3.4 Implementation and Web Interface
We implemented the layout algorithm in C++ and tested it
on a 2.8GHz Pentium computer running the Fedora Core 3
operating system. Our software contains two executable
programs. The first executable, layout, implements the lay-
out algorithm. It takes a text file describing the biclusters
as input and outputs the layout as a text file list of rows
and columns. The second executable, drawlayout, uses this
text file and the original data set as input and produces an
image corresponding to the layout.
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If the input data contains a large number of biclusters, the
layout may contain too many rows and/or columns for the
user to navigate with ease. To alleviate this problem, we
have also developed a simple web-based interface that allows
the user to upload a file containing computed biclusters and
a file containing the original data, and search the biclusters
with the names of rows and columns. The interface invokes
layout and drawlayout on the biclusters that contain the
query rows/columns and highlights the matching biclusters,
rows, and columns in the resulting layout. The interface
allows the user to specify whether the data is real-valued or
binary, whether the layout should contain only the matching
biclusters, and whether the query should be a conjunction
or disjunction of the search terms.

4. EXPERIMENTAL RESULTS

4.1 Synthetic Data
We created synthetic datasets with different numbers of rows
and columns. For each dataset, we generated biclusters by
sampling subsets of rows and columns. For this experiment,
we randomly generate the number of rows and columns and
identifiers for the rows and columns; we did not need to
generate values for the cells of the matrices. For each set
of biclusters, we recorded the time required to run our lay-
out algorithm and the number of rows and columns in the
computed layout. For each layout, we estimated the lay-
out efficiency of the layout as the ratio of the size of the
layout to the size of the dataset. Lower values of efficiency
are better than higher values, since they indicate that the
algorithm is able to exploit overlaps between biclusters. For
each choice of number of rows in the dataset, number of
columns in the dataset, and number of biclusters, we aver-
aged the results for 100 runs. Tables 1 and 2 display our
results. Efficiency values may be less than one, e.g., when
some rows or columns in the dataset do not belong to any
bicluster.

Table 1: Execution times (in seconds) for the layout algo-
rithm on synthetic matrices.
#biclusters #rows + #columns in the dataset

10 30 50 70 90

20 0.168 0.328 0.462 0.52 0.532
40 1.23 2.514 3.046 3.574 4.008
60 4.074 7.992 11.238 11.71 12.81
80 9.484 19.586 25.546 29.652 29.446
100 17.982 37.966 48.418 50.916 56.112

Table 2: Efficiency values of the layout algorithm on syn-
thetic matrices.

# biclusters #rows + #columns in the dataset
10 30 50 70 90

20 0.184 0.842 1.316 1.254 1.428
40 0.304 1.16 1.632 2.04 2.074
60 0.398 1.496 2.262 2.26 2.508
80 0.512 1.65 2.358 2.726 2.698
100 0.48 1.808 2.582 2.686 2.996

4.2 Transcriptional Regulation in S. cerevisiae

To demonstrate the ability of our visualization algorithm to
highlight differences between biclusters in similar datasets,
we analyzed datasets of transcriptional regulation in two ex-
perimental conditions in S. cerevisiae [2; 23]. Each dataset
is a binary matrix whose columns represent transcription
factors and whose rows represent genes in S. cerevisiae. A
matrix entry contains a one if a ChIP-on-chip experiment in-
dicates that the transcription factor binds to the promoter
of the gene. An important problem that arises in the analy-
sis of this data is determining if a set of genes are collectively
regulated by a set of transcription factors and whether this
combinatorial regulation changes when the cell is exposed to
stress. Although ChIP-on-chip data is noisy and significant
effort may be needed to clean it up, the analysis we present
next demonstrates that a combination of biclustering and
our layout algorithm has the potential to yield biologically
useful results.

The two protein-DNA datasets we study correspond to growth
of S. cerevisiae cells in rich medium [23] and to growth under
exposure to rapamycin [2], a condition that mimics nutrient
starvation. We restricted our attention to transcription fac-
tors studied in both papers. We ran our implementation of
the Apriori algorithm [1] that computes closed itemsets on
both these datasets, applied our layout algorithm on biclus-
ters with at least two genes and at least two transcription
factors, and obtained the layout in Figure 4(a). Biclusters
obtained from the data under growth in rich medium are
shown as blue boxes and rapamycin-induced biclusters are
shown as red boxes. A cell in the figure is dark grey (re-
spectively, light grey) if the transcription factor binds to the
gene’s promotor in both (respectively, one) condition. The
image strikingly demonstrates that under exposure to ra-
pamycin, the transcriptional network activated in the cell is
very different from the normal activation network. The rich
medium data contains only four biclusters involving these
transcription factors while the rapamycin data contains 38
biclusters. We conclude that very few genes are co-regulated
by the same set of transcription factors in both conditions.

Figure 5: Genes combinatorially controlled by GLN3 and
RTG3.

To illustrate the use of our web interface, we used it to search
for biclusters that included the transcription factors RTG3
and GLN3. RTG3 is a transcription factor that forms a com-
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(a) Combinatorial control of tran-
scription in S. cerevisiae.

D14664_at

L21954_at

L41559_at

M14636_at

M27891_at

M33195_at

M63959_at

M84526_at

M93056_at

M96326_rna1_at

U16306_at

U94319_at

X05908_at

X12447_at

X17042_at

X52056_at

Z93784_at

X55990_rna1_at

J03077_s_at

M21119_s_at

X64072_s_at

X16546_at

M15395_at

D63880_at

D88270_at

D88422_at

J05243_at

L09717_at

L47738_at

M11722_at

M19507_at

M23197_at

M29474_at

M63138_at

M89957_at

M92287_at

S50223_at

S76617_at

S82470_at

U05259_rna1_at

U46499_at

U57094_at

X07743_at

X59417_at

X61587_at

X62320_at

X62654_rna1_at

X67951_at

X78669_at

X80230_at

X95735_at

X99920_at

Z49194_at

Z15115_at

L09209_s_at

M84371_rna1_s_at

X97267_rna1_s_at

J03801_f_at

X14008_rna1_f_at

M31523_at

U29175_at

K01911_at

U28833_at

X82240_rna1_at

L08895_at

U22376_cds2_s_at

AF009426_at

D86479_at

M29696_at

M33680_at

M91432_at

M95678_at

M96803_at

U77948_at

U79265_at

X99585_at

Y08612_at

HG4020-HT4290_s_at

M32304_s_at

M12959_s_at

X74301_s_at

U72936_s_at

U90546_at

M19045_f_at

M28170_at

U94319_at

M84371_rna1_s_at

D31764_at

K01911_at

L06175_at

L29376_at

M29971_at

M31627_at

M81379_at

U09877_at

U28833_at

U36922_at

U82275_at

U89336_cds7_at

X84373_at

X97160_rna1_at

Z46973_at

M21535_at

U31216_s_at

U05681_s_at

S83390_s_at

U41767_s_at

X83535_s_at

HG1980-HT2023_at

M11722_at

M27891_at

M29474_at

M89957_at

M92287_at

U05259_rna1_at

X67951_at

X80230_at

Z49194_at

Z15115_at

M31523_at

D86970_at

M38690_at

S46622_at

X58529_at

X62535_at

X82240_rna1_at

X93512_at

L08895_at

U18259_at

L33930_s_at

U46006_s_at

J05243_at

M63138_at

X97267_rna1_s_at

D32050_at

D87292_at

M74719_at

U59878_at

U60115_at

V00563_at

X66401_cds1_at

X90858_at

D11327_s_at

U22376_cds2_s_at

Z68228_s_at

M63838_s_at

U49020_cds2_s_at

ALL

AML

35
-A
ML

38
-A
ML

28
-A
ML

61
-A
ML

34
-A
ML

36
-A
ML

37
-A
ML

29
-A
ML

30
-A
ML

31
-A
ML

33
-A
ML

52
-A
ML

53
-A
ML

51
-A
ML

50
-A
ML

54
-A
ML

57
-A
ML

58
-A
ML

60
-A
ML

65
-A
ML

63
-A
ML

62
-A
ML

72
-A
LL

1-
AL
L

5-
AL
L

13
-A
LL

15
-A
LL

16
-A
LL

19
-A
LL

20
-A
LL

24
-A
LL

26
-A
LL

39
-A
LL

48
-A
LL

41
-A
LL

43
-A
LL

44
-A
LL

45
-A
LL

46
-A
LL

69
-A
LL

56
-A
LL

59
-A
LL

4-
AL
L

8-
AL
L

49
-A
LL

68
-A
LL

(b) Biclusters in gene expression data for ALL and AML.

Figure 4: Visualizations of the layouts computed by our algorithm.

BIOKDD06: 6th Workshop on Data Mining in Bioinformatics (with SIGKDD Conference) page 28



plex with RTG1 to activate the retrograde (RTG) and tar-
get of rapamycin (TOR) pathways [10; 30]. GLN3 encodes a
transcription factor that is phosphorylated and localised to
the cytoplasm when the cell is grown in nitrogen-rich media.
Rapamycin treatment can induce the dephosphorylation and
subsequent activation of GLN3 [4]. Figure 5 displays the lay-
out of all the biclusters containing these two transcription
factors. We note that each bicluster also includes either the
transcription factor GAT1 or the transcription factor GCN4.
GAT1 is a transcriptional activator of genes involved in ni-
trogen catabolite repression; the activity and localization of
these genes is regulated by nitrogen limitation. GCN4 is
another transcription activator that is a master regulator of
gene expression during amino acid starvation in S. cerevisiae
and is activated in multiple stress responses [29]. Thus, it is
not suprising that GAT1 and GCN4 co-regulate genes with
GLN3 and RTG3. The functional annotations of the set of
nine genes targeted by GCN4, GLN3, and RTG3 are en-
riched in the Gene Ontology biological process “glutamine
family amino acid biosynthesis” with a p-value of 2 × 10−8

(based on the hypergeometric distribution), indicating that
this pathway may be activated by the three transcription
factors upon rapamycin treatment.

4.3 Classification of Leukemias
Golub et al. [15] studied global expression patterns of 45 pa-
tients diagnosed with Acute Lymphoblastic Leukemia (ALL)
and 27 patients diagnosed with Acute Myeloid Leukemia
(AML). We ran the xMotif algorithm [16; 28] to compute
biclusters in this dataset. We ensured that computed biclus-
ters contain samples from at most one class. We selected
four representative biclusters from the results to visualize.
Figure 4(b) displays the layout. Each column corresponds
to a sample; the two columns at the top with purple cells
indicate the type of leukemia. We map the expression values
of each gene into a range from green to red, with green (re-
spectively, red) corresponding to the smallest (respectively,
largest) expression value of that gene. The biclusters out-
lined in black correspond to AML samples and those out-
lined in blue to ALL samples. This layout visually highlights
similarities and differences between the biclusters found in
samples for the same and for different types of leukemia.
We have used such biclusters as the basis for constructing
a classifier that distinguishes between different diseases and
tissues [16].

5. CONCLUSIONS
The biomedical community has access to large quantities
of publicly-available gene expression datasets. Biclustering
has emerged as a powerful methodology for analyzing these
datasets. In this paper, we have introduced a novel algo-
rithm for laying out biclusters in a two-dimensional matrix
so as to reveal the overlaps and relationships between the bi-
clusters. The algorithm performs efficiently in practice. We
have demonstrated the applicability of the algorithm to two
important problems in bioinformatics using both binary and
real-valued data. An easy-to-use web interface distributed
with the layout software allows the user to query and nav-
igate layouts that are too large to study manually. Biclus-
tering is useful not just for processing gene expression data
but for any dataset that measures the relationships between
two different types of data, for example, genes and func-
tions, transcription factors and promotors, microRNAs and

their target mRNAs, genes and diseases, etc. Thus, our al-
gorithm has the potential to be useful for a wide variety of
bioinformatic applications.
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ABSTRACT
Biological processes are controlled at various levels in the cell
and while these mechanisms are poorly understood, tran-
scriptional control is widely recognized as an important com-
ponent and a better understanding of which will provide an
efficient means for the therapeutic intervention in disease
processes. We have been focusing on various computational
problems pertaining to transcriptional regulation, namely,
(1) representation and identification of transcription factor
binding sites, (2) PolII promoter prediction, (3) Predicting
interaction among transcription factors, (4) Transcriptional
modeling, i.e. identifying arrangements of TFs that co-
regulate a set of transcripts. I will present a brief overview
of the computational approaches and challenges as well as a
number of applications including transcriptional regulation
in memory storage, heart failure, and osteoarthritis.
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ABSTRACT
Extracting motifs from sequences is a mainstay of bioinfor-
matics. We look at the problem of mining structured mo-
tifs, which allow variable length gaps between simple motif
components. We propose an efficient algorithm, called ex-
Motif, that given some sequence(s), and a structured motif
template, extracts all frequent structured motifs that have
quorum q. Potential applications of our method include the
extraction of single/composite regulatory binding sites in
DNA sequences. exMotif is efficient in terms of both time
and space and outperforms RISO, a state-of-the-art algo-
rithm.

1. INTRODUCTION
Analyzing and interpreting sequence data is an important
task in bioinformatics. One critical aspect of such inter-
pretation is to extract important motifs (patterns) from se-
quences. The challenges for motif extraction problem are
two-fold: one is to design an efficient algorithm to enumer-
ate the frequent motifs; the other is to statistically validate
the extracted motifs and report the significant ones.

Motifs can be classified into two main types. If no variable
gaps are allowed in the motif, it is called a simple motif. For
example, in the genome of Saccharomyces cerevisiae, the
binding sites of transcription factor, GAL4, have as con-
sensus [25], the simple motif, CGGN[11]CCG. Here N[11]
means that there is a fixed “gap” (or don’t care charac-
ters), 11 positions long. If variable gaps are allowed in a
motif, it is called a structured motif. A structured motif
can be regarded as an ordered collection of simple motifs
with gap constraints between each pair of adjacent simple
motifs. For example, many retrotransposons in the Ty1-
copia group [17] have as consensus the structured motif:
MT[115,136]MTNTAYGG[121,151]GTNGAYGAY. Here MT,
MTNTAYGG and GTNGAYGAY are three simple motifs;
[115,136] and [121,151] are variable gap constraints ([min-
imum gap, maximum gap]) allowed between the adjacent
simple motifs. More formally, a structured motif, M, is
specified in the form:

M1[l1, u1]M2[l2, u2]M3 . . . Mk−1[lk−1, uk−1]Mk

where Mi, 1 ≤ i ≤ k, is a simple motif component; and li
and ui, 1 ≤ i < k, are the minimum and maximum number
of gaps allowed between Mi and Mi+1, respectively. The
number of simple motif components, k, is also called the

length of M. Let Wi, 1 ≤ i < k, denote the span of the gap
range, [li, ui], which is calculated as: Wi = ui − li + 1.

In the structured motif extraction problem, the component
motifs Mi are unknown before the extraction. However, we
do provide some known parameters to restrict the structured
motifs to be extracted, including: (i) k – the length of M; (ii)
|Mi| – the length of each component Mi ∈ M, for 1 ≤ i ≤ k;
and (iii) [li, ui] – the gap range between Mi and Mi+1, for
1 ≤ i < k. All these parameters define a structured motif
template, T , for the structured motifs to be extracted from
a set of sequences S. A structured motif M matching the
template T in S is called an instance of T .

Let δS(M) denote the number of occurrences of an instance
motif M in a sequence S ∈ S. Let dS(M) = 1 if δS(M) > 0
and dS(M) = 0 if δS(M) = 0. The support of motif M
in the is defined as π(M) =

P
S∈S dS(M), i.e., the number

of sequences in S that contain at least one occurrence of
M. The weighted support of M is defined as πw(M) =P

S∈S δS(M), i.e., total number of occurrences of M over
all sequences in S. We use O(M) to denote the set of all
occurrences of a structured motif M. Given a user-specified
quorum threshold q ≥ 2, a motif that occurs at least q times
will be called frequent.

There are two main tasks in the structured motif extraction
problem: a) Common Motifs – find all motifs M in a set
of sequences S, such that the support of M is at least q,
b) Repeated Motifs – find all motifs in a single sequence S,
such that the weighted support of M is at least q. Further-
more, the structured motif extraction problem allows several
variations:

• Substitutions: O may consist of similar motifs, as mea-
sured by Hamming Distance ([13]), instead of exact
matches, to the simple motifs in M. We can either
allow for at most εi errors for each simple motif Mi,
1 ≤ i ≤ k, or at most ε errors for the whole structured
motif M.

• Overlapping Motifs: The variable gap constraints (li
and ui) can take on negative values, allowing extrac-
tion of overlapping simple motifs.

• Motif Length Ranges: Each simple motif Mi in a tem-
plate M can be of a range of lengths, i.e., |Mi| ∈ [la, lb],
where la and lb are the lower and upper bounds on the
desired length.

Table 1 shows four example DNA sequences S1, S2, S3, S4 ∈
S; a structured motif template T , where M1 = NNN, M2 =
NN and M3 = NNNN (’N’ stands for any of the four DNA
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Table 1: Structured Motif Extraction

Sequence S1 (∈ S): CCGTACCGAACCTCAAA
Sequence S2 (∈ S): CCGTTATAGGAACCATT
Sequence S3 (∈ S): TAT GGAACCATCTT
Sequence S4 (∈ S): TAACGGATCCCTTT
Structured Motif Template (T ): NNN[0,3]NN[1,3]NNNN
Quorum (q): 2

bases: A,C,G,T), and [0,3] and [1,3] are the intervening gap
ranges between the components; and a quorum threshold
q = 2. The length of the template T is k = 3. The span
of gap ranges are: W1 = u1 − l1 + 1 = 2 and W2 = u2 −
l2 + 1 = 2. If no substitutions are allowed, there are five
frequent structured motifs in S matching the templateT ,
namely M1 = CCG[0,3]TA[1,3]GAAC (shown in bold) and
M2 = CCG[0,3]TA[1,3]AACC which occur in S1 and S2;
M3 = TAT[0,3]GG[1,3]ACCA (shown underlined), M4 =
TAT[0,3]GA[1,3]CCAT and M5 = TAT[0,3] GG[1,3]CCAT
which occur in S2 and S3. If substitutions are allows, say,
e1 = 1 = e3, then the occurrence of M6 = TAA[0,3]GG[1,3]
CCCT (shown underlined) in S4 will be considered to match
motif M5.

In this paper, we propose exMotif, an efficient algorithm
for both the structured motif extraction problems. It uses
an inverted index of symbol positions, and it enumerates all
structured motifs by positional joins over this index. The
variable gap constraints are also considered at the same time
as the joins, resulting in considerable efficiency. In order to
save time and space, we only keep the start positions of each
intermediate pattern during the positional join.

2. RELATED WORK
Many simple motif extraction algorithms have been pro-
posed primarily for extracting the transcription factor bind-
ing sites, where each motif consists of a unique binding site
[19; 20; 15; 14; 3; 18; 11] or two binding sites separated by
a fixed number of gaps [22; 10; 9]. A pattern with a single
component is also called a monad pattern. Structured motif
extraction problems, in which variable number of gaps are
allowed, have attracted much attention recently, where the
structured motifs can be extracted either from multiple se-
quences [12; 6; 7; 16; 8; 5; 2; 1] or from a single sequence
[24; 4]. In many cases, more than one transcription factor
may cooperatively regulate a gene. Such patterns are called
composite regulatory patterns. To detect the composite reg-
ulatory patterns, one may apply single binding site iden-
tification algorithms to detect each component separately.
However, this solution may fail when some components are
not very strong (significant). Thus it is necessary to detect
the whole composite regulatory patterns (even with weak
components) directly, whose gaps and other possibly strong
components can increase its significance.

Several algorithms have been used to address the compos-
ite pattern discovery with two components, which are called
dyad patterns. Helden et al. [22] propose a method for dyad
analysis, which exhaustively counts the number of occur-
rences of each possible pair of patterns in the sequences and
then assesses their statistical significance. This method can
only deal with fixed number of gaps between the two compo-
nents. MITRA [10] first casts the composite pattern discov-

ery problem as a larger monad discovery problem and then
applies an exhaustive monad discovery algorithm. It can
handle several mismatches but can only handle sequences
less than 60 kilo-bases long. Co-Bind [21] models com-
posite transcription factors with Position Weight Matrices
(PWMs) and finds PWMs that maximize the joint likelihood
of occurrences of the two binding site components. Co-Bind
uses Gibbs sampling to select binding sites and then refines
the PWMs for a fixed number of times. Co-Bind may miss
some binding sites since not all patterns in the sequences are
considered. Moreover, using a fixed number of iterations for
improvement may not converge to the global optimal dyad
PWM.

SMILE [12] describes four variants of increasing generality
for common structured motif extraction, and proposes two
solutions for them. The two approaches for the first prob-
lem, in which the structured motif template consists of two
components with a gap range between them, both start by
building a generalized suffix tree for the input sequences and
extracting the first component. Then in the first approach,
the second component is extracted by simply jumping in the
sequences from the end of the first one to the second within
the gap range. In the second approach, the suffix tree is
temporarily modified so as to extract the second compo-
nent from the modified suffix tree directly. The drawback
of SMILE is that its time and space complexity are expo-
nential in the number of gaps between the two components.
In order to reduce the time during the extraction of the
structured motifs, [8] presents a parallel algorithm, PSmile,
based on SMILE, where the search space is well-partitioned
among the available processors.

RISO [6; 7; 16] improves SMILE in two aspects. First,
instead of building the whole suffix tree for the input se-
quences, RISO builds a suffix tree only up to a certain level
l, called afactor tree, which leads to a large space saving.
Second, a new data structure called box-link is proposed to
store the information about how to jump within the DNA se-
quences from one simple component (box) to the subsequent
one in the structured motif. This accelerates the extraction
process and avoids exponential time and space consumption
(in the gaps) as in SMILE. In RISO, after the generalized
factor tree is built, the box-links are constructed by exhaus-
tively enumerating all the possible structured motifs in the
sequences and are added to the leaves of the factor tree.
Then the extraction process begins during which the fac-
tor tree may be temporarily and partially modified so as to
extract the subsequent simple motifs. Since during the box-
link construction, the structured motif occurrences are ex-
haustively enumerated and the frequency threshold is never
used to prune the candidate structured motifs, RISO needs
a lot of computation during this step.

For repeated structured motif identification problem, the
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Table 2: Pos-lists (Sequence identifiers (i) and cardinality of P(X, Si) are marked in bold)

X pos-lists
A {1,6,5,9,10,15,16,17, 2,5,6,8,11,12,15, 3,4,2,6,7,10, 4,3,2,3,7}
C {1,7,1,2,6,7,11,12,14, 2,4,1,2,13,14, 3,3,8,9,12, 4,4,4,9,10,11}
G {1,2,3,8, 2,3,3,9,10, 3,2,4,5, 4, 2,5,6}
T {1,2,4,13, 2,5,4,5,7,16,17 3,5,1,3,11,13,14, 4,5,1,8,12,13,14}

frequency closure property that “all the subsequences of a
frequent sequence must be frequent”, doesn’t hold any more
since the frequency of a pattern can exceed the frequency
of its sub-patterns. [24] introduces an closure-like property
which can help prune the patterns without missing the fre-
quent patterns. The two algorithms proposed in [24] can
extract within one sequence all frequent patterns of length
no greater than a length threshold, which can be either
manually specified or automatically determined. However,
the gap ranges between adjacent symbols are required to be
same, and approximate matches are not allowed.

3. THE exMotif ALGORITHM
We first introduce our basic approach for common struc-
tured motif extraction problem. We then successively opti-
mize it for various practical scenarios.

3.1 The Basic Approach
Let’s assume that we are extracting all structured motif
instances from n sequence S = {Si, 1 ≤ i ≤ n}, each of
which satisfies the template T and occurs at least in q se-
quences of S. We assume for the moment that no substi-
tutions are allowed in any of the simple motifs. We also
assume that all Si ∈ S, 1 ≤ i ≤ n and the extracted mo-
tifs are over the DNA alphabet, ΣDNA. exMotif first con-
verts each Si ∈ S, 1 ≤ i ≤ n into an equivalent inverted
format [23], where we associate with each symbol in the se-
quence Si its pos-list, a sorted list of the positions where
the symbol occurs in Si. Then for each symbol we combine
its pos-list in each Si to obtain its pos-list in S. More for-
mally, for a symbol X ∈ ΣDNA, its pos-list in Si is given
as P(X, Si) = {j | Si[j] = X, j ∈ [1, |Si|]}, where Si[j] is
the symbol at position j in Si, and |Si| denotes the length
of Si. Its pos-list across all sequences S is obtained by
grouping the pos-lists of each sequence, and is given as
P(X,S) = {〈i, |P(X, Si)|,P(X, Si)〉 | Si ∈ S}, where i
is the sequence identifier of Si, and |P(X, Si)| denotes the
cardinality of the pos-list P(X, Si) in sequence Si. For our
example sequences in Table 1, the pos-list for each DNA
base is given in Table 2. For example, A occurs in sequence
S1 at the positions {5, 9, 10, 15, 16, 17}, thus the entries in
A’s pos-list are {1,6, 5, 9, 10, 15, 16, 17}.

3.1.1 Positional Joins
We first extend the notion of pos-lists to cover structured
motifs. The pos-list of M in Si ∈ S is given as the set of start
positions of all the matches of M in Si. Let X, Y ∈ ΣDNA

be any two symbols, and let M = X[l, u]Y be a structured
motif. Given the pos-lists of X and Y in Si for 1 ≤ i ≤ n,
namely, P(X, Si) and P(Y, Si), the pos-list of M in Si can
be obtained by a positional join as follows: for a position
x ∈ P(X, Si), if there exists a position y ∈ P(Y, Si), such
that l ≤ y−x−1 ≤ u, it means that Y follows X within the

variable gap range [l, u] in the sequence Si, and thus we can
add x to the pos-list of motif X[l, u]Y . Let d be the number
of gaps between x ∈ P(X, Si) and y ∈ P(Y, Si), given as
d = y − x − 1. Then, in general, there are three cases to
consider in the positional join algorithm:

• d < l: Advance y to the next element in P(Y, Si).

• d > u: Advance x to the next element in P(X, Si).

• l ≤ d ≤ u: Save this occurrence in P(X[l, u]Y, Si), and
then advance x to the next element in P(X, Si).

The pos-list for X[l, u]Y can be computed in time linear
in the lengths of P(X, Si) and P(Y, Si). In essence, each
time we advance x ∈ P(X, Si), we check if there exists a
y ∈ P(Y, Si) that satisfies the given gap constraint. Instead
of searching for the matching y from the beginning of the
pos-list each time, we search from the last position used to
compare with x. This results in fast positional joins. For
example, during the positional join for the motif A[0,1]T in
S4, with l = 0 and u = 1, we scan the pos-lists of A and T
for S4 in Table 2, i.e. P(X, S4) = {2, 3, 7} and P(Y, S4) =
{1, 8, 12, 13, 14}. Initially, x = 2 and y = 1. This gives
d = 1 − 2 − 1 = −2 < l, thus we advance y to 8. Next,
d = 8 − 2 − 1 = 5 > u, thus we advance x to 3. Then,
d = 8−3−1 = 4 > u, thus we still advance x to 7. Next, d =
8−7−1 = 0 ∈ [l, u], so we store x = 7 in P(A[0, 1]T, S4). We
would advance x but since we have already reached the end
of P(A, S4), the positional join stops. Thus the final pos-list
of A[0,1]T in S4 is: P(A[0, 1]T, S4) = {7}. After we obtain
the pos-list of M in each Si for 1 ≤ i ≤ n, we can combine
them together to obtain the pos-list of M in S. For example,
the full pos-list of A[0,1]T for S is: {2,2,6,15, 3,2,2,10,
4,1,7}. Thus the support of A[0,1]T is 3. Note here for
each non-empty pos-list, we insert its sequence identifier and
length before it.

Given a longer motif M, the positional joins start with the
last two symbols, and proceed by successively joining the
pos-list of the current symbol with the intermediate pos-list
of the suffix. That is, the intermediate pos-list for a (l+1)-
length pattern (with l ≥ 1) is obtained by doing a positional
join of the pos-list of the pattern’s first symbol, called the
head symbol, with the pos-list of its l-length suffix, called
the tail. As the computation progresses the previous tail
pos-lists are discarded. Combined with the fact that only
start positions are kept in a pos-list, this saves both time
and space.

In order to enumerate all frequent motifs instances M in
S, exMotif computes the pos-list for each M and report
M only if its support is no less than the quorum (q). A
straightforward approach is to directly perform positional
joins on the symbols from the end to the start for each
M. This approach leads to much redundant computation

BIOKDD06: 6th Workshop on Data Mining in Bioinformatics (with SIGKDD Conference) page 34



since simple motif components may be shared among sev-
eral structured motifs. exMotif, in contrast, performs two
steps: it first computes the pos-lists for all simple motifs in
S by doing positional joins on pos-lists of its symbols (as
described in Section 3.1.2), and it then computes the pos-
list for each structured motif by doing positional joins on
pos-lists of its simple motif components (as described in Sec-
tion 3.1.3). exMotif handles both simple and structured
motifs uniformly, by adding the gap range [0, 0] between
adjacent symbols within each simple motif Mi. For our ex-
ample in Table 1, the structured motif template T becomes:
N[0,0]N[0,0]N[0,1]N[0,0]N[2,3]N[0,0]N[0,0]N[0,0]N. Also since
we only report frequent motifs, we can prune the candidate
patterns during the positional joins based on the closure
property of support (note however that this cannot be done
for weighted support).

3.1.2 Extraction of the Simple Motifs
Given a template motif T , we know the lengths of the simple
motif components desired. A naive approach is to directly
do positional joins on the symbols from the end to the start
of each simple motif. However, since some simple motifs
are of the same length and the longer simple motifs can
be obtained by doing positional joins on the shorter simple
motifs/symbols, we can avoid some redundant computation.
Note also that the gap range inside the simple motif is always
[0,0].

Let L = {Li, 1 ≤ i ≤ m}, where Li is the length of each sim-
ple motif in T and assume L is sorted in the ascending order.
For each Li, 1 ≤ i ≤ m, we need to enumerate |ΣDNA|Li pos-
sible simple motifs. Let maxL be the maximum length in L.
We can compute the pos-lists of simple motifs sequentially
from length 1 to maxL. But this may waste time in enu-
merating some simple motifs of lengths that are not in L.
Instead, exMotif first computes the pos-lists for the simple
motifs of lengths that are powers of 2. Formally, let J be an
integer such that 2J ≤ maxL < 2J+1. We extract the pat-
terns of length 2j by doing positional joins on the pos-lists
of patterns of length 2j−1 for all 1 ≤ j ≤ J . For example,
when maxL = 11, exMotif first computes the pos-lists for
simple motifs of length 20 = 1, 21 = 2, 22 = 4 and 23 = 8.

exMotif then computes the pos-lists for the simple motifs
of Li ∈ L, by doing positional joins on simple motifs whose
pos-list(s) have already been computed and their lengths
sum to Li. For example, when Li = 11, exMotif has to
join motifs of lengths 8, 2, and 1. It first obtains all motifs of
length 8+2=10, and then joins the motifs of lengths 10 and
1, to get the pos-lists of all simple motifs of length 10+1=11.
At the end of the first phase, exMotif has computed the
pos-lists for all simple motif components that can satisfy the
template.

3.1.3 Extraction of the Structured Motifs
We extract the structured motifs by doing positional joins on
the pos-lists of the simple motifs from the end to the start in
the structured motif M. Formally, let H[l, u]T be an inter-
mediate structured motif, with simple motif H as the head,
and a suffix structured motif T as tail. Then P(H[l, u]T ) can
be obtained by doing positional joins on P(H) and P(T ).
Since P(H) keeps only the start positions, we need to com-
pute the corresponding end positions for those occurrences
of H, to check the gap constraints. Since only exact matches
or substitutions are allowed for simple motifs, the end posi-
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Figure 1: Indexed Full-position Recovery

tion is simply s + |H| − 1 for a start position s.

3.1.4 Full-position Recovery
In our positional join approach, to save time and space we
retain only the motif start positions, however, in some ap-
plications, we may need to know the full position of each
occurrence, i.e., the set of matching positions for each sym-
bol in the motif. In exMotif we “index” some information
during the positional joins in order to facilitate full position
recovery. Consider the example shown in Fig. 1 to recover
the full positions for M = CCG[0,3]TA[1,3]GAAC. Under
each symbol we show two columns. The left column cor-
responds to the intermediate pos-lists as we proceed from
right to left, whereas the right column stores the indices into
the previous pos-list. For example, the middle column gives
the pos-list P(TA[1, 3]GAAC) = {1,1, 4, 2,2, 5, 7, 3,1, 1}.
For each position x ∈ P(TA[1, 3]GAAC) (excluding the
sequence identifiers and the cardinality), the right column
records an index in P(GAAC) which corresponds to the first
position in P(GAAC) that satisfies the gap range with re-
spect to x. For example, for position x = 5 (at index 6), the
first position in P(GAAC) that satisfies the gap range [1,3]
is 10 (since in this case there are 3 gaps between the end of
TA at position 6 and start of GAAC at position 10), and
it occurs at index 6. Likewise, for each position in the cur-
rent pos-list we store which positions in the previous pos-list
were extended. With this indexed information, full-position
recovery becomes straightforward. We begin with the start
positions of the occurrences. We then keep following the
indices from one pos-list to the next, until we reach the
last pos-list. Since the index only marks the first position
that satisfies the gap range, we still need to check if the
following positions satisfy the gap range. At each stage in
the full position recovery, we maintain a list of intermedi-
ate position prefixes F that match up to the j-th position
in M. For example, to recover the full position for M =
CCG[0,3]TA[1,3]GAAC, considering start position 1 (with
F = {(1)}) in sequence 2, we follow index 6 to get position
5 in the middle pos-list, to get F = {(1, 5)}. Since the next
position after 5 is 7 which is also within the gap range [0,3],
so we update F = {(1, 5), (1, 7)}. For position 5, we follow
index 6 to get position 10 in the rightmost pos-list, to get
F = {(1, 5, 10)}; for position 7, we follow index 6 to get po-
sition 10 in the right pos-list, to get F = {(1, 7, 10)}. Like-
wise, we can recover the full-position in sequence 1, which
is F = {(1, 4, 8)}. During the full-position recovery, we can
also count the number of full-positions, i.e., occurrences, of
each structured motif. For example, there are 3 occurrences
of CCG[0,3]TA[1,3]GAAC.
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3.1.5 OverlappedMotifs & Length Ranges for Simple
Motifs

Our positional join approach can automatically handle over-
lapping simple motifs, by simply adjusting the minimum gap
value (i.e., allowing negative values). For example, a motif
template like M1[−6, 10]M2 allows M2 to overlap M1 by 6
positions.

exMotif also allows variation in the lengths of the simple
motifs to be found. For example, a motif template may
be specified as M1[5, 10]M2, |M1| ∈ [2, 4], and |M2| ∈ [6, 7],
which means that we have to consider NN, NNN, and NNNN
as the possible templates for M1 and similarly for M2. A
straightforward way for handling length ranges is to enu-
merate exhaustively all the possible sub-templates of T with
simple motifs of fixed lengths and then to extract each sub-
template separately. Instead, exMotif does an optimized
extraction. exMotif reuses the partial pos-lists created
when using a depth first search to enumerate and extract
the sub-templates.

3.2 Handling Substitutions
As mutations are a common phenomena in biological se-
quences, we allow substitutions in the extracted motifs. That
is two motif instances may be considered to be the same if
they are within the allowed substitution thresholds. ex-
Motif allows users to specify the number of substitutions
allowed for the whole motif (ε), and also a per simple motif
threshold (εi, i ∈ [1, k]). There are two types of substitu-
tions we consider.

3.2.1 Position-Specific Substitutions

Table 3: IUPAC Alphabet (ΣIUPAC)
Symbol A C G T
Bases A C G T

Symbol U R Y K
Bases U A,G C,T G,T

Symbol M S W B
Bases A,C G,C A,T C,G,T

Symbol D H V N
Bases A,G,T A,C,T A,C,G A,C,G,T

Here we allow a position (a DNA symbol) in the instance
motif M to be substituted with 1 or 2 other DNA sym-
bols. All such neighbors will contribute to the frequency
of M. For example, for M = ACG[4, 6]TT , if we allow
e1 = 1 substitutions in motif M1 = ACG, at position 2, then
AAG[4, 6]TT , ACG[4, 6]TT or AGG[4, 6]TT may contribute
to the frequency of M. Instead of enumerating all of these
separately, exMotif can directly mine relevant motifs using
IUPAC symbols (see Table 3). exMotif simply constructs
the pos-lists for the relevant IUPAC symbols by scanning
sequences in S once. Then it mines the motif instances as
in the basic approach, since all allowed substitutions have
already been incorporated into the relevant IUPAC sym-
bols. For example, if only e1 = 1 substitution is allowed in
the motif, then exMotif adds R,Y,K,M,S, and W as ba-
sic symbols. Thus instead of reporting M = ACG[4, 6]TT
as the instance, exMotif may report ASG[4, 6]TT as an
instance, where S stands for either C or G (see Table 3).
exMotif also allows the user to specify the maximum num-
ber of IUPAC symbols that can appear in a motif.

3.2.2 Arbitrary Substitutions
Here we allow a DNA symbol in M to be substituted with
other symbols across all positions (i.e., in a position inde-
pendent manner), up to the allowed maximum errors per
motif (or per component). To count the support for a mo-
tif, exMotif has to consider all of its neighbors as well,
which are defined as all the motifs (including itself) within
Hamming distance, ε (or per motif ei). Then the support
of an instance motif is calculated as the total number of se-
quences in which its neighbors (including itself) are present.
As always, the motif is frequent if its support meets the quo-
rum q, that is, its neighbors are present in at least q distinct
sequences.

The main challenge is that when arbitrary, position inde-
pendent substitutions are allowed, we cannot do support
checking during each positional join, since the support of
the current motif may be below quorum, but combined with
its neighbors it may meet quorum. Thus exMotif does sup-
port checking at two points. First, it checks for quorum after
the pos-lists of all the simple motifs in T have been com-
puted, provided the per motif error thresholds ei have been
specified. In this case each simple motif must be frequent
to be extended to a structured motif. Second, it checks for
quorum after the pos-lists of all the structured motifs that
satisfy T are computed. Only the frequent instances are
reported.

3.2.2.1 Determining Neighbors.
In order to quickly find all the existing neighbors of a mo-
tif within the allowed error thresholds, exMotif first com-
putes all the exact structured motifs, and stores them into a
hash table to facilitate fast lookup. Then for each extracted
structured motif M, exMotif enumerates all its possible
neighbors and checks whether they exist in the hash table.
One problem is that the number of possible neighbors of
M can be quite large. When we allow εi substitutions for
simple component Mi in M, for 1 ≤ i ≤ k, the number
of M’s neighbors is given as

Qk
i=1[

Pei
j=0

`|Mi|
j

´ · 3j ]. For

example, for M = AACGTT[1,5]AGTTCC, when we al-
low one substitution for each simple motif, the number of
its neighbors is 361; when we allow two substitutions per
component, the number of its neighbors is 23,716. Instead
of enumerating the potentially large number of neighbors
(many of which may not even occur in the sequence set S)
for each structured motif M individually, exMotif utilizes
the observation that many motifs have shared neighbors,
and thus previously computed support information can be
reused. exMotif enumerates neighbors in two steps. In the
first step, for each M, it enumerates aggregate neighbor mo-
tifs, replacing the allowed number of errors ei with as many
‘N’ symbols (which stands for A,C,G, or T). The number

of possible aggregate neighbors is given as
Qk

i=1

`|Mi|
εi

´
. In

the second step, it computes the support for each aggregate
neighbor by expanding each ‘N’ with each DNA symbol,
looking up the hash table for the support of the correspond-
ing motif, and adding the supports for all matching motifs.
Since the motifs matching an aggregate are also neighbors
of each other, the support of the aggregate can be re-used
to compute the support of other matching motifs as well.
Once the supports for all aggregate neighbors have been
computed, the final support of the structured motif M can
be obtained. Thus for each M, the number of “neighbors”
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to consider can be as low as
Qk

i=1

`|Mi|
εi

´
!

For example, consider the example shown in Figure 2. Con-
sider the structured motif M = TAA[0,3]GG[1,3]CCTT (taken
from our example in Table 1); assume that ε1 = 1, ε2 =
0 and ε3 = 1. There are three possible aggregates for
TAA, namely TAN, TNA, and NAA, and four aggregates for
CCTT, namely CCTN, CCNT, CNTT, and NCTT, giving
a total of 12 aggregate neighbors for M, as illustrated in the
figure. exMotif processes each aggregate neighbor in turn.
Using a hash-table (or direct lookup table if there are only a
few neighbors), it checks if the aggregate neighbor has been
processed previously. If yes, it moves on to the next aggre-
gate. If not, it gathers the support information from all of
its matching structured motifs, to compute its total support.
Next, it also updates the neighbor support value for each of
the matching motifs, so that once an aggregate is processed,
we no longer require its information. All we need to know
is whether it has been processed or not. For example, once
the support of the first aggregate TAN[0,3]GG[1,3]CCTN
for the example motif M above is computed, exMotif also
updates the neighbor supports for all other matching struc-
tured motifs, such as M′ = TAC[0,3]GG[1,3]CCTG. Later
when processing M′, exMotif can skip the above aggre-
gate and focus on the not yet processed aggregates, e.g.,
NAC[0,3]GG[1,3]NCTG, and so on.

3.2.2.2 Counting Support.
There are two methods to record the support for each motif.
In the first method, we associate each motif with a bit vector,
V. Each bit, Vi for 1 ≤ i ≤ n (where n = |S|) indicates
whether the motif is present in the sequence Si ∈ S. The
support of the motif is the number of set bits in V. Thus
to obtain the support for a motif, we can simply union the
bit vectors of all its (aggregate) neighbors. Using one bit to
represent a sequence saves space, and also saves time via the
union operation. However, since we need n fixed bits for each
motif to store its bit vector, this is not efficient if there are
many sequences, and if a motif occurs only in a small number
of sequences, which leads to a sparse bit vector. Thus in
the second method, exMotif associates each motif with
an identifier array, A, to only store the sequence identifiers
in which the motif occurs. exMotif can then obtain the
support for a motif by scanning the identifier arrays of its
neighbors in linear time. For example consider again our
motif (from Table 1), TAT[0,1]GG[2,3]CCAT, which occurs
in S2 and S3, Its bit vector is thus V = {0110} and its
identifier array A = {2, 3}.

3.3 Solving Repeated Structured Motif Iden-
tification Problem

In repeated structured motif identification problem, the fre-
quency closure property (that all the subsequences of a fre-
quent sequence must be frequent), does not hold any more.
For example, the sequence GCTTT, has three occurrences of
pattern G[1,3]T, but it sub-pattern, G, has only one occur-
rence. Thus we can’t apply the closure property for pruning
candidates. Nevertheless, a bound on the frequency of a
sub-pattern can be established, which can be used for prun-
ing.

Theorem 1 1. Let M = M1...Mk be a structured mo-
tif and M′ = Mi...Mk be a suffix of M, for 1 ≤ i ≤ k.
If the weighted support of M is πw(M), then πw(M′) ≥

πw(M)
Qi−1

m=1 Wm
, where Wm = um − lm + 1 is the span of the gap

range for m ∈ [1, k − 1].

Proof. Let O(M) be the occurrence set of M and O(M′)
be the occurrence set of M′. For each occurrence of M′

in O(M′), we can extend it to get occurrences of M in
O(M) by adding M1 . . . Mi−1 before M′. This leads to at

most
Qi−1

m=1 Wm occurrences of M for any occurrence of M′.
Thus |O(M′)| · Qi−1

m=1 Wm ≥ |O(M)|, which immediately

gives πw(M′) ≥ πw(M)
Qi−1

m=1 Wm
.

With Theorem 1, exMotif can calculate a support bound
for any suffix M′ of M, given the quorum requirement q.
For example, assume that the motif template is NN[3,5]NNN
[0,4]NNN and q = 100, with W1 = 5 − 3 + 1 = 3 and W2 =
4− 0 + 1 = 5. When processing the suffix component M′ =
NNN, we require that πw(M′) ≥ 100

3×5
= 6; when processing

M′ = NNN[0,4]NNN, we require that πw(M′) ≥ 100
3

= 33.
Thus even the weaker bounds can lead to some pruning.

4. EXPERIMENTAL RESULTS
exMotif has been implemented in C++, and compiled with
g++ v4.0.0 at optimization level 3 (-O3). We performed ex-
periments on a Macintosh PowerPC G5 with dual 2.7GHz
processors and 4GB memory running Mac OS X v10.4.5.
We compare our results with the latest version of RISO [6;
7; 16] (called RISOTTO [16]; obtained from http://algos.

inesc-id.pt/∼asmc/software/riso.html), the best previ-
ous algorithm for structured motif extraction problem.

4.1 exMotif and RISO: Comparison
For comparison, we extract structured motifs from 1,062
non-coding sequences (a total of 196,736 nucleotides) lo-
cated between two divergent genes in the genome of B. sub-
tilis ([6; 7; 16]). Figure 3 and 4 compare the running time
(in seconds) for exMotif and RISO using exact matching
and approximate matching, respectively. Experiments were
done for different gap ranges, number of components, and
quorum thresholds. Note that exMotif has two options:
one (shown as “exMOTIF” in the figures) for reporting only
the number of sequences where the structured motifs occur,
the other (shown as “exMOTIF(#)”) for reporting both the
number of sequences where the structured motifs occur and
the actual occurrences. Also note that RISO does not report
the actual occurrences; it reports only the frequency.
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Figure 3: exMotif vs. RISO: Exact Matching
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Figure 4: exMotif vs. RISO: Approximate Matching
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4.1.1 Exact Matching
In the first experiment, shown in Figure 3 (a), we randomly
generated 100 structured motif templates, with k ∈ [2, 4]
simple motifs of length l ∈ [4, 7] (k and l are selected uni-
formly at random within the given ranges). The gap range
between each pair of simple motifs is a random sub-interval
of [0, 200]. The x-axis is sorted on the number of motifs
extracted. For clarity we plot average times for the meth-
ods when the number of motifs extracted fall into the given
range on the x-axis. For example, the time plotted for the
range [102, 103) is the average time for all the random tem-
plates that produce between 100 and 1000 motifs. We find
that the average running time for RISO is 120.7s, whereas
for exMotif it takes 88.4s for reporting only the support,
and 91.3s for also reporting all the occurrences. The median
times were 26.3s, 8.5s, and 9.2s, respectively, indicating a 3
times speed-up of exMotif over RISO.

In the next set of experiments we varied one parameter while
keeping the others fixed. We set the default quorum to 12%
(q = 127), the default gap ranges to [0,100], the default sim-
ple motif length to l = 4 (NNNN), and the default number of
components k = 3 (e.g., NNNN[0,100]NNNN[0,100]NNNN).
In Figure 3 (b), we plot the time as a function of the number
of simple motifs k in the template. We find that as the num-
ber of components increases the time gap between exMotif
and RISO increases; for k = 4 simple motifs, exMotif is
around 5 times faster than RISO. Figure 3 (c) shows the
effect of increasing gap ranges, from [0,0] to [0,200]. We
find that as the gap range increases the time for exMotif
increases at a slower rate compared to RISO. For [0,200],
exMotif is 3-4 times faster than RISO depending whether
only frequency or full occurrences are reported. In Figure
3 (d), as the quorum threshold increases, the running time
goes down for both methods. For quorum 24%, exMotif is
4-5 times faster than RISO. As support decreases, the gap
narrows somewhat, but exMotif remains 2-3 times faster.
Finally, Figure 3 (e) plots the effect of increasing simple mo-
tif lengths l ∈ [2, 6]. We find that the time first increases and
then decreases. This is because there are a large number of
motif occurrences for length 3 and length 4, but relatively
few occurrences for length 5 and length 6. Depending on the
motif lengths, exMotif can be 3-40 times faster than RISO
for comparable output, i.e., reporting only the support. ex-
Motif remains up to 5 times faster when also reporting the
actual occurrences.

To compare the performance for extracting structured mo-
tifs with length ranges, we used the template T = M1[50, 100]
M2[1, 50]M3[20, 100]M4 with q = 12%, where |M1| ∈ [2, 4],
|M2| ∈ [3, 4], |M3| ∈ [5, 6], |M4| ∈ [4, 5]. exMotif took
78.4s, whereas RISO took 1640.9s to extract 14,174 motifs.

4.1.2 Approximate Matching
In the first experiment, shown in Figure 4 (a), we randomly
generated 30 structured motif templates, with k ∈ [2, 3] sim-
ple motifs of length l ∈ [3, 6] (k and l are selected uniformly
at random within the given ranges). The gap range between
each pair of simple motifs is a random sub-interval of [10, 30].
The x-axis is sorted on the number of motifs extracted, and
average times are plotted for the extracted number of mo-
tifs in the given range. We find that the average running
time for RISO is 334.5s, whereas for exMotif it takes 59.3s
seconds for reporting only the support, and 176.7s for also
reporting all the occurrences. Thus exMotif is on average

5 times faster than RISO, with comparable output.

Figures 4 (b)-(e) plot the time for approximate matching
as a function of different parameters. We set the default
quorum to 12% (q = 127, out of |S| = 1062 sequences), the
default gap ranges to [12,22], the default simple motif length
to l = 6 (NNNNNN), and the default number of components
k = 2 (e.g., NNNNNN[12,22]NNNNNN). Figure 4 (b) shows
how increasing gap ranges effect the running time; for gap
range [8,26] between the two motif components, exMotif is
2-3 times faster than RISO. In Figure 4 (c), we increase the
numbers of arbitrary substitutions allowed for each simple
motif; a pair (ε1, ε2) on the x-axis denotes that ε1 substitu-
tions are allowed for motif component M1, and ε2 for M2.
We can see that exMotif is always faster than RISO. It
is 9 times faster when only frequencies are reported, and
it can be up to 5 times faster then full occurrences are re-
ported, though for some cases the difference is slight. Figure
4 (d) plots the effect of the quorum threshold. Compared
to RISO, exMotif performs much better for low quorum,
e.g., for q = 4% exMotif is 4-5 times faster than RISO.
Finally in Figure 4 (e), as the simple motif lengths increase,
the time for both exMotif and RISO increases, and we find
that exMotif can be 2-3 times faster.

4.2 Real Applications

4.2.1 Discovery of Single Transcription Factor Bind-
ing Sites

We evaluate our algorithm by extracting the conserved fea-
tures of known transcription factor binding sites in yeast.
In particular we used the binding sites for the Zinc (Zn)
factors ([22]). There are 11 binding sites listed for the Zn
cluster, 3 of which are simple motifs. The remaining 8 are
structured, as shown in Table 4. For the evaluation, we first
form several structured motif templates according to the
conserved features in the binding sites. Then we extract the
frequent structured motifs satisfying these templates from
the upstream regions of 68 genes regulated by zinc factors
([22]). We used the -1000 to -1 upstream regions, truncat-
ing the region if and where it overlaps with an upstream
open-reading frame (ORF). After extraction, since binding
sites cannot have many occurrences in the ORF regions, we
drop some motifs if they also occur frequently in the ORF
regions (i.e., within the genes). Finally, we calculate the Z-
scores for the remaining frequent motifs, and rank them by
descending Z-scores. In our experiments, we set the mini-
mum quorum threshold to 7% within the upstream regions
and the support threshold to 30% in the ORF regions. We
use the shuffling program from SMILE ([12]) to compute
the Z-scores. The shuffling program randomly shuffles the
original input sequences to obtain a new shuffled set of se-
quences. Then it computes, for each extracted frequent mo-
tif, its support (π) and weighted support (πw) in the shuffled
set. For a given frequent motif M, let μ and σ be the mean
and standard deviation of its support across different sets
(about 30) of shuffled sequences. Then the Z-score for each

motif is calculated as: Z = π(M)−μ
σ

. Likewise we can also
calculate the Z-score for each frequent motif by using the
weighted support (which is also applicable for the repeated
structured motif identification problem). As shown in Table
4, we can successfully predict GAL4, GAL4 chips, LEU3,
PPR1 and PUT3 with the highest rank. CAT8 and LYS
also have high ranks. We were thus able to extract all eight
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Table 4: Regulons of Zn cluster proteins. TF Name stands for transcription factor name; Known Motif stands for the known
binding sites corresponding to the transcription factors in TF Name column; Predicted Motifs stands for the motifs predicted
by exMotif; Num-Motifs gives the final(original) number of motifs extracted (final is after pruning those motifs that are also
frequent in the ORF regions); Ranking stands for the Z-score ranking based on support/weighted support.

TF Name Known Motif Predicted Motifs Num-Motifs Ranking

GAL4 CGGRnnRCYnYnCnCCG CGG[11,11]CCG 1634(3346) 1/1
GAL4 chips
CAT8 CGGnnnnnnGGA CGG[6,6]GGA 1621(3356) 147/13
HAP1 CGGnnnTAnCGG CGG[6,6]CGG 1621(3356) 111/146

CGGnnnTAnCGGnnnTA
LEU3 RCCGGnnCCGGY CCG[4,4]CGG 1588(3366) 2/1
LYS WWWTCCRnYGGAWWW TCC[3,3]GGA 1605(3360) 33/21
PPR1 WYCGGnnWWYKCCGAW CGG[6,6]CCG 1621(3356) 1/2
PUT3 YCGGnAnGCGnAnnnCCGA CGG[10,11]CCG 727(4035) 1/1

CGGnAnGCnAnnnCCGA

transcription factors for the Zinc factors with high confi-
dence. As a comparison, with the same dataset RISO can
only predict GAL4, LEU3 and PPR1.

4.2.2 Discovery of Composite Regulatory Patterns
The complex transcriptional regulatory network in Eukary-
otic organisms usually requires interactions of multiple tran-
scription factors. A potential application of exMotif is to
extract such composite regulatory binding sites from DNA
sequences. We took two such transcription factors, URS1H
and UASH, which are involved in early meiotic expression
during sporulation, and that are known to cooperatively reg-
ulate 11 yeast genes [21]. These 11 genes are also listed in
SCPD [25], the promoter database of Saccharomyces cere-
visiae. In 10 of those genes the URS1H binding site appears
downstream from UASH; in the remaining one (HOP1) the
binding sites are reversed. We took the binding sites for
the 10 genes (all except HOP1), and after their multiple
alignment, we obtained their consensus: taTTTtGGAG-
Taata[4,179]ttGGCGGCTAA (the lower case letters are less
conserved, whereas uppercase letters are the most conserved).
Table 5 shows the binding sites for UASH and URS1H for
the 10 genes, their start positions, their alignment, and the
consensus pattern. The gap between the sites are obtained
after subtracting the length of UASH, 15, from the position
difference (since the start position of UASH is given). The
smallest gap is l = 119 − 110 − 15 = 4 and the largest is
u = 288 − 94 − 15 = 179. Based on the on most conserved
parts of the consensus, we formed the composite motif tem-
plate: T = NNN[1,1]NNNNN[10,185]NNNNNNNNN (note
the 6 additional gaps added to [4,179] to account for the
non-conserved positions). We then extracted the structured
motifs in the upstream regions of the 10 genes. We used
the -800 to -1 upstream regions, and truncated the segment
if it overlaps with an upstream ORF. The numbers of sub-
stitutions for NNN, NNNNN and NNNNNNNNN were set
to ε1 = 1, ε2 = 2 and ε3 = 1, respectively. The quorum
thresholds was set to q = 0.7 with the upstreams, and the
maximum support within genes was set to 0.1% The rank of
the true motif TTT[1,1]GGAGT[10,185]GGCGGCTAA was
290 (out of 5284 final motifs) with a Z-score of 22.61.

5. CONCLUSION AND FUTURE WORK
In this paper, we introduced exMotif, an efficient algo-
rithm to extract structured motifs within one or multiple bi-
ological sequences. We showed its application in discovering
single/composite regulatory binding sites. In the structured
motif template, we assume the gap range between each pair
of simple motifs is known. In the future, we plan to solve
motif discovery problem when even the gap ranges are un-
known. Another potential direction is to extract structured
profile (or position weight matrix) patterns.
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ABSTRACT
The main goal of the motif finding problem is to detect novel,
over-represented unknown signals in a set of sequences (for
eg. transcription factor binding sites in a genome). Most
widely used algorithms for finding motifs obtain a generative
probabilistic representation of these over-represented signals
and try to discover profiles that maximize the information
content score. Although these profiles form a very power-
ful representation of the signals, the major difficulty arises
from the fact that the best motif corresponds to the global
maximum of a non-convex continuous function. Popular al-
gorithms like Expectation Maximization (EM) and Gibbs
sampling tend to be very sensitive to the initial guesses and
are known to converge to the nearest local maximum very
quickly. In order to improve the quality of the results, EM
is used with multiple random starts or any other powerful
stochastic global methods that might yield promising initial
guesses (like projection algorithms). Global methods do not
necessarily give initial guesses in the convergence region of
the best local maximum but rather suggest that a promis-
ing solution is in the neighborhood region. In this paper, we
introduce a novel optimization framework that searches the
neighborhood regions of the initial alignments in a system-
atic manner to explore the multiple local optimal solutions.
This effective search is achieved by transforming the origi-
nal optimization problem into its corresponding dynamical
system and estimating the practical stability boundary of
the local maximum. Our results show that the popularly
used EM algorithm often converges to sub-optimal solutions
which can be significantly improved by the proposed neigh-
borhood profile search. Based on experiments using both
synthetic and real datasets, our method demonstrates sig-
nificant improvements in the information content scores of
the probabilistic models. The proposed method also gives
the flexibility in using different local solvers and global meth-
ods that work well for some specific datasets.

Corresponding Author - Chandan K. Reddy - Email :
ckr6@cornell.edu

General Terms
Bioinformatics, Data mining, Dynamical systems, Unsuper-
vised learning.

Keywords
motif finding, global maximum, projection algorithms, ex-
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1. INTRODUCTION
Recent developments in DNA sequencing have allowed biol-
ogists to obtain complete genomes for several species. How-
ever, knowing the sequence does not imply the understand-
ing of how these genes interact and regulate one another
within the genome. Many transcription factor binding sites
are usually highly conserved throughout the sequences and
discovering the location of such binding sites plays an im-
portant role in the inference of the gene interaction and gene
regulation. A motif is a sequence of DNA which manifests it-
self repetitively throughout genomic sequences. The length
of the motif in each occurrence may not be the same as
all of the other occurrences, although in general the occur-
rences must have roughly the same length. The motif chal-
lenge problem [19] that is being considered in this paper is
described as follows: Given N sequences with ti being the
length of the ith sequence, the goal of the motif finding prob-
lem is to locate all occurrences of the l-length motif which is
within a distance of d mutations in each of the t sequences
(see fig. 1). More details about the complexity of the motif
finding problem is given in [18]. A detailed assessment of dif-
ferent motif finding algorithms has been published recently
in [26].

Figure 1: Synthetic DNA sequences containing some in-
stance of the pattern ‘CCGATTACCGA’ with a maximum
number of 2 mutations. The motifs in each sequence are
highlighted in the box. We have a (11,2) motif where 11 is
the length of the motif and 2 is the number of mutations
allowed.

Although there are several variations of the motif finding
algorithms, the problem discussed in this paper is defined
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as follows: without any previous knowledge about the con-
sensus pattern, discover all instances (alignment positions)
of the motifs and then recover the final pattern to which
all these instances are within a given number of mutations.
Inspite of the significant literature on the motif finding prob-
lem, relatively few researchers have exploited the probabilis-
tic models used for motif refinement [16],[1]. More details
on the estimates of the hardness of this problem without
any complex information like overlapping motifs and back-
ground distribution is shown in [27].

In this paper, we provide a novel optimization framework for
refining motifs using systematic subspace exploration and
neighborhood search techniques. This paper is organized
as follows: Section 2 gives some relevant background about
the existing approaches used for finding motifs. Section 3
describes the problem formulation in detail. Section 4 dis-
cusses our new framework and Section 5 details our imple-
mentation. Section 6 gives the experimental results of our
algorithm on synthetic and real datasets. Finally, Section 7
concludes our discussion with future research directions.

2. RELEVANT BACKGROUND
Existing approaches used to solve the motif finding problem
can be classified into two main categories [10]. The first
group of algorithms utilizes a generative probabilistic repre-
sentation of the nucleotide positions to discover a consensus
DNA pattern that maximizes information content score. In
this approach, the original problem of finding the best con-
sensus pattern is formulated into finding the global max-
imum of a continuous non-convex function. The main ad-
vantage of this approach is that profiles generated are highly
representative of the signals being determined [7]. The dis-
advantage, however, is that the determination of the “best”
motif cannot be guaranteed and is often very difficult since
finding global maximum of any continuous non-convex func-
tion is a challenging problem. Current algorithms converge
to the nearest local optimum instead of the global solution.
Gibbs sampling [15], Expectation-Maximization [1], greedy
CONSENSUS algorithm [13] and HMM based methods [8]
belong to this category.

The second group uses patterns with ‘mismatch representa-
tion’ which defines a signal to be a consensus pattern and
allows up to a certain number of mismatches to occur in
each instance of the pattern. The goal of these algorithms is
to recover the consensus pattern with the highest number of
instances. These methods view the representation of the sig-
nals as discrete and the main advantage to these algorithms
is that they can guarantee the highest scoring pattern to
be the global optimum for any scoring function. The dis-
advantage, however, is that consensus patterns are not as
expressive of the DNA signal as the profile representations.
Recent approaches within this framework include Projection
methods [4; 22], string based [19], Pattern-Branching [21],
MULTIPROFILER [14], suffix trees [24] and other branch
and bound approaches [11; 10].

A hybrid approach could potentially combine the expres-
siveness of the profile representation with convergence guar-
antees of the consensus pattern. An example of a hybrid
approach is the Random Projection [4] algorithm followed
by Expectation-Maximization [1]. It uses a global solver to
obtain promising alignments in the discrete pattern space
followed by further local solver refinements in continuous

space[2; 25]. Currently, not many algorithms take complete
advantage of the combined discrete and continuous space
search [4; 10; 22]. In this paper, the profile representation
of the motif is emphasize and a new hybrid algorithm is de-
veloped to escape out of the local maximum of the likelihood
surface.

The main research concerns that motivated the new hybrid
algorithm proposed in this paper are :

• Motif refinement stage is vital and popularly used by
many pattern based algorithms (like PROJECTION,
MITRA etc) that try to find optimal motifs.

• Traditional Expectation Maximization algorithm used
in the context of motif finding converges very quickly
to the nearest local optimal solution (within 5-8 itera-
tions).

• There are many other promising local optimal solu-
tions in the close vicinity of the profiles obtained from
the global methods.

In spite of the importance of obtaining a globally optimal
solution in the context of motif finding, not much work has
been done in the direction of finding such solutions [28;
12]. There had been several attempts for escaping out of
the local optimal solution to find better solutions in other
machine learning [9] and optimization [5] related problems.
Most of these methods are stochastic in nature and usually
rely on perturbing either the data or the hypothesis. These
stochastic perturbation algorithms are ineffecient because
they sometimes miss a neighborhood solution or obtain an
already existing solution. To avoid these problems, we in-
troduce a novel optimization framework that has a better
chance of avoiding sub-optimal solutions. It systematically
escapes out of the convergence region of a local maximum to
explore the existence of other neighborhood local maxima.
Our method is primarily based on some fundamental prin-
ciples of finding an exit points on the stability boundary of
a nonlinear continuous function. The underlying theoretical
details of our method are described in [6; 17].

3. PRELIMINARIES
Before discussing the details of our method, we describe our
problem formulation and the details about the EM algo-
rithm in the context of motif finding problem. We also de-
scribe some details about the dynamical system of the log-
likelihood function which enables us to search the nearby
local optimal solutions.

3.1 Problem Formulation
Some promising initial alignments are obtained by applying
projection methods or random starts on the entire dataset.
These initial alignments are then converted into profile rep-
resentation.

Let t be the total number of sequences and n be the average
length of each sequence. Let S = {S1, S2...St} be the set
of t sequences. Let P = {P1, P2...Pt} be the set of initial
alignments. l is the length of the consensus pattern. For
further discussion, we use the following variables

i = 1 ... t % for t sequences
k = 1 ... l % for l-mers
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Table 1: A count of nucleotides A, T, G, C at each position K =
1..l in all the sequences of the data set. K = 0 denotes the
background count.

j k = 0 k = 1 k = 2 K = 3 k = 4 ... k = l
A C0,1 C1,1 C2,1 C3,1 C4,1 ... Cl,1

T C0,2 C1,2 C2,2 C3,2 C4,2 ... Cl,2

G C0,3 C1,3 C2,3 C3,3 C4,3 ... Cl,3

C C0,4 C1,4 C2,4 C3,4 C4,4 ... Cl,4

j ∈ {A, T, G, C} % for each nucleotide

The count matrix can be constructed from the given align-
ments as shown in Table 1. We define C0,j to be the non-
position specific background count of each nucleotide in all
of the sequences where j ∈ {A, T, C, G} is the running total
of nucleotides occurring in each of the l positions. Similarly,
Ck,j is the count of each nucleotide in the kth position (of
the l − MER) in all the P alignments.

Q0,j =
C0,jP
j C0,j

(1)

Qk,j =
Ck,j + bj

t +
P

j bj
(2)

Equation (1) shows the background frequency of each nu-
cleotide where bj is known as the Laplacian or Bayesian
correction and is equal to d ∗Q0,j where d is some constant
usually set to unity. Equation (2) gives the weight assigned
to the type of nucleotide at the kth position of the motif.

A Position Specific Scoring Matrix (PSSM) can be con-
structed from one set of instances in a given set of t se-
quences. From (1) and (2), it is obvious that the following
relationship holds:

X
j∈{A,T,G,C}

Qk,j = 1 ∀k = 0, 1, 2, ...l (3)

From equation (3), for a given k value, each Q can be repre-
sented in terms of the other 3 variables. Since the length of
the motif is l, the final objective function (i.e. the informa-
tion content score) would contain 3l independent variables1.

To obtain the score, every possible l − MER in each of the
t sequences must be examined. This is done so by multi-
plying the respective Qi,j/Q0,j dictated by the nucleotides
and their respective positions within the l − MER. Only
the highest scoring l − MER in each sequence is noted and
kept as part of the alignment. The total score is the sum of
all the best scores in each sequence.

1Although, there are 4l variables in total, because of the
constraints obtained from (3), the parameter space will con-
tain only 3l independent variables. Thus, the constraints
help in reducing the dimensionality of the search problem.

A(Q) =

tX
i=1

log(A)i =

tX
i=1

log

 
lY

k=1

Qk,j

Qb

!

i

=
tX

i=1

lX
k=1

log(Q
′
k,j)i

(4)

Q
′
k,j is the ratio of the nucleotide probability to the corre-

sponding background probability, i.e. Qk,j/Qb. Log(A)i is
the score at each individual ith sequence where t is the to-
tal number of sequences. In equation (4), we see that A is
composed of the product of the weights for each individual
position k. A(Q) is the non-convex 3l dimensional continu-
ous function for which the global maximum corresponds to
the best possible motif in the dataset. EM refinement that
is done at the end of the combinatorial approaches has the
main disadvantage that it converges to a local optimal so-
lution [3]. Our method improves the refinement procedure
by understanding the details about the stability boundaries
and trying to escape out of the convergence region of the
EM algorithm.

3.2 Hessian Computation and Dynamical Sys-
tem for the Scoring Function

In order to present our algorithm, we have defined the dy-
namical system corresponding to the log-likelihood function
and the PSSM. The key contribution of the paper is the
development of this nonlinear dynamical system which will
enable us to realize the dynamic and geometric nature of the
likelihood surface. We construct the following gradient sys-
tem in order to locate critical points of the objective function
(4):

Q̇(t) = −∇A(Q) (5)

One can realize that this transformation preserves all the
critical points [6]. Now, we will describe the construction of
the gradient system and the Hessian in detail. In order to re-
duce the dominance of one variable over the other, the values
of the each of the nucleotides that belong to the consensus
pattern at the position k will be represented in terms of the
other three nucleotides in that particular column. This will
also minimize the dominance of the eigen vector directions
when the Hessian is obtained. The variables of the scor-
ing function are transformed into new variables described in
Table 2.

A(Q) =

tX
i=1

lX
k=1

log fik(w3k−2, w3k−1, w3k)i (6)

where

fik =

(
1 − (w3k−2, w3k−1, w3k) if Pik = Ck

w3k−2 or w3k−1 or w3k elsewhere
(7)

The first derivative of the scoring function is a one dimen-
sional vector with 3l elements.

∇A =

»
∂A

∂w1

∂A

∂w2

∂A

∂w3
. . . .

∂A

∂w3l

–T

(8)
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Table 2: A count of nucleotides j ∈ {A, T, G, C} at each position
k = 1..l in all the sequences of the data set. Ck is the kth nu-
cleotide of the consensus pattern which represents the nucleotide
with the highest value in that column. Let the consensus pattern
be GACT...G and bj indicates the background.

j k = b k = 1 k = 2 K = 3 k = 4 ... k = l
A bA w1 C2 w7 w10 ... w3l−2

T bT w2 w4 w8 C4 ... w3l−1

G bG C1 w5 w9 w11 ... Cl

C bC w3 w6 C3 w12 ... w3l

and each partial derivative is given by

∂A

∂wp
=

tX
i=1

∂fip

∂wp

fik(w3k−2, w3k−1, w3k)
(9)

∀p = 1, 2 ... 3l and k = round(p/3) + 1

The Hessian ∇2A is a block diagonal matrix of block size
3X3. For a given sequence, the entries of the 3X3 block
will be the same if that nucleotide belongs to the consensus
pattern (Ck). The gradient system is mainly obtained for
enabling us to identify the stability boundaries and stabil-
ity regions on the likelihood surface. The theoretical details
about these concepts are published elsewhere [6]. Stability
region of each local maximum is an approximate convergence
zone of the EM algorithm. If we can identify all the saddle
points on the stability boundary of a given local maximum,
then we will be able to find all the tier-1 local maxima. How-
ever, finding all saddle points is computationally intractable
and hence we have adopted a heuristic by generating the
eigen vector directions of the PSSM at the local maximum.
The next section details out our approach and explains the
different phases of our algorithm.

4. NOVEL FRAMEWORK
Our framework consists of three phases. The first phase
is the global phase, in which the promising solutions in the
entire search space are obtained. The second phase is the
refinement phase where a local method is applied to the
solutions obtained in the previous phase in order to refine
the profiles. The third phase is the exit phase; the exit
points are computed and the Tier-1 and Tier-2 solutions are
systematically explored.

In the global phase, a branch and bound search is performed
on the entire dataset. All the profiles that do not meet a
certain threshold (in terms of a given scoring function) are
eliminated in this phase. The promising patterns obtained
are transformed into profiles and local improvements are
made to these profiles in the refinement phase. The con-
sensus pattern is obtained from each nucleotide that corre-
sponds to the largest value in each column of the PSSM.
The 3l variables chosen are the nucleotides that correspond
to those that are not present in the consensus pattern. Be-
cause of the probability constraints discussed in the previous
section, the largest weight can be represented in terms of the
other three variables.

To solve (4), current algorithms begin at random initial
alignment positions and attempt to converge to an align-

Figure 2: Diagram illustrates the exit point method of es-
caping from the original solution (A) to the neighborhood
local optimal solutions (a1i) through the corresponding exit
points (e1i). The dotted lines indicate the local convergence
of the EM algorithm.

ment of l − MERs in all the sequences that maximize the
objective function. In other words, the l − MER whose
log(A)i is the highest (with a given PSSM) is noted in every
sequence as part of the current alignment. During the max-
imization of A(Q) function, the probability weight matrix
and hence the corresponding alignments of l − MERs are
updated. This will occur iteratively until the PSSM con-
verges to the locally optimal solution. The consensus pat-
tern is obtained from the largest weight nucleotide in each
position (column) of the PSSM. This converged PSSM and
the set of alignments correspond to a local optimal solution.

To escape out of this local optimal solution, our approach re-
quires the computation of a Hessian matrix (i.e. the matrix
of second derivatives) of dimension (3l)2 and the 3l eigen-
vectors of the Hessian. The Hessian ∇2A is a block diagonal

Input: Local Maximum (A).
Output: Best Local Maximum in the neighborhood region.
Algorithm:
Step 1: Construct the PSSM for the alignments correspond-
ing to the local maximum (A) using Eqs. 1 and 2.
Step 2: Calculate the eigen vectors of the Hessian matrix
for this PSSM.
Step 3: Find exit points (e1i) on the practical stability
boundary along each eigen vector direction.
Step 4: For each of the exit points, the corresponding Tier-1
local maxima are obtained (a1i) by applying the EM algo-
rithm after the ascent step.
Step 5: Repeat this process for promising tier-1 solutions to
obtain Tier-2 (a2j) local maxima.
Step 6: Return the solution that gives the maximum infor-
mation content score of {A, a1i, a2j}.

Figure 3: The Exit phase where the neighborhood of the
original solution is explored in a systematic manner.
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matrix of block size 3X3. For a given sequence, the entries of
the 3X3 block will be the same if that nucleotide belongs to
the consensus pattern (Ck). The main reasons for choosing
the eigenvectors of the Hessian as search directions are:

• Computing eigen vectors of the Hessian is related to
finding the directions with extreme values of the sec-
ond derivatives, i.e., directions of extreme normalto-
isosurface change.

• Eigen vectors of the Hessian will form the basis vectors
for the search directions. Any other search direction
can be obtained by a linear combination of these basis
directions.

• This will make our algorithm deterministic since the
eigen vector directions are always unique.

The value of the objective function is evaluated along these
eigen vector directions with some small step size increments.
Since the starting position is a local optimal solution of a
function that is being maximized, the function value dur-
ing the initial few steps will reduce. Since the Hessian is
obtained only once during the entire procedure, it is more
efficient compared to Newton’s method where an approxi-
mate Hessian is obtained for every iteration. After a certain
number of step evaluations, there might be an increase in
the value indicating that the current point is out of the con-
vergence region of the local maximum. The point along this
direction where the A(Q) has the lowest value is called the
exit point. Once the exit points are computed along each
eigenvector direction, the local maximum in the other re-
gion is obtained by applying local method with these new
points as initial guesses. This procedure is clearly shown in
Fig 4. To ascertain that the new initial guess is in a different
convergence region from the original, the objective function
value is evaluated even after its increase. The descent stage
indicates the function evaluation along a particular eigen
vector direction. Applying local method at the exit point
might give the original local maximum. The ascent stage is
used to ensure that the new guess is in a different conver-
gence zone. Hence, given the best local maximum obtained
using any current local methods, this framework allows us to
systematically escape out of the local maximum to explore
surrounding local maxima.

Figure 4: A summary of escaping out of the local optimum
to the neighborhood local optimum. Observe the corre-
sponding trend of A(Q) at each step.

Input: The DNA sequences, length of the motif (l),
Maximum Number of Mutations (d)
Output: Motif (s)
Algorithm:
Step 1: Given the sequences, apply random projection
algorithm to obtain different set of alignments.
Step 2: Choose the promising buckets and apply EM
algorithm to refine these alignments.
Step 3: Apply the exit point method to obtain nearby
promising local optimal solutions.
Step 4: Report the consensus pattern that corresponds to
the best alignments and their corresponding PSSM.

Figure 5: The complete algorithm

This new framework can be treated as a hybrid approach be-
tween global method and the local method. The approach
differs from traditional local methods by computing multiple
local solutions in the neighborhood region in a systematic
manner. It differs from global methods by working com-
pletely in profile space and searching a subspace efficiently
in a deterministic manner. For a given non-convex function,
there is a massive number of convergence regions that are
very close to each other and are separated from one another
in the form of different basins of attraction. These basins
are effectively modeled by the concepts of stability regions.

5. IMPLEMENTATION DETAILS
Our program is implemented in Red Hat Linux version 9 and
runs on a Pentium IV 2.8 GHz machine. The core algorithm
that we implemented is XP EM described in Algorithm 1.
XP EM obtains the initial alignments and the original data
sequences along with the length of the motif. It returns the
best motif that is obtained in the neighboring region of the
sequences. This procedure constructs the PSSM, performs
EM refinement, and then computes the Tier-1 and Tier-2
solutions by calling the procedure Next T ier. The Eigen
vectors of the Hessian were computed using the code ob-
tained from [20]. Next T ier takes a PSSM as input and
computes an array of PSSMs corresponding to the next tier
local maxima using the exit point methodology.

Algorithm 1 Motif XP EM(init aligns, seqs, l)

PSSM = Construct PSSM(init aligns)
New PSSM = Apply EM(PSSM, seqs)
TIER1 = Next T ier(seqs, New PSSM, l)
for i = 1 to 3l do

if TIER1[i] <> zeros(4l) then
TIER2[i][ ] = Next T ier(seqs, T IER1[i], l)

end if
end for
Return best(PSSM, TIER1, T IER2)

Given a set of initial alignments, Algorithm 1 will find the
best possible motif in the neighborhood space of the profiles.
Initially, a PSSM is computed using construct PSSM from
the given alignments. The procedure Apply EM will return
a new PSSM that corresponds to the alignments obtained
after the Expectation Maximization algorithm is applied to
the initial PSSM. The details of the procedure Next T ier
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are given in Algorithm 2. From a given local solution (or
PSSM), Next T ier will compute all the 3l new PSSMs in
the neighborhood of the given local optimal solution. The
second tier patterns are obtained by calling the Next T ier
from every first tier solutions 2. Finally, the pattern with the
highest score amongst the original PSSM, Tier1 and Tier2
is returned.

Algorithm 2 PSSMs[ ] Next T ier(seqs, PSSM, l)

Score = eval(PSSM)
Hess = Construct Hessian(PSSM)
Eig[ ] = Compute EigV ec(Hess)
MAX Iter = 100
for k = 1 to 3l do

PSSMs[k] = PSSM Count = 0
Old Score = Score ep reached = FALSE
while (! ep reached) && (Count < MAX Iter) do

PSSMs[k] = update(PSSMs[k], Eig[k], step)
Count = Count + 1
New Score = eval(PSSMs[k])
if (New Score > Old Score) then

ep reached = TRUE
end if
Old Score = New Score

end while
if count < MAX Iter then

PSSMs[k] = update(PSSMs[k], Eig[k], ASC)
PSSMs[k] = Apply EM(PSSMs[k], Seqs)

else
PSSMs[k] = zeros(4l)

end if
end for
Return PSSMs[ ]

The procedure Next T ier takes a PSSM and computes an
array of PSSMs that corresponds to the next tier local op-
timal solutions. It applies the Exit-point methodology to
compute the next tier solution. The procedure eval eval-
uates the scoring function for the PSSM using (4). The
procedures Construct Hessian and Compute EigV ec com-
putes the Hessian matrix and the eigen vectors respectively.
MAX iter indicates the maximum number of uphill evalu-
ations that are required along each of the eigen vector di-
rections. The neighborhood PSSMs will be stored in the
variable PSSMs[ ]. The original PSSM is updated with
a small step until an exit point is reached or the number
of iterations exceed MAX Iter value. If the exit point is
reached along a particular direction, some more iterations
are made to guarantee that the PSSM exists in a different
stability region and entered a new one. The EM algorithm
is then used during this ascent stage to obtain a new PSSM
3.

The initial alignments are converted into profile space and a

2New PSSMs might not be obtained for certain search direc-
tions. In those cases, a zero vector of length 4l is returned
back. Only those new PSSMs which do not have this value
will be used for any further processing.
3For completeness, the entire algorithm has been shown in
this section. However, during the implementation, several
heuristics have been applied to reduce the running time of
the algorithm. For example, if the first tier solution is not
very promising, it will not be considered for obtaining the
corresponding second tier solutions.

Figure 6: 2-D illustration of first tier improvements in a 3l
dimensional objective function. The original local maximum
has a score of 163.375. The various Tier-1 solutions and
plotted and the one with highest score (167.81) is chosen.

PSSM is constructed. The PSSM is updated (using the EM
algorithm) until the alignments converge to a local optimal
solution. The Exit-point methodology is then employed to
escape out of this local optimal solution to compute nearby
first tier local optimal solutions. This process is then re-
peated on promising first tier solutions to obtain second tier
solutions. As shown in Fig. 6, from the original local op-
timal solution, various exit points and correspondingly the
new local optimal solutions are computed along each Eigen
vector direction. Sometimes two directions might yield the
same local optimal solution. This can be avoided by comput-
ing the saddle point corresponding to the exit point on the
stability boundary [23]. There can be many exit points, but
there will be a unique saddle point corresponding to the new
local minimum. However, in high dimensional problems, it
is not very efficient to compute the saddle points and hence,
we chose to compute the exit points. For computational effi-
ciency, the Exit-point approach is applied to only promising
initial alignments (i.e. random starts with higher Informa-
tion Content score). Therefore, a threshold A(Q) score is
determined by the average of the best three first tier scores
just after 10-15 random starts; any current and future first
tier solution with score greater than the threshold is con-
sidered for further analysis. Additional random starts are
carried out in order to aggregate at least ten first tier solu-
tions. Exit-point is repeated on all first tier solutions above
a certain threshold to obtain second tier solutions.

6. EXPERIMENTAL RESULTS
Experiments were performed on both synthetic data and real
data. Two different methods were used in the global phase:
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random starts and random projection. The main purpose of
this paper is not to demonstrate that our algorithm can out-
perform the existing motif finding algorithms. Rather, the
main work here focusses on improving the results that are
obtained from other efficient algorithms. We have chosen
to demonstrate the performance of our algorithm on the re-
sults obtained from the random projection method which is
a powerful global method that has outperformed other tra-
ditional motif finding approaches like MEME, Gibbs sam-
pling, WINNOWER, SP-STAR etc [4]. Since the compari-
son results were already published, we mainly focus on the
performance improvements of our algorithm compared to
the random projection algorithm. For random starts exper-
iment, a total of N random numbers each value between 1
and (t − l + 1) that corresponds to random initial starting
alignments are generated. Let m be the number of indepen-
dent trials required to obtain the motifs.

6.1 Synthetic Datasets
The synthetic datasets were generated using the procedure
described in [19]. The value of m = 1 is chosen to demon-
strate the efficiency of our approach. This corresponds to
one full random projection + EM cycle. We compared the
performance coefficient (PC) which gives the measure of the
average performance of our implementation to that of Ran-
dom Projection. The PC is given by :

PC =
|K ∩ P |
|K ∪ P | (10)

where K is the set of the residue positions of the planted
motif instances, and P is the corresponding set of positions
predicted by the algorithm. Table 4 gives an overview of
the performance of our method compared to the random
projection algorithm on the (l,d) motif problem for different
l and d values.

Our results also show that by branching out and discover-
ing multiple local optimal solutions one need not use higher
m values. A higher m value corresponds to more computa-
tional time because projecting the l-mers into k-sized buck-
ets is a time consuming task. Using our approach, we can
replace the need for randomly projecting l-mers repeatedly
in an effort to converge to a global optimum by determinis-
tically and systematically searching the solution space mod-
eled by our dynamical system and improving the quality of
the existing solutions. The improvements of our algorithm
are clearly shown in Table 4. We can see that there is a
significant improvement for higher length motifs.

Table 4: The results of performance coefficient with m = 1 on
synthetically generated sequences. The scores are not normalized
and the perfect score is 20 since there are 20 sequences.

Motif PC obtained using PC obtained using
(l,d) Random Projection Exit-point method

(11,2) 20 20
(15,4) 14.875 17
(20,6) 12.667 18

Fig. 6 shows the tier-1 solutions obtained from a given con-
sensus pattern. Since the exit points are being used instead
of saddle points, it might sometimes find the same local

Figure 7: The average scores with the corresponding first
tier and second tier improvements on synthetic data using
the random starts with Exit-point approach with different
(l,d) motifs.

optimal solution obtained before. As seen from the figure,
the tier-1 solutions does not have to be different from the
original pattern in just one nucleotide position. Also, the
function value at the exit points is much higher than the
original value.

As opposed to stochastic processes like mutations in genetic
algorithms, our approach reduces the stochastic nature and
tries to obtain multiple local optimal solutions in the neigh-
borhood systematically. Fig. 7 shows the performance of
the Exit-point approach on synthetic data for different (l,d)
motifs. The average scores of the best ten solutions obtained
from random starts and their corresponding improvements
in tier-1 and tier-2 are reported. One can see that the im-
provements become more prominent for larger length motifs.
Table 3 shows the best and worst of these top ten random
starts along with the consensus pattern and the alignment
scores.

Figure 8: The average scores with the corresponding first
tier and second tier improvements on synthetic data using
the Random Projection with Exit-point approach with dif-
ferent (l,d) motifs.

With a few modifications, more experiments were conducted
using the Random Projection method. The Random Projec-
tion will eliminate non-promising regions in the search space
and gives a number of promising sets of initial patterns. EM
refinement is applied to those promising initial patterns with
higher score. Due to the robustness of the results, the Exit-
point method is employed only on the top five local optima.
Exit-point is again repeated on the top scoring first tier so-
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Table 3: The consensus patterns and their corresponding scores of the original local optimal solution obtained from multiple random
starts on the synthetics data. The best first tier and the second tier optimal patterns and their corresponding scores are also reported.

(l,d) Initial Pattern Score First Tier Pattern Score Second Tier Pattern Score
(11,2) AACGGTCGCAG 125.1 CCCGGTCGCTG 147.1 CCCGGGAGCTG 153.3
(11,2) ATACCAGTTAC 145.7 ATACCAGTTTC 151.3 ATACCAGGGTC 153.6
(13,3) CTACGGTCGTCTT 142.6 CCACGGTTGTCTC 157.8 CCTCGGGTTTGTC 158.7
(13,3) GACGCTAGGGGGT 158.3 GAGGCTGGGCAGT 161.7 GACCTTGGGTATT 165.8
(15,4) CCGAAAAGAGTCCGA 147.5 CCGCAATGACTGGGT 169.1 CCGAAAGGACTGCGT 176.2
(15,4) TGGGTGATGCCTATG 164.6 TGGGTGATGCCTATG 166.7 TGAGAGATGCCTATG 170.4
(17,5) TTGTAGCAAAGGCTAAA 143.3 CAGTAGCAAAGACTACC 173.3 CAGTAGCAAAGACTTCC 175.8
(17,5) ATCGCGAAAGGTTGTGG 174.1 ATCGCGAAAGGATGTGG 176.7 ATTGCGAAAGAATGTGG 178.3
(20,6) CTGGTGATTGAGATCATCAT 165.9 CAGATGGTTGAGATCACCTT 186.9 CATTTAGCTGAGTTCACCTT 194.9
(20,6) GGTCACTTAGTGGCGCCATG 216.3 GGTCACTTAGTGGCGCCATG 218.8 CGTCACTTAGTCGCGCCATG 219.7

lutions to arrive at the second tier solutions. Fig. 8 shows
the average alignment scores of the best random projection
alignments and their corresponding improvements in tier-1
and tier-2 are reported. In general, the improvement in the
first tier solution is more significant than the improvements
in the second tier solutions.

6.2 Real Datasets
Table 5 shows the results of the Exit-point methodology on
real biological sequences. We have chosen l = 20 and d = 2.
‘t’ indicates the number of sequences in the real data. The m
value reported is the approximate average number of full cy-
cles required to obtain the motif. For the biological samples
taken from [4; 21], the value of m is the average number
of full LSH cycles it would take the original algorithm to
discover the motif. The values for all other parameters (like
projection size k = 7 and threshold s=4) are chosen to be
the same as those used in the Random projection paper [4].
All the motifs were recovered with m = 1 using the Exit-
point strategy. Without the exit point strategy, the random
projection algorithm needed multiple LSH cycles inorder to
retrieve the original motifs. This clearly elucidates the fact
that, we need to use global methods to certain extent and
combine them with refined local heuristics in order to obtain
better efficiency. Running one LSH cycle is much more time
consuming compared to the exit-point strategy. The main
advantage of our strategy comes with the deterministic na-
ture of the algorithm as opposed to the stochastic version
(as seen in random projection). This clearly indicates the
efficiency of the newly proposed method on real biological
samples.

7. CONCLUDING DISCUSSION
The Exit-point framework proposed in this paper broadens
the search region for obtaining improved solution that can
potentially corresponds to a better motif. In most of the
profile based algorithms, EM is used to obtain the nearest
local optimum from a given starting point. In our approach,
we consider the boundaries of these convergence regions and
find the surrounding local optimal solution based on the the-
ory of stability regions. We have shown in both real and
synthetic data sets that beginning from the EM converged
solution, the Exit-point approach is capable of searching in
the neighborhood regions for another solution with an im-
proved information content score. This will often translate
to finding a pattern with less hamming distance from the
resulting alignments in each sequence. Our approach has
shown improvements in the score on all datasets that it was

tested on. One of the primary advantages of our method
is that it can be used with different global and local meth-
ods. The main contribution of our work is to demonstrate
the capability of this hybrid expectation maximization algo-
rithm in the context of the motif finding problem. We can
potentially use any global method and improve its results
efficiently.

From our results, we see that motif refinement stage in the
motif finding problem plays a vital role and can yield accu-
rate results more efficiently in terms of computational costs.
We would like to continue our work by combining other
global methods that are available in the literature with ex-
isting local solvers like EM or GibbsDNA that work in con-
tinuous space. Implementing the Exit-point method as an
intermediate between the global and local solver provides us
with a fundamental advantage of choosing different meth-
ods to explore the data specific properties in more detail.
We will follow the example of [26] and try different combi-
nations of the existing methods to improve the chances of
finding more promising patterns.
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ABSTRACT
The ability to detect or predict the structural class of a
protein based on its primary sequence has been a major ob-
jective for researchers working in bioinformatics. Within the
bioinformatics community, the prevailing belief seems to be
that support vector machines (SVMs) are the most effec-
tive solution for sequence-based structure prediction. The
current state-of-the-art involves SVMs that employ kernel
functions designed to compute the similarity between pro-
teins based on profiles generated by the PSI-BLAST align-
ment algorithm. While effective for problems such as fold
recognition or remote homology detection, these kernels are
essentially a “black-box” solution to the structure predic-
tion problem. They do not yield a representation that is
independent of the SVM. This prevents the user from test-
ing alternative classification algorithms or from using the
features for other applications.

For example, there may be instances where a researcher
is interested in a compact representation of a protein se-
quence that can be used for problems such as range queries
or nearest-neighbor retrieval. We describe such a represen-
tation in this work. Using the frequency scores returned
by PSI-BLAST, we create a wavelet-based summary. This
stand-alone, normalized feature vector drastically reduces
the amount of information that needs to be stored for each
protein. Though our results are preliminary, empirically, we
find that this representation performs well in both experi-
ments dealing with fold recognition and provides accuracy
comparable to the state-of-the-art for remote homology de-
tection. At the same time, we find that it is also effective
for protein indexing and retrieval.

Keywords
Bioinformatics, sequence-based representation, protein clas-
sification

1. INTRODUCTION
The past few years has seen an explosion of sequence data,
both genomic and proteomic. Unlike genes, proteins have a
functional role that is influenced by their structure. Solving
the structure of a protein is not as easy or straightforward
as determining its sequence, however. Rather than wait for

the structure of every protein to be solved, researchers have
looked to predict structure based on an input sequence. A
large number of approaches exist, but more popular methods
include Hidden Markov Models (HMMs) [14], profile-based
alignment methods such as PSI-BLAST [1] and methods
based on support vector machines (SVMs) [6; 12; 23; 10; 27;
17; 16; 15]. Each method has its proponents, but a majority
seems to be leaning toward SVM-based approaches as being
the most effective form of structure prediction.

The more successful SVM-based approaches incorporate a
specialized kernel function into the learning process. Kernel
functions are designed to compute a high-dimensional simi-
larity between objects in the dataset. A hyperplane can then
be constructed in this high-dimensional feature space, parti-
tioning the object space. These kernel functions have shown
to be quite effective, but they can be computationally expen-
sive. While some users might be willing to trade speed for
accuracy, there is another drawback to these kernels in that
they are essentially “black-box” functions. There is no inter-
mediate representation that one can use for other machine
learning or data mining problems. The closest thing to an
independent feature vector is a pair-wise matrix that illus-
trates the relationship between every object in the dataset.
As the size of the dataset increases, any attempts at manip-
ulating this matrix or using it as a representation quickly
become infeasible.

Thus, if one was interested in tasks other than SVM-based
classification, it is imperative to have a stand-alone repre-
sentation. Such feature vectors could be used by alternative
classification algorithms or in applications such as nearest-
neighbor or range-based similarity search. Of course, it
would also be desirable if this representation could also be
used for SVM-based structure prediction while providing re-
sults that are comparable to the state-of-the-art.

In this paper, we present such a representation. Like many
existing approaches to structure prediction, it is derived
from the results of multiple sequence alignments. Using
wavelets, we derive a summary from the alignment profile
that results in a compact, stand-alone feature vector that
can be used in multiple applications. In an empirical study,
we test the performance of our approach on a number of
protein datasets. We conduct experiments in SVM-based
classification and prediction and evaluate the potential use
of our summary in alternative applications such as nearest
neighbor-based similarity search. Though our results are
still preliminary, it appears that our method provides excel-
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lent accuracy on the problem of fold recognition, and com-
parable performance to the state-of-the-art for the problem
of remote homology detection. We also find that it holds
promise for use in protein indexing and similarity-based re-
trieval. In the sections that follow, we describe the construc-
tion of our summary and provide experimental results that
illustrate its effectiveness.

2. BACKGROUND
Proteins are comprised of a varying sequence of 20 different
amino acids. These amino acids combine to form interacting
subunits called secondary structures. The interactions be-
tween secondary structures give a protein its overall shape,
which is often called the protein’s fold. Several structural
databases have arisen to group proteins based on their fold.
One of the most popular is the Structural Classification of
Proteins (SCOP) Database[20].

SCOP arranges proteins into several hierarchical levels. The
first four are Class, Fold, SuperFamily and Family. Proteins
in the same Class share similar secondary structure infor-
mation, while proteins within the same Fold have similar
secondary structures that are arranged in the same topo-
logical configuration. Proteins in the same SuperFamily
show clear structural homology and proteins belonging to
the same Family exhibit a great deal of sequence similarity
and are thought to be evolutionarily related.

The SCOP hierarchy is useful when validating any structural
classification/prediction algorithm. This validation usually
occurs in one of two ways. The first is through the process
of fold recognition. With fold recognition, an algorithm is
tested by trying to classify proteins at a particular level of
the hierarchy, traditionally the Fold or SuperFamily level1.
In these experiments, the training and testing data contain
members of all the possible folds. Thus, such tests can be
viewed as similar to traditional classification. Remote ho-
mology detection, on the other hand, is closer to structure
prediction. In these tests, entire Families (or possibly Su-
perFamilies) are held out of the training data. A learning
model is trained and then tested to see whether it can ac-
curately predict the labels of the test data one level “up”
the hierarchy. In other words, if a Family is held out as test
data, a predictor will be considered correct if can accurately
identify the SuperFamily of the held-out Family (or Fold
for SuperFamily). This is often considered to be the more
challenging of the two validation methods.

PSI-BLAST
PSI-BLAST is one of the more popular methods used to
determine the similarity of a protein against a database of
sequences. This similarity is returned in the form of a pro-
file, or scoring matrix. In PSI-BLAST, a sequence is tested
against a database to identify conserved patterns, or motifs.
For each position in each of these conserved regions, the
algorithm computes a score for each amino acid type. In
highly conserved regions, those amino acids that are highly
conserved receive a high positive score, while the others re-
ceive high negatives. In weakly conserved regions, residues
receive scores near zero. These scores are calculated based
on amino acid frequency information. Evolution-based sub-

1We use the uppercase Fold when referring to the SCOP
classification. The lowercase fold is used to denote a generic
group of structurally-similar proteins.

stitution matrices such as BLOSUM [11] can also be used
when calculating the scores. This process can be iterative,
running a profile against the database to refine the results.
The final output of the algorithm is a profile that includes
a position-specific scoring matrix (PSSM) and the position-
specific amino acid frequency matrix (PSFM), as well as a
sequence of Z-scores or E-values that denote the statistical
significance of the alignment.

SVM Kernel Functions
In an attempt to improve prediction accuracy over tradi-
tional SVM-based approaches, many researchers have looked
at incorporating kernel functions into the learning process.
These kernel functions have specific mathematical proper-
ties, but their main purpose is to calculate a high-dimensional
similarity between pairs of objects based on a particular rep-
resentation of the input data. This similarity is determined
by calculating the inner (dot) product between the objects.
Once the high-dimensional similarities for all objects have
been computed, a hyperplane is constructed to partition the
object space [3]. We will now briefly review a few of the ker-
nel functions that have been created to solve the structure
prediction problem.

The mismatch string kernel represents two input sequences
A and B as a series of subsequences of size k. For a fixed
number of mismatches, the kernel will compute the number
of subsequences of sequence A that exist in list of subse-
quences of sequence B [17]. With the spectrum kernel, for
all k-length subsequences, the kernel computes the frequency
of occurrence, or in binary form, simply the presence of a
subsequence, and uses that information to calculate similar-
ity [16]. Profile kernels, are similar to mismatch kernels, but
use probabilistic alignment scoring matrices to define a posi-
tional mutation neighborhood, which are used to determine
similarity [15]. A second variation of the profile kernel com-
putes similarity based on both the scoring and frequency
matrices [23]. Groups have also looked at combining pro-
file kernels with adaptive codes. Here, SVMs are trained
using profile kernels and the results are used to to train
a perceptron that provides a final prediction [12]. Profile
kernels have also been used with cluster kernels for semi-
supervised learning. Cluster kernels rely on profile kernels
to create a clustering and this information is used to clas-
sify labeled and unlabeled proteins [27]. Finally, the Fisher-
SVM was created to calculate similarity between sequences
based on Fisher scores that were derived from a profile-based
HMM [13].

3. APPROACH
In this section we detail the steps needed to create the
wavelet-based profile summary. We begin with a discus-
sion on the creation of the PSI-BLAST profile. We follow
with a brief overview of the wavelet decomposition and con-
clude with a description of the process used to compute our
summary.

Profile Generation

The first step in creating our representation involves gener-
ating a PSI-BLAST profile for each protein. Using version
2.2.13 of the algorithm, we compute a multi-way alignment
against the non-redundant (nr) protein database. Down-
loaded in March 2006, this database contains almost 3.5
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million sequences. We ran PSI-BLAST for five iterations
with the ε parameter set to 0.001. Since our representa-
tion is derived from the position-specific frequency matrix
(PSFM), we set the program to output both that and the
position-specific scoring matrix (PSSM), in addition to the
standard alignment information. We provide a graphical il-
lustration of the matrices for protein 1HL2A in Figure 1.
Each row corresponds to an amino acid, while each column
represents a position in the query sequence. These images
are false color representations, so lower values have darker
colors, while higher values appear lighter. Once the profile
has been generated, we create a summary of the frequency
information by applying a 1D wavelet decomposition to the
PSFM matrix.

Wavelet-Based Compression

The use of wavelets is natural in applications that require a
high degree of compression without a corresponding loss of
detail, or where the detection of subtle distortions and dis-
continuities is crucial [18]. Wavelet transformations fall into
two separate categories: continuous (cwt) and discrete (dwt).
Here, we deal with the discrete wavelet transform. Given
a one-dimensional signal of length N (typically a power of
two), the dwt consists of at most log N stages. At each stage,
two sets of coefficients are produced, the approximation and
detail. The approximation coefficients are generated by con-
volving the original signal with a low-pass filter, the detail
with a high-pass filter. After passing the signal through the
filter, the results are downsampled by a factor of two. This
step is repeated on the approximation coefficients, producing
another smaller set of approximation and detail coefficients.
There are a number of different wavelet families and each
of these families has a corresponding low-pass and high-pass
filter. In our tests, we focus on the Haar wavelet, which is
the simplest of the wavelet families. In the past, we have
experimented with other families, but found that for our
purposes, there is little difference among their performance.

Profile Normalization

Before we can apply the wavelet decomposition, however,
we must normalize the size of the matrix to ensure that
we are left with the same number of coefficients for each
protein. This will allow us freely compare between the re-
sulting feature vectors. The PSFM and PSSM matrices are
of size nx20, where n refers to the number of amino acids
in the protein sequence and 20 corresponds to one of the
different amino acid types. We fix n to be 128 and normal-
ize each PSFM matrix to 128x20. The normalization oc-
curs either through interpolation or extrapolation, depend-
ing on whether the input protein is shorter or longer than
128 residues, respectively. We choose a value of 128 because
wavelet transformations are most effective on signals whose
length is a power of 2. We prefer to interpolate and smooth
or average the excess points, over extrapolation, where we
would be forced to generate additional data. Most of the
proteins in our datasets are shorter than 256 residues, thus
our choice of 128. The normalization is computed using the
Matlab ‘interp2’ command.

Once the matrix has been normalized we transpose it (20
rows x 128 columns) and apply a 5th level Haar 1D de-
composition to each row. We only use the final level of
approximation coefficients, so a decomposition will produce
1 coefficient for every 32 input values (25), or 4 coefficients

per row/amino acid. This results in a feature vector of size
80, which we use when conducting our experiments. We
provide a flowchart illustrating the transformation process
in Figure 3. An example of the wavelet-based representa-
tions can be seen in Figure 2. The PSSM representation is
given on the left (Figure 2 (a)), while the PSFM version lies
on the right (Figure 2 (b)).

Transformation Details

The wavelet decomposition creates a frequency signature for
each amino acid. Using a 5th level Haar decomposition re-
sults in 4 coefficients. The Haar wavelet filter is an averaging
filter, so each of these coefficients will represent the aver-
age frequency value for 25% of the sequence, multiplied by
a filter-based scaling and normalization factor. One could
vary the decomposition or the size of the normalized profile
to change the number of coefficients per amino acid, which
would change the representation percentage, but a tradeoff
must be made between the total number of coefficients and
the overall accuracy of the representation. For instance, a
4th level decomposition will result in a total of 160 coef-
ficients/protein, while a 6th level yields just 40. We tried
several different parameter settings but found that a 5th
level decomposition gave us the best results.

Since the Haar wavelet filter is orthonormal, each coeffi-
cient represents a non-overlapping segment of the protein
sequence. If one wanted to create a representation that
includes such an overlap, this could be done by manually
calculating the average using a sliding window, or through
other techniques such as n-grams. If n were set to 32, one
would start at position one, and then compute an n-gram for
the first 32 points, slide to the right one position and com-
pute a second n-gram. This process would repeat down the
profile. Such an approach would increase the total number
of coefficients, however. We use wavelets instead of man-
ually computing the summary because of their speed and
relative ease of implementation.

We also tested our approach on the scoring matrix, which
is traditionally used by profile kernels, but found that we
achieved better overall results using the raw frequency val-
ues. We detail this information in our experimental results.
We denote the frequency-based vectors as PSFM and the
score-based vectors as PSSM. We surmise that the PSFM
summary outperforms the PSSM-based measure because the
entries in the scoring matrix represent log-odd ratios, which
scales the data and removes some of the variance that may
help distinguish between the different groups. As an ex-
ample, for one of our datasets, all of the PSSM values fall
between -7 and 13. The PSFM matrices, on the other hand,
contain values between 0 and 100. The wider variance of the
PSFM matrix is preferable to the tighter range of the PSSM
values. This is analogous choosing the covariance matrix
over correlation for EM-based missing value analysis [21].

4. DATASETS
In an attempt to compare with some of the existing ap-
proaches, we run experiments on multiple datasets derived
from the SCOP database. A number of variations have been
reported in the literature, each of which makes the task of
classification more or less challenging. Thus, we note the
dataset parameters when describing each experiment.

First, we examine a dataset originally derived by Ding and
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Figure 1: Graphical illustration of the PSI-BLAST profile for protein 1HL2A. The image on the left (a) represents the PSSM
matrix, while the one on the right (b) corresponds to the PSFM values. The figures provide a false color representation of
the matrices, with lower values having a darker color while higher values appear lighter.
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Figure 2: Graphical illustration of the wavelet-based profile summaries for protein 1HL2A. The image on the left (a) represents
the PSSM representation, while the one on the right (b) corresponds to the PSFM-based version. The figures provide a false
color representation of the matrices, with lower values having a darker color while higher values appear lighter.

Figure 3: Flowchart of the proposed transformation.
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Dubchak [8], but later studied in a number of publications [26;
7; 25; 19; 12; 24]. Here, a training set was taken from the 27
most populated SCOP folds of the PDB Select set, in which
no two proteins share more than 35% sequence identity for
aligned subsequences longer than 80 residues. This train-
ing set contained 311 proteins. An independent test set was
derived from the PDB 40D set, which consists of all SCOP
sequences having less than 40% sequence identity with each
other. Using the same 27 SCOP folds, 385 proteins were
selected, and any PDB 40D protein having more than 35%
sequence identity with the proteins in the training set was
excluded. When combined together, the training and test
sets yield a total of 696 proteins. Since the publication of
the work by Ding and Dubchak [8], the protein identifiers
used in the SCOP database have changed. We were looking
to match the original identifiers to those currently used by
SCOP but where unable to do so for 46 proteins. Thus, our
version of this dataset, which we call the Ding & Dubchak
set, contains 653 proteins.

We next examine a dataset was used by Ie et al. in their
multi-class SVM study [12]. In that work, they took pro-
teins from version 1.65 of the SCOP database and used AS-
TRAL [4] to filter the proteins so no two members shared
more than 95% sequence identity. They then removed all
SCOP Folds with less than three SuperFamilies. This re-
sulted in a dataset containing 24 Folds and 46 SuperFami-
lies. In addition, they further held out 46 SCOP Families to
use for remote homology detection. These Families comprise
less than 40% of the total sequences in their corresponding
SuperFamilies, leaving 60% of that SuperFamily available
for training. The held-out Families were not used in any
part of the training process. In the end, they were left with
1772 sequences in the training set and 338 in the held-out
test set. Our attempts to replicate this dataset resulted
in 1611 and 310 sequences, respectively. We refer to this
dataset as the 24Fold set.

Starting with the 24Fold dataset, we also examined a subset
where the proteins contained less than 40% sequence iden-
tity. Our efforts here were an attempt to replicate those
experiments dealing with more remotely-related proteins [6;
10]. After removing the proteins that shared more than 40%
identity, we are left with training and testing splits of 667
and 185 proteins, respectively. We refer to both of these
datasets as the 24Fold sets but provide the percentage of
sequence identity when discussing our results.

The final dataset has been examined in a number of database
indexing experiments [2; 5], most recently by Gao and Zaki [9].
Again taken from the SCOP database (though a different
version than the one used in constructing the 24Fold sets),
this set contains a total of 1810 proteins taken from 181 dif-
ferent SuperFamilies containing at least 10 proteins, though
only 10 proteins were selected per SuperFamily. Of the 1810
proteins, we could not match 22 proteins, leaving us with a
total of 1798. We label this variant as 181SF.

5. EXPERIMENTS
All tests were conducted on a 2.4 GHz Pentium 4 PC with
1.5 GB RAM running Ubuntu Linux on a 2.6.12 kernel. For
our classification experiments, we use the SVM provided by
WEKA, version 3.4 [28]. WEKA uses Platt’s sequential min-
imal optimization (SMO) algorithm for SVM training [22].
We use a linear kernel with the default complexity param-

Representation Accuracy

CSHPVZ 57.2
PSSM 59.7
PSFM 64.0

Table 1: SVM accuracy of a standard sequence-based repre-
sentation versus the PSSM and PSFM-based summaries on
the Ding & Dubchak dataset

eter (1.0) and train each classifier in a one-vs-rest fashion.
We report classification performance in terms of the aver-
age accuracy, with accuracy values reported as the number
of true positives divided by the number of true positives plus
the number of true negatives (TP/(TP+TN)), returned as
a percentage. plus the number of true negatives, returned
as a percentage.

PSFM Summaries vs. Sequence-based Representation

Our first experiment is an attempt to compare our approach
against a stand-alone representation that is derived from a
number of sequence-based properties. These features were
first described in Ding and Dubchak [8], though they were
used in a number of subsequent experiments by other re-
search groups [8; 26; 7; 25]. The feature vectors characterize
the following properties for each protein (the symbol for each
descriptor given in parentheses): amino acid composition
(c), hydrophobicity (h), polarity (p), predicted secondary
structure (s), van der Waals volume (v), and polarizabil-
ity (z). The feature vector for the amino acid composition
consists of 20 dimensions. All of the rest have 21. When
combined, each protein is represented by a total of 125 fea-
tures.

Taking the Ding & Dubchak dataset, we train an SVM with
a linear kernel using 10-fold cross-validation. We compare
the sequence-based properties used by Ding and Dubchak
versus our PSFM and PSSM-based summaries. We report
these accuracy values in Table 1. As we can see, the PSFM-
based features outperform the combined feature vector used
by Ding and Dubchak. It also outperforms or is comparable
to results reported in a number of previous publications [26;
7; 25; 24]. In addition, the PSFM-based summaries result in
an accuracy that is almost 5% higher than the PSSM-based
values.

PSFM Summaries vs. Multiple Profile-based Properties

Our second set of experiments are an attempt to compare
against results reported by Cheng and Baldi and their ap-
proach, which they call FOLDpro [6]. In that work, the
similarity between two proteins was calculated using 54 dif-
ferent properties including alignments from CLUSTALW,
PSI-BLAST, COMPASS, a number of sequence-based prop-
erties, structural information and more (the similarity be-
tween PSI-BLAST profiles is considered to be just one prop-
erty in their feature vector). Taking a dataset of 976 proteins
sharing less than 40% sequence identity, an SVM was trained
on these similarity measures using 10-fold cross-validation.
Each fold required 3 days of training time. Using the top
1 and top 5 results to assign a final label, Cheng and Baldi
looked at the accuracy of their method at the Fold, Super-
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Method Fold SuperFamily Family

PSFM-1NN 74.3 70.7 69.0
FOLDpro 26.5 55.5 85.0

Table 2: Results for a 1-NN classifier against those reported
by FOLDpro

Sequence Fold Remote Homology
Identity Features Recognition Detection

< 40% PSSM 77.5 58.9
< 40% PSFM 74.7 70.2

< 95% PSSM 90.5 63.8
< 95% PSFM 88.2 72.3

Table 3: Accuracy of Fold Recognition and Remote Homol-
ogy Detection experiments for the PSSM and PSFM sum-
maries on the 24Fold datasets.

Family and Family level. We compare their SVM results
against a simple 1-NN classifier, trained using 10-fold cross-
validation, which requires just minutes to construct.

Though the datasets are not exactly the same, and we have
a lower accuracy at the Family level, we do have a higher
accuracy at other levels in the SCOP hierarchy. We are 50%
higher at the Fold level, and 15% higher at the SuperFamily
level. In addition, these results are achieved with a simple
1-NN classifier that computes the similarity between our
PSFM-based feature vectors. The similarity between PSI-
BLAST profiles is just one of the the 54 properties that
Cheng and Baldi use in their classifier, however.

Fold Recognition & Remote Homology Detection

Next, we run a series of tests designed to replicate those used
to evaluate the performance of the spectrum, mismatch, and
profile kernels [12; 27; 17; 16; 15]. Here we perform two
different sets of experiments. The first, which we view as
Fold Recognition, involves training an SVM using 10-fold
cross validation. Though we are classifying proteins at the
Fold level, members of each underlying Family exist in both
the training and testing splits. The second set of tests is
designed to detect homologous proteins that have low se-
quence similarity. In these experiments, which we refer to
as Remote Homology Detection, the test split consists of 46
Families that are completely held out of the training phase,
providing a totally independent test set. These experiments
follow those reported elsewhere [12]. We report results for
the datasets containing less than 40% sequence identity as
well as the set with less than 95% identity. There is no con-
sensus within the bioinformatics community as to which is
preferable, so we report results on both.

Table 3 lists the results for our Fold Recognition and Re-
mote Homology Detection experiments. Unlike the Ding &
Dubchak results, in the task of Fold Recognition, the PSSM
summary is comparable to the PSFM version. The results
also show the effect that sequence identity has on the re-
sults. As one might expect, having a higher sequence iden-
tity results in a more accurate classifier. The last column
of Table 3 shows the results of our remote homology exper-

Sequence Fold Remote Homology
Identity Kernel Recognition Detection

< 40% RBF 31.0 18.4
< 40% Linear 74.7 70.2

< 95% RBF 57.0 53.0
< 95% Linear 88.2 72.3

Table 4: Accuracy of Fold Recognition and Remote Homol-
ogy Detection experiments for the PSFM representation on
the 24Fold dataset using an SVM trained with a RBF and
linear kernel.

iments. Though we use labels from the SuperFamily level,
the classifier has not been trained on the Families in our
test set. Therefore, these experiments will be a true test of
whether our approach captures the hierarchical relationship
that exists between Families belonging to the same Super-
Family. This poses a much greater challenge, and as one
might expect, we see accuracy values that are a bit lower
than the fold recognition experiments.

Unlike the fold recognition experiments, however, the PSFM
representation provides a higher accuracy than PSSM. The
PSSM results drop by 20-30%, compared to 4-15% with the
PSFM representation. While there is a decrease with both
identity datasets, the decrease on the dataset with less than
95% identity is much larger than the dataset with less than
40% identity. Thus, one could argue that the PSFM repre-
sentation is truly effective at detecting remote homologies
since the dataset with less than 40% identity represents a
much more challenging classification problem. Regardless,
we find that our representation provides comparable results
to the performance of a one-vs-all SVM trained with a pro-
file kernel, which returned an accuracy of around 78% on
this dataset [12]. While the use of certain optimizations
or the training of a second-level classifier can boost perfor-
mance, for a single SVM, we feel our approach is more than
adequate.

Effect of Kernel on Accuracy

Our final SVM-based experiments were designed to examine
the effect of kernel type on accuracy. Here we focus on two
of the more popular stock SVM kernels: linear and radial
basis function (RBF). For approaches that do not imple-
ment a custom kernel, it has been reported that RBF ker-
nels are superior to linear [6]. We repeat the fold recognition
and remote homology experiments described above using the
PSFM representation. As we see in Table 4, the linear ker-
nel vastly outperforms the RBF kernel for our PSFM-based
summary. RBF kernels compute similarity based on the
difference between objects, while linear kernels rely on the
inner product. We surmise that since the difference between
objects is likely to be small, it is affecting the classification
process.

KNN-based Similarity Search

Finally, we compare against a leading structural indexing al-
gorithm, PSIST [9], to see how our PSFM-based summary
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Dataset Class Fold SuperFamily Family

PSIST 98.3 −− 93.9 −−
PSFM 98.3 98.3 97.8 96.3

Table 5: 3-NN classification accuracy of PSFM-based sum-
mary versus results returned by PSIST.

functions as a database index. If our representation is to be
used in other applications, it should be comparable to exist-
ing work. In PSIST, a feature vector is generated for each
protein based on the distances and angles between residues.
These vectors are placed into a suffix-tree, which serves as
the indexing structure to retrieve similar proteins, given a
query. We obtained the source code for PSIST2 and tested
a number of different parameter settings, but found that the
default parameters provided the best results.

We examine the predictive accuracy of our PSFM represen-
tation by using a k-d tree as a nearest-neighbor classifier.
Using the 181SF dataset, we select 1 protein from each of
the 181 SuperFamilies to serve as a query protein. Given a
query, we retrieve its three nearest-neighbors from the the
target database. We then compare the SCOP labels of the
query and the retrieved proteins. If the labels of at least
two of the neighbors match, we say that the query has been
classified correctly (the query proteins are not included in
the target database). Similar classification experiments are
detailed in the paper on PSIST [9]. In that work, proteins
were only compared at the Class and SuperFamily level. We
also examine the accuracy of our method at the Fold and
Family levels. As one progresses down the SCOP hierarchy,
the protein structures become increasingly similar and the
distinctions between them more fine-grained. A truly useful
representation should not lose accuracy during this descent,
even though the classification problem itself becomes more
difficult.

As one can see in Table 5 our method provides excellent re-
sults, providing comparable or higher accuracy than PSIST
at the provided Class and SuperFamily levels. In addition,
the accuracy of our PSFM representation drops only slightly
as one progresses down the hierarchy. This implies that the
proteins we are retrieving are truly correct and that our rep-
resentation has potential for use elsewhere. While PSIST is
limited to solved structures, our approach can be applied to
all sequenced proteins.

6. CONCLUSIONS AND ONGOING WORK
In this paper, we present an approach that can be employed
to generate a stand-alone representation of a protein se-
quence using the results of the PSI-BLAST alignment al-
gorithm. We construct a summary of the PSI-BLAST fre-
quency matrix using wavelets and use this as our represen-
tation. We explore the possibility of using a score-based
summary, but find its performance to be inferior to that
of the frequency-based summary. We feel this difference is
the result of the log-based scaling that is applied to the
scoring matrix. We evaluate our summary on a number of
protein datasets by conducting SVM-based prediction and

2We would like to thank F. Gao and M. Zaki for providing
the source code and for their assistance in interpreting the
results.

classification experiments. We find that our summary pro-
vides comparable accuracy to state-of-the-art kernel-based
SVMs with the potential for use in other areas. This added
capability is demonstrated by the performance of our rep-
resentation against a leading structural indexing technique
using nearest neighbor-based similarity search. Though we
conduct an empirical study, and provide preliminary results,
we feel that such a representation will be useful for protein
researchers. As part of ongoing work, we plan a more ro-
bust and rigorous evaluation as well as an exploration of
other potential applications for its use.
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