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REMARKS 

Bioinformatics is the science of managing, 

mining, and interpreting information from 

biological processes. Various genome projects 

have contributed to an exponential growth in 

DNA and protein sequence databases. Advances 

in high-throughput technology such as 

microarrays and mass spectrometry have further 

created the fields of functional genomics and 

proteomics, in which one can monitor 

quantitatively the presence of multiple genes, 

proteins, metabolites, and compounds in a given 

biological state. The ongoing influx of these data, 

the presence of biological answers to data 

observed despite noises, and the gap between data 

collection and knowledge curation have 

collectively created new and exciting 

opportunities for data mining researchers in the 

post-genome era. 

While tremendous progress has been made over 

the years, many of the fundamental problems in 

bioinformatics, such as protein structure 

prediction, gene-environment interaction, and 

molecular pathway mapping, are still open. Data 

mining will play essential roles in understanding 

these fundamental problems and developing 

novel therapeutic/diagnostic solutions in post-

genome medicine.  

Data mining approaches seem ideally suited for 

bioinformatics, since the field is awash with data 

from high-throughput experimental instruments. 

The extensive databases of biological information 

available create both challenges and opportunities 

for developing novel knowledge discovery and 

data mining methods. To provide avenues to data 

mining researchers active in bioinformatics, we 

have been organizing the Workshops on Data 

Mining in Bioinformatics (BIOKDD), held 

annually in conjunction with the ACM SIGKDD 

Conference in 2001-2006. This is the 7th year for 

the workshop. 

The goal of this year’s workshop call for papers 

(CFP) was to encourage KDD researchers to take 

on the numerous research challenges that 

bioinformatics offers. In our CFP, we encouraged 

paper submissions that present novel data mining 

techniques in the following sample topics: 

 Phylogenetics and comparative Genomics 

 DNA microarray data analysis 

 RNAi and microRNA Analysis 

 Protein/RNA structure prediction 

 Sequence and structural motif finding 

 Modeling of biological networks and 

pathways 

 Statistical learning methods in 

bioinformatics 



 Computational proteomics 

 Computational biomarker discoveries 

 Computational drug discoveries 

 Biomedical text mining 

 Biological data management techniques 

 Semantic webs and ontology-driven 

biological data integration methods 

 

PROGRAM 

The workshop is a full day event in conjunction 

with the 13th ACM SIGKDD International 

Conference on Knowledge Discovery and Data 

Mining, San Jose, CA, August 12-15, 2007. The 

workshop was accepted in the conference 

program after the SIGKDD conference 

organization committee reviewed the competitive 

proposal submitted by the workshop co-chairs. 

To promote this year’s program, we established 

an Internet web site at 

http://bio.informatics.iupui.edu/biokdd07. 

This year, we accepted 10 papers out of 24 

submissions into the workshop program and 

proceedings due to the exceptionally high quality 

of the submissions. Among these papers, 7 of the 

papers are accepted as full presentations (30 

minutes each) and 3 of the papers are accepted as 

short presentations (20 minutes each). Each paper 

was peer reviewed by three members of the 

program committee and papers with declared 

conflict of interest were reviewed blindly to 

ensure impartiality. All papers, whether accepted 

or rejected, were given detailed review forms as a 

feedback.  

In closing, we want to thank Atul Butte, M.D., 

Ph.D. who agreed to give the keynote talk for this 

year’s program. Dr. Butte is an Assistant 

Professor in Medicine (Medical Informatics) and 

Pediatrics at the Stanford University School of 

Medicine and the Lucile Packard Children's 

Hospital. His talk is entitled “Exploring Genomic 

Medicine Using Integrative Biology”. 
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ABSTRACT
In most microarray data sets, there are often multiple sam-
ple classes, which are categorized into the normal or dis-
eased type. The traditional feature selection methods con-
sider multiple classes equally without paying attention to the
up/down regulation across the normal and diseased classes,
while the specific gene selection methods particularly con-
sider the differential expressions across the normal and dis-
eased, but ignore the existence of multiple classes. More
importantly, most existing filter gene selection algorithms
rank genes by individually considering each gene’s expres-
sion values across classes, not by fully exploiting the overall
inherent structure in microarray data. In this paper, we pro-
pose to employ matrix reordering techniques by taking into
account the global between-class data distribution and local
within-class data distribution in Microarray data for gene
selection. In particular, we generalized a well-known popu-
lation genetic algorithm, i.e., replicator dynamics, to reorder
microarray data matrix with multiple classes. Our results
show that our matrix reordering algorithm can effectively
improve the accuracy of classifying the samples.

1. INTRODUCTION
The high-throughput genomic technologies have been poised

to revolutionize early disease diagnosis, such as cancer, and
biomarker discovery. DNA microarrays, among the most
rapidly growing tools for genome analysis, are introducing
a paradigmatic change in biology by shifting experimental
approaches from single gene studies to genome-level anal-
yses. Analysis of these high-throughput data poses both
opportunities and challenges to the biologists, statisticians,
and computer scientists. Unfortunately, one of important
features in microarray data is the very high dimensionality
with a small number of samples. There are tens of tens of
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thousands of features or genes and at most several hundreds
of samples in the data set. This is so called “curse of di-
mensionality”, which results in that most standard machine
learning techniques, including supervised classification algo-
rithms, are not directly and effectively applied. Instead, fea-
ture selection methods are generally used to first filter those
features that contain a large degree of noisy, redundant and
irrelevant information, and thus enable the subsequent use of
disease classification algorithms. Consequently, a biomarker
can be identified for disease screening and diagnosis, which is
a subset of genes or proteins whose abundance is correlated
with the state of a particular disease or condition.

Recent feature selection methods fall into two categories:
filter methods and wrapper methods [18]. Filter methods
select the features by evaluating the goodness of the fea-
tures based on the intrinsic characteristics, which determines
their relevance or discriminant powers with regards to the
class labels [8, 19]. Most existing filter methods follow the
methodologies of statistical tests (e.g. t-test, F-test) and
information theory (e.g. mutual information or information
gain) to rank the genes. In wrapper methods, gene selection
is closely “embedded” in the classifier. The goodness and
usefulness of a gene subset is evaluated by the estimated
accuracy of the classifier, which was trained only with the
subset of genes. Wrapper methods are computationally ex-
pensive for data sets with large number of features. Because
of its computational efficiency, filter methods are adopted by
most of works in microarray data analysis, but with the cost
of having lower prediction accuracy than wrapper methods.
Because most existing filter gene selection algorithms rank
genes by individually considering each gene’s expression val-
ues across classes, the overall inherent structure in microar-
ray data matrix and relationships among genes and samples
are still not clearly exploited.

Microarray data are often represented as a matrix Wm×n,
where each row is a gene and each column corresponds to
a sample or condition. Therefore, from the viewpoints of
matrix computation, some particular trends, overall inher-
ent structure or distinct patterns can be discovered through
matrix reordering: both rows and columns. This is the sec-
ond “blessing of dimensionality” stated by [9]. Therefore,
in this study, we focused on designing a matrix reordering
method that is able to select genes from microarray data
for biomarker discovery. Unlike existing matrix reordering
techniques which are unsupervised learning, our matrix re-
ordering algorithm considers class information in microarray

BIOKDD 2007: 7th Workshop on Data Mining in Bioinformatics 1



(a) random symmetric
matrix

(b) diagonal band (c) left-top corner
“mountain”

Figure 1: Illustration of matrix reordering tech-
niques for revealing particular patterns in the ma-
trix. A blue dot indicates the value of 1 in a random
symmetric matrix W = (wij)n×n where wij ∈ {0, 1}.
The patterns discovered in each image are high-
lighted by red lines or circles. (a). original random
sparse symmetric matrix W ; (b). diagonal band dis-
covered by reordering W in (a) using Cuthill-McKee
algorithm; (c). left-top corner “mountain” by re-
ordering W in (a) using replicator dynamics.

data for the purpose of biomarker discovery. It simultane-
ously takes into account the global between-class data dis-
tribution (differentially expression) and local with-class data
distribution (collection of low or high values). More impor-
tantly, microarray data sets may have more than two classes.
Therefore, in the design of our matrix-based gene selection
method, data with multiple classes is also considered.

Matrix reordering techniques have been developed more
than thirty years ago in matrix computation field for per-
mutating rows and columns of a matrix so that some par-
ticular structures can be revealed in the reordered matrix.
They were often applied to sparse matrices, such as adja-
cency matrices of sparse graphs [7, 1, 10] and term-document
matrix [4]. For example, [7] proposed a matrix reordering
algorithm for a particular pattern “diagonal band”, whose
purpose is to collect high values (or non-zeros) to the diag-
onal band area of the reordered matrix. Fig. 1 shows how
matrix reordering techniques can reveal underlying struc-
tures in a matrix. First, a random sparse symmetric matrix
is generated in Fig. 1(a). When Cuthill-McKee algorithm
is applied to this matrix, its diagonal band pattern is im-
mediately discovered in the reordered matrix as shown in
Fig. 1(b).

However, the pattern of diagonal band is not useful for
biomarker discovery, because biomarker discovery is to iden-
tify a subset of genes which can significantly differentiate
samples among different classes: genes with high values in
one class and low values in other classes. Therefore, an es-
sential step in the biomarker patterns is the collection of
high or low values in single classes, e.g., differentially ex-
pressed genes. Hence, our method is focused on reordering
microarray matrix for grouping high values together (de-
noted as “mountain” in short) and low values together (de-
noted as“valley” in short). In this way, the data distribution
among classes can be revealed in the reordered matrix and
thus it may be useful to biomarker discovery. Nonetheless,
matrix reordering techniques can effectively and efficiently
arrive at this target. One of the established algorithms is
“replicator dynamics”, which is able to reorder the symmet-
ric matrix W so that high values “mountain” are collected
to the left-top corner of the reordered matrix. We apply it
to the above example matrix in Fig. 1(a) and the “moun-
tain” can be clearly seen in the reordered matrix as shown

in Fig. 1(c). From Fig. 1, we can see that matrix reorder-
ing techniques can reveal particular patterns, e.g., diagonal
band, collection of high or low values, in the reordered ma-
trix. However, few matrix reordering methods are able to
analyze microarray data, which are unsymmetric and with
multiple classes. More importantly, none of those methods
were designed for gene selection. Therefore, in this study,
a novel matrix reordering algorithm is designed for the pur-
pose of biomarker discovery.

We started from a basic problem of revealing distinct
“mountain” in unsymmetric single-class matrix. This is a
building block problem for simultaneously exploring both
“mountains” and “valleys” in unsymmetric multiple-classes
matrix. To approach this basic problem, we developed a
“Generalized Replicator Dynamics”(shortly denoted as GRD),
which is based on a well-known population model in popu-
lation genetics. As replicator dynamics is only applicable
to symmetric matrices, instead, GRD we developed is appli-
cable to general matrices. GRD can be proved to converge
quickly and guarantee the optimization of the basic problem.
By applying GRD to the data in a single class, the data ma-
trix can be reordered by the solution of the basic problem so
that the most distinct “mountain” (high values) or “valley”
(low values) can be collected to the left-top corner of the
reordered matrix. In this way, the value distribution of the
data matrix can be clearly seen by drawing the reordered
matrix. To discover “mountains” and “valleys” in multiple-
class data matrix at the same time, we further extended
GRD to be applicable from single-class data to multiple-class
data. We called this Extended GRD as “EGRD” As a ma-
trix reordering method, EGRD simultaneously rearranges
the features and samples in the matrix so that “mountains”
and“valleys” appear in the left-top corners within each class
for the purpose of gene selection. In the top of reordered
matrix, biologists may clearly find those genes or proteins,
which show more obvious differences between diseased and
healthy sample classes, because they are located in the top of
those “mountains” or “valleys” in diseased or healthy sample
classes. At the same time, mountains and valleys can pro-
vide analysts more information of how samples and features
jointly contribute to the state of the particular disease, that
is useful to understand biomarkers discovered.

The rest of the paper is organized as follows. We first
presented replicator dynamics and showed its ability of sym-
metric matrix reordering for collecting the distinct mountain
in the left-top corner of the reordered matrix in Section 2.
In Section 3, GRD was developed for the general single-
class matrix reordering. Based on GRD, in Section 4, then
we moved to the design of EGRD for the general multiple-
class matrix reordering. Finally, in Section 5, we conducted
experiments on microarray data for their biomarker discov-
ery. The results were evaluated and compared with other
popular feature selection methods through cross validation
methodology. In Section 5.2, conclusions and future works
are presented.

2. REPLICATOR DYNAMICS FOR SYMMET-
RIC MATRIX REORDERING

Replicator Dynamics (RD) is one of the population dy-
namical methods which is also a kind of discrete dynamical
system. It was first introduced and studied in evolutionary
game theory to model the evolution of animal behavior [13].
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Figure 2: An example superplane ∆3 (grey triangle)
in R3.

Motivated by the population evolution, the idea of replica-
tor dynamics has been independently studied in many fields,
such as population genetics [6], mathematical ecology [3],
computer vision [16] and so on. Next we will first introduce
the problem that RD can solve and then review RD in detail.

Given a non-negative symmetric matrix W = (wij)n×n,
replicator dynamics assigns the i-th row or column a ranking
value xi > 0 for measuring its contribution to the collection
of high values. These ranking values form a ranking vec-
tor x = (x1, x2, . . . , xn)T . Then replicator dynamics will
maximize the following quadratic function,

LW (x) =

n∑
i=1

n∑
j=1

wijxixj = xT Wx (1)

It is obvious that, after maximization process of LW and
obtaining the solution x∗, those high values of wij in “moun-
tain” most probably corresponds high values of x∗i and x∗j
so that their multiplication wijx

∗
i x∗j is high enough to maxi-

mize LW (x). Therefore, the decreasing order of elements in
x∗ is the reordering of W for collecting high values to the
left-top corner. In practice, replicator dynamics restricts the
ranking vector x as x ∈ ∆n, where ∆n is a superplane in
n-dimensional Euclidean space as shown in Fig.2,

∆n =

{
x ∈ Rn

∣∣∣
n∑

i=1

xi = 1, and xi > 0 (i = 1, 2, . . . , n)

}

(2)
Because replicator dynamics is a natural selection model

in population genetics [12], in the next, for clearly expressing
the ideas of generalizing replicator dynamics to unsymmetric
matrix in single or multiple classes in the next two sections,
we need to first introduce the mechanics of replicator dy-
namics for natural selection phenomenon in nature.

Consider a single chromosomal locus with n alleles A1, . . . , An.

Let x
(t)
1 , . . . , x

(t)
n denote the gene frequencies at the mating

stage in the parental generation (the t-th generation). The

assumption of random mating leads to x
(t)
i x

(t)
j for the proba-

bility that a zygote carries the gene pair (Ai, Aj). Let wij be
the probability that an (Ai, Aj)-individual survives to adult
age. Since the gene paris (Ai, Aj) and (Aj , Ai) belong to the
same genotype, the selective value wij > 0 and wij = wji.
The selection matrix W = (wij)n×n is therefore symmetric.

If N is the number of zygotes in the new generation, the

(t + 1)-th generation, then x
(t)
i x

(t)
j N of them carry the gene

A2

A3

A4

A1

A5

An

...
...

w ij

A1 B1

B2A2

BnAm

... ...wij

(a) replicator dynamics (b) generalized replicator dynamics

Figure 3: Alleles Ai or Bj as vertices and their mat-
ing survival probabilities wij as edge weights in repli-
cator dynamics and generalized replicator dynamics.

pair (Ai, Aj) of which wijx
(t)
i x

(t)
j N survive to adulthood.

Therefore, the total number of individuals reaching the mat-

ing stage is
∑n

r,s=1 wrsx
(t)
r x

(t)
s N . Let fij denote the fre-

quency of the gene pair (Ai, Aj) in the adult stage of the
(t + 1)-th generation, we can obtain,

fij =
wijx

(t)
i x

(t)
j N

∑n
r,s=1 wrsx

(t)
r x

(t)
s N

(3)

Since x
(t+1)
i is the frequency of the allele Ai in the adult

stage of the (t+1)-th generation, we have x
(t+1)
i =

∑n
j=1 fij .

This leads to the relation

x
(t+1)
i = x

(t)
i

∑n
j=1 wijx

(t)
j∑n

r,s=1 wrsx
(t)
r x

(t)
s

i = 1, . . . , n (4)

Eq.(4) is the selection model. It can be rewritten in the
matrix form as follows,

x
(t+1)
i = x

(t)
i

(Wx(t))i

x(t)T Wx(t)
i = 1, 2, . . . , n (5)

where (Wx(t))i denotes the i-th component of the vector

Wx(t), and the state of the gene pool of the t-th genera-

tion is given by the vector x(t) = (x
(t)
1 , . . . , x

(t)
n )T of gene

frequencies. x(t) has non-negative components summing up
to one, and belongs to the simplex ∆n. To succinctly state
n formulas in Eq.(5), we use the dot product function (i.e.,
given two vectors x and y, x. ∗ y = (x1y1, . . . , xnyn)T is a
vector of dot product of x and y) and normalization func-
tion (i.e., t1(x) = ( x1

|x| , . . . ,
xn
|x| ), where |x| =

∑n
i=1 xi) to

rewrite it as a formula,

x(t+1) = norm1

(
x(t). ∗ (Wx(t))

)
(6)

Eq.(6) describes the action of selection from one genera-

tion to the next, and therefore the map sending x(t) to x(t+1)

defines a discrete dynamical system on the space ∆n, called
Replicator Dynamics.

Definition 1 (Replicator Dynamics). Let Wn×n be

a non-negative symmetric matrix. Given the vector x(t) =

(x
(t)
1 , . . . , x

(t)
n )T ∈ Rn

+ being the status of the system in the
t-th iteration, we define the dynamical system as Eq.(6).

Since the selection model from evolutionary biology de-
fines a discrete dynamical system replicator dynamics, we
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are interested in its stationary states and the optimization
ability. Before that, we first introduce the average fitness of
the population.

Definition 2. (Average Fitness of Population in

Selection Model). Given x
(t)
i x

(t)
j the frequency of the zy-

gote of (Ai, Aj) and the selective value wij the probability

that it survives to adult age, we define
∑n

i,j=1 wijx
(t)
i x

(t)
j is

the average fitness (or average selective value) of the popu-
lation in the (t)-th generation. The average fitness can be

written in the matrix form as LW (x(t)) = x(t)T Wx(t) and
therefore the same as the Lagrangian of the graph G(A, W ),
where A is the set of alleles representing the vertices.

The fundamental theorem of natural selection tells us that
under selection model, the average fitness increases from
generation to generation. Refer to [13, 12] for detailed proof
of this theorem.

Theorem 1. (Fundamental Theorem of Natural Se-
lection by Replicator Dynamics). For the replicator

dynamics given by Eq.(5), the average fitness LW (x(t)) in-
creases with the generation t increasing in the sense that

LW (x(t+1)) > LW (x(t)) (7)

with equality if and only if x(t) is an equilibrium point x∗.

3. GENERALIZED REPLICATOR DYNAM-
ICS FOR UNSYMMETRIC MATRIX RE-
ORDERING IN SINGLE CLASS

Given a non-negative unsymmetric matrix W = (wij)m×n

without class information (i.e., only one single class), similar
to the problem formulation in symmetric matrix described
in the above section, the problem of collecting high values
to the left-top corner of the reordered W can be formulated
as follows.

We assign the vector x = (x1, x2, . . . , xm)T to rank rows
of W and the vector x = (y1, y2, . . . , yn)T to rank columns
of W . Then we generalize the optimization function LW (x)
in Eq.(1) from symmetric matrix to unsymmetric matrix in
the following,

LW (x,y) =

m∑
i=1

n∑
j=1

wijxiyj = xT Wy (8)

x and y are subject to xS ∈ ∆m and yS ∈ ∆n respectively.
Therefore, to maximize the function LW (x,y), in the next,

we generalize replicator dynamics for maintaining the opti-
mization ability of replicator dynamics in unsymmetric ma-
trices. The mechanics in replicator dynamics is automati-
cally generalized as well, including natural selection model
and fundamental theorem.

The selection model above is based on the selection matrix
Wn×n that describes the survival probability of the zygotes
of any two alleles (Ai, Aj). Therefore, W is symmetric and
the adjacency matrix of a weighted graph whose vertex set
is alleles and edge weight is wij in W . This weighted graph
is shown in Fig.3(a). In this section, we generalize the repli-
cator dynamics to a more general selection matrix Wm×n

that denotes the probability of the zygotes of any two alleles
(Ai, Bj) from allele types A and B. Here, we suppose that

there are two types (or sets) of alleles A = {A1, . . . , Am}
and B = {B1, . . . , Bn}. There are restrictions of mating in
these two types of alleles: the mating can only happen be-
tween different types of alleles. For example, the allele Ai

can mate with any B-type allele Bj , but always fail with any
other A-type allele. Therefore, the selection matrix Wm×n

and two sets of alleles A and B forms a bipartite graph as
shown in Fig.3(b).

Let x
(t)
1 , . . . , x

(t)
m denote the gene frequencies of A-type al-

leles A1, . . . , Am, and y
(t)
1 , . . . , y

(t)
n the gene frequencies of B-

type alleles B1, . . . , Bn, at the mating stage in the parental
generation (the t-th generation). The assumption of random

mating leads to x
(t)
i y

(t)
j for the probability that a zygote car-

ries the gene pair (Ai, Bj).
If N is the number of zygotes in the new generation, the

(t + 1)-th generation, then x
(t)
i y

(t)
j N of them carry the gene

pair (Ai, Bj) of which wijx
(t)
i y

(t)
j N survive to adulthood.

Therefore, the total number of individuals reaching the mat-

ing stage is
∑m

r=1

∑n
s=1 wrsx

(t)
r y

(t)
s N . Let fij denote the

frequency of the gene pair (Ai, Bj) in the adult stage of the
(t + 1)-th generation, we can obtain,

fij =
wijx

(t)
i y

(t)
j N

∑m
r=1

∑n
s=1 wrsx

(t)
r y

(t)
s N

(9)

Since x
(t+1)
i is the frequency of the allele Ai in the adult

stage of the (t+1)-th generation, we have x
(t+1)
i =

∑m
j=1 fij .

This leads to the relation

x
(t+1)
i = x

(t)
i

∑n
j=1 wijy

(t)
j∑m

r=1

∑n
s=1 wrsx

(t)
r y

(t)
s

i = 1, . . . , m

It can be rewritten in the matrix form as follows,

x
(t+1)
i = x

(t)
i

(Wy(t))i

x(t)T Wy(t)
i = 1, 2, . . . , m (10)

The m formulas in Eq.(10) can be rewritten in a formula
as,

x(t+1) = norm1

(
x(t). ∗ (Wy(t))

)
(11)

For B-type alleles, since y
(t+1)
j is the frequency of the al-

lele Bj in the adult stage of the (t + 1)-th generation, we

have y
(t+1)
j =

∑m
i=1 f ′ij , where f ′ij is computed according to

Eq.(9) by substituting x
(t)
i with x

(t+1)
i . This leads to the

relation

y
(t+1)
j = y

(t)
j

∑m
i=1 wijx

(t+1)
i∑m

r=1

∑n
s=1 wrsx

(t+1)
r y

(t)
s

j = 1, . . . , n

Its matrix form is,

y
(t+1)
j = y

(t)
j

(W T x(t+1))j

y(t)T W T x(t+1)
j = 1, 2, . . . , n (12)

The n formulas in Eq.(12) can be rewritten in a formula
as,

y(t+1) = norm1

(
y(t). ∗ (W T x(t+1))

)
(13)
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The state of the gene pool of the t-th generation is given

by the vector x(t) = (x
(t)
1 , . . . , x

(t)
m )T of gene frequencies in

A-type alleles and the vector y(t) = (y
(t)
1 , . . . , y

(t)
n )T of gene

frequencies in B-type alleles. x(t) and y(t) have non-negative
components summing up to one, and belong to the simplex
∆m and ∆n respectively. Eq.(11) and Eq.(13) are the gen-
eralized selection model for two types of alleles A and B. It
describes the action of selection between two types of alle-
les from one generation to the next, and therefore the map
sending x(t) and y(t) to x(t+1) y(t+1) defines a discrete dy-
namical system on the spaces ∆m and ∆n, called Generalized
Replicator Dynamics (GRD).

Definition 3 (Generalized Replicator Dynamics).

Let Wm×n be a non-negative matrix. Given the vector x(t) =

(x
(t)
1 , . . . , x

(t)
m )T ∈ Rm

+ and the vector y(t) = (y
(t)
1 , . . . , y

(t)
n )T ∈

Rn
+ being the status of the system in the t-th iteration, we de-

fine the discrete dynamical system as Eq.(11) and Eq.(13).

Correspondingly, we studied the the fixed points and opti-
mization ability of generalized replicator dynamics. Next the
average fitness of the population and the fundamental the-
orem of natural selection in the generalized selection model
are given.

Definition 4. (Average Fitness of Population in

Generalized Selection Model). Given x
(t)
i y

(t)
j the fre-

quency of the zygote of (Ai, Bj) and the selective value wij

the probability that it survives to adult age, we define∑m
i=1

∑n
j=1 wijx

(t)
i y

(t)
j is the average fitness (or average se-

lective value) of the population in the (t)-th generation. The

average fitness in the matrix form is LW (x(t),y(t)) = x(t)T Wy(t)

= y(t)T W T x(t) and therefore the same as the generalized
function of a bipartite graph G(A, B, W ), where A and B
are two sets of alleles representing the vertices.

Theorem 2. (Fundamental Theorem of Natural Se-
lection by Extended Replicator Dynamics). For the
generalized replicator dynamics given by Eq.(11) and Eq.(13),

the average fitness LW (x(t),y(t)) increases with the genera-
tion t increasing in the sense that

LW (x(t+1),y(t+1)) > LW (x(t),y(t)) (14)

with equality if and only if x(t) and y(t) are two equilibrium
points x∗ and y∗ respectively.

Proof. See http://www.utdallas.edu/∼ying.liu
/BIOKDD2007.html

If let W be symmetric, x and y are associated with the
same set of vertices and thus equal to each other. Hence
Eq.(11) and Eq.(13) are reduced to Eq.(6) and therefore
replicator dynamics become a special instance of generalized
replicator dynamics. In practice, the iteration of about 50 is
enough for generalized replicator dynamics to get converged.
Therefore, its computational complexity is O(k(2h+m+n)),
where k is the number of iterations, h, m and n are the
number of non-zeros, numbers of rows and columns in W
respectively. If ignoring k, the final complexity is O(2h +
m + n). Therefore, generalized replicator dynamics is very
efficient.

4. GENERALIZED ERD FOR UNSYMMET-
RIC MATRIX REORDERING IN MUL-
TIPLE CLASSES

In Section 2 and Section 3, we have shown how to discover
distinct “mountain” within a single class by matrix reorder-
ing. In this section, we shall focus on a more complicated
problem of finding the“mountain”and“valley”which are col-
lected parallel (i.e. with the same rows or genes/proteins)
but on the left-top corner of each class submatrix 1. Those
genes (or rows) which contribute to the parallel “mountain”
and “valley” on the top of the reordered matrix, are deemed
to be potential genes or proteins for biomarker. The more
top they are placed, the higher differential expressions they
have. Those top-ranked genes in distinct parallel “moun-
tain” and “valley” contribute much more differential expres-
sions across negative and positive classes. Therefore, the
solution of parallel “mountain” and “valley” can not only
rank differentially expressed genes, but also visually show
the expression values’ distribution within class (i.e., collect-
ing low/high values to left-top corner of each class subma-
trix) and between class (i.e., parallel collecting low and high
values in negative and positive class respectively).

RD and GRD are designed to approach the problems of
collecting the high values to the left-top corner of the matrix
rearranged by the element orders of the solution x∗ and y∗.
However, they only investigate the data which has no class
labels. In this section, a similar but more complicated task,
parallel “valley and mountain” (up regulation) and paral-
lel “mountain and valley” (down regulation) across multiple
classes, is considered. Because RD and GRD have been
proved that they are able to quickly approximate the opti-
mization of the functions LW (x) and LW (x,y) respectively,
such capability of reordering matrix can be introduced to
our task of gene selection for biomarker discovery. In the
following, we will present how we customize and generalize
ERD to our target in microarray data analysis.

Considering the general case of microarray data, suppose
the data set consists of m genes and n samples with k classes,
whose number of samples are n1, . . . , nk respectively and
n1 + . . . + nk=n. Without losing the generality, we suppose
the first k− classes are negative, the following k+ classes are
positive, and k−+k+ = k. Therefore, a general gene-sample
matrix Wm×n = [ W−

i︸︷︷︸
16i6k−

, W+
i︸︷︷︸

16i6k+

] is shown with submatrix

blocks in Fig.4(a). Like fold change, the difference of values
between negative and positive classes can show the up or
down tendency 2.

Because the target of analyzing differentially expressed
genes is to find up-regulated or down-regulated genes be-
tween negative and positive sample classes, the basic reso-
nance model should be changed, from collecting high values
to the left-top corner of W ′, to:

1. Within-class data distribution: A series of low val-
ues collections in each W−

i into the left-top corner,
and simultaneously a series of high values collections
in each W+

i into the left-top corner.

1Each sample class forms a submatrix where rows are the
whole set of genes and columns are the samples in this class.
2The up tendency means that low values are in samples of
the negative class, while high values are in samples of the
positive class. Vice versa for the down tendency.
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2. Between-class data distribution: Controlling the
differences of left-top corners between the negative classes
W−

i and W+
i .

Therefore, to meet these two goals, we extended gener-
alized replicator dynamics, called EGRD, according to this
task as follows.

1. Transformation of W : before performing EGRD, we
need to transform the original gene-sample matrix W
to W ′. The structure of W is made of the submatrix
blocks W−

i and W+
i of negative classes and positive

classes as shown in Fig.4(a). In the case of finding
up tendency and differentially expressed genes, since
we need to collect the low values of W−

i into the left-
top corner, we reverse the values of W−

i so that low
values become high and vice versa. In other words,
we perform the transformation by W ′−

i = 1−W−
i . In

this way, the result of collecting high values of W ′−
i

and W ′+
i into their own left-top corners naturally lead

to the result of collecting the low values of W−
i into

the left-top corners and the high values of W+
i into

the left-top corners. This is an essential step to meet
the first goal aforementioned. We can also use other
reverse functions in stead of the simple 1− x function
used in Fig.4(b). Similarly, we can transform W by
W ′+

i = 1 −W+
i in the case of finding down-regulated

and differentially expressed genes.

2. The k partitions of the allele set B: an implicit re-
quirement in the first goal is that the relative order
of each class (submatrix W ′−

i or W ′+
i ) should be kept

the same after performing EGRD and sorting W ′. For
example, after running our algorithm, it is required
that all columns of the submatrix W ′−

2 appear after
all columns of W ′−

1 , although we can change the order
of columns or samples within W ′−

1 or W ′−
2 . To sat-

isfy this requirement, we partition the original vector
y of gene frequencies in B-type alleles into k parts cor-
responding to k classes or submatrices. Specifically,
y = (y1; . . . ;yk) 3, where each yi corresponds to a
sample class. In the process of EGRD, we separately
normalize each yi and then sum them together with
the factor α to control the differentiation between the
negative and positive classes.

3. The factor α for controlling the differentiation between
the negative and positive classes: the gene frequency
vector of y is divided into k = k− + k+ parts, each of
which is normalized independently. Therefore, we can
control the differentiation between the negative and
positive classes, by magnifying the resonance strengths

x
+(t+1)
i = norm1(x

+(t). ∗ (W ′+
i y

+(t)
i )) of k+ positive

classes, or minifying the frequency subvectors x
−(t+1)
i =

norm1(x
−(t). ∗ (W ′−

i y
−(t)
i )) of k− negative classes. In

formal,

x
(t+1)

= norm1

(
x
−(t+1)
1 + . . . + x

−(t+1)
k−︸ ︷︷ ︸

k− negative classes

+ αx
+(t+1)
1 + . . . + αx

+(t+1)
k+︸ ︷︷ ︸

k+ positive classes

)

(15)

3The concatenation of k = k− + k+ vectors is expressed in
MATLAB format.

where α > 1 and α as a scaling factor is multiplied with
the normalized positive classes’ resonance strength vec-
tors. With the increasing of α, the proportions of pos-
itive classes in the gene frequency vector x will in-
crease and thus result in the increasingly large differ-
ences in the top-left corners between positive and neg-
ative classes. In this way, the user can tune α to get a
suitable differential contrast of two types of classes.

4. Smoothness of gene frequency vectors of B-type alle-
les: In practice, we found that the partitioned gene
frequency vectors of B-type alleles y+

i or y−i often con-
verges to the extreme distribution of elements: few el-
ements approach to 1 while the rest approximate to 0.
Therefore, to smooth the element distribution of y+

i

and y−i , we introduced the sigmoid function 4 that is
widely used in neural networks. Therefore, we define
the new normalization function incorporating the sig-
moid function as normsig1(y) = norm1(sig(norm1(y))).
In this way, the gene frequency vectors are smoothed.
We have made experiments to test the convergence
of the EGRD after using the normalization function
normsig1. The empirical results show that it can quickly
converge.

To summarize the above changes of the resonance model,
we draw the architecture of the EGRD in Fig.5 and express
its process in the following formulas:

x
−(t+1)
i =norm1

(
x(t). ∗ (W ′−

i y
−(t)
i )

)
, i = 1, . . . , k−

x
+(t+1)
i =norm1

(
x(t). ∗ (W ′+

i y
+(t)
i )

)
, i = 1, . . . , k+

x(t+1) = norm1

( ∑k−
i=1 x

−(t+1)
i + α

∑k+

i=1 x
+(t+1)
i

)

y
−(t+1)
i =normsig1

(
y−(t). ∗ ((W ′−

i )T x(t+1))
)
, i = 1, . . . , k−

y
+(k+1)
i =normsig1

(
y−(t). ∗ ((W ′+

i )T x(t+1))
)
, i = 1, . . . , k+

(16)

where xi,x
+
i ,x−i ∈ Rm×1 and y−i ∈ Rn−i ×1, y+

i ∈ Rn+
i ×1.

Comparing Eq.(11) and Eq.(13) in GRD with Eq.(16), we
partitioned the matrix W ′ to k submatrix blocks and di-
vided the gene frequency vector of B-type alleles y into k
subvectors. Therefore, two equations in the extended repli-
cator dynamics are expanded to the (2k + 1) equations in
EGRD.

Algorithm of EGRD will appear here. We also formally
summarize it as Algorithm 1 EGRD for the data reliability
assessment.

In practice, GERD can quickly converge. Considering that
EGRD is a extended generalized replicator dynamics by par-
titioning the matrix into k submatrices, its computational
complexity is the same as the extended replicator dynamics
on the whole matrix, i.e., O(2h + m + n).

5. EXPERIMENTAL RESULTS
In this section, we conducted the experiments on the Leukemia

data set and compared our method with five popular filter
feature selection methods, T-statistics (T) [14], Information
Gain (IG) [5], ReliefF [15], Correlation-based Feature Selec-
tion (CFS) [11] and Redundancy Based Filter (RBF) [19].

4The sigmoid function is defined on the scalar num-
ber x as, sig(x) = 1

1+exp(−x)
. Therefore, for a vec-

tor x, the corresponding sigmoid function is sig(x) =(
sig(x1), . . . , sig(xn)

)T
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i 1−W+
i

W ′ = [1−W−
i︸ ︷︷ ︸

16i6k−

, W+
i︸︷︷︸

16i6k+

] [ W−
i︸︷︷︸

16i6k−

, 1−W+
i︸ ︷︷ ︸

16i6k+

]

(a) original matrix W = [ W−
i︸︷︷︸

16i6k−

, W+
i︸︷︷︸

16i6k+

] (b) transformed matrix W ′ = [ W ′−
i︸︷︷︸

16i6k−

, W ′+
i︸︷︷︸

16i6k+

]

Figure 4: Transformation of the matrix W : the transformed matrix W ′ has the same structure of submatrix
blocks as shown in (a), but with different submatrix W ′−

i and W ′+
i as listed in (b).

A1

B11

B21
A2

Bk1
Am

...

...
...

...
...

wij

Class 1

Class 2

Class k

Figure 5: Alleles Ai and Bl with k classes as vertices
and their mating survival probabilities wij as edge
weights in generalized extended replicator dynam-
ics.

Among them, the first three methods are based on the method-
ology of ranking relevant genes; while the last two methods,
i.e., CFS and RBF, do not rank genes, but aim to select a
minimum gene subset with optimum feature relevance and
reduced redundancy. Therefore, in the experiments, CFS
and RBF only report the number of minimum gene sub-
set discovered. We firstly used the EGRD 5, T and IG to
rank the genes and compared them over different feature
sizes, k=2,4,10,20,50,100,200. Each resulting feature subset
was used to train an SVM classifier 6 with the linear ker-
nel function. Because of the small number of samples, the
Leave-One-Out Cross Validation (LOOCV), a popular per-
formance validation procedure adopted by many researchers,
was performed to assess the classification performance.

5.1 Leukemia Data
We used the Leukemia gene expression data [2], where

besides the classes “ALL” (Acute Lymphoblastic Leukemia)
and “AML” (Acute Myelogenous Leukemia), a new class

5Because EGRD can rank genes/proteins in terms of up
and down regulation respectively, in this experiment of
comparing k top-ranking genes/proteins, we selected 0.5k
top-ranking genes/proteins in up regulation and 0.5k top-
ranking genes/proteins in down regulation to form k top-
ranking genes given by EGRD.
6The SVMlight was used.

Algorithm 1 EGRD

Input: (1) Wm×n, genomic or proteomic matrix from m
gene set G and n samples set S;

(2) (n1, . . . , nk)T , sizes of the k sample classes
with the submatrix structure as in Fig.4(a).

(3) (k−, k+)T , numbers of negative and positive
classes.

(4) tendency option, down or up;
(5) α, differentiation factor.

Output: (1) (g1, . . . , gm), ranking sequence of m genes;
(2) (s1, . . . , sn), ranking sequence of n samples.

1: preprocess W so that the values of W in [0,1].
2: transform W to W ′ according to formulas in Fig. 4(b)

with the knowledge of the matrix structure given by
(n1, . . . , nk)T , and (k−, k+)T and tendency option.

3: iteratively run formulas in Eq.(16) to obtain the con-
verged x∗ and y∗i (i=1, 2, . . . , k).

4: sort x∗ in decreasing order to get the ranking sequence
(g1, . . . , gm), and sort each of y∗1 , . . . ,y∗k in decreasing
order to get the sorted sample sequence {comment: Be-
cause the positions of all sample classes in W ′ keep not
changing as shown in Fig.4(a), each sorting of y∗i can
only change the order of samples within the i-th sample
class W ′

i .}.

of “MLL” (Mixed-Lineage or Myelogenous/Lymphoblastic
Leukemia) samples was identified. It contains 12,582 genes
and 72 samples with these 3 sample classes. Therefore, we
performed three experiments to test our method by using
one class versus the rest of classes as positive versus negative:
(1) ALL versus MLL&AML, (2) MLL versus ALL&AML
and (3) AML versus ALL&MLL. In each experiment, the
gene expression matrix partition for our method is W =
[W−

1 , W+
1 , W+

2 ] with one negative and two positive classes.
In all three experiments, α was set to 10 for EGRD. The
results are shown in Table 1, 2 and 3. As shown in the three
tables, our method EGRD outperforms the other methods
in,

• High Accuracy: in all three experiments, EGRD main-
tains very high accuracies in different k. In the experi-
ment “MLL versus ALL&AML”, where the class MLL
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is hard to distinguish, EGRD can still obtain high ac-
curacy even when k is very small.

• Compact biomarker: observing the accuracies of three
methods from the small k to the large, EGRD is able
to quickly obtain high accuracies even when k is small,
while the methods T and IG require larger k to arrive
at the same accuracy (the numbers in bold in three
tables show the minimum k each method requires to
get the highest accuracy). This means that EGRD
outperforms the other methods in terms of discovering
the compact or minimal biomarker. For example, in
Table 1, the top 2 ranking genes discovered by EGRD
can achieve 95.8% classification accuracy, while the ac-
curacies of the other two methods’ top 2 ranking genes
are less than 80%. Similar cases also appear in Table 2
and 3.

• Stability: not only can the small number of selected
genes achieve higher accuracies than the other meth-
ods, but also as k increases (more biomarkers were se-
lected), high classification accuracies are maintained.
This is a stable property with k increasing, and may be
interesting to the biologists when they try to analyze
more relevant genes contributing to the diseases.

Table 1: LOOCV accuracy rate (%) of ALL versus
MLL&AML.

k= 2 4 10 20 50 100 200

T 79.2 86.1 91.7 93.1 98.6 98.6 98.6

IG 76.4 80.6 95.8 98.6 98.6 98.6 98.6

RliefF 63.9 86.1 95.8 95.8 98.6 98.6 100

EGRD 95.8 100 100 100 100 100 100

CFS: find 55 genes with 100%

RBF: find 2 genes with 91.7%

Table 2: LOOCV accuracy rate (%) of MLL versus
ALL&AML.

k= 2 4 10 20 50 100 200

T 69.4 65.2 81.9 80.6 84.7 86.1 93.1

IG 72.2 88.9 88.9 88.9 98.6 98.6 97.2

RliefF 72.2 88.9 95.8 94.4 94.4 94.4 97.2

EGRD 84.7 91.7 97.2 98.6 100 98.6 98.6

CFS: find 111 genes with 100%

RBF: find 7 genes with 87.5%

Table 3: LOOCV accuracy rate (%) of AML versus
ALL&MLL.

k= 2 4 10 20 50 100 200

T 66.7 77.8 97.2 98.6 100 98.6 97.2

IG 79.2 76.4 87.5 93.1 97.2 97.2 97.2

RliefF 86.1 84.7 95.8 94.4 97.2 97.2 97.2

EGRD 88.9 94.4 97.2 97.2 97.2 97.2 98.6

CFS: find 147 genes with 100%

RBF: find 4 genes with 90.3%

An important factor, which enables EGRD to perform
well, is that the matrix reordering has the global search-
ing ability to take into account the value distribution of
the whole matrix with multiple classes. This is different
from the way of individually considering genes, samples, or
gene-to-gene. Our ultimate goal is to obtain the minimal
biomarker while keeping a relatively high classification accu-
racy. In the experiment of “ALL versus MLL&AML”, com-
pact biomarker is already discovered by EGRD because, for
the 4 genes selected, EGRD can achieve 100% accuracy. In
the third experiment as listed in Table 3, we found 4 genes
which achieve the accuracy 94.4% with EGRD. Similarly, in
the third experiment, although CFS can obtain 100% accu-
racy, the size of the biomarker it discovers is too big (147
genes). On the contrary, our method achieves the accuracy
95.8% while the size of the biomarker is very small (only 2
genes).

To test if the biomarker found by our methods is biologi-
cally meaningful or not, for instance, we checked two genes
found by EGRD in Table 1 with Entrez Gene in NCBI Web-
site (http://www.ncbi.nlm.nih.gov/entrez). These two
genes are MME, which is underexpressed, and LGALS1,
which is overexpressed. By investigating the result of Arm-
strong et al. [2], these two genes were also ranked as the
first genes in the underexpressed and overexpressed genes re-
spectively. MME is a common acute lymphocytic leukemia
antigen which is an important cell surface marker in the di-
agnosis of human acute lymphocytic leukemia (ALL); while
LGALS1 was also reported to be highly correlated with
ALL [17].

5.2 Conclusion
In this work, we have introduced a novel perspective of

matrix reordering for ranking both genes and samples in
multiple-class microarray data. It comprehensively consid-
ers the global between-class data distribution and local within-
class data distribution, and therefore improves the accuracy
of the biomarker discovery. Meanwhile, it identifies an over-
all tendency of the whole matrix for analyzing the data.
Experiments on microarray data have demonstrated its effi-
ciency and effectiveness of both visualization and biomarker
discovery.
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ABSTRACT
Genes behaving similarly over changing conditions are be-
lieved to be part of the same functional module. Identify-
ing functional modules of genes plays an important role in
understanding gene regulatory behavior as well as in facili-
tating function prediction of unknown genes. Subsequently,
determining ‘similar’ gene pairs or groups based on their
gene expression profiles is an important task towards ex-
tracting modules from microarray datasets. A prevailing
technique is to use a linear similarity measure like Pearson’s
correlation coefficient or Euclidean distance, to find simi-
lar gene pairs. However, the noise inherent in microarray
datasets reduces the sensitivity of these measures and pro-
duces many spurious pairs with no real biological relevance.
In this paper, we explore an extrinsic way of calculating
gene similarity based on their relations with other genes.
We show that ‘similar’ pairs identified by extrinsic measures
overlap better with known biological annotations available
in the Gene Ontology database. Our results also indicate
that extrinsic measures are useful to enhance the quality of
gene networks constructed from similar gene pairs by reduc-
ing spurious edges and introducing missing edges between
network nodes.
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Due to advances in technology (e.g., oligonucleotide mi-
croarray chips), scientists are now able to accumulate a
wealth of information on the expression of genes during the
life cycle of an organism. Such datasets provide vital in-
formation that can be used to gain insight into diverse bi-
ological questions. To analyze and mine these datasets for
potential useful information, various techniques and ideas
have been proposed. Of particular interest to many scien-
tists is the problem of identifying gene groups that have
similar expression patterns over various samples, known as
co-expressed genes. Genes with similar cellular functions
have been theorized to behave similarly over different con-
ditions [10]. Thus, obtaining groups of similar genes is fun-
damental to understanding the molecular and biochemical
processes that sustain the physiological state of the cell [23].

There has been a growing interest in representing co-expressed
genes as an association network to explore the system-level
functionality of genes [25, 6]. Here, nodes represent genes
and two nodes are linked if the corresponding genes are
significantly co-expressed (correlated) across the samples.
Earlier approaches have used expression levels of two genes
over all samples to surmise their correlation. However, this
similarity notion does not necessarily imply that genes are
functionally related. Given the noise inherent in microarray
datasets, it is our hypothesis that intrinsic similarity mea-
sures are not adequate to distinguish accidentally regulated
genes from those that are biologically motivated. We ar-
gue that since any given gene is likely to fluctuate in its
measured expression level due to many possible sources of
error, a similarity based on two genes’ measurements is more
error-prone than using relative positions of many genes as
a reference to deduce the same information. In addition,
gene products act as complexes to accomplish certain cellu-
lar level tasks [22], which is potentially suitable to infer two
gene’s similarity via their relations with other genes. Thus,
we propose and investigate the use of extrinsic similarity
measures to induce gene similarity.

The use of extrinsic measures and their advantages have
been previously studied for various data mining problems [8,
9]. Das et al [8], proposed using extrinsic measures on mar-
ket basket data in order to derive similarity between two
products from the buying patterns of customers. Palmer et
al [18], defined an extrinsic similarity measure (REP) with
an analogy to electric circuits. Both groups concluded that
extrinsic measures can give additional insight into the data.
Recently, Ravasz et al [19], proposed the Topological Over-
lap Measure (TOM), which is one of the few to use extrinsic
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properties along with the intrinsic ones. Their measure in-
fers similarity of two nodes in a biochemical network in terms
of their pairwise similarity as well as the number of common
neighbors they share.

In this paper, we introduce a methodology for the applica-
tion of extrinsic similarity measures on microarray datasets.
We propose two different extrinsic measures motivated by
the notion of mutual independence analysis. The proposed
similarity measures are evaluated on two well-studied cancer
microarray datasets [1, 4]. In order to quantify the biolog-
ical concordance of different similarity notions, we employ
domain based validation metrics. We find that extrinsically
similar gene pairs better overlap with known biological anno-
tations from the Gene Ontology (GO) database when com-
pared to the Pearson’s correlation coefficient and the TOM.
To further analyze their usability for gene function infer-
ence, we construct association networks from ‘similar’ gene
pairs identified by different measures. Our analyzes show
that association networks constructed based on our extrin-
sic measures contain less spurious and more biologically ver-
ified edges compared to their counterparts generated using
other measures. We obtain densely connected clusters of
genes from these networks to study their usability in under-
standing the molecular and biological processes that sustain
health or cause cancer. We find that clusters extracted from
the extrinsically similar gene networks show evidence of can-
cer related pathways and functional modules such as signal
transduction pathway, apoptosis etc.

To summarize, our main contributions in this study are:

• Introducing the notion of mutual independence of two
genes based on their associations with other genes

• Proposing two extrinsic similarity measures suitable
for microarray analysis motivated by the mutual inde-
pendence analysis

• Investigating and demonstrating the efficacy of using
extrinsic measures in inferring pairwise gene similari-
ties, constructing gene networks and clustering genes

2. SIMILARITY MEASURES
To quantify the resemblance of two points, one needs a

measure of similarity. Similarity measures can be catego-
rized into two: extrinsic and intrinsic similarity measures.
An intrinsic similarity of two points i and j is purely defined
in terms of the values of i and j. On the other hand, an ex-
trinsic similarity measure takes into account other points to
infer i and j’s similarity.

Previous studies have shown the usability of external sim-
ilarity measures in other domains [8, 9]. To our knowledge,
usability of extrinsic similarity measures have not been in-
vestigated for identifying ‘similar’ genes. A prevailing method
to infer similarity of two genes from their expression pat-
terns is to use a linear intrinsic similarity (e.g. Euclidean
distance, Pearson’s correlation coefficient) measure. We dis-
cuss intrinsic similarity measures next.

2.1 Intrinsic Measure
Intrinsic similarity is purely defined on the points in ques-

tion. In the context of microarray analysis, the intrinsic
similarity of two genes is defined on these genes’ expression
levels over all samples.

In a typical microarray experiment, each gene is expressed
at some certain level at each condition which is defined as the
gene’s expression profile. More formally, a gene (say, x) is
associated with a profile vector (Vx) composed of its expres-
sion values over all samples, such that Vx = [x1, x2, ..., xn],
where n denotes the number of samples in the dataset. Thus,
intrinsic similarity between genes x and y, is a measure de-
fined on their profile vectors, Vx and Vy.

The most commonly used and accepted measure in the
literature for the task at hand is the Pearson’s correlation
coefficient. This is defined as [16]:

rxy =

Pn

i=1 (V i
x − Vx)(V i

y − Vy)
q

Pn

i=1 (V i
x − Vx)2

Pn

i=1 (V i
y − Vy)2

(1)

where Vx and Vy are the profile averages. Here, V i
x rep-

resents the ith entry of the vector Vx. According to this
definition, genes which are positively (or negatively) corre-
lated have a value close to 1 (or -1) whereas dissimilar gene
pairs have values close to 0. Absolute value of Pearson’s
correlation scores is used in this study since both positive
and negative correlations can play an important role in gene
association.

2.2 Extrinsic Measures
Extrinsic similarity of two attributes (i.e., genes) is de-

fined over other attributes in the dataset. Before defining
its specifics, a general definition of an extrinsic measure is
as follows [8]:

ESP (i, j) =
X

k∈P

|f(i, k) − f(j, k)| (2)

Here, f(i, k) denotes a function that signifies association be-
tween i and k. P refers to the set of attributes that will con-
tribute to the extrinsic similarity calculation of attributes i

and j.
As noted by Das et al [8], proper choice of the attribute set

P and function f is crucial for the usefulness of the resulting
extrinsic measure. Different choices will result in different
similarity notions. In the following section we will discuss a
methodology to derive effectual extrinsic similarity measures
to be used in inferring gene similarity.

2.3 Proposed Methodology
Our goal in developing an extrinsic similarity for microar-

ray analysis is to surmise the similarity of two genes by the
similarity of their relation with other genes. We believe that
use of an extrinsic measure for microarray analysis has a
twofold advantage over the use of intrinsic measures. First,
it reduces the impact of noise inherent in the dataset on the
similarity inference since more evidence are taken into con-
sideration per inference. Second, it suits well with the bio-
logical hypothesis that genes act as complexes to accomplish
certain tasks in the cell. As hypothesized, two genes behav-
ing similarly with the elements of a gene complex, presum-
ably belongs to that complex and share their functionality.
Thus defining two genes’ similarity by taking into consider-
ation their relation with other genes can potentially benefit
from the modular structure of the genomic interactions.

To define a proper measure, we first need to determine
over which set of genes, P , and using which association func-
tion, f , extrinsic similarity of two genes should be defined.
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Here, we investigate the use of close proximity of genes ac-
cording to intrinsic notions when choosing a proper set P . In
addition, two functions based on mutual independence anal-
ysis from the Information Theory are evaluated. We com-
pare the proposed similarity measures with the currently
available techniques described in Section 3, as well as the
most popular intrinsic measure (i.e., Pearson’s correlation
coefficient).

2.3.1 Choice of Attribute Set (P )
To derive an efficient extrinsic measure for microarray

analysis, we first need to identify a gene set, P , that will
be used to infer the extrinsic similarity of two genes. For
this purpose, we use the group of genes that are similar to
both of the genes under question. Thus, initially for each
gene we identify a set of genes that are intrinsically similar
to that gene (i.e., the gene’s close neighbors). We refer this
as a gene’s neighborhood list (Ni) and define it as follows:

Ni = {j|j ∈ G, |rij | > κ} (3)

Here, G denotes the set of all genes in our dataset and |rij |
refers to the absolute value of the Pearson’s correlation coef-
ficient of genes i and j. Effect of the threshold parameter κ,
on the extrinsic measures and guidance of the size of neigh-
borhood lists to set this parameter is discussed in Section 61.
Next, the attribute set P that will be used to infer two genes’
similarity is designated as the intersection of their neighbor-
hood lists (i.e., P = Ni ∩ Nj ). Using common neighbors
of two genes as the set of attributes (P ) has two impor-
tant implications. First, it significantly reduces the required
number of calculations. Thus, instead of using the whole
gene set (G), a smaller size set is taken into consideration.
Secondly, it filters out irrelevant information which improves
the success of the extrinsic measure. By using the intrinsic
similarity to determine elements in set P , we take advantage
of both extrinsic and intrinsic properties. Our hypothesis
is that this helps to reduce the noisy inference that can be
introduced into the similarity inference by using these mea-
sures separately. It is noteworthy that an extrinsic measure
can be easily expandable to other groups of related genes.
For instance, one can prefer using an attribute set contain-
ing genes mapped to close chromosomal locations with two
genes whose similarity is under investigation.

2.3.2 Choice of Association Function (f)
After establishing the notion of an extrinsic similarity, and

defining the set P , the next step is to determine which asso-
ciation function (f) to use for our calculations. Das et al [8],
proposed using the confidence of association rules in an ap-
plication on market basket dataset. Their approach and its
applicability on gene expression datasets will be discussed
in details in Section 3. We propose using two appropriate
functions that are motivated by the mutual independence
analysis. We leverage mutual independence of two genes by
analyzing their frequency of occurrence and co-occurrence
in the neighborhood lists.

Before defining mutual dependency of two genes, first, we
explore three possible type of relations between any two
genes motivated by Das et al [8]. Accordingly, two genes
can either be, complementary, independent or correlated. If
two genes are complementary, then they do not to co-occur

1Our analysis indicated that relatively loose values produce
more useful extrinsic measures.

in the neighborhood lists. If they are independent, neighbors
of gene i are neighbors of gene j with the same probability
as the genes that are not neighbors of gene i. And if they
are correlated, neighbors of gene i are also neighbors of gene
j. These concepts are formally defined using neighborhood
lists as follows:

Definition 1: Frequency of occurrence for a gene i, P (i),
is defined as the frequency of encountering that gene in all
neighborhood lists. Since Pearson’s correlation coefficient is
a symmetric measure a gene has as many neighbors as the
number of times it occurs in all neighborhood lists. Thus,
frequency of a gene’s occurrence can be simplified to the
following:

P (i) =
|Ni|

|G|
(4)

where ‘|̊u|’ denotes the number of elements (cardinality) in
its argument. Note that frequency of occurrence is an in-
dication of the discriminatory nature of a gene’s expression
profile. Genes with indistinct expression profiles such as the
housekeeping genes will have higher values of frequency of
occurrence.

Definition 2: Frequency of co-occurrence for genes i and
j, P (i, j), is defined as the frequency of encountering these
two genes together in the neighborhood lists. More formally,
based on the symmetric Pearson’s measure, P (i, j) can be
defined as follows:

P (i, j) =
|{a|a ∈ G, i ∈ Na, j ∈ Na}|

|G|
(5)

By itself high frequency of co-occurrence does not imply
that two genes are correlated. In order to conclude that two
genes are not randomly co-occurring (independent) but there
is a biological trigger behind their co-occurrence (correlated),
we need to test if one gene’s frequency of occurrence is helpful
in predicting that of the other gene which is a notion known
as mutual independence. Note that, in this context, inde-
pendence of two genes implies that occurrence of a gene in a
neighborhood list makes it neither more nor less probable for
the other gene to occur in that list. Thus, mutual indepen-
dence of two genes only holds when P (i, j) = P (i)P (j). We
propose using two different independence tests to leverage
mutual dependency of two genes.

Specific Mutual Information Measure:

The Specific Mutual Information (smi) is a measure of as-
sociation commonly used in the Information Theory to infer
mutual dependency. Smi of two variables, X and Y , given
their joint distribution, P (X, Y ), and individual distribu-
tions, P (X) and P (Y ), is defined as follows:

I(X,Y ) =
O

E
=

P (X, Y )

P (X)P (Y )
(6)

where P (X,Y ) is the observed value (O) for joint probability
of events X and Y , whereas P (X)P (Y ) is its expected value
(E).

This test can be used to deduce the type of relation be-
tween two genes. If their smi value is 1, it can be concluded
that these two genes are independent. On the other hand,
a value greater than 1 implies being correlated and a value
smaller than 1 implies being complementary.
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If two genes have similar relations with their common
neighbors, it is reasonable to conclude that they are simi-
lar. Based on this analysis and the notion of specific mutual
information, we propose the following extrinsic measure to
quantify dissimilarity of two genes (i and j).

smiP (i, j) =

P

k∈P |
P (i,k)

P (i)P (k)
−

P (j,k)
P (j)P (k)

|

|P |
(7)

This definition ensures that two genes having similar rela-
tions (i.e., complementary, correlated or independent) with
their common neighbors are closely related to each other
(smi value close to 0). Whereas two genes that have dif-
ferent relations with their common neighbors are dissimilar
and associated with higher values of smi. Note that, the
smi measure is normalized by dividing by the size of the
attribute set P .

Chi-Square Based Measure:

Pearson’s chi-square test is another method to assess mutual
dependency of two events. Formally, it is defined as follows:

chi(X, Y ) =
(O − E)2

E
=

(P (X,Y ) − P (X)P (Y ))2

P (X)P (Y )
(8)

This test tells us how far the observed value deviates from
the expected value under the assumption of independence.

According to this definition, two genes will have zero chi

value if they are independent. They will have higher chi

values otherwise. We employ a signed version of this test to
surmise the type of relation between two genes. Given this,
external dissimilarity of two genes based on the chi-square
analysis, chiP (i, j), is defined as follows:

P

k∈P |
sik(P (i,k)−P (i)P (k))2

P (i)P (k)
−

sjk(P (j,k)−P (j)P (k))2

P (j)P (k)
|

|P |
(9)

where sab denotes the sign of the term P (a, b) − P (a)P (b).
Note that signs are included into the measure to differen-
tiate a correlated pair from a complementary one. Similar
to the smi measure, two genes that have similar relations
with their common neighbors will have smaller chi values
whereas two genes that have dissimilar relations with their
common neighbors will have higher values2. Chi measure is
also normalized by dividing by the size of the attribute set.

3. PREVIOUS WORK

3.1 Topological Overlap Measure
Recently, Ravasz et al [19], proposed the Topological Over-

lap Measure (TOM) which takes into a step in using ex-
trinsic measures to infer similarity between two nodes of a
biological network. This measure is considered as an im-
provement over the intrinsic similarity which amalgamates
an additional external knowledge derived from the network
topology (i.e., number of common neighbors). According
to their definition, two nodes have high topological overlap
if they are connected to roughly the same group of nodes.
More formally, TOM of two genes i and j can be expressed
as follows:

TOM(i, j) =
|Ni ∩ Nj | + rij

min{|Ni|, |Nj |} + 1 − rij

(10)

2Only the positive information is considered for the chi
square test.

where rij is the pairwise similarity between these two genes.
The inclusion of the intrinsic similarity (rij), into this def-
inition, makes TOM measure explicitly dependent on the
intrinsic similarity of two nodes in question. Drawbacks of
this dependency will be discussed in Section 6.

3.2 Confidence of Association Rules
Das et al [8, 9], previously studied the extrinsic similar-

ity of attributes in a market basket dataset where confi-
dence of association rules are used as the association func-
tion, f . In a market-basket problem, each customer fills
their market basket with a subset of large number of items
(e.g., bread, milk). Such datasets are mined for association
rules of the form (X1, ..., Xn ⇒ Y ) to identify the relation
between items. The confidence of an association rule is de-
fined as the frequency of encountering the head of the rule
(X1, ..., Xn) among all the groups containing the body (Y ).
Das et al [8], proposed using the confidence of association
rules as the association function f . Thus, their proposed
extrinsic similarity measure reduces to the following.

ESP (A,B) =
X

D∈P

|conf(A ⇒ D) − conf(B ⇒ D)| (11)

where conf(A ⇒ D) is defined as P (A,D)
P (A)

.

For the task at hand, an analogy to a market basket is a
neighborhood list. Accordingly, we use the frequency of oc-
currence (P (i)) and the frequency of co-occurrence (P (i, j))
to derive a corresponding confidence based extrinsic mea-
sure suitable for microarray analysis. We again normalize
this measure by dividing it by the size of the set P .

We compare the newly proposed extrinsic similarity mea-
sures (smi and chi) with the existing ideas in the literature
(i.e., TOM and confidence) as well as the most commonly
used and accepted intrinsic measure for microarray analysis,
namely the Pearson’s correlation coefficient.

4. DOMAIN BASED EVALUATION
‘Similar’ pairs identified according to different similarity

measures are evaluated based on the Pairwise Semantic Sim-
ilarity measure of Resnik [17]. This measure makes use of
known annotations in the Gene Ontology (GO) database.
GO is a controlled vocabulary designed to accumulate the re-
sult of all investigations in the area of genomic and biomedicine
by providing a large database of known associations.

Biological relevance of two genes can be quantified with re-
spect to the significance of their shared GO annotations us-
ing the Semantic Similarity (SS) measure defined by Resnik [17].
Resnik’s measure is preferred among other semantic similar-
ity measures [11, 12], since it has been shown to outperform
the others and suit better for use in GO [20].

Pairwise SS scores are used to infer functional relevance of
probe pairs. For this purpose, we plot SS values for all an-
notated pairs of the arrays under study and observe that for
both arrays SS values roughly follow normal distributions.
We believe that to reduce the impact of missing information
in GO database, it is desirable to limit ourselves to upper
and lower tail of the distribution for inference. Accordingly,
we label each pair as a ‘TP’ if their SS score is greater than
the 95th percentile of all pairwise SS values. Similarly, a pair
is accepted as a ‘FP’ when their SS value is smaller than the
5th percentile of the distribution. We run an analysis to test
the effect of using greater percentile cut-offs on the overall
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results which is presented in the Experiments section. We
want to note that, not every gene pair will be classified as a
‘TP’ or a ‘FP’ using this labeling methodology. A pair that
is composed of at least one unannotated gene is not labeled
since there is not enough information to conclude about the
biological concordance of these two genes. In addition, a
gene pair with an SS score between the percentile cut-offs is
not labeled since considering it as a ‘TP’ or a ‘FP’ pair is a
matter of specifying the granularity of biological similarity.

Pairs extracted by using different similarity notions are ac-
cumulated into association networks. We define the Cluster-
wise Positive Predictive Value measure (CPPV ) to evaluate
the biological quality of the dense regions extracted from
these clusters. CPPV of a cluster, (say, Ci), is defined as

CPPVi = |TPi|
|TPi|+|FPi|

. Here, TPi and FPi denote the set

of ‘TP’ and ’FP’ pairs in that cluster. Our calculations are
based on every possible gene pair in a cluster. Higher values
of CPPV imply that the cluster is enriched in ‘TP’ pairs.
On the contrary, lower values indicate that the cluster is
composed of biologically dissimilar genes.

5. DATASETS AND PRE-PROCESSING
For this study, we employ two well-studied cancer datasets.

First dataset is composed of gene expression values of 62
colon tissue samples where the Affymetrix Hum6000 array
with 6819 probes is used [1]. 42 of these are collected from
colon adenocarcinoma patients and 20 of them are collected
from normal colon tissue of the patients. Among all probes,
2000 were selected from 6817 by Alon et al according to the
highest minimum intensity [1]. Second dataset is composed
of 86 lung adenocarcinoma and 10 normal samples which is
analyzed by the Affymetrix HuGene FL array [4]. Beer et
al [4] trimmed the dataset of genes expressed at extremely
low levels resulting in 4966 probes for investigation.

Initially, we consider 2000 and 4966 probes for colon and
lung adenocarcinoma datasets respectively. We perform thresh-
olding, log transformation and normalization (quantile nor-
malization) on these two datasets as suggested by our anal-
ysis. In addition to these, we further standardize datasets
using a robust standardization method, median absolute
deviation (MAD). Genes with zero MAD values implying
that they are co-expressed at very similar levels across all of
the samples are excluded from further analysis. After pre-
processing 1578 genes for colon cancer and 4228 genes for
lung cancer datasets are examined.

6. EXPERIMENTS
We discuss the usability of external similarity measures as

a way of identifying similar genes throughout this section.
First, we give results for biological relevance of gene pairs
that are identified as ‘similar’ with different measures. Then,
co-expression networks generated from these ‘similar’ pairs
are analyzed for biological soundness. Finally, genes in each
of these networks are clustered to study the effect of extrinsic
similarity on the quality of gene clustering.

6.1 Setting the κ parameter
Before comparing newly proposed measures with the ex-

isting ones, we first investigate the effect of κ parameter on
the neighborhood lists. To choose a suitable κ threshold,
there are two things that we should take into consideration.
First, we want a gene’s neighborhood list to be composed

only of genes that are within close proximity of that gene.
Second, it is not desirable to have a set that is only composed
of a few genes since this would limit the power of inference
based on common neighbors. Accordingly, we vary κ pa-
rameter between 0.3 and 0.9 and observe the average size
of neighborhood lists for each of these values. As expected,
for both datasets, smaller values of κ resulted in lists big-
ger in size with many dissimilar genes. On the other hand,
higher κ values resulted in very small size lists which are
very restrictive to draw any conclusions. Given that ob-
servation, we believe that average size of the neighborhood
lists can guide us for setting the κ parameter. Consequently,
a reasonable κ threshold value, 0.5, is determined for both
datasets where neighborhood lists contain around 40 genes.
We test the effect of κ parameter on the efficacy of extrinsic
similarity measures in the next section.

6.2 Effect on Top ‘Similar’ Pairs
In the first experiment, we compare gene pairs that are la-

beled as ‘similar’ according to the discussed measures. For
each measure, gene pairs are sorted starting from the most
‘similar’ one. These pairs are labeled as ‘TP’ or ‘FP’s based
on their semantic similarity scores3. Different number of top
scoring pairs (varying between 1000 and 10000) are com-
pared based on the number of ‘FP’ and ‘TP’s among them
(depicted in the below table) 4.

Pearson TOM Confidence Smi Chi
TP FP TP FP TP FP TP FP TP FP

1000 24 48 24 48 35 47 34 34 47 25

2000 51 88 50 87 65 107 72 64 75 65
3000 74 133 75 134 111 140 111 99 100 94

4000 109 176 109 177 140 201 153 136 132 122

5000 153 219 154 220 170 243 195 180 168 150

6000 193 265 194 265 187 309 224 222 204 178

7000 226 322 225 321 236 352 268 256 242 214

8000 265 365 265 366 265 380 296 285 294 252

9000 297 403 299 405 304 422 328 315 330 283

10000 337 445 338 447 330 464 361 343 366 305

In each case, smi and chi measures produce more ‘TP’
pairs compared to the TOM and the Pearson measures. In
addition, smi and chi measures also generate significantly
less ‘FP’ pairs in comparison to other measures. These re-
sults confirm that smi and chi measures better capture the
biological relevance of two genes than the available measures
in the literature. This improvement can be attributed to two
reasons: the noisy nature of microarray datasets and the
functional modularity of genes. Intrinsic measures directly
possess and reflect the noise inherent in the data since they
are purely defined on the expression levels of genes under
study. As high values of ‘FP’ counts for the Pearson mea-
sure imply, erroneous measurements have a drastic impact
on this intrinsic measure. It is notable that despite tak-
ing into consideration an extrinsic feature, TOM is similarly
affected by the noise inherent in the dataset. This result
shows that TOM is mainly dominated by the intrinsic fac-
tor in its definition. On the other hand, extrinsic measures
are dependent on more evidence where mutual independence
is inferred from all neighborhood lists. As a result, impact
of erroneous measurements expected to be less severe on
the extrinsic similarity measures. Our experimental results

3Not every gene pair can be labeled as a ‘TP’ or a ‘FP’.
4Colon cancer dataset follows similar trends.
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Figure 1: PPV of the top ‘similar’ pairs identified from our experimental datasets (κ = 0.5): (a)Colon Cancer (b)Lung

Cancer.

are also in accordance with this expectation where extrinsic
measures generate less ‘FP’ pairs. In addition, inferring two
genes’ similarity from a set of other genes can benefit from
the group level interactions known to take place between
gene products when accomplishing certain cellular tasks [22].
High ‘TP’ counts associated with extrinsic measures are also
in accordance with this biological premise. Poor results of
the confidence measure indicate that choosing a proper as-
sociation function f is also vital when defining an extrinsic
similarity measure.

We also evaluate the Positive Predictive Value (PPV =
TP

TP+FP
) of these pairs on both datasets (presented in Fig-

ures 1a-b). As can be seen, for both datasets, smi and chi
measures constantly have higher PPVs when same number
of similar pairs are analyzed. For colon cancer dataset, when
compared to Pearson correlation, on average smi and chi
measures improved the PPVs 30% and 34% respectively.
For the lung cancer dataset, smi and chi measures again
produce higher PPVs (on average an increase by 11% and
10%) than the Pearson measure. On the other hand, for
both datasets TOM does equivalently or poorly when com-
pared to the Pearson measure. Our analyzes also show that
confidence is not a robust similarity measure due to the fact
that it only considers two genes co-occurrence without an-
alyzing their independence. As a result, it is impossible to
tell if two genes are correlated, independent or complemen-
tary based on their confidence scores. This leads to incorrect
conclusions about two gene’s similarity as implied by the
fluctuating pattern of the confidence measure in Figures 2a-
b.These results also suggest that mutual independence based
analysis generates more robust external similarity measures
when compared to the confidence based analysis.

In the next experiment, we evaluate the PPV of top pairs
for different values of κ. We re-run our analysis on colon
cancer dataset for different κ thresholds (depicted in Figure
1a (κ = 0.5) and Figures 2a-b (κ = 0.45 and κ =0.55)). In
each case, pairs identified by our extrinsic measures have
systematically higher PPVs than the other measures. As in
the previous cases, confidence measure produces inconstant
PPVs and TOM does equally well with the Pearson corre-
lation. These results show that although κ threshold has an
impact on the efficacy of extrinsic measures, within a rea-
sonable range (can be chosen by considering the average size

of neighborhood lists) of κ values, extrinsic measures would
be better alternatives to intrinsic measures.

6.3 Effect on Similarity Networks
In this experiment, we construct association networks by

connecting the top scoring gene pairs identified by each mea-
sure. To keep the same size for all networks, we only used the
top 0.01% of ‘similar’ gene pairs in each case. Accordingly,
from the colon cancer dataset a network of 12,438 edges and
from the lung cancer dataset a network composed of 89,359
edges are constructed. To investigate the biological quality
of these networks, we identify the ‘TP’ and ‘FP’ pairs (i.e.,
edges) in each network. Here, we again observe that the
advantage of using extrinsic measures is two-fold as shown
in the below table. First, they reduce the number of ‘FP’
edges and secondly they increase the number of ‘TP’ edges.
As a result, for the colon cancer dataset PPV is increased
by 18% and 20% when smi and chi measures are employed
respectively. For the lung cancer dataset, both measures
improve the PPV by 15 % when compared to the Pearson
measure. Networks identified using the TOM, do not have
higher PPVs than the networks generated by the Pearson
correlation, implying that TOM fails to contribute to a stan-
dard intrinsic similarity measure. These results suggest that
extrinsic measures are not only effective in reducing the false
inferences, but they also introduce certified edges missed by
the existing similarity measures. Given this, we believe that
well-suited extrinsic measures, can give additional insight
into the gene similarity networks which cannot be captured
by an intrinsic measure.

Colon Cancer Lung Cancer
TP FP PPV TP FP PPV

Pearson 427 548 0.44 3571 4027 0.47
TOM 420 539 0.44 2913 4125 0.41
Confidence 409 583 0.41 2881 3719 0.44
Smi 445 419 0.52 4494 3814 0.54

Chi 449 395 0.53 4309 3702 0.54

We also evaluate the effect of using different percentile
cut-offs that are used to infer ‘TP’ and ‘FP’ pairs. For this
purpose, we re-analyze the gene network generated from the
colon cancer dataset by varying the percentile cut-offs. We
vary upper tail percentile cut-offs between 0.05, 0.1 and 0.2
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Figure 2: PPV of the top ‘similar’ gene pairs identified from Colon cancer dataset for different values of κ (a)0.45

and (b)0.55.

and correspondingly lower tail cut-offs between 0.95, 0.9 and
0.8. We then analyze the PPV of colon cancer ‘similarity’
networks using these varying cut-offs (depicted in Figure 3).
As can be seen from this figure, although changing the cut-
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Figure 3: Evaluation of colon cancer network for

various percentile cut-offs.

offs effect the mere value of PPVs, networks generated from
extrinsic measures do consistently better than their intrinsic
counterparts for any cut-off setting. However, we also note
that when a wider (lower and upper) tail is considered for
our analysis, the improvement of extrinsic measures over in-
trinsic measures decreases. For example when we compare
smi measure with Pearson, the increase in PPV decreases
from 18% to 12% when the 20th (and 80th) percentile is
used instead of the 5th (and 95th) percentile. This can be
attributed to the existence of missing information in the GO
database. As expected, inference based on wider tails are
more severely affected by the partial information than the
inference based on extreme tails.

6.4 Effect on Network Clusters
In this experiment, we examine the quality of clusters ex-

tracted from different gene similarity networks. Extracting
groups of genes that are tightly connected in a co-expression
network is important for the inference of functional annota-
tion [10, 21, 3]. However, it is not yet clear which clus-
tering/partitioning method is the most useful one for this
purpose. To identify dense regions from our networks, we
employ the most commonly used clustering algorithm, i.e.,
hierarchical clustering with UPGMA. To our knowledge, no

entirely reliable method exists for identifying the correct
number of clusters (i.e., k) in a dataset. That is why, we
perform hierarchical clustering for a range of different num-
bers of clusters (100 ≤ k ≤ 1000). Modularity measure
proposed by Newman et al [14] is used to estimate the cor-
rect number of clusters for each network. As suggested by
the modularity analysis, colon and lung cancer networks are
initially partitioned into 500 and 400 clusters respectively.
Each clustering arrangement is validated using the cluster
validation measure (CPPV ). We then eliminate the clusters
with zero CPPV values and plot CPPV of the remaining
ones (depicted in Figures 4a-b). As can be observed from
these figures, smi and chi networks produce more clusters
with high CPPV values for both datasets. These results
confirm that networks generated based on external similar-
ity notions are better sources for obtaining biologically more
meaningful clusters.

We next investigate the importance of identifying biolog-
ically sound groupings for reaching a better understanding
of cancer and consequently developing new treatments.

7. DISCUSSION
In this section, we investigate the usability of clusters ex-

tracted from different gene similarity networks by running
a dataset specific analysis. For this part of our analysis,
we make use of the colon cancer dataset which is composed
of tumorous and non-tumorous tissues of the human colon
and rectum. As being the third most common cancer and
the second leading cause of cancer-related death in US, a
better understanding of the development and progression of
this disease can be crucial for determining novel targets and
strategies for its treatment.

Our experimental results show that by using extrinsic sim-
ilarity notions, we obtain clusters with higher CPPV imply-
ing pairwise similarities of genes in the same cluster. How-
ever, pairwise similarities do not prove that the cluster is
composed of many genes that are involved in the same path-
way or molecular function. We further analyze the extracted
clusters to investigate the ones that are functionally coher-
ent. For this purpose, we employ an enrichment analysis
that signifies the statistical value of a cluster’s functional ho-
mogeneity. We calculate an enrichment score (i.e., p-value)
which is defined as the chance of observing that particu-
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Figure 4: Distribution of CPPV for clusters extracted from (a) Colon cancer (k = 500) and (b) Lung cancer datasets

(k = 400).

lar grouping, or better, given the background distribution5.
Among all clusters, the ones that are significantly enriched
in genes from the same functional group are determined and
presented in the following table. Recommended cut-off of
0.05 is used for all our validations. A more detailed analysis
of these significant clusters is revealed that they can be very
useful in understanding and treating the colorectal cancer.
We discuss several of these clusters and their relation with
colon cancer in the rest of this section.

Several of the clusters extracted from the chi network, are
annotated with the GO terms related to the Signal Trans-
duction Pathway (i.e., receptor signaling protein activity, sig-
nal transducer activity, scavenger receptor activity). This is
an important pathway targeted for colorectal cancer treat-
ment [7]. Thus, studying these clusters might be important
for understanding the role of signal transduction in colorec-
tal cancer, and accordingly introducing promising molecu-
lar targets, and strengthening the existing therapeutic ap-
proaches. An additional use of these clusters might be to un-
derstand the interactions between various functional groups
that initiate and maintain colorectal cancer. One can study
the edges between clusters in order to reveal this informa-
tion. Other measures cannot disclose the biological signal
regarding the role of Signal Transduction Pathway in colon
cancer from our test data.

From the smi network, we extract a cluster that is com-
posed of genes associated with the GO term cytoskeleton.
Recent evidence indicates that the interaction of a tumor
suppressor gene (APC) with the cytoskeleton might con-
tribute to colorectal tumor initiation and progression [15].
That is why, we believe that locating these genes together
in a cluster is triggered by the role they play in colon cancer
tumorigenesis. Unfortunately, it is still unknown that how
APC interacts with the cytoskeleton and how their interac-
tion plays a role in the formation of colorectal tumors [15].
We believe that once functionally coherent (and less error-
prone) clusters are identified, relations between these clus-
ters can be used to reveal the function level interactions vital
for understanding the cause of some diseases.

Besides revealing pathways and functional groups associ-
ated with the colon cancer, significant clusters can also be

5All three ontologies are employed. For more details please
refer to our previous work [24].

employed for function prediction. Determining the functions
of genes is a central problem in biology [21, 5, 13]. An unan-
notated gene that is located into a cluster with a significant
functional annotation can be predicted to be part of this
same functional module. Our hypothesis is that clusters
that are functionally more coherent are better sources for
function prediction. As an example, one of the smi clusters
is associated with the GO term tRNA metabolism. In this
group, a gene (H05910) does not have a known annotation.
This suggests that the unknown gene might have an unre-
vealed task in this biological process. Using other similarity
measures the same gene is located into clusters that are not
enriched in any functional gene groups which provides no
information for function prediction and identification.

GO Term Measure p-value

receptor signaling protein activity Chi .000291

signal transducer activity Chi .000091

scavenger receptor activity Chi .000278

immunological synapse Chi .000590

Ras GTPase binding Chi .000209

phosphoprotein binding Chi .000160

mRNA metabolism Chi .000480

protein homooligomerization Chi .000217

regulation of metabolism Chi .000049

positive regulation of I-kappaB kinase/NF-kappaB cascade Chi .000062

secretion Chi .000250

general RNA polymerase II transcription factor activity Smi .000761

phosphatase regulator activity Smi .000965

secretory granule Smi .000309

leading edge Smi .000189

non-membrane-bound organelle Smi .000359

cytoskeleton Smi .000453

cation channel activity Smi .000096

DNA-directed RNA polymerase activity Smi .000603

hematopoietin/interferon-class cytokine receptor activity Smi .000965

FAD binding Smi .000774

translation initiation factor activity Pearson .000500

synaptic transmission Pearson .000031

obsolete molecular function Pearson .000283

synaptic transmission TOM .000030

protein N-terminus binding TOM .000217

acetyl-CoA C-acyltransferase activity Conf. .000279

helicase activity Conf. .000025

golgi apparatus Conf. .000339
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8. CONCLUSION
In this paper, we have introduced the notion of mutual

independence of genes based on their relations with their
common neighbors. We have presented suitable extrinsic
similarity measures for microarray analysis that make use of
the mutual independence analysis. We have investigated the
efficacy of the proposed measures and run thorough analysis
to compare them with other measures available in the litera-
ture. Our experimental results prove that using the extrinsic
measures it is possible to identify gene pairs that are bio-
logically more relevant. In addition, association networks
generated based on these measures are shown to contain
more ‘TP’ edges and less ‘FP’ edges.

Our analysis also shows that different similarity notions
can reveal different aspects of a microarray dataset as im-
plied by the diverse annotations extracted from different net-
works. Previously, we have studied different ensemble tech-
niques to improve clustering results on a scale-free protein
interaction network [2]. We believe that an ensemble ap-
proach in integrating different aspects of a dataset captured
by different similarity measures could work well in microar-
ray analysis. In the future, we plan to investigate this. As
an extension, we would also like to work on characterizing
the group level interactions among genes and gene products
using the multivariate information analysis.
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ABSTRACT
We consider the problem of finding over-represented arrange-
ments of Secondary Structure Elements (SSEs) in a given
dataset of representative protein structures. While most pa-
pers in the literature study the distribution of geometrical
properties, in particular angles and distances, between pairs
of interacting SSEs, in this paper we focus on the distribu-
tion of angles of all quartets of SSEs and on the extraction of
over-represented angular patterns. We propose a variant of
the Apriori method that obtains over-represented arrange-
ments of quartets of SSEs by combining arrangements of
triplets of SSEs. This specific case will pose the basis for
a natural extension of the problem to any given number of
SSEs. We analyze the results of our method on a dataset of
300 non redundant proteins.

1. INTRODUCTION
The problem of finding recurrent three-dimensional pat-

terns in proteomic data is of biological interest and therefore
has been studied in different contexts and with various tech-
niques [6, 16]. In fact, although the information on the fold
of a protein is already totally contained in its amino acid
sequence, the calculation of the minimal energy among all
the possible conformations is a task which is overwhelming
even for the fastest computer. For this reason, a great deal
of efforts has been spent over the years in order to disclose
hidden rules about the organization of secondary structure
elements [2, 8].

A simplified description of the three-dimensional protein
structure is that of considering it as an arrangement of SSEs.
The possible ways SSEs aggregate in space is someway lim-
ited: all protein structures, till now determined, can be
grouped in a relatively limited number of different folds.
Moreover, it is well known that interacting SSEs show marked
preferences in their reciprocal orientation. For example, in-
teracting β-strands are very often organized in sheets, where
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each strand is disposed in a roughly parallel or antiparallel
orientation with respect to the neighboring ones [3]. Prefer-
ences between interacting α-helices have been also studied
extensively and general rules extracted [4, 7, 15]. Neverthe-
less, it has been shown that the expected uniform random
distribution of angles is actually biased toward angles near
90o[1]. When this geometric bias was taken into account,
the observed peaks in the helix-helix angle distribution were
significantly attenuated: correcting for statistical bias, the
true preference for particular packing angles in soluble pro-
teins is not as strong as previously thought.

Moreover, the relative arrangement of non-interacting SSEs
in space is less obvious [11]. In order to analyze their global
disposition, in the past we have conducted a statistical anal-
ysis on the occurrences of triplets of SSEs [10, 17]. We
found that the distribution is far from being random, with
a marked preference for specific angle combinations. This
knowledge could be used to guide the engineering of stable
protein modules or to predict the three-dimensional struc-
ture [13].

The present study extends the previous analysis, taking
into account quartets of SSEs. It presents an analysis of the
distribution of secondary structures within a selected set of
non redundant proteins. It constructs frequent patterns of k
elements (or itemsets of size k) by joining frequent patterns
of size k − 1.

2. PROBLEM DESCRIPTION
Given a data-set of proteins structures, we address the

problem of finding over-represented arrangements of SSEs
in terms of geometrical properties. Most papers in the lit-
erature study the distribution of geometrical properties, in
particular angles, between pairs of interacting SSEs [14, 18].
Here we focus on over-represented configurations consisting
of more than two SSEs and analyze the distribution of angles
of such configurations. Our task is to design a framework to
extract over-represented arrangements of k SSEs, by com-
bining the results obtained with arrangements of k−1 SSEs.
We discuss in details how to obtain over-represented ar-
rangements of four SSEs by using the distribution of triplets
of SSEs instead of generating all quartets of SSEs from the
data set. This specific case will pose the basis for a natural
extension of the problem to any given number of SSEs.

Each protein structure of the dataset is given with the list
of SSEs ordered according to the backbone chain. A line seg-
ment is associated to each SSE. For a β-strand the segment
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is the best fit segment of the set of atoms of the strand, for
an α-helix it is the best fit axis. For the purpose of our anal-
ysis, a line segment is assumed to be a unit vector applied in
the origin of a reference system in three-dimensional space.
Thus a protein is a list of m unit vectors (s1, · · · , sm).

An arrangement of SSEs is described in terms of the an-
gles formed by all pairs of corresponding vectors. Let αhk

be the dihedral angle of sh and sk, 0o ≤ αhk ≤ 180o.
A triplet of SSEs (si1, si2, si3), with i1 < i2 < i3, is de-
scribed by three angles α12, α13 and α23 satisfying the tri-
angle inequality. A quartet of SSEs S = (si1, si2, si3, si4),
with i1 < i2 < i3 < i4, gives rise to 6 dihedral angles
Q = (α12, α13, α23, α24, α34, α14). A schematic representa-
tion of the unit vectors derived from a quartet of SSEs can
be found in Figure 1. It is easy to show that, in the gen-
eral case, the six angles are not completely independent.
More precisely, given 5 of the αhk angles, the sixth angle
can take only one of two possible values. The derivation of
such values is omitted for lack of space. Furthermore, when
three out of four segments are mutually orthogonal then one
of the angles formed by the fourth segment with the three
segments is uniquely determined by the other two angles.
Another important question, that will be considered in sec-
tion 4, is whether it is possible to superimpose, by a rigid
transformation, two quartets forming the same angles.

3

4
1

2

2

1

3

4

(a) (b)

Figure 1: (a) An example of vector discretization for
a quartet of SSEs. (b) The unit vectors translated
to the origin (into the unit sphere).

The angular values are discretized into uniform intervals,
with every interval represented by an integer. More pre-
cisely, in our work the range 0o − 180o is divided into 10
intervals, and an angle α represented by the integer i such
that i ∗ 18o ≤ α < (i + 1) ∗ 18o. Thus a quartet of SSEs
is represented by 6 integer values each in the range [0,10].
In the following we refer to the discretized angles simply as
angles.

3. DISCOVERY OF OVER-REPRESENTED
PATTERNS

Our approach is similar to the Apriori algorithm used for
data mining applications. Apriori finds frequent associations
of attributes of k elements (or itemsets of size k) by joining
frequent associations of itemsets of size k− 1. Similarly, our
algorithm finds over-represented arrangements of quartets of
segments from over-represented triplets of segments; it does
so by joining over-represented triplets of angles to obtain
over-represented sextuplets of angles.

However, our approach differs substantially from Apriori
in the way the patterns are joined together to obtain pat-
terns of larger size. At the basis of the Apriori mining al-
gorithm is the anti-monotone property that states that all
non empty subsets of a frequent set must also be frequent.
In other words, if an itemset cannot pass the test of being
frequent, then all its supersets will fail the same test.

The anti-monotone property does not hold for the an-
gles formed by sets of segments. Consider a frequent sextu-
ple of angles Q = (α12, α13, α23, α24, α34, α14) and all quar-
tets S of segments with angles Q. Even though Q is fre-
quent, it is possible that triplets that are subsets of Q are
not frequent. This is the case of the triplet of angles T =
(α13, α23, α24) that cannot be formed (in the general case)
by a triplet of segments which is a subset of an element
of S, because the three angles involve all 4 segments of a
single element of S. However, there are four triplets of an-
gles subsets of a frequent sextuple Q that must be frequent.
These are (α12, α13, α23) and (α23, α24, α34), (α13, α14, α34)
and (α12, α14, α24). Indeed, the four triplets are formed by
the four different ways of choosing three segments out of
four. Frequent triplets of angles are extracted by comparing
the observed frequencies of triplets of angles with those of
randomly distributed vectors.

We now describe our mining procedure. We start by giv-
ing an overview of our approach, and then describe each step
in detail.

PROCEDURE: Pattern Discovery

1. Initialization: From the given protein data set generate
the set A of all ordered triplets of angles associated to
ordered triplets of SSEs, sorted according to the order
along the backbone.

2. Build an hash table indexed by the triplets of angles
that stores all triplets of segments.

Derive the 3D histogram of the distribution of the
triplets of A from the hash table. The histogram has
b = 10 bins along each axis, for a total of b3 bins or
cells.

3. Build the distribution of triplets of angles of random
unit vectors and derive the corresponding 3D histogram.

4. Based on the deviation between the histogram of ob-
served triplets of angles and that of random triplets,
determine the subset C ⊂ A of triplets that are over-
represented.

5. Join step: construct candidate sextuples of angles from
triplets of C.

6. Verification step: prune candidate sextuples to find the
over-represented ones.

3.1 Building the Hash Table
We build a four-dimensional hash table with the following

index structure: for a given triplet of vectors, three indexes
are given by the quantized values of the angles of the triplet,
the fourth index depends on the composition of the triplet
in terms of the number and position of helices and strands.
This index, called triplet type, is used when a separate anal-
ysis is requested for helices and strands. The size of the cells
of the table is the same as the binsize for the histograms.
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Each cell of the table contains a list of records, one for every
triplet that hashed into it. The following procedure inserts
protein P into the hash table and is a variant of the one
described in [5].

PROCEDURE: Insert Protein
Given protein P , all triplets of secondary structures of P are
examined and for each triplet (pu, pv, pz) with u < v < z the
following steps are executed:

i. Compute the angles (αuv, αvz, αuz) and determine triplet
type.

ii. Access the cell of the hash table at the location in-
dexed by triplet type and by the quantized values of
(αuv, αvz, αuz).

iii. Append to the list of records at that cell a new record
that contains:

• the name of protein P .

• the identifier of each secondary structure element
of the triplet.

The above procedure is repeated for all proteins in the
data set. The construction of the table is computationally
intensive. However, the number of proteins of the dataset
to be inserted is relatively small.

3.2 Generating Random Triplets
The selection of the frequent triplets is the crucial point

of the overall procedure: a wrong selection can produce a
meaningless starting point that can lead to unreliable re-
sults. Thus this step must be carefully designed. We ob-
serve that the distribution of geometric properties of triplets
strongly depends on the features considered. To avoid the
bias due to the features considered, we compute the null
distribution of such properties.

The random generation of a triplet of angles is decom-
posed into the generation of three versors. A versor is a
vector of unit length that we assume to be in the semi-
sphere identified by a positive value of the z coordinate. A
versor is now uniquely determined by two parameters: its
coordinate z ∈ [0, 1], and its Azimuth β ∈ [0, 2π]. We have
already observed that the triangular inequality holds for any
three angles α, β, γ of a triplet of segments; it translates
into the following three constraints: α + β ≥ γ, α + γ ≥ β,
β + γ ≥ α. This implies that not all cells of the hash table
can be populated by triplets of segments; in other words,
there are cells that will remain empty. Furthermore, some
cells can only be partially populated. Thus when deciding
which cells correspond to most frequent triplets of angles,
we have to take into account the above consideration and
normalize by the volume of the region of the cell that can in
fact be populated. This region is determined by considering
that the above three constraints correspond to the equa-
tions of the three boundary planes α + β = γ, α + γ = β,
β + γ = α delimiting the populated area in 3D space. By
intersecting each cell of the 3D array with the three bound-
ary planes we find out which region, if any, has to be ex-
cluded and consequently compute the volume Vc of the pop-
ulated region. Thus the frequency of a cell (α, β, γ) will be:
Count(α, β, γ)/Vc(α, β, γ).

Given a data set of n real proteins to analyze, we generate
the distribution of angles of n sets of random vectors, each

corresponding to a protein of the dataset and containing the
same number of SSEs of such protein.

The generation of the ensemble of random vectors is re-
peated several times and, at the end, each cell of the hash
table has the average of the values of the cell over all random
generations. This results in a 3D histogram representing all
triplets of angles, where each triplet has attached a mean and
a variance. For the selection of over-represented angles we
experimented with different selection policies. To preserve a
reasonable number of candidates we select the configurations
of angles that have a frequency above the mean.

3.3 Join and Verification Steps
The operation join merges four frequent triplets (α12, α13,

α23) and (α23, α24, α34), (α13, α14, α34) and (α12, α14, α24)
into the candidate sextuple (α12, α13, α23, α24, α34, α14). The
four triplets to be merged are such that the last angle of the
first triplet is the same as the first angle of the second; the
second element of the first triplet is the same as the first
element of the third triplet, and so on. Recall that all an-
gles are discretized. Furthermore, note that two triplets may
coincide.

Once a candidate sextuple has been identified in step 5,
the verification procedure checks that there is in fact a sta-
tistically significant number of quartets of vectors with that
sextuple of angles. This number will provide the actual fre-
quency of the sextuple of angles. The verification step is
needed because some triplets of segments contributing to
the count of frequent triplets of angles cannot be joined
into quartets of segments. For instance, the two triplets
might be from different proteins. Two triplets of segments
(s1, s2, s3) and (t1, t2, t3) associated to SSEs of the same pro-
tein and forming angles (α12, α13, α23) and (α23, α24, α34),
respectively, can be joined into a quartet of segments with
angles (α12, α13, α23, α24, α34, α14) if (s2 = t1 and s3 = t2),
i.e. the last two segments of the first triples coincide with
the first two of the second triples. Two such triplets of seg-
ments are called “consistent” and they contribute one to the
frequency count of the associated sextuple.

To efficiently search for consistent triplets, we use the hash
table built in step 2 containing the triplets of segments of
all proteins. The frequency or count of a candidate sex-
tuple (α12, α13, α23, α24, α34, α14) is determined as follows.
Access the hash table at the cells E1 and E2 indexed by
(α12, α13, α23) and by (α23, α24, α34) respectively. For each
triplet (s1, s2, s3) in E1 with associated protein name P
search in E2 for all triplets (s2, s3, t), with any arbitrary t,
of the same protein P . For each such triplet increment the
count if the last angle α14 is compatible with the candidate
sextuple under examination.

4. SPATIAL ARRANGEMENTS OF VECTORS
WITH THE SAME ANGULAR PATTERN

It is interesting to determine whether two sets of vectors
with the same angular pattern can be superimposed by a 3D
rigid transformation, or whether the spatial conformations
of the two sets of vectors differ in their 3D shape. Protein
structure comparison algorithms that align SSEs also use a
shape similarity measure based on the rigid superposition of
the structures [21].

We define equivalent two sets of vectors that can be super-
imposed by a rigid transformation. We first look at the case
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of triplets of vectors (a, b, c) and their angles (α, β, γ). We
recall that the unit vectors are applied into the origin O of
a coordinate system without considering the actual location
of the SSE in 3D space. It is easy to see that there are two
distinct triplets of vectors (a, b, c) and (a, b, c′), where c and
c′ are non parallel vectors, forming a given triplet of angles
(α, β, γ). For example (see Figure 2), consider four vectors
forming a regular pyramid with vertex in 0; label two oppo-
site vectors of the pyramid a and b and the other two c and
c′. The two triplets of vectors (a, b, c) and (a, b, c′) have the
same angles but are non equivalent since they are one the
mirror of the other.

a

c

b

c’

Figure 2: An example of two triplets, (a, b, c) and
(a, b, c′), with the same pairwise angles, one the mir-
ror of the other.

Perhaps more convincing is the following proof. All vec-
tors forming a given angle δ with a given vector v are rays of
the cone with vertex in O and forming δ angle with v. Given
two vectors a and b forming angle α, a third vector forming
angles β and γ with a and b, respectively, is at the intersec-
tion of two cones. Two cones intersect at either one or two
lines. In the first case, the only possible triplet consists of
vectors lying on the same plane (α + β = γ); in the latter
there are two non parallel vectors c and c′ corresponding to
two distinct triplets.

In conclusion, a triplet of angles (α, β, γ) corresponds to
two spatial arrangements of unit vectors (a, b, c) and (a, b, c′)
that are one the mirror of the other; equivalently, there
exists a transformation with determinant -1 mapping one
triplet of vectors into the other. Loosely speaking, although
two triplets of vectors cannot be superimposed by a rotation
(with determinant 1), they correspond to a similar configu-
ration in terms of angles.

If we extend this argument to quartets of vectors, the
number of non equivalent arrangements doubles. Consider
a sextuple of angles (α12, α13, α23, α24, α34, α14). To con-
struct all non equivalent quartets of vectors corresponding
to it, we follow a build-up approach. From the first three
angles (α12, α13, α23) we construct either one triplet of vec-
tors (a, b, c) or two (a, b, c) and (a, b, c′). Then, we derive
the last vector d. There are four possible cases:

1. If α12 +α23 = α13 and α23 +α34 = α24, then there is a
single triplet (a, b, c) and a single triplet (b, c, d). Thus,
there exists a unique arrangement of four vectors.

2. If α12 + α23 = α13 but α23 + α34 < α24, then two dis-
tinct arrangements are possible, (a, b, c, d) and (a, b, c, d′).

3. Otherwise, if α23 = α34 then four different arrange-
ments are possible, with three distinct vectors as last
component of the quartet: (a, b, c, d), (a, b, c, d′),
(a, b, c′, d′) and (a, b, c′, d′′).

4. In all other cases, the following four arrangements are
possible: (a, b, c, d), (a, b, c, d′),(a, b, c′, d′′) and
(a, b, c′, d′′′).

5. RESULTS AND DISCUSSION
We selected a set of 300 non-redundant proteins from dif-

ferent families and computed the set of all triplets of SSEs
and their associated linear segments. To include only sig-
nificant SSEs, we required helices to have at least seven
residues, corresponding to two complete turns of a regular
helix. Strands were required to have at least three residues
for proper fitting of a vector to the Cα coordinates. Sec-
ondary structures are represented by the best-fit line seg-
ments. A Singular-Value Decomposition (SVD) routine is
used to associate a segment to each α-helix and β-strand
[9]. Using this dataset we constructed the hash table of
triplets of angles and compared it with the random distri-
bution to determine the cells that deviate significantly from
the corresponding cells for the random data. The hash table
contains 520 non empty cells (containing a total of 398,853
triplets of vectors), of which 242 were selected as frequent
(corresponding to 189,270 triplets). The histogram of the
triplets of angles selected as frequents is shown in Figure 3.
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Figure 3: 3D histogram of the distribution of se-
lected angles. Each axis represents an angle and the
frequency of each triplet follows the color coding.

5.1 Analyzing Over-represented Patterns of An-
gles

The pattern discovery process finds a set of over-represented
arrangements of four SSEs. Each arrangement is described
by six ordered angles, i.e. an angle corresponds to a specific
pair of SSEs which is identified by the sequential order of
SSEs along the primary structure. Thus two arrangements
forming the same six angles, but in a different order, cor-
respond to two different patterns, even though they can be
considered geometrically equivalent. We address this issue
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by merging together patterns composed by the same angles
and ignoring the relative order of angles.

By merging patterns, the discovery procedure selects a set
of 785 over-represented patterns, formed by 485,021 quartets
of segments, out of 2,262 patterns and more than 3,000,000
quartets obtained by the exhaustive search. The top pattern
is composed by the discretized angles (1, 2, 3, 7, 8, 9), corre-
sponding to angles in the ranges (18o− 36o, 36o− 54o, 54o−
72o, 126o − 144o, 144o − 162o, 162o − 180o), and has a fre-
quency of 6,439, the top second has similar angles, (1,2,7,8,
8,9), and a smaller frequency of 5,780. The frequency count
drops dramatically after the first few patterns. It is interest-
ing to notice that the top 11 angular patterns (out of 785)
cover about 10% of the quartets; coverage of the quartets of
about 20% is obtained by 29 patterns and that of 50% by
122 patterns.

The overall discovery procedure is relatively fast; it takes
approximately 20 minutes on a standard PC (AMD Athon
2.6 GHz). On the same machine, the exhaustive generation
of all possible quartets of SSEs takes more than 3 days.

We observed that over-represented patterns of angles tend
to form clusters in the six-dimensional space correspond-
ing to six angles. Thus, we further analyzed the set of
over-represented patterns by clustering them using as dis-
tance the Euclidean distance between angular patterns in
six-dimensional space.

We experimented with different clustering algorithms and
different numbers of clusters and, based on the measure of
silhouette [12], we selected the k-means algorithm with 3
clusters. Clusters 1 and 3 contain, respectively, the first and
second most frequent pattern. Cluster 2 contains the config-
uration of angles (0, 1, 1, 2, 2, 3) that appears at position 16
in the overall ranking of patterns. The top patterns for each
cluster are shown in Figure 4. In Figure 5 the cluster sepa-
ration is highlighted by plotting the distribution of distances
between the centroids of each cluster and the elements of all
3 clusters.

In all clusters the angles vary from 0o to 72o and from 126o

to 180o, while values between 80o and 100o are completely
absent. This is not surprising because the distribution is
biased by the presence of many interacting SSEs. For ex-
ample, in parallel and anti-parallel β-sheets, each β-strand
typically forms a small angle with the two nearby strands.
The same is true for interacting α-helices, that pack forming
small angles; furthermore, they are hardly found perpendic-
ular to each other [19, 20]. Cluster 2 is the smallest one,
with 32,988 elements; it contains SSEs characterized by the
same orientation: in fact, the angles between all pairs of
SSEs are in the range 0o to 72o. The other two clusters
are more densely populated; cluster 1 has 221,879 elements
and cluster 3 has 230,154 elements. In these two clusters
the SSEs are arranged with three SSEs with the same ori-
entation and the other one with the opposite (cluster 1) or
with two SSEs in the same orientation and the other two in
the opposite orientation. The smaller number of elements
in cluster 2 reflects the tendency of SSEs that are close in
space to form anti-parallel configurations.

If we restrict the analysis to homogenous configurations,
i.e. those containing four strands or four helices, we obtain
similar results for the clusters, but with a preference for
anti-parallel pairs, corresponding to the top ranked pattern
of angles (1, 2, 7, 8, 8, 9).

The over-represented patterns considered so far have in-

α0 α1 α2 α3 α4 α5 Frequency
1 2 3 7 8 9 6,439
1 2 3 7 8 8 5,586
1 1 2 7 8 9 4,657
1 2 3 6 8 9 4,085
1 2 3 7 7 8 3,728
1 1 2 6 7 8 3,648
1 2 2 7 8 9 3,401
1 2 3 6 7 9 2,958
1 1 2 8 8 9 2,833
1 1 2 7 8 8 2,494

Cluster 1

α0 α1 α2 α3 α4 α5 Frequency
0 1 1 2 2 3 2,623
1 1 1 2 2 3 2,162
0 1 1 1 2 2 2,123
0 1 1 2 3 3 1,667
0 1 1 2 2 2 1,445
0 1 1 1 1 2 1,311
0 1 1 1 2 3 1,246
0 1 2 2 3 3 1,178
1 1 1 2 3 3 1,039
1 1 2 2 2 3 1,010

Cluster 2

α0 α1 α2 α3 α4 α5 Frequency
1 2 7 8 8 9 5,780
1 3 6 7 8 9 5,100
1 2 6 7 8 9 4,437
2 3 6 7 8 9 3,884
1 3 7 7 8 8 3,831
1 2 7 7 8 9 3,637
1 1 7 8 8 9 2,916
1 3 6 7 8 8 2,572
1 3 7 7 8 9 2,544
0 3 7 7 8 8 2,525

Cluster 3

Figure 4: The ten top frequent patterns for the three
clusters.

cluded the SSEs of the selected set of proteins, regardless
of their distances. We now consider homogenous patterns
of SSEs that are close in space; we define two SSEs to be
in contact if the distance between the mid-points of their
associated vectors is less than a given threshold (18 in our
analysis). Figure 6 shows the number of pairs of vectors in
contact for the top configuration. It is interesting to notice
that in all cases at least one pair of vectors is in contact,
and very often three or more vectors are in contact. No-
tice that the use of the same threshold penalizes helices,
because of their bigger steric hindrance [18]. Nevertheless,
more than 65% of the elements have at least two SSEs in
contact. To better appreciate the proximity of these over-
represented configurations, in Figure 7 we show different ex-
amples of four strands, with angles (1, 2, 7, 8, 8, 9). In all
these examples the four strands are in contact. Although
they display different arrangements, their pairwise angles
are similar, thus they fall into the same cell of the hash ta-
ble. These patterns of angles are obtained with SSEs from
the same β-sheet (Figure 7(c)), as well as from different β-
sheets (Figure 7(a) and (b)). The fact that most, but not all,

BIOKDD 2007: 7th Workshop on Data Mining in Bioinformatics 23



(a) (b)
Distribution of distances from the centroid of Cluster 1. Distribution of distances from the centroid of Cluster 2.

(c)
Distribution of distances from the centroid Cluster 3.

Figure 5: Distance distributions between centroids of clusters.

(a) Number of pairs in contact in quartets of strands. (b) Number of pairs in contact in quartets of helixes.

Figure 6: Number of pairs of segments in contact.
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(a) (b) (c)

Figure 7: Three examples of the pattern of angles (1,2,7,8,8,9) composed by all strands: (a) Protein 1hpl,
SSE: 16-17-18-20; (b) Protein 1acc, SSE: 0-1-2-3; (c) Protein 1aor, SSE: 4-6-8-12.

SSEs are close in space consolidates the idea that arrange-
ments of angles are influenced by atomic interactions, either
directly or through other SSEs that do not explicitly belong
to the quartet. Finally, as illustrated in Figure 7, secondary
structure elements belonging to the same quartet do not
necessarily correspond to similar structures, i.e. structures
that can be superimposed by rotation and translation. For
this reason it is impossible to associate a three-dimensional
motif, or a group of motifs, to the most frequent quartets
described above. The biological significance of the distribu-
tions observed needs a deepener investigation.

6. CONCLUSIONS
We have proposed an efficient algorithm to extract over-

represented quartets of SSEs, that avoids the exhaustive
generation of patterns. We have shown that a careful anal-
ysis of the angular bias of random vectors is essential in
the determination of over-represented arrangements of sec-
ondary structures. This study provides a generalized frame-
work that can be easily extended to patterns composed by
more than four SSEs. The knowledge of over-represented
patterns could be used to guide the engineering of stable
protein modules or to predict their three-dimensional struc-
tures. Other applications can be designed by replacing the
null distribution with that of a specific family of proteins.
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ABSTRACT
Protein-protein interactions are intrinsic to almost all cel-
lular processes. Protein domains, the fundamental units
in a protein are key elements to mediate such interactions.
Whereas domain-based methods to predict protein-protein
interactions often used only protein domain information;
protein-protein interactions, in fact, are also associated with
the biological nature of each interacting partner. Integrat-
ing both protein domain features and genomic/proteomic
features of interacting partners is expected to better pre-
dict protein-protein interactions, and to discover reciprocal
biological relationships among protein-protein interactions,
protein domains, and genomic/proteomic features related to
protein-protein interactions.

We present a novel integrative domain-based approach for
predicting protein-protein interactions (PPI) using inductive
logic programming (ILP). Two principal domain features
are domain fusions and domain-domain interactions. Var-
ious relevant genomic and proteomic features of PPI are ex-
ploited, from five popular genomic and proteomic databases.
Integrating protein domain data and various kinds of data
from multiple genomic and proteomic databases, we con-
structed biologically significant ILP background knowledge
of nearly 220,000 ground facts. The experimental results
from 10-fold cross-validation demonstrated that our approach
can better predict protein-protein interactions than other
computational methods. When applied to many PPI data
sets, our method can more reliably predict PPI in terms of
the expression profile reliability indexes. The induced ILP
rules give us a lot of interesting biological reciprocal relation-
ships among protein-protein interactions, protein domains,
and genomic/proteomic features related to protein-protein
interactions.

Supplementary materials are now available at http://www.
jaist.ac.jp/∼s0560205/PPI/.
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1. INTRODUCTION
Protein-protein interactions are indispensable at almost

every level of cell function, in the structure of sub-cellular or-
ganelles, in the transport across the various biological mem-
branes, in muscle contraction, signal transduction, and reg-
ulation of gene expression, etc. Detecting protein func-
tions via prediction of protein-protein interactions (PPI)
has emerged as a new trend, both in vitro and in silico.
Therefore, prediction of protein-protein interactions has be-
come one of the most challenging tasks in the post-genomic
era. Experimental techniques have marked unmistakable
progress in finding out and verifying protein interactions for
diverse organisms, including well-known ones such as two-
hybrid assay [9], [28], affinity purification and mass spec-
trometry [1], phage display [22]. Because of little overlap
among these experimental databases, the question about
their reliability is raised.

With the recent blooming of public proteomic and ge-
nomic databases, numerous computational approaches offer
a chance to study more widely and deeply regarding protein-
protein interactions. Depending on the source of informa-
tion used, computational approaches can be categorized in
three groups: structure-based approach such as the work
of [3], sequence-based approach such as the work of [14],
and genome-based approach such as the work of [19]. Be-
sides methods based on a single data source, many bioinfor-
maticians make the effort to integrate multiple data sources
to better predict PPI. Jansen et al. [10] used a Bayesian
network approach for integrating weakly predictive genomic
features into reliable predictions of protein-protein interac-
tions. Several kernels for different data sources like pro-
tein squences, Gene Ontology annotations, local properties
of networks, etc. are combined to infer PPI [2]. Some other
efforts were the probabilistic decision tree approach [30], in-
ductive logic programming method [25], probabilistic model
[20], etc.

From multiple data sources, these works can extract and
combine various genomic and proteomic features related to
PPI. The obtained results showed many advantages of mul-
tiple data source integration. The shortcoming of their work
is that they did not take protein domains into account.
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However, it is a fact that the biological mechanism behind
protein-protein interactions involves protein domains and
their interactions [18].

Protein domains are structural and/or functional units
of proteins that are conserved through evolution to repre-
sent protein structures or functions. They are believed to
be the key regulators in protein-protein interactions. In-
teractions among domains are needed as stable channels of
PPI. Recently, prediction of PPI based on domains has re-
ceived much attention in many ongoing studies. One of the
pioneering works based on protein domains is an associa-
tion method developed by Sprinzak and Margalit [23]. Kim
et al. improved the association method by considering the
number of domains in each protein [12]. Han et al. pro-
posed a domain combination-based method by considering
the possibility of domain combinations appearing in both
interacting and non-interacting sets of protein pairs [8]. A
graph-oriented method is proposed by Wojcik and Schachter
called the interacting domain profile pairs (IDPP) method
[29]. Chen et al. used domain-based random forest frame-
work to predict PPI [4].

The previous work all treasured the biological roles of pro-
tein domains in PPI prediction. The main disadvantage
of these methods is that most of them merely considered
the co-occurrence of domains/domain pairs. To predict PPI
comprehensively, it is necessary to combine various domain
features and genomic/proteomic features.

In this paper, we present a novel integrative domain-based
approach using inductive logic programming to predict pro-
tein-protein interactions. The key idea of our computational
method is to integrate protein domain features and multi-
ple genomic and proteomic features. To combine efficiently
both features of protein domains and different features of
genomes and proteomes to predict PPI, we specified two
main tasks. The first one is extracting as many useful do-
main and genomic/proteomic features as possible related
to PPI. From seven popular databases, we extracted more
than two hundred thousand ground facts of domain fusion,
domain-domain interaction features and various other bio-
logically significant genomic/proteomic features. The sec-
ond one is employing inductive logic programming (ILP)
with the huge amount of background knowledge to effec-
tively infer PPI.

To demonstrate the advantages of the integration domain
features and genomic/proteomic features in PPI prediction,
we conducted 10-fold cross validation tests for our methods
and two other methods based on single domain features,
and also for the non domain-based approach using multi-
ple genomic databases. For all cases, our method performed
considerably better than others. The expression profile reli-
ability index (EPR Index) additionally showed the high reli-
ability of our methods when applied to several PPI datasets.
At last, analyzing various produced rules, many interesting
relationships among PPI and DDI, and protein functions,
biological processes were found. Our proposed methods can
be tuned to predict PPI for diverse organisms and other
genomic and proteomic data sources.

The remainder of the paper is organized as follows. In
Section 2, we present our proposed method to predict PPI
based on domains using ILP and multiple genomic and pro-
teomic databases. The comparative evaluation of the exper-
iments is given in Section 3. Predictive rules of PPI, as well
as discussion, are presented in Section 4. Some concluding

remarks are given in Section 5.

2. MATERIALS AND METHODS
In this section, we present our proposed method to predict

protein-protein interactions based on domain and multiple
genomic and proteomic data using ILP. Two main tasks of
the method are: (1) Constructing integrated background
knowledge1 of domain features and multiple genomic and
proteomic features, and (2) Learning PPI predictive rules
by ILP from the constructed background knowledge. Con-
structing ILP background knowledge requires two steps. The
first one is defining ILP predicates. The second one is ex-
tracting ground facts2 to define extensionally predicates.

When choosing a feature, we concentrated on two points.
First is the biological role of that feature in protein-protein
interactions or domain-domain interactions, and second is
the availability of data of that feature. Based on results of
experimental and computational research on PPI, twenty
two features of protein domains and genomes/proteomes
were chosen and were formulated using ILP predicates. The
huge database of more than 220,000 ground facts of twenty
two predicates is sufficient for accurate PPI prediction.

We first introduce briefly about Inductive Logic Program-
ming (ILP) and some bioinformatic applications of ILP in
Section 2.1. Then the first task in our proposed method is
presented in Subsections 2.2, 2.3, and 2.4. Subsection 2.5
describes the second task.

2.1 Inductive Logic Programming
Inductive Logic Programming is the intersection of ma-

chine learning and logic programming [15]. ILP aims to de-
velop theories, techniques, and tools for inducing hypotheses
from observations using representations from computational
logic. ILP studies learning from examples, within the frame-
work provided by clausal logic. Here the examples and back-
ground knowledge are given as clauses, and the theory that
is to be induced from these, is also to consist of clauses.

An ILP system is generally set with three languages:
LO : the language of observations
LB : the language of background knowledge
LH : the language of hypotheses

Given a consistent set of examples of observations O ⊆ LO

and consistent background knowledge B ⊆ LB, ILP systems
find hypotheses H ∈ LH such that:

B ∧H ` O

Distinguishing features of ILP are its ability to take into
account background (domain) knowledge in the form of logic
programs, and the expressive power of the language of dis-
covered patterns [7]. ILP is particular suitable for bioin-
formatics tasks because of its ability to take into account
background knowledge and work directly with structured
data. The ILP system GOLEM has been applied to find
the predictive theory about the relationship between chem-
ical structure and activity, eg. the problem of inhibition
of E.Coli Dihydrofolate Reductase by two different groups
of drugs (pyrimidines and triazines) [13]. Other central con-
cerns of bioinformatics have been convincingly solved by ILP

1the term ’background knowledge’ is used here in terms of
the language of inductive logic programming.
2the term ’ground facts’ is used here in terms of the language
of inductive logic programming.

BIOKDD 2007: 7th Workshop on Data Mining in Bioinformatics 28



, such as protein secondary structure prediction [16], protein
fold recognition [27], etc.

2.2 Extracting Domain Fusion and Domain-
Domain Interaction Data

Protein domains form the structural or functional units
of proteins that partake in intermolecular interactions. The
existence of certain domains in proteins can therefore sug-
gest the propensity for the proteins to interact or form a
stable complex to bring about certain biological functions.
Domain fusion and domain-domain interaction features have
important biological roles in PPI prediction [26], [18], and
these two domain features are extracted in our work.

Let P denote the set of considered proteins pi. Denote by
D the set of all protein domains dk which belong to proteins
pi. A protein pair (pi, pj) that interacts together is denoted
by pij , and a protein pair that does not interact together by
¬pij . Similarly for a domain pair (dk, dl), dkl represents an
interaction, and ¬dkl a non-interaction.

Domains of interacting proteins have more chance to fuse
together than domains of non-interacting proteins. There-
fore, when finding a pair of proteins which have fused do-
mains, we can predict an interaction between them. Domain
fusion data is referred from Domain Fusion Database [26].
We extracted domain fusion data for protein pairs (pi, pj),
∀pi, pj ∈ P . The following predicate represents the domain
fusion between two proteins:

domain fusion(+protein, +protein, #FUSION) (1)

Note that in the ILP system used - system Aleph (A learn-
ing engine for proposing hypothesis) [24], there are some
mode declarations to build the bottom clauses, and a sim-
ple mode type is one of the following: (1) the input vari-
able (+), (2) the output variable (−), or (3) the constant
term (#). Predicate (1) means whether two input pro-
teins, A and B, have fused domains or not (valued ”yes”
by the constant term #FUSION). This predicate is supported
by a set of ground facts Gdomain fusion, e.g., domain fusion
(ap3m yeast, ap3b yeast, yes). After preprocessing, the set
Gdomain fusion consists of 255 ground facts for protein pairs.

The assumption that proteins interact with each other
through interactions of their domains is widely accepted
and validated. The domain-domain interaction data is ex-
ploited to more reliably predict PPI. We extracted DDI data
from iPfam database (http://www.sanger.ac.uk/Software/
Pfam/iPfam/). iPfam is a resource that describes domain-
domain interactions that are observed in PDB entries. The
domains are defined by Pfam. When two or more domains
occur in a single structure, the domains are analysed to see
if they form an interaction considered by the bonds forming
the interaction are calculated.

We considered two features of DDI. The first feature is
whether a protein pair (pi, pj) has a domain interaction dkl,
and if yes, how many dkl it has. This information is formu-
lated by predicate:

hasddi(+protein, +protein, #DDI) (2)

The set of ground facts for this predicate Gddi includes 573
ground facts, some of them are: hasddi(jsn1 yeast,
yip1 yeast,2), hasddi(msh4 yeast,msh5 yeast,5), etc.

The number of domain-domain interactions of a protein
is one of the features which may increase or decrease the
probability of its interaction with others. So we considered

the relationship between PPI and the number of DDI of
each interacting partner. This relationship is presented in
predicate 3.

num ddi(+protein, #NUM DDI) (3)

Denoted by Gnum ddi, the set of ground facts of the above
predicate contains 289 ground facts. We found that there
are some proteins having a large number of DDI, for exam-
ple num ddi(did4 yeast,20) or num ddi(bud27 yeast,39), and
these proteins potentially interact with many other proteins.

2.3 Extracting Proteomic and Genomic Data
from Multiple Databases

In addition to domain fusion and domain-domain inter-
action features as shown in the previous section, we mined
genomic and proteomic data from UniProt database, CYGD
database, InterPro database, Gene Ontology database, and
Gene Expression database to detect useful genomic and pro-
teomic features for PPI prediction.

As the world’s most comprehensive catalog of informa-
tion on proteins, UniProt database (http://www.pir.uni-
prot.org/) largely provides functional, structural or other
categories (in Keyword - KW line); regions or sites of inter-
est in the sequences (in Feature Table - FT lines); describes
enzymes coded (EC) and pointers to information related to
entries and found in data collections other than Uniprot
such as GO database, PIR database, PROSITE database,
Pfam database, and Interpro database (in Database cross-
Reference - DR line). There are the following predicates for
each kind of information for one protein.

keyword(+protein, #KW) (4)

feature(+protein, #FT) (5)

coded enzyme(+protein, #EC) (6)

dr go(+protein, −GO TERM) (7)

dr pir(+protein, −PIR ID) (8)

dr prosite(+protein, −PROTSITE ID) (9)

dr pfam(+protein, −PFAM ID) (10)

dr interpro(+protein, −INTERPRO ID) (11)

For example, some extracted data for these predicates
are keyword(ace1 yeast,transcription regulation), feature(ldb7
yeast, chain chromatin structure remodeling complex), coded
enzyme(uqcr1 yeast, ec1.10.2), and dr go(twoa5d yeast,

go0005935), etc. The first three predicates present general
protein features that should effect their interactions. The
other give references to other databases. Data from differ-
ent databases related to PPI are bound by these predicates.
We extracted 10,919 ground facts for these UniProt predi-
cates.

The MIPS Comprehensive Yeast Genome Database
CYGD (http://mips.gsf.de/genre/proj/ yeast/) aims to
present information on the molecular structure and func-
tional network of the entirely sequenced, well-studied model
eukaryote, the budding yeast Saccharomyces cerevisiae.

Among various information provided by CYGD, catalogues
of functions, catalogues of subcellular locations, catalogues
of phenotypes, catalogues of complexes, and catalogues of
proteins should be mined to discover the biological relation-
ship between such catalogues and protein-protein interac-
tions. Also, proteins in the same catalogue have more chance
to interact together than other proteins. The set of ground
facts extracted from CYGD database GCY GD consists of
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2,152 ground facts. Here are some examples: subcell cat
(ahc1 yeast, cytoplasm), phenotype cat(cyk2 yeast, cell cycle
defects), etc.

function cat(+protein, #FUNCAT) (12)

subcell cat(+protein, #SUBCELLCAT) (13)

phenotype cat(+protein, #FENCAT) (14)

complex cat(+protein, #COMPLEXCAT) (15)

protein cat(+protein, #PROTEINCAT) (16)

InterPro database (http://www.ebi.ac.uk/interpro/) is
a database of protein families, domains and functional sites
in which identifiable features found in known proteins can
be applied to unknown protein sequences. We considered
the association between InterPro identifers and GO terms.
There are 556 ground facts which support this predicate.

interpro go(+INTERPRO ID, −GO TERM) (17)

Gene Ontology database (http://www.geneontology.org)
has three organizing principles: molecular function, bio-
logical process and cellular component. The terms in an
ontology are linked by two relationships, is a and part of.
The relationships of interacting partners in a PPI may ef-
fect their interaction. Predicates 18, 19, having 438 ground
facts (e.g., is a (go0000002, go0007005), part of (go0000032,
go0007047)) show these relationships:

is a(+GO TERM, −GO TERM) (18)

part of(+GO TERM, −GO TERM) (19)

Proteins in the same complex are often co-expressed, and
then this genomic feature is useful in predicting PPI. The
gene expression coefficients referred to in [10] between
two proteins are presented in the following predicate (having
200,000 ground facts):

expression(+protein, +protein, #COEFFICIENT) (20)

Two last predicates express information about the num-
ber of protein-protein interactions (with 690 ground facts)
and interaction generality of two interacting partners (with
1,718 ground facts). Interaction generality is the number of
proteins that interact with both interacting partners.

num ppi(+protein, +protein, #NUM PPI) (21)

ig(+protein, +protein, #IG) (22)

2.4 Constructing Background Knowledge for
Predicting Protein-Protein Interactions

After twenty two predicates are defined, data in terms of
ground facts for these predicates are next exploited from
seven databases (two databases for domain features and five
others for genomic and proteomic features). In succession,
we denote the sets of ground facts extracted from UniProt
database, CYGD database, InterPro database, Gene Ontol-
ogy database, and Gene Expression database by GUniProt,
GGO, GInterPro, GCY GD, and Gexpression. Algorithm 1
presents the procedure to extract data from multiple
databases to construct background knowledge for PPI pre-
diction.

Algorithm 1 Extracting domain and protein data from
multiple sources.

Input:
Set of proteins P ⊃ {pi}.

Output:
Sets of ground facts Gdomain fusion, Gddi, Gnum ddi,
GUniProt, GCY GD, GInterPro, GGO, , Gexpression, Gig,
and Gnum ppi.

1: Initialize all sets of ground facts GL := ∅ (∀ GL ∈
Gdomain fusion, Gddi, Gnum ddi, GUniProt, GCY GD,
GInterPro, GGO, , Gexpression, Gig, and Gnum ppi);
D := ∅.

2: Extract all domains dk belonging to proteins pi;
D := D ∪ {dk}.

3: for each protein pair (pi, pj)
4: for all dk ∈ pi and dl ∈ pj

5: if fused(dk, dl) = true then
Gdomain fusion := Gdomain fusion ∪ {(pi, pj)}

6: if ∃ dkl then
Gddi := Gddi ∪ {(pi, pj)}
Count the number of DDI num ddii and
num ddij for proteins pi, and pj respectively;

7: Gnum ddi := Gnum ddi ∪ {(pi, num ddii)}∪
{(pj , num ddij)}.

8: for each protein pi ∈ P
9: Extract data from UniProt database and CYGD

database for GUniProt and GCY GD respectively;
GUniProt = GUniProt ∪ {pi, pi.data};
GCY GD = GCY GD ∪ {pi, pi.data}.

10: Extract mapping data between GO terms gi and
Interpro identifiers ti related to pi from InterPro
database for GInterpro;
GInterPro = GInterPro ∪ {ti, gi.}.

11: for each protein pi ∈ P
12: for each protein pj ∈ P
13: Extract the relationship rij between GO terms

(gi, gj) related to (pi, pj) from GO database;
GGO = GGO ∪ {rij(gi, gj)}.

14: Extract the expression correlation coefficients eij of
(pi, pj);
Gexpression = Gexpression ∪ {pi, pj , eij}

15: Extract the interaction generality of PPI nij of
(pi, pj); Gig = Gig ∪ {pi, pj , nij}

16: if ∃ pij then
num ppii := num ppii + 1;

17: Gnum ppi := Gnum ppi ∪ {(pi, num ppii)}.
18: return Gdomain fusion, Gddi, Gnum ddi, GUniProt,

GCY GD, GInterPro, GGO, , Gexpression, Gig, Gnum ppi.

2.5 PredictingProtein-Protein Interaction Us-
ing Inductive Logic Programming

The proposed integrative domain-based ILP framework
for predicting PPIs from multiple genomic and proteomic
databases is described in Algorithm 2.

The previous framework presents the common procedures
of the ILP method. Step 2 and Step 3 are for generating
positive and negative examples Sinteract, S¬interact respec-
tively (see more Subsection 3.1). In Step 4, we extracted
background knowledge Sbackground including both domain
features and genomic and proteomic features from sets of
ground facts of defined predicates (see Section 2.4). In Step
5, in our experiments, system Aleph was applied to induce
rules. Aleph is an advanced ILP system that uses a top-
down ILP covering algorithm.

Aleph requires three input files to construct theories: pos-
itive examples, negative examples and background knowl-
edge. Positive and negative examples can simply be consid-
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Algorithm 2 An integrative domain-based ILP framework
for PPI prediction

Input:
Set of protein-protein interactions Sinteract ⊃ {pij}
Number of negative examples (¬pij) N
Sets of ground facts Gdomain fusion, Gddi, Gnum ddi,
GUniProt, GCY GD, GInterPro, GGO, , Gexpression, Gig,
and Gnum ppi.

Output:
Set of rules R for protein-protein interaction prediction.

1: R := ∅.
2: Extract positive examples for the set Sinteract.
3: Generate N negative examples ¬pijs by selecting N pro-

tein pairs (pi, pj) where pi, pj ∈ P and pi, pj are located
in different subcellular compartments;
S¬interact = {¬pij}.

4: call Algorithm 1 to generate sets of ground facts GL

and Sbackground =
⋃

GL (∀ GL ∈ Gdomain fusion,
Gddi, Gnum ddi, GUniProt, GCY GD, GInterPro, GGO, ,
Gexpression, Gig, and Gnum ppi.

5: Run an ILP program with Sinteract, S¬interact and
Sbackground to induce rules r.

6: R := R ∪ {r}.
7: return R.

ered as ground facts. Background knowledge is in the form
of Prolog clauses that encode information relevant to the
domain. All predicates appearing in hypothesized clauses
have to be declared, and amongst them the target predicate
is learned to induce rules. The target predicate in our work
is: has_int(+protein, +protein), meaning that two arbi-
trary proteins, A and B, interact. Aleph learns three inputs
and induces rules (hypothesized clauses) in terms of the rela-
tionships between the target predicate and other predicates
declared in background knowledge.

3. EXPERIMENTAL RESULTS

3.1 Experiment Design
We concentrate on predicting PPI for Saccharomyces cere-

visiae, a budding yeast, due to the availability of Saccha-
romyces cerevisiae data. We carried out experimental com-
parative evaluation for protein-protein interaction predic-
tion.

To assess the performance of our method for PPI predic-
tion, we did three comparative tests to demonstrate: (1) the
advantages of the integration of multiple proteomic and ge-
nomic features in our method, (2) the advantages of domain-
based approach, and (3) the reliability of our method. First,
ROC curves of 10-fold cross validation tests were produced
to compare our proposed method with other domain-based
methods, particularly AM method and SVMs method. Sec-
ond, we also conducted 10-fold cross validation tests for an
ILP method with multiple genomic databases, but not us-
ing domain features, and compared those results with our
method in terms of sensitivity and specificity. At last, apply-
ing our method to several PPI datasets like Ito dataset [9],
Uetz dataset [28], MIPS dataset (http://mips.gsf.de/proj/
ppi/), DIP dataset (http://dip.doe-mbi.ucla.edu/), etc., we
estimated EPR indexes [5] to show the reliability of our
method.

For three comparative tests for PPI prediction, we used

the core data of Ito data set [9] with more than two IST hits3,
as positive examples, and selected at random 1000 protein
pairs whose elements are in separate subcellular compart-
ments as negative examples. Each interaction in the inter-
action data originally shows a pair of bait and prey ORF
(Open Reading Frame). After removing all interactions in
which either bait ORF or prey ORF is not found in UniProt
database, we obtained 718 interacting pairs from the origi-
nal 841 pairs. Subsection 3.2 shows the experimental results
of PPI prediction.

3.2 Predicting Protein-Protein Interactions
With the same positives and negatives datasets, we con-

ducted 10-fold cross validation tests for our method, AM
method and SVMs method. AM method calculated the
probability of protein pairs based on protein domains [23].
In our experiment, the probability threshold is set to 0.05.
For SVMs method, we used SV M light [11]. The linear ker-
nel with default values of the parameters was used. For
Aleph, we selected minpos = 2 and noise = 0, i.e. the lower
bound on the number of positive examples to be covered by
an acceptable clause is 2, and there are no negative examples
allowed to be covered by an acceptable clause. We also used
the default evaluation function coverage which is defined as
P −N , where P , N are the number of positive and negative
examples covered by the clause.

Figure 1: Comparative ROC curves of ILP, SVMs
and AM method with 1000 negative examples.

The ROC curves of ILP, AM and SVMs methods with
1000 negative examples are shown in Figure 1. ROC curve
(Receiver Operating Characteristic curve) shows the trade-
off between sensitivity and specificity (any increase in sen-
sitivity will be accompanied by a decrease in specificity).
Sensitivity refers to the ability of the test to detect individ-
uals who actually have the disorder. On the other hand, the
term specificity means that the test is specific to the disor-
der being assessed and that it does not give a positive result
because of other conditions.

The ROC curve of our method is close to the left-hand
border and then the top border of the ROC space. On the
other hand, ROC curves of AM method and SVMs method
are close to the 45-degree diagonal of the ROC space. The
ROC curve demonstrates that our method has a consid-

3IST hit means how many times the corresponding interac-
tion was observed. The higher the IST number, the more
reliable the corresponding interaction is.
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Table 1: Evaluation of our proposed method using EPR index with Ito, Uetz, Ito+Uetz, MIPS, and DIP PPI
datasets.

Data Number of interactions EPR index
Original Our proposed Original Proposed

Ito 4549 2000 0.191 ± .0306 0.349 ± .0491
Uetz 1474 799 0.445 ± .0588 0.539 ± .0831

Ito+Uetz 5827 2699 0.238 ± .0287 0.363 ± .0437
MIPS 14146 6810 0.595 ± .0337 0.685 ± .0422
DIP 15409 9047 0.418 ± .0260 0.541 ± .0371

Figure 2: The sensitivity and specificity (denote by
Sensitivity1 and Specificity1) of non-domain based
approach are compared with those (denote by Sen-
sitivity2 and Specificity2) of our proposed method
with various sets of negative examples by 10-fold
cross-validation tests.

erably better performance than those of AM and SVMs
method.

Conducting 10-fold cross-validation with various tested
numbers of negative examples, the results (in Figure 2) show
that our method achieved higher sensitivity, and higher or
equal specificity, than the non-domain based approach [25].

To show how reliable our method is, we compared the
EPR indexes of original PPI datasets and datasets predicted
by our method. The EPR index estimates the biologically
relevant fraction of protein interactions detected in a high
throughput screen. For each given dataset, we first excluded
all protein pairs which overlap with those in the training
dataset. All retrieved protein pairs that classified as posi-
tives are then estimated in terms of their EPR indexes. Ta-
ble 1 shows the higher ERP index of our method compared
with original ones.

4. DISCUSSION
The experimental results have shown that ILP approach

potentially predicts PPI and DDI with high sensitivity and
specificity. Furthermore, the inductive rules of ILP encour-
aged us to discover many interesting biological reciprocal re-
lationships among protein-protein interactions and protein
domains, and other genomic/proteomic features related to
protein-protein interactions. Analysing our results in com-
parison with information in biological literatures and books,
we found that ILP induced rules could be applied to further
related studies in biology.

Studying the rules of PPI prediction related to domain-
domain interaction information, we found many interesting
rules. For example, the following rule shows that if two
proteins have domains belonging to domain databases like
PROSITE database or InterPro database and these domains
interact with each other, they may interact.

has int (A,B) :- dr prosite (B, C), dr prosite (A, C),
ddi (A, B, yes) with 43 positives covered

has int(A,B) :- dr interpro(B,C), dr interpro(A,C), ddi
(A, B, yes)with 90 positives covered.

A large number of positives, which indicates these rules,
confirms why domain-domain interactions are considered as
key factors to predict PPI.

Considering the group of proteins which may be required
for the production of pyridoxine (vitamin B6) sno1 yeast,
snz3 yeast snz1 yeast, and snz2 yeast, we found that each
pair in this group has an interaction which satisfies the fol-
lowing rule:

has int(A,B) :- ig (A, B, C), C = 1, ddi (A, B, yes),
function cat (B, cell rescue defense and virulence).

This rule means interaction of protein A and protein B
may occur if the proteins satisfy three conditions. First is
that they interact with the same protein. Second is that they
have at least one DDI. Third is that one of them is catego-
rized to function catalogue cell rescue defense and virulence.
We knows that PPI play an important role in drug design,
so such rules and their evidence, are expected to help us
to discover interesting relationships between PPI, DDI and
protein function in pharmaceuticals.

Two most popular rules related to domain fusion informa-
tion are:

has int(A,B) :- dr go(B,C), part of(C,D), domain fu-
sion(A,B,yes)

has int(A,B) :- dr go(B,C), dr go(A,C), domain fu-
sion(A,B,yes)

The first one covers 199 positives and the second one cov-
ers 217 positives. Both of these rules consist of GO terms
and domain fusion information. According to the second
rule, if two proteins have GO terms and their domains are
fused in another protein, there may occur an interaction.

Our induced rules with large number of positives prove
that if a pair of proteins, A and B, are located in the same
subcellular compartment, protein A potentially interacts with
protein B. In case of nucleus compartment, there are 216 cov-
ered positives, 284 for cytoplasm compartment and 15 for
mitochondria compartment. However, surprisingly among
induced rules, we found a rule with 37 positives that showed
the phenomenon of two proteins being in different subcellu-
lar locations but interacting.

has int(A,B) :- subcell cat(B,nucleus), subcell cat(A, cy-
toplasm), function cat(A,transcription).
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This phenomenon could occur when there is a certain
translocation or post-translation modification of proteins in
different subcellular compartments.

Since protein-protein interactions have close biological as-
sociations with domain-domain interactions, discovering DDI
from PPI data is an area of much ongoing research. Ng
et al. proposed to an integrative approach to infer puta-
tive domain-domain interactions from three data sources,
including experimentally-derived protein interactions, pro-
tein complexes and Rosetta stone sequences [17]. To predict
DDI, the maximum likelihood estimation (MLE) is applied
by Deng et al. [6]. Riley et al. proposed a domain pair ex-
clusion analysis (DPEA) for predicting DDI from databases
of protein interactions [21]. These works showed that DDI
can be efficiently predicted from PPI data. In the future, as
more DDI are predicted and validated, our work is potential
to reliably predict PPI. From PPI networks, we can build up
more complex protein complexes and pathways in cell, such
as signal transduction pathways or metabolic pathways.

5. CONCLUSION
We have presented an integrative domain-based approach

using ILP and multiple genome databases to predict protein-
protein interactions. The experimental results demonstrated
that our proposed method could produce comprehensible
rules, and at the same time, performed well in comparison
with other work on protein-protein interaction prediction.
In future work, we would like to investigate induced rules to
study further the biological relationships among PPI, DDI,
domain fusion and other genomic/proteomic features. Inte-
grating more biological features may achieve better results.
We also would like to apply the ILP approach to other im-
portant tasks, such as determining protein functions, and
determining the sites, and interfaces of PPI using DDI data.
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ABSTRACT
Recent proteome-wide screening efforts have made available
genome-wide, high-throughput protein-protein interaction
(PPI) maps for several model organisms. This has enabled
the systematic analysis of PPI networks, which has become
one of the primary challenges for the system biology com-
munity. Here we address the problem of predicting the func-
tional classes of proteins (i.e., GO annotations) based solely
on the structure of the PPI network. We present a maximum
likelihood formulation of the problem and the corresponding
learning and inference algorithms. The time complexity of
both algorithms is linear in the size of the PPI network and
experimental results show that their accuracy in the func-
tional prediction outperforms current existing methods.

1. INTRODUCTION
High-throughput protein-protein interaction (PPI) net-

works with various levels of proteome coverage are currently
available for several model organisms, namely S. cerevisiae

[19], D. melanogaster [7, 6], C.elegans [12], H. sapiens [15]
and H. pylori [14]. PPI data can be obtained through a
variety of sophisticated assays, like co-immunoprecipitation,
yeast two hybrid, tandem affinity purification and mass spec-
trometry. A PPI network is usually represented by a node-
labeled undirected graph where vertices correspond to pro-
teins and edges denote physical interactions.

Since the main mechanism by which cells are able to pro-
cess information is through protein-protein interactions, PPI
data has been essential to obtain new knowledge and insights
in a wide spectrum of biological processes. In this paper, we
focus on the problem of predicting the functional category
of proteins solely based on the topological structure of the
PPI network. The rationale of this approach is based on the
observation that a protein is much more likely to interact
with another protein in the same functional class than with
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a protein with a different function (see, e.g., [10, 21, 18, 13]).
The prediction of functional classes can be useful either for
proteins for which there is little or non-existing functional
information (e.g., for predicting the involvement of a protein
in specific pathway), or to confirm existing annotations pro-
vided by other methods. Motivated by the expectation that
in the near future massive PPI networks will be available,
here we propose a computationally efficient method that ac-
curately determines the functional categories and will be
capable to scale gracefully with the size of the network.

A variety of algorithmic techniques have been proposed in
the literature to solve the problem of functional prediction
with a wide range of computational complexity. Perhaps
the most computationally efficient algorithm is based on
the majority rule where the function of an unknown protein
is simply determined by the most common function among
its interacting partners [17]. A slightly more sophisticated
majority-based method is the χ2-method proposed in [8]. At
the other end of the computational complexity spectrum, the
authors of [21, 10] propose to assign proteins to functional
classes so that the number of protein interactions among dif-
ferent functional categories is minimized. The optimization
problem, known as generalized multicut, is NP complete.

The functional flow algorithm introduced in [13] lays some-
where in the middle of the complexity spectrum. The idea is
to treat proteins with known function as infinite sources of
(functional) flow. The flow is propagated through the net-
work in a series of discrete steps. At the end, the function of
unknown proteins is assigned based on the largest amount
of flow received. The authors of [13] show that functional
flow algorithm outperforms the generalized multicut algo-
rithm, the majority rule-based algorithm and also its gener-
alization to more distant neighbors [13]. The authors of [2]
show that functional flow also outperforms the χ2-method.
Because of this, the performance of functional flow is the
reference for our algorithm. Experimental results will show
that our method achieves a better prediction accuracy than
functional flow.

Perhaps the most similar method to the one we propose
here is described in [4, 5], where the authors propose a prob-
abilistic model based on the theory of Markov random fields.
In their follow-up papers [3], Deng et al show how to inte-
grate in their Markov random field additional information,
namely gene expression data, protein complex information,
domain structures to increase the prediction accuracy. The
relationship between this work and [4, 5] will be discussed
in greater detail later in paper. Here, however, we want to
emphasize that the method presented in this manuscript is
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computationally more efficient than Deng et al. Unfortu-
nately, the accuracy of their prediction cannot be directly
compared with ours because these methods predict multiple
functional classes for each protein. The approach in [11] is
essentially similar to [5].

More recent papers tackle slightly different albeit related
problems. In [18] the authors predict functional linkages
between proteins based on the integration of four kinds of
evidence, namely gene co-expression, gene co-inheritance,
gene co-location and gene co-evolution. In [9], the authors
predict protein interactions based on the cellular localization
of proteins.

2. PROBLEM DEFINITION AND MODEL
FORMULATION

We denote by G(V,E) the PPI network under analysis,
where V represents the set of proteins and E is the set of
edges (interactions). For reason that will be clear later in the
paper, we assumeG to be directed (i.e., each undirected edge
in the original PPI is represented by two directed edges, ex-
cept for self-loops). We denote the set of k given functional
classes as F = {C1, C2, . . . , Ck}. Each functional class can
be thought as one of k possible colors that can be used to
color the graph. Function f : V → F captures the notion
of functional class for all the proteins in V . When the func-
tion of a protein v ∈ V is known, say Ci, then we will have
f(v) = Ci. If the function of v is unknown, then f(v) = ∅.
We define W = {v ∈ V : f(v) ∈ F} to be the set of proteins
whose function is known and U = V \W to be the set of the
proteins whose function is unknown. The functional anno-
tation problem can be informally stated as follows. Given
a PPI network G(W ∪ U,E) where W is annotated with
functional classes, find the correct functional classes for the
vertices in U .

The model used here to tackle the problem is entirely
probabilistic and it is based on two simple observations.
First, a simple statistical analysis on the available PPI data
[16] and the associated GO functional annotations [1] reveals
that the distribution associated with the functional classes
is highly skewed. For example, in the S. cerevisiae net-
work, the function “catalytic activity” is assigned to 1,514
proteins, whereas the function “protein tag” is only assigned
to 5 proteins. This observation constitutes our prior knowl-
edge on the probability of a randomly chosen protein to per-
form a certain function and can be captured by the notion
of prior distribution. We denote the prior distribution by
P : F → [0, 1], where P(Ci) is the probability of a randomly
chosen protein to have function Ci.

Second, our model has to incorporate the connectivity
structure of the PPI networks. It is well-known that a pro-
tein is more likely to interact with another protein perform-
ing the same function [10, 21, 18, 13]. We model this pref-
erence using conditional probability distributions. If pro-
tein t ∈ W has function Ci and protein s ∈ U interacts
with t, then the probability that s performs function Cj
is given by P(Cj |Ci). We expect P(Ci|Ci) to be higher
than P(Cj |Ci),∀j 6= i, because s is more likely to per-
form the same function of t. This can be easily general-
ized to multiple interacting partners. Suppose we want to
predict the function of protein s ∈ U and that we know
that t1, t2, t3, . . . , tm ∈ W interact with s, as well as their
functions f(t1), f(t2), f(t3), . . . , f(tm). If we assume that

f(t1), f(t2), f(t3), . . . , f(tm) are independent and distributed
according to the conditional multinomial distribution
[P(C1|f(s)),P(C2|f(s)),P(C3|f(s)), . . . ,P(CK |f(s))], then
the most likely function for s is the one that maximizes

L(s) = P(f(s))
Y

t∈{t1,t2,...,tm}

P(f(t)|f(s))

= P(f(s))
Y

t∈V :(s,t)∈E

P(f(t)|f(s))

We call L(s) the local likelihood of protein s.
Note that a necessary condition to predict the functional

class for s ∈ U is to know the functional classes of the neigh-
bors of s. Very often, however, the functions of the neighbors
turns out to be unknown. Clearly, the assignment of a func-
tion to protein s may affect the prediction of the functions
for the neighbors of s, and vice versa. Because of this, a
purely local strategy is insufficient. To address this prob-
lem, we need to introduce the concept global likelihood of a
PPI Network as L(G) =

Q

v∈V L(v).
The free variables in the global likelihood function L(·) are

f(ui), for all proteins ui ∈ U with unknown function. We
seek the assignment to f(ui) such that the global likelihood
L(G) is maximized, which is equivalent to maximizing

l(G) =
X

v∈V

log(P(f(v))) +
X

(v,w)∈E

log(P(f(w)|f(v)))

Now we are ready to give a formal summary of the opti-
mization problem associated with our model. We are given a
directed PPI network G(W ∪U,E) where U is the set of pro-
teins with unknown functions and W is the set of proteins
with known functions, a set of functions F , a prior distribu-
tion P with

P

Ci∈F P(Ci) = 1, and the conditional distri-

butions P(Ci|Cj) such that
P

Ci∈F P(Ci|Cj) = 1, ∀Cj ∈ F .

The problem is to predict the functional class f(u) for each
protein in set U , such that the global log likelihood l(G) is
maximized.

3. RELATION TO PREVIOUS WORK
Our model implicitly defines a Markov random field (MRF),

a probabilistic model which is also used in [4, 5]. In Deng et

al.’s works [4, 5], a distinct MRF is built for each functional
class in F . Each protein in the PPI network is associated to
an indicator random variable for that function of interest.
More specifically, each protein is associated with a unary po-
tential eφ(Xi), which has value eφ(1) if the protein has that
function and eφ(0) otherwise. Each edge of the PPI graph is
associated with a binary potential eψ(Xi,Xj), which can take
three possible values, namely eψ(1,1) if both of the proteins
have the function, eψ(0,1) if one of the proteins has the func-
tion, and eψ(0,0) if neither of the proteins has the function.
Given the parameters θ = {φ(0), φ(1), ψ(1, 1), ψ(0, 1), ψ(0, 0)},
the global Gibbs distribution of the entire network is simply
the product of the unary potentials and the binary potentials
normalized by a constant factor depending on the parame-
ters, as follows.

P{X1,X2, X3, . . . ,Xn|θ} = e
Pn

i=1 φ(Xi)+
P

(i,j)∈E ψ(Xi,Xj)/Z(θ)

Note that in our model, the prior probability P(f(vi)) corre-
sponds to the unary potential in Deng’s model, whereas the
product P(f(vi)|f(vj))P(f(vj)|f(vi)) corresponds to the bi-
nary potential.
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Despite the similarities, there are significant differences
between Deng et al.’s model and ours. First, instead of
building a distinct MRF for each function, we only have one
unified probabilistic model for all the functions in F which
allows us to capture the correlations between the functions.
Second, the use of conditional distributions dramatically
simplifies the process of estimating the parameters, which
boils down to a simple count of relevant statistics (details to
be explained in Section 4). The semantics of the conditional
distributions also naturally gives rise to the efficient itera-
tive algorithm that we will develop later. Finally, since we
are modeling from the conditional distributions, the normal-
ization factor of the global Gibbs distribution in our model
is always one irrespective of the parameters we use.

A less obvious connection can be established between our
model and the generalized multi cut approach by Vazquez et

al. [21]. Recall that in this latter approach, the objective is
to assign functional annotations to unknown proteins in such
a way that one minimizes the number of times neighboring
proteins have different annotations. A formal description
of the generalized multi cut problem follows. Let I be the
standard indicator function which is equal to 1 if the boolean
expression is true and 0 otherwise. Given a PPI network
G(U ∪W,E) we seek annotations to the proteins in U such
that

P

(u,v)∈E I(f(u) 6= f(v)) is minimized.

Fact 1. The generalized multi cut problem is a special

case of our optimization problem when the prior distribution

is uniform and most of the mass of the conditional probabil-

ities is concentrated around P(Ci|Ci).

Proof. Let us consider the following prior distribution and
conditional distributions.

P(Ci) = 1/|F| ∀Ci ∈ F

P(Cj |Ci) = ǫ ∀Ci, Cj ∈ F , Ci 6= Cj

P(Ci|Ci) = 1 − (|F| − 1)ǫ ∀Ci ∈ F

where 0 < ǫ < 1 is an arbitrarily small number. Then, the
global log likelihood for the graph can be written as

l(G(V, E))

=
X

v∈V

log(P(f(v))) +
X

(v,w)∈E

log(P(f(w)|f(v)))

=
X

v∈V

log(1/|F|) +
X

(v,w)∈Ef(w) 6=f(v)

log(P(f(w)|f(v)))

+
X

(v,w)∈Ef(w)=f(v)

log(P(f(w)|f(v)))

= |V | log(1/|F|) +
X

(v,w)∈Ef(w) 6=f(v)

log(ǫ)

+
X

(v,w)∈Ef(w)=f(v)

log(1 − (|F| − 1)ǫ)

= |V | log(1/|F|) + |E| log(1 − (|F| − 1)ǫ) (1)

+(log(ǫ) − log(1 − (|F| − 1)ǫ))
X

(v,w)∈E

I(f(v) 6= f(w))

Note that the first two terms of (2) are constant and that
the third term increases as the quantity

P

(v,w)∈E I(f(v) 6=

f(w)) decreases because log(ǫ)−log(1−(|F|−1)ǫ) is negative
for a sufficiently small ǫ. Therefore, under this particular
prior distribution and conditional distributions, maximizing
the global log likelihood in our problem is equivalent to min-
imizing the objective function in the generalized multicut
problem.

The generalized multicut problem is NP complete [13] be-
cause it is a generalization of the multi-way cut problem [20],
which is known to be NP complete. Since our problem is a
generalization of the generalized multicut problem, it is NP
complete as well.

4. PARAMETER LEARNING
The prior distribution and the conditional distributions

are multinomial distributions whose parameters can be learned
from the structure of the given PPI network and the func-
tional annotations on W . We need to determine k − 1 pa-
rameters for the prior and k(k − 1) parameters for the k
conditional distributions. We obtain these parameters using
the maximum likelihood estimation method.

Let F (W,E′) be the subgraph of G(V,E) induced by the
setW of known functions, where E′ = {(u, v)|(u, v) ∈ E, u ∈
W, v ∈W}. The global likelihood for the subgraph F (W,E′)
is defined as follows.

L(F (W,E′))

=
Y

v∈W

P(f(v))
Y

(u,v)∈E′

P(f(v)|f(u))

=
Y

Ci∈F

P(Ci)
P

v∈W I(f(v)=Ci) (2)

Y

Ci∈F

Y

Cj∈F

P(Cj |Ci)
P

(vi,vj)∈E′ I(f(vi)=Ci,f(vj)=Cj)

The first term in (3) is maximized when P(Ci) =
P

v∈W I(f(v) = Ci)/|W | for all Ci ∈ F . The second term
in equation (3) is maximized when P(Cj |Ci) =
P

(vi,vj)∈E′ I(f(vi)=Ci,f(vj)=Cj)
P

(vi,vj)∈E′ I(f(vi)=Ci)
for all Cj ∈ F . Therefore,

the maximum likelihood estimates for the parameters are

P(Ci) =
X

v∈W

I(f(v) = Ci)/|W | Ci ∈ F

P(Cj |Ci) =

X

(vi,vj)∈E′

I(f(vi) = Ci, f(vj) = Cj)

X

(vi,vj)∈E′

I(f(vi) = Ci)
Ci, Cj ∈ F

As a common practice in Bayesian statistics, we apply
(uniform) Dirichlet priors to our estimators. This prevents
the problem of handling zero probabilities. The time com-
plexity of the learning phase is O(|E| + |W |), whereas the
space complexity is O(k2).

5. INFERENCE OF FUNCTIONAL CLASSES
Since we determined that our problem is NP complete, it

is rather unlikely that we will find a polynomial time algo-
rithm that can solve the problem optimally. To this end,
we designed a statistically based iterative algorithm (SBIA
for short), which turns out to perform well in practice. Our
algorithm consists of two phases, namely the initialization
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phase and the iterative phase. The initialization phase con-
sists of two steps. In the first step, we estimate the param-
eters for the prior distribution and the conditional distribu-
tions as described in Section 4. In the second step, we assign
an initial functional class to each protein in V , as follows.

For each unknown protein v ∈ U , we assign

f0(v) = argmaxCi∈F P(Ci)
Y

(v,t)∈E,t∈W

P(f0(t)|Ci).

In other words, we predict the initial function for v to be
the one that maximizes the local likelihood of v (ignoring
neighbors with unknown functions). If v ∈ W , then we set
f0(v) to be the function corresponding to annotation in the
original data.

In the second phase, we iteratively re-evaluate our predic-
tions. For clarity of exposition we use superscripts to de-
note the iteration number, i.e., fn(v) denotes the predicted
functional class for v made in the nth iteration. For each
unknown protein v ∈ U , we set

fn(v) = argmaxCi∈F P(Ci)
Y

(v,t)∈E

P(fn−1(t)|Ci).

That is, we adjust our prediction for protein v to be the
function that maximizes the local likelihood with respect to
the functions predicted for its neighbors in the previous step.
Again, if v ∈W , then fn(v) = fn−1(v).

We stop the iterative process as soon as the difference
between the value of the global likelihood in two consecutive
steps drops below a given threshold. The pseudo-code in
Figure 1 summarizes the algorithm. The time complexity of
the algorithm is O(d|E|), where d represents the number of
iterations (usually d ≤ 5 in our experiments).

6. EXPERIMENTAL RESULTS
The dataset used in our experimental studies is the most

well-characterized PPI network available at the time of writ-
ing, namely the network for S. cerevisiae, which is composed
of 4,959 proteins and 17,511 interactions. The network was
obtained from the DIP database [16]. We also extracted a
high confidence yeast PPI network, which is a subset of the
yeast PPI network in which interactions that are confirmed
by only a single experiment have been removed. This latter
network has 1,735 proteins and 2354 interactions. The func-
tional annotations were obtained from the Gene Ontology
(GO) hierarchy [1].

We used cross validation to quantitatively evaluate the
prediction accuracy of our algorithm and to compare its
performance with other methods. In each experiment, we
randomly removed the functional annotation to a percent-
age p of known proteins, where p ranges from 5% to 95%.
This new set of “unknown” proteins served as the test set,
called hereafter T . We use W \T to denote the set of known
proteins after p% of them have been “un-labelled” and U to
denote the set of the remaining unknown proteins. Clearly,
the SBIA’s learning phase (i.e., the computation of the prior
and the conditional probabilities) is carried out only on the
proteins in W \ T . Learning on the original set W would
constitute “cheating”.

So far, in our model we assumed that each protein can
perform only one function. This is, however, not true for
some proteins. A protein may participate in multiple bio-
logical processes and as a result, it will carry out multiple

functions. In the yeast network, 488 proteins out of 3,022
are annotated with two or more top level functions. To han-
dle this issue, the nodes in W \ T that are associated with
multiple functions are replicated, so that each copy carries
out exactly one of the annotated functions. Each copy has
the same interaction partners of the original protein.

As said, the goal is to predict a function for each of the
proteins in set T∪U , based on the functional classes in W \T
and the topology of the graph. For each protein in T , we
declare a prediction to be correct if the predicted function
is one of the functions the protein was originally assigned.
The prediction accuracy is calculated as the ratio between
the number of correct predictions and the total number of
proteins in the set T . Since the prediction accuracy varies
slightly every time we randomly select T , we replicate the
same experiments ten times and compute the average accu-
racy. We also record the standard deviation, represented by
the error bars in the figures.

We compared the accuracy of our method against that
of functional flow [13] and against that of the naive ap-
proach. We chose to compare SBIA against the functional
flow method because papers [2, 13] report that functional
flow outperforms both majority-rule based methods [17, 8]
as well as methods based on the generalized multicut [21,
10]. As said, a direct comparison between our method and
MRF-based methods [4, 5, 11] is not feasible because these
latter approaches predict more than one functional class for
each protein. The naive method simply predicts the func-
tion of a protein to be the most probable functional class
according to the prior, i.e., argmaxCi∈FP(Ci). Clearly, the
expected prediction accuracy of the naive approach is equal
to the ratio between the number of proteins annotated with
the most probable function and the total number |W | of
known proteins.

We carried out two sets of experiments. In the first set,
we considered the seventeen top level molecular functions
defined in GO. In the yeast PPI network, 3,022 proteins out
of 4,959 are annotated with one or more top level functions.
The most frequent function is “catalytic activity”, which oc-
curs 1,514 times. Thus, the expected prediction accuracy
for the naive approach is 0.501 or 50%. In the high confi-
dence yeast PPI network 1,325 proteins are annotated. The
most frequent function in this network is again “catalytic
activity”, which is assigned to 568 proteins. The statistics
of the networks constituting the dataset are summarized in
Table 1.

Figure 2-left and 3-left summarize the results of the first
set of experiments on the seventeen functional classes in
the top level of the GO hierarchy. The figures show that
SBIA always outperforms functional flow, especially when
p is large. In the yeast network, the prediction accuracies
of the functional flow algorithm even falls below that of the
naive approach when p is greater than 55%. SBIA, how-
ever, still retains good prediction accuracy until p becomes
higher than 70%, and then asymptotically converges to that
of the naive approach. Notice that the initialization phase
of SBIA already achieves a good prediction accuracy. When
p is less than 80%, the iterative phase improves the predic-
tion accuracy even more, along with the global likelihood
of the graph. The number of iterations executed is usually
rather small, less than 5. When p is greater than 80%, the
information left in the network is highly incomplete, and
as expected the performance of our algorithm falls back to
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SBIA:
• Input:

1. G(V,E), where V = U ∪W . W is the set of known problems and U is the set of unknown proteins.
2. F , the set of functions.
3. f : W → F , the annotations on the proteins in W .

• Output:
1. f : U → F , the predicted function for the proteins in U .

• Initialization phase
1. Estimate Pri(C), P (Ci|Cj), C, Ci, Cj ∈ F as suggested in section 4.
2. For v in V :

IF (v ∈ U) f(v) = argmaxf(v)∈FPri(f(v))
Q

(v,t)∈E,t∈W P (f(t)|f(v)) ;
• Iterative phase

1. DO:
FOR v in W : f ′(v) = f(v)
FOR v in U : f ′(v) = argmaxf ′(v)∈FPri(f

′(v))
Q

(v,t)∈E P (f ′(t)|f ′(v))

L(G) = (
Q

v∈V Pri(f(v))) · (
Q

(v,w)∈E P (f(w)|f(v)))

L′(G) = (
Q

v∈V Pri(f
′(v))) · (

Q

(v,w)∈E P (f ′(w)|f ′(v)))

IF L′(G) >= L(G):
FOR v in V : f(v) = f ′(v)

WHILE (L′(G) > L(G))
2. RETERN f : U → F

Figure 1: Pseudo code of our Statistically Based Iterative Algorithm(SBIA)

Table 1: The statistics of the PPI networks used in the experiments. |V | is the number of proteins in the
network, |E| is the number of interactions, |W | is the number of known proteins, and naive expected is the
expected prediction accuracy of the naive approach (see text).

17 functional classes 190 functional classes
organism |V | |E| |W | naive expected |W | naive expected

yeast 4,959 17,511 3,022 0.5010 2930 0.1939
yeast high confidence 1,735 2,354 1,325 0.4286 1278 0.1979
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Figure 2: Prediction accuracies on the yeast PPI network with respect to the 17 functional classes at the first
level of the GO hierarchy (right) and 190 functional classes at the second level of the GO hierarchy (left). The
x-axis represents the percentage of known proteins on which the algorithms are tested. The “naive expected”
line indicates the expected prediction accuracy of the naive approach. “SBIA initial” refers to the accuracy
of SBIA after the initialization phase, whereas “SBIA final” shows the final accuracy of SBIA. “Functional
flow” denotes the prediction accuracy of the functional flow algorithm
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Figure 3: Prediction accuracy on the yeast high confidence PPI network (see caption of Figure 2 for more
details). LEFT: 17 functional classes, RIGHT: 190 functional classes.

that of the naive approach. Due to the higher quality of the
data in the yeast high confidence network, the improvement
in accuracy of our algorithm and functional flow relative to
the naive approach is almost doubled.

In the second set of experiments, we considered all the 190
molecular functions comprising the second level of the GO
hierarchy. In the yeast network, 2,930 proteins out of 4,959
yeast proteins are annotated with one or more second level
molecular functions. The most prevalent function is “hydro-
lase activity”, which appears 568 times. Hence the expected
prediction accuracy for the naive approach is 0.1939. In the
high confidence yeast network, 1,278 out of 1,735 proteins
are annotated. The most prevalent function is“protein bind-
ing”, which is annotated to 253 proteins. The statistics are
summarized in Table 1.

Figure 2-right and 3-right summarize the second set of
experimental results. In Figure 3-right, the functional flow
algorithm outperforms SBIA by 2-3% on average. We sus-
pect that this is due to the relatively small size of the net-
work (containing about 1,300 characterized proteins) under
consideration and the large number of functions (k = 190).
Recall that the number of parameters of our model is Θ(k2).
In this case, we believe that there is not enough data for the
accurate estimation of the parameters for the prior distri-
bution and the conditional distributions. For the yeast PPI
network, the result is similar to that in the previous set of
experiments. SBIA still outperforms functional flow, but the
difference between the two approaches is not as strong as in
the previous case.

7. CONCLUSIONS
We developed an efficient algorithm to assign functional

GO terms to uncharacterized proteins on a PPI network
based solely on the topology of the graph and the functional
labels of known proteins. The statistical model proposed
in this paper is a generalization of the GenMultiCut model
and resemble the MRF-based model by Deng et.al. The
similarity with the work of Deng et.al. is, however, super-
ficial as we discussed in details in the paper. In particular,
the structure of our model allows one to obtain easily and

efficiently the maximum likelihood estimation of the under-
lying parameters, which is tipically not possible for a general
MRF. Based on our statistical model, we presented efficient
learning and inference algorithms. Our inference algorithm
is an iterative algorithm, where each iteration runs in time
linear in the size of the input. According to our experimen-
tal results, our algorithm converges very quickly to a local
optimum. More importantly, our method gives consistently
better predictions when compared with previous known al-
gorithms.
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ABSTRACT 

Various methods have been proposed to extract genetic 
protein-protein interactions from abstracts. These methods are 
unable to specify the interactions in which molecules are 
physically related and fail to explore the abundant evidence all 
over the articles. In this paper, we present a method of mining 
physical protein-protein interactions by exploiting profile feature 
from full-text articles during our participation in the second task 
of BioCreAtIvE Challenge 2006. This method synthesizes the 
features from the whole article as the protein pair’s profile to 
extract the physical interactions, and specifies the SwissProt AC 
of the molecules involved in the interaction to help biologists 
make use of the information of the molecules, such as the 
sequence and cross reference. Compared with the other methods’ 
performance released in BioCreAtIvE 2006, our method has 
shown very promising results. 

Categories and Subject Descriptors 

J.3 [Life and Medical Sciences]: Biology and Genetics; I.5.4 
[Pattern Recognition]: Applications – Text Processing 

General Terms 

Algorithms, Experimentation 

Keywords 

Protein-Protein Interaction, Text Mining, Information Extraction 

1. INTRODUCTION 
The study of Protein-Protein Interaction (PPI) is one of the most 
pressing problems. Characterizing protein interaction partners is 
crucial to understanding not only the functional role of 
individual proteins but also the organization of entire biological 
processes. In the past years, the high throughput technologies 
have generated large amount of information. However, the 
information is buried in millions of peer-reviewed literatures. 
Without efficient management, the biological knowledge in the 
literatures is of little use to the researchers. A lot of knowledge 

databases, such as BIND [1], IntAct [11], and MINT [28] have 
been constructed to this end, but it costs a lot of time and 
expense to manually review and extract the important 
information from the literatures. So, automatically mining 
protein-protein interactions from bioscience literature is crucial 
and challenging [16].  

There are two types of protein interactions: Genetic Interaction 
which is functional relationship among genes revealed by 
phenotype of cell, and Physical Interaction which is interaction 
among molecules. The task we participated in BioCreAtIvE 
2006 is focused on mining physical interactions from the text 
because the genetic interactions are 1) not direct (the interaction 
may be through signaling cascades), thus, 2) not always 
trustworthy for biologists [30]. The abstracts with concentrated 
and limited information from MEDLINE are not capable to 
provide enough information to accomplish this task, while the 
full-text articles are more comprehensive to provide the 
evidence, such as the biological experiment which verifies the 
existence of the physical interaction. So the major problem here 
is how to exploit the physical interactions from the evidence 

synthesized from the full-text articles.∗ 

Various methods have been proposed to extract protein-protein 
interaction. But most of them are focused on abstract and fail to 
differentiate the physical interaction from the genetic interaction. 
In this paper, we describe a profile-feature based method to 
mine physical protein-protein interactions by exploiting 
abundant features from full-text articles.  

The paper is organized as follows: The related works are 
discussed in Section 2. Section 3 presents the method to 
recognize the protein molecule names in text and normalize to 
them to entries in SwissProt. The profile-feature based method 
to extract the physical interactions from the evidence of the 
whole article is discussed in Section 4. In Section 5, we show 
the experiment and evaluation. And we draw our conclusions 
and discuss the future work in Section 6. 

2. RELATED WORK 
The researches of exploiting the information from the full-text 
articles are limited due to full texts’ availability and complexity. 
SGPE [27] used abstracts and full-text articles to extract gene and 
protein synonyms, and Yu reported that the system performs 
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better on full-text articles because the names are more frequently 
listed in full-text articles. Schuemie [24] in their study of 
information content in abstracts versus that in full-text articles 
argued that the information density is higher in abstracts but the 
information coverage is much greater in full-text articles which 
indicates that the IE tools will perform better with the various 
information resources in the full-text articles. And Natarajan [20] 
used text mining of full-text articles to help generate novel 
hypothesis for the guide of gene-relation detection experiment 
and argued that the full-text articles are more comprehensive than 
the abstracts. So, the previous studies showed that the full-text 
articles are more effective for the extraction of physically 
interacted protein pairs. 

Various methods and systems [3, 5, 7, 9, 13, 14, 19, 21] have 
been proposed for protein interaction extraction, but few of them 
are focused on physical interactions by exploring the evidence 
synthesized from the full-text articles. One class of these 
approaches is based on machine learning models. For example, 
Craven [4] employed a Naïve Bayes Classifier to predict 
relations from sentences.  

Another class of methods for relation extraction is rule-based or 
pattern-based. The simplest method of this category is to extract 
relations from co-occurrence of entities in sentences [6, 15]. This 
method generates high sensitivity but low specificity.  

Pattern based methods adopt hand-coded or automated patterns 
and then use pattern matching techniques to capture relations. 
Ono [21] manually constructed lexical patterns to match 
linguistic structures of sentences for extracting protein 
interactions. Similar hand-coded pattern based systems were also 
proposed by Rindflesch [23] and Pustejovsky [22]. Such methods 
contribute high accuracy but low coverage, and moreover, the 
construction of patterns is time-consuming and requires much 
domain expertise. Methods which can learn patterns 
automatically for general relation extraction include SPIES [14], 
ONBIRES [13, 7], Chiang [3], and Daraselia [5]. Most of them 
take annotated texts as input, and then learn patterns 
semi-automatically (starting from some pattern seeds) or 
automatically. Most of these methods focus on extracting one 
specific type of relations and can only explore the information 
confined in one sentence. 

The third class of methods analyzes the syntax structures and 
semantics of the sentences to extract the relations [9]. This 
method strongly rely on the Natural Language Processing 
techniques, such as dependence parse trees [18], to get the 
structure of a particular sentence. This method has promising 
performance and is able to extract deeper semantic relations from 
the text. But it is also focused on single sentence and fails to 
explore the evidence from the whole articles. 

In this paper, we describe a method to mine physical 
protein-protein interactions by exploiting abundant features. A 
profile-feature based method is adopted to extract the physical 
interactions from the full-text articles. Every sentence where the 
candidate molecule pairs co-occur is considered as a piece of 
evidence. And the profile, which is defined as the representation 
of the pair’s features all over the article, is constructed based on 
all of the evidence. Thus, the method is able to exploits the 
document-level information instead of focusing on the features 
on sentence level. Here, we use SVM for training and 
classifying. 

Although the information from the whole article is exploited, 
another difficulty facing physical interaction extraction is how to 
recognize the molecules in the articles. Since the physical 
interaction is the interaction between molecules, the identified 
names should be normalized to entries in a standard database, 
such as SwissProt. Thus, the biologists can easily get the whole 
information of the molecules, such as the sequence and 
taxonomy information, or other abundant cross-reference 
information.  

Previous Named Entity Recognition methods [8, 25, 26, 29] can 
find out the protein names, but fail to specify what exact 
molecules these names refer to. The statistical based method is 
the most prevalent method to recognize named entities in the 
text. It exploits abundant word form features and context 
features to train a model [29, 25]. It has promising performance 
and flexibility but needs a large scale of annotated corpus. The 
rule based method is fast and highly accurate in a specific 
domain, but costs a lot of efforts to construct the rules [8]. These 
two methods are unable to normalize the names to database 
entries because the lack of reference to protein database. And 
the dictionary based method has the potential to map the names 
to the database entries, but the previous ones are only focused on 
find out the names.  

The difficulty is due to extensive ambiguity in names and 
overlap of names with common English terms [12]. The use of 
phenotypic description, the conventional abbreviations lead to 
various synonyms that are difficult to differentiate. Our Named 
Entity Recognition and Normalization (NER/N) method is a 
dictionary matching method based on the organism information 
from the full-text article. We curated the SwissProt database to 
boost coverage and accuracy of the terms in the database. Then 
various rules are applied to solve naming convention related 
problem. The organism information is used to improve the 
NER/N process in terms of both time and accuracy.  

Our contributions in this paper include 1) the novel NER/N 
method based on the organism information from the full-text 
article to recognize the protein name and specify the 
corresponding entry in SwissPort; and 2) the profile-feature 
based method which exploits the evidence all over the article to 
extract the physical interaction. In comparison to the average 
performance of all the submitted runs in BioCreAtIvE 2006, our 
method shows promising results and is ranked top in the official 
evaluation. 

3. NAMED ENTITY RECOGNITION AND 

NORMALIZATION (NER/N) 
Different from traditional NER, this task requires the protein 
names be normalized to primary Access Numbers (AC) of 
SwissProt entries, not just find the original names in the text. 
The motivation of this task is to help biologists identify the 
exact molecule of the mentioned protein, so they can use other 
information of the molecule, such as the sequence and taxonomy, 
and cross-reference information like protein structure. The major 
problem here is how to associate the name in the article with the 
entry in SwissProt. 

• First, the inconsistent naming conventions and various 
usages in text cause a lot of ambiguous terms. For example, 
TCF, PAL, and PKB may refer to different entities.  
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• Second, abbreviated terms, such as p53, may cause 
difficulty for normalization, although domain experts can 
infer from the context what molecules the author is 
discussing.  

• Third, the same protein name is used to identify different 
molecules that are from the same or related gene but 
different organisms. For example, PI3K may refer to 
different molecules in mouse (P42337), human (P42336), 
bovine (P32871), produced by the same gene PIK3CA.  

• Fourth, the same protein name is used to identify different 
molecules of different isoforms. For example, PI3K is 
referred to Q8BTI9 which is the beta isoform of the protein 
in mouse, and O35904 which is the delta isoform. 

As shown in Figure 1, there are mainly four processes in this 
module: 1) database curation; 2) organism detection; 3) 
dictionary-matching based name recognition; and 4) normalized 
names disambiguation. The process is as follows: 

1) The SwissProt is curated to incorporate gene 
names/synonyms and unify the written form;  

2) Find all the organisms that are mentioned in the article, 
mark their positions as an index;  

3) The organism list is used to filter out irrelevant SwissProt 
entries for the matching of current article;  

4) The article is processed by the same unification rules and 
matched by the filtered entries;  

5) Disambiguate the multi-mapped names by the organisms in 
the context 

3.1 Database Curation 
During database curation, two main procedures below are done 
to improve the quality and coverage of the terms in SwissProt 
database:  

• Curate entry terms in the SwissProt entries. The gene 
names/synonyms, gene product names/synonyms of the 
same entry are included. Addition of gene names may 

cause ambiguity since a gene may encode several proteins. 

• Unify the written form of the entry terms based on rules. 
The same rules are applied to articles to maintain 
consistency.  

1) Prefixes and suffixes which are not critical for entity 
identification are removed. For example, prefix c, n 
and a of PKC, known as Protein Kinase C, which 
mean conventional, novel and atypical respectively, 
are removed. 

2) Terms with digits or Roman/Greek numbers are 
transformed into a unified format: Alphabet + white 
space + digits. This rule implies such normalization: 
IL-2, IL2, IL 2�IL 2; CNTFR alpha, CNTFR A, 
CNTFR I�CNTFR 1.  

3) Terms not in abbreviated forms are converted to 
lowercases. 

The curation helps to improve the coverage because the official 
SwissProt names are descriptive and too long to use in articles. 
And it also helps to solve the nonstandard writing habits due to 
the rule-based unification. 

3.2 Dictionary Matching 
After curation, there are totally 230,000 entries, and more than 1 
million terms. Obviously, it is not feasible for all the terms to be 
used during dictionary matching with the articles. To improve 
computation efficiency, we first detect the organisms in an 
article, and then use the information to rule out irrelevant entries. 
Our assumption here is that physical interactions described in 
one article would belong to a limited number of organisms. The 
organism database used as the controlled vocabulary is NCBI 
taxonomy [31]. A dictionary matching method is used to detect 
organisms, and five most frequent organisms are left, marked 
with their positions in the article. When matching the articles 
with SwissProt to find the ACs of the protein names mentioned, 
only the entries belonging to these organisms are used. 

In experiment, the matching process saves about three quarters 

Figure 1: The Flowchart of NER. First, curate the terms in the SwissProt database; second, find the names and map them to 

SwissProt entries; and third, disambiguate the multi-mapped names by zone of control information from the organism contexts. 
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of the time due to the filtering. The time consumed by matching 
740 articles with all entries is 460 minutes on a normal Pentium 
4 2.0G processor. Through the filtering process before 
dictionary matching, the time is reduced to 125 minutes in the 
same condition. 

3.3 Disambiguation 
One protein name, particularly in abbreviated form, may 
correspond to multiple SwissProt entries. This is common in 
cases when the gene products in different organisms are similar 
(refer to the 3rd and 4th NER problems in Section 2). To solve 
the disambiguation, the principle of nearest neighbor is used, 
based on the organism’s zone of control. The presumption here 
is that every protein name belongs to a particular organism’s 
context. This context can be determined by the organism’s zone 
of control (ZOC): beginning from the sentence that mentions the 
organism till the sentence that mentions another organism. 
When a multi-mapped name is met, we calculate which 
organism’s zone the name belongs to based on the nearest 
neighbor rule, and filter out other maps to SwissProt entries with 
different organisms.  

The disambiguation can’t solve the isoform problems because 
the name is mapped to different isoforms that belong to the same 
organism. However the method is efficient because the isoform 
problems are not prevalent. We will see later in the experiment 
that this disambiguation method improves the precision greatly 
with only a little loss in recall.  

From the discussion above, it can be inferred that our NER/N 
method outperforms other methods because: 1) carefully 
designed curation greatly improves the database’s coverage and 
eliminates lots of naming inconsistency due to writing habit; 2) 
the dictionary matching method efficiently maps the name to the 
SwissProt entries based on the organism information from the 
full-text article. 

4. PROFILE-FEATURE BASED 

EXTRACTION 
Previous methods to extract protein interactions are based on 
sentence level, thus fail to synthesize the information from the 
whole articles. However, the topic-level interactions will be 
discussed at several places across the article, and these places 
will provide different sources of evidence, such as the 
experiment support and cross-reference evidence. The basic idea 
here is to extract interactions by using profile features derived 
from the whole document. The classifier is trained to make the 
decision based on the features all over the article. The 
profile-feature based extraction is more robust than pattern 
based extraction and other methods focused on the evidence 
from single sentence.  

First, the goal is to extract physical interactions, so the single 
description as “PTN1 binds to PTN2” does not necessarily 
indicate the existence of a physical interaction between PTN1 
and PTN2. However, if there is other evidence in the document, 
such as “The bind of PTN1 to PTN2 is determined by two hybrid 
screen”, then the interaction is more probably to be true. So, 
different evidence will strengthen the validation of the physical 
interaction. 

Second, the profile-feature based extraction is more robust when 
NER performance is far from satisfactory. The false positive 
protein names will falsely pair with other recognized names. But 
the pairs of the false positive proteins will be less statistically 
significant all over the document. Their profile features will be 
more random and less significant. For example, “The Y2H 
experiment proved the interaction between PTN1 and PTN2, 
CGA ... …”. The underlined term “CGA” that is the sequence of 
PTN2 will be recognized as a protein, because CGA is the 
synonym of Chromogranin A precursor, which is P05059 in 
SwissProt. This false positive protein will be falsely paired with 
PTN1 and PTN2. The previous method is hard to filter out the 
pair even though the pair only appears once in the article. 
However, the profile-feature based method is able to solve the 
problem by incorporate the evidence from the whole article. 

4.1 Profile Feature 
Profile features are selected to represent the evidence of a 
physical interaction. There are 3 types of profile features:  

� 168 Unigram/Bi-gram Features 
 100 of these features are selected by chi-square statistics of 

distinctiveness [18], and the rest 68 features are selected 
from Molecular Interaction (MI) ontology’s [30] definition 
of Physical Interaction and Detection Method.   

� 91 Pattern Features 
 These features are generated in a semi-supervised manner 

[7]. These features have a form as “PTN * bind to * PTN”, 
where PTN indicates a protein entity, and * means any 
word that can be skipped. The pattern feature is matched 
against the sentences as a regular expression. 

� 2 Position Features 
 One is whether the two proteins co-occur within the title; 

the other is whether they co-occur within the abstract. 

These features eventually comprise a 261-dimensional feature 
vector, where each dimension is 1 or 0 indicating the presence or 
absence of a feature. Examples of these features are shown in 
Table 1. 

Table1: Feature examples 

Unigram/Bigram Pattern 

aggregation activation of *PTN1 *by *PTN2 

crystallography PTN1 bind *PTN2 

elongation PTN1 *interact with *PTN2  

circular dichroism PTN1 *form complex with *PTN2 

 

4.2 Feature Construction 
Every protein pair occurred within a sentence is viewed as a 
candidate. These sentences are considered as evidence. For each 
pair, profile features are extracted from all the sentences in 
which the pair appears. The corresponding bit is set as 1 if the 
feature is found in these sentences, see Figure 2. Through such a 
representation with abundant features, information from the 
whole document has been incorporated. 
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4.3 Training 
We use SVM-Light as our classifier [17]. In this part, we will 
discuss the construction of the training set. 

The problem of the training corpus is that the supervised 
information is not given at the sentence level but only at the 
document level. The annotations from MINT and IntAct only 
specify the database ID (mainly SwissProt AC) of the interactors 
in the article, which means they do not provide the evidence 
texts that support the existence of the physical interaction, 
neither do we know where the interactors appear in the texts. So 
the annotation of the training corpus can not be used directly.  

To establish the training set that the classifier can make use of, 
the protein names are first extracted and mapped to primary 
Access Number of SwissProt entries by our NER module. The 
protein pairs 1  which are annotated by domain experts are 
considered as positive samples. The other protein pairs in the 
text are treated as negative samples. Since lots of proteins are 
not part of a physical interaction, the number of negative 
samples overwhelms that of positive samples, which will lead to 
a biased distribution of training set. So from 740 training articles 
we randomly choose the negative samples twice as many as the 
positive samples and finally get 701 positive samples and 1402 
negative samples as the training set for SVM. 

5. EXPERIMENT AND EVALUATION 
Data used in the experiments are introduced in Section 4.1. 
Evaluation methods are presented in detail in Section 4.2. The 
experiments of NER/N and Physical Interaction Extraction are 
discussed in Section 4.3 and 4.4. The evaluation results are 
officially published by BioCreAtIvE 2006. 

5.1 Data Setup 
BioCreAtIvE 2006 provided 740 full-text articles for training 
and 358 articles for testing from MINT and IntAct (The 
annotations of the testing articles are not released until the end 
of BioCreAtIvE 2006). These articles are manually annotated by 
database curators. The interaction pairs are only annotated from 
the full text articles in case there was an experimental 
confirmation for this interaction mentioned in the article.  

                                                                    
1 Protein Pair is defined as two proteins which co-occur in at 

least one sentence in the name-mapped text. 

5.2 Evaluation 
Due to the annotation methods applied by MINT and IntAct, the 
evaluation in BioCreAtIvE 2006 is different from previous 
evaluation of PPI extraction tools. Traditionally, the annotation 
will focus on one sentence and provide the position of the 
interactors and their relations (such as “induce” or “bind”). Thus 
the evaluation requires the exact match of these criteria to mark 
the result as true positive [13]. However, the current annotation 
in MINT and IntAct is focused on document level and provide 
the normalized database ID of the physically interacted proteins. 
So, the evaluation requires the detection of normalized 
interaction pairs of the document.  

The evaluation for NER/N provided by BioCreAtIvE 2006 is 

also different from that of traditional NER task, because it only 

considers the physically interacted protein ACs as reference. So 

a lot of correctly recognized and normalized proteins are 

evaluated as false positive because they are not annotated as part 

of a physical interaction. Thus, the data of the evaluation can’t 

represent the absolute performance of a NER/N module, but the 

comparison can reveal the difference of these NER/N methods. 

5.3 Named Entity Recognition And 

Normalization (NER/N) 
The performance of our NER/N module is shown in Table 2. 
The average results are calculated on 45 runs from 16 teams. 
Our performance is much better than the mean/median 
performance. From the comparison, it’s obvious that our 
contributions to NER/N are database curation and 
organism-based disambiguation.  

The curation will improve the database entries’ accuracy and 
coverage, because the official names of the SwissProt entries are 
very long, descriptive and formal. The addition of synonyms and 
gene names will significantly increase the coverage. The 
unification of the various writing habits helps a lot to improve 
the matching accuracy. The F-score after database curation is 
improved by 77.3% compared to the naïve match. 

The disambiguation based on organism information collected 
from the whole article greatly improves the NER/N’s precision 
with slight loss in recall. The F-score is improved by 14.6% 
after disambiguation. Thus, the disambiguation by organism is 
efficient. 

Figure 2: Feature Construction 
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Although our method outperforms other methods (Our > Mean + 
Dev), the result is far from satisfaction. One problem is the wide 
spread synonyms which are hard to differentiate, such as PKB, 
Akt, and CGA. Another problem lies in the disambiguation. One 
protein name may refer to multiple entries in SwissProt, such as 
protein isoforms, which make the disambiguation method hard 
to handle. 

Table 2: Overall performance vs. our overall results of 

NER/N 

Proteins normalized to 

SwissProt entries Score 

Precision Recall F-score 

Mean 0.1495 0.2828 0.1707 

Std. Dev 0.0963 0.1294 0.0764 

Median 0.1337 0.2723 0.1683 Improv. 

Naïve Match 0.2223 0.1024 0.1402 N/A 

Prev. 

+Curation 
0.2345 0.2648 0.2487 +77.3% 

Prev. 

+Disambiguation 
0.3483 0.2410 0.2849 +14.6% 

 

5.4 Physical Interaction Extraction 
To illustrate the effectiveness of profile-feature based method, 
we compare our methods with other methods submitted by other 
45 runs from 15 teams in BioCreAtIvE 2006. Moreover, we 
adopt the results of pattern based method derived from 
ONBIRES [13, 7] as the baseline. The pattern based method 
learns lexicon-syntactic patterns describing interactions in a 
semi-supervised way: it first learns the patterns from large 
amount of unlabeled texts and then uses relatively small amount 
of labeled texts to select the candidate patterns. After that, the 
patterns are aligned against the sentences to extract interactions, 
where the matching score must exceed a pre-specified threshold. 
In this model, interactions are extracted at the sentence level. 
Thus, the approach is sensitive to the performance of NER 
which is far from satisfactory. 

Table 3 shows the overall performance for both average results 
of all runs and our submitted results (two results by pattern 
based method, ONBIRE, and one result by profile-feature based 
method). It is worth noting that our results are much better than 
mean performance across all runs from all teams. And our 
system based on profile-feature excels others significantly (Our 
> Mean + 2*Dev) and is ranked top in the evaluation.  

One reason for the whole system achieving higher performance 
is our effective NER/N module. To illustrate the contribution of 
profile-feature based method alone, we compare it with our 
pattern based method. 

Profile-feature based model achieves the best results compared 
to the other two runs submitted by pattern based system, 
ONBIRES. These three results are achieved by the same NER/N 
module, so the NER/N does not impact the comparison of 
different extraction methods. It is obvious that the 
profile-feature based model contributes a much better precision 

than others. This is mainly because the model is more rational 
by synthesizing the evidence from the whole article, thus causes 
less false positive results.  

So, the conclusion can be made from the evaluation that the 
profile-feature based method outperforms the traditional 
extraction methods, such as the pattern based method. The main 
advantage is that profile-feature is able to encode various 
features from the whole article. Because the task is focused on 
physical interactions, extraction methods which only exploit 
single evidence is prone to generating false positive results, 
while profile based method can incorporate lots of evidence and 
extract the semantic relations more rational. 

6. DISCUSSION 
To extract physically interacted protein pairs from the full-text 
articles has two major challenges: 1) recognizing protein named 
entities and mapping each entity to a unique entry in the 
SwissProt database; 2) identifying protein pairs which have been 
experimentally confirmed to have physical interactions. These 
challenges can lead to Biologically Meaningful Knowledge, 
which requires deeper understanding of semantic relations in the 
text.  

First, NER/N is a most challenging task, and is obvious the 
bottleneck of the system. The difficulty to recognize and 
normalize the names to SwissProt entries is due to various 
synonyms and ambiguity in names. Database curation and 
organism based disambiguation are exploited as solutions. 
However, since the conventional naming of biomedical entities 
is far from standardized, the curation procedure lacks unified 
guides and fails to help the database to cover all the terms. 
Moreover, the normalization of the protein names to the unique 
entries in SwissProt database requires deeper understanding of 
the semantics buried in natural language. Future work will be 
focused on exploiting semantic information of the article for 
NER/N. The third problem is that the processing speed is not 
suitable for real-time application. We will try to speed up the 
NER/N process in the future by 1) indexing the protein terms in 
SwissProt and 2) dictionary matching by suffix tree. 

Second, the profile based method is superior to previous ones 
because it incorporates evidence all over the article.  However, 
one problem is that the model considers the article as a linear 
structure and misses a lot of useful information such as the 
positioning feature. The future work will focus on using more 
information from different regions of the full texts, such as the 
table/figure captions and cross-reference information to extract 
the interactions. Another problem is the lack of understanding of 
the syntactic structure and semantics of the sentence. This is a 
common problem because of the immature of Natural Language 
Understanding. We will try to develop novel method to capture 
the deeper semantics of the document by NLP techniques, such 
as the semantic lexicon/role defined in FramNet [2]. 

We believe that the text mining in biomedical area is to extract 
and manage the biological meaningful knowledge from the 
literatures. This knowledge can be used to integrate with the 
high-throughput experimental data for validation, hypothesis 
generation and biological discovery, and finally make the text 
mining really helpful to biologists. 
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ABSTRACT
The increasing availability of biological networks (protein-
protein interaction graphs, metabolic and transcriptional
networks, etc.) is offering new opportunities to analyze their
topological properties and possibly gain new insights in their
design principles. Here we concentrate on the problem of
de novo identification of the building modules of networks,
which we refer to as network modules.

We propose a novel graph decomposition algorithm based
on the notion of edge betweenness that discovers network
modules without assuming any a priori knowledge. We
claim that the knowledge of the distribution of network mod-
ules carries more information than the distribution of sub-
graphs which is commonly-used in the literature. To demon-
strate the effectiveness of the statistics based on network
modules, we show that our method is capable of clustering
more accurately networks known to have distinct topologies,
and that the number of informative components in our fea-
ture vector is significantly higher. We also show that our ap-
proach is very robust to structural perturbations (i.e., edge
rewiring) to the network. When we apply our algorithm to
protein-protein interaction (PPI) networks, our decompo-
sition method identifies highly connected network modules
that occur significantly more frequently than those found
in the corresponding random networks. Detailed inspection
of the functions of the over-represented network modules
in S. cerevisiae PPI network shows that the proteins in-
volved in the modules either belong to the same cellular
complex or share biological functions with high similarity.
A comparative analysis of PPI networks against AS-level
Internet graphs shows that in AS-level networks highly con-
nected network modules are less frequent but more tightly
connected with each other.

Categories and Subject Descriptors
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D.2.8 [Software Engineering]: Design—Methodologies

General Terms
Graph theory

1. INTRODUCTION
Many real world systems can be modeled as network graphs,

and their formal analysis can help us understand the un-
derlying design principles behind each corresponding sys-
tem. For example, identifying highly connected subgraphs
in protein-protein interaction graphs can potentially enable
life scientists to discover new protein complexes or specu-
late about the functions of unknown proteins [3, 23, 6]. In
addition, the topological analysis can offer new insights in
the roles of structural elements on the network performance,
such as, traffic flow or diffusion of computer viruses over the
Internet, epidemic diseases or ideas spreading in social net-
works, error and attack tolerance of various communication
networks, etc.

In the past few years, a significant research activity has
been focused on studying global and local properties of the
network graphs (see, e.g., [7, 4, 27]) and significant break-
throughs have been achieved. For instance, the concept of
scale-free networks, and the small world phenomenon have
changed the way we model and analyze graphs across many
different disciplines, from biological networks, to social net-
works all the way to communication networks.

In an attempt to understand the design principles of net-
works, the concept of network motif [18] has been recently
proposed to represent the subgraphs in the network that oc-
cur significantly more often than the number of times they
occur in the corresponding random networks. By using the
concept of network motif, the authors of [18] were able to
show that similar motifs were found in several information
processing networks irrespective of their origin. They argued
that these motifs may define universal classes of networks.
The concept of network motif has been widely adopted to
study local properties of various biological networks. For ex-
ample, the network motifs in the transcriptional regulation
network of E. coli were studied by Shen-Orr et al. [24]. The
authors found that three highly significant motifs, namely,
the feed-forward loop, the single input module and the dense

overlapping regulons, are the main building blocks of the
network. They also discovered that each motif is associated
with a specific function in determining gene expression. A
large collection of metabolic pathway networks were ana-
lyzed by Koyuturk et al. in [13]. The authors designed
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(a) (b) (c)

Figure 1: Illustrating the bias introduced by the
occurrences of hubs (a) on the counts of subgraphs
(b) and (c)

an efficient algorithm based on the frequent itemsets algo-
rithm [1, 10] to find frequent subgraphs in the metabolic
networks of over 150 organisms. Wuchty et al. [28] studied
the conservation of 678 yeast proteins with the correspond-
ing ortholog proteins in five higher eukaryotic organisms.
The authors discovered that the orthologs are not randomly
distributed in the yeast protein interaction network but are
the building blocks of larger cohesive motifs, which tend to
be evolutionarily conserved. They also observed that larger
motifs tend to be conserved as a whole, with each of their
components having an ortholog. Yeger-Lotem et al. [31] pro-
posed the concept of composite network motifs, which consist
of patterns from both transcription-regulation and protein-
protein interaction networks that appear significantly more
often than in random networks. They detected two-protein,
three-protein, and four-protein motifs that occur in both
networks.

Recently, the concept of network motif has been used to
classify graphs. Milo et al. [17] introduced the concept of
significance profile which is computed over the small sub-
graphs of the network and is used to cluster different net-
works. The profile is a normalized z-score for each sub-
graph obtained by comparing the number of occurrences of
the subgraph to the number of occurrences in correspond-
ing random networks. The authors were able to show that
all networks having similar functionality share similar pro-
files. Surprisingly a few super-families of unrelated networks
also share very similar significance profiles. Along the same
line, Middendorf et al. [16] proposed a discriminative ap-
proach to understand the design of complex networks. The
authors built a classifier based on alternating decision tree
and trained the classifier using raw subgraph counts of 148
subgraphs obtained from seven random graph models. The
protein-protein interaction graph (PPI) of D. melanogaster

was classified as duplication-mutation-complementation net-
work [26].

While this paper was under review, a work by Luo et al.

[14] appeared in the scientific literature. The authors present
an agglomerative algorithm to identify biological modules in
PPI based on the concept of betweenness and modularity [9,
19, 21].

We observe that the majority of the approaches mentioned
above share two common features, namely (1) they are de-
signed to operate on directed graphs and (2) they are based
on the exhaustive enumeration of all the subgraphs (up to a
given size) in the network. From here on, we refer to exhaus-
tive subgraph enumeration approaches as Subgraph Counting

Network Motif (SCNM) approaches. We observed that using
the raw subgraph counts as an indicator of over-representa-
tion has an inherent shortcoming. This arise from the fact

Input: Graph G, integer k and a list L of all subgraphs gi

of size smaller or equal to k
Output: Number of occurrences of each subgraph gi in L

C ← Connected Components(G)
for each connected component Gd ∈ C do

Enqueue(Q, Gd)
while Q 6= ∅ do

n, Gc ← 1,Dequeue(Q)
if Num Vertices(Gc) ≤ k do

Update Counts(L, Gc)
else

while n = 1 do

e← Edge Betweenness(Gc)
Remove Edge(Gc, e)
C ← Connected Components(Gc)
n← Size(C)

for each connected component Gd ∈ C do

Enqueue(Q, Gd)
return L

Figure 2: Sketch of the edge betweenness decompo-
sition algorithm

that some subgraphs substantially overlap with each other,
which in turn creates strong biases in the absolute counts.
For example, hubs (nodes with high degree) are quite com-
mon in PPI networks [11]. As illustrated in the example
of Figure 1, if one hub of degree twelve (a) is present in
the network, then we will observe 66 subgraphs of type (b)
and 220 subgraphs of type (c). If the network under study
has several hubs, then type (b) and type (c) subgraphs will
be highly over-represented when compared to random net-
works and they will dominate the analysis. However, such
subgraphs may well be totally irrelevant from a statistical
or biological viewpoint.

Here we address this limitation of SCNM approaches by
introducing a novel graph decomposition method based on
the concept of edge betweenness [9, 19, 21]. Our method
decomposes the network into a collection of small subgraphs
(called network modules), and thereby creates a disjoint par-
titioning of the nodes. The fact that a node can belong
to only one network module solves the problem of count-
ing overlapping subgraphs, and potentially allows us to as-
sign putative biological functions to the nodes involved in
the same network module. In order to evaluate objectively
the effectiveness of our method to extract important fea-
tures from the graph, we compare it to SCNM approaches
on the problem of graph classification (along the lines of
[17]). Results show that our approach is more accurate
in distinguishing networks known to have distinct topolo-
gies. Our method is also tested for robustness against ran-
dom perturbations to the network (i.e., edge rewiring), and
our findings suggest low sensitivity to small changes in the
graph. Finally, we report on preliminary results on the anal-
ysis of several protein-protein interaction networks (PPI).
We show that highly connected network modules are more
over-represented in PPI networks than those found in their
random counterparts, and that the proteins involved either
belong to the same cellular complex or share highly similar
functions.

2. AN EDGE BETWEENNESS DECOMPO-
SITION ALGORITHM

It is well-known that proteins that are involved in the
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Figure 3: Non-isomorphic subgraphs of size ranging from one to five nodes

same cellular process or reside in the same protein complex
are expected to have strong interactions with their partners.
At the same time, interactions between distinct functional
modules are expected to be suppressed in order to increase
the overall robustness of the network by localizing effects of
deleterious perturbations [15]. Biological networks are be-
lieved to consist of different modules with distinct functions
[11, 22]. Here we are interested in identifying the build-
ing blocks of these functional modules without any a priori

biological knowledge.
In this study, the detection of the building modules is

based solely on the concept of edge betweenness. Consider
the shortest paths between all pairs of vertices in a graph.
The betweenness of an edge [9] is defined as the number of
these shortest paths running through it1. When two dif-
ferent functional modules are loosely connected with each
other, all shortest paths between vertices in those two mod-
ules have to traverse the few links between them. By remov-
ing those edges, the functional modules are separated from
one another. The effectiveness of the betweenness approach
on PPI graph in decomposing the network to find functional
modules has been recently reported in [6]. In order to find
the basic building modules of the network, we proceed as
follows. First, we compute the edge betweenness of all the
edges. Then, we start removing the edges with the high-
est betweenness until the largest connected component of
the graph becomes smaller than or equal to some predefined
threshold (k). Each time we remove an edge, the between-
ness is recomputed from scratch. All the “small” connected
components are then classified and counted. We refer to all
the classified small subgraphs as network modules.

The outline of the algorithm is sketched in Figure 2. The
function Edge Betweenness computes and returns the edge
with the largest edge betweenness. Evaluating the between-
ness value for all edges of graph G = (V, E) requires O(|V ||E|)
time, by running a BFS from each node of the graph. The
iterative removal of all |E| edges leads an overall worst-case
time complexity of O(|V ||E|2) for our approach. Because
of its computational cost, a distributed implementation of
Edge Betweenness was used [30].

When comparing our approach to Newman and Girvan
method [19, 21], several major differences emerge. Although

1If multiple shortest paths between a pair of nodes exists,
each shortest path contributes an equal fraction to the edge-
betweenness of their edges [5].

Table 1: The set of graphs used in the experiments
ID name |V | |E|
1 H. pylori PPI 702 1359
2 H. sapiens PPI 1059 1318
3 C. elegans PPI 2629 3970
4 S. cerevisiae PPI 4770 15181
5 D. melanogaster PPI 7057 20815
6 E.coli. Transcription 418 519
7 S. cerevisiae Transcription 688 1078
8 C. elegans Neuron Connectivity 202 1952
9 AS1 3522 6324
10 AS2 4885 9276
11 AS3 7246 14629
12 AS4 10515 21455
13 AS5 4686 8772
14 AS6 9200 28957
15 Circuits1 122 189
16 Circuits2 252 399
17 Circuits3 512 819
18 Protein Structure1 95 213
19 Protein Structure2 53 123
20 Protein Structure3 97 212
21 Social1 67 142
22 Social2 32 80
23 Japanese 2704 7998
24 English 7381 44207
25 French 8325 23841
26 Spanish 11586 43065

both algorithms employ betweenness to determine the order
in which edges have to be removed, Newman and Girvan’s
relies on a metric that evaluate the quality of the decom-
position, called modularity. In their method, the final de-
composition is obtained by “cutting” the dendrogram of the
decomposition at the point in which the value of the mod-
ularity peaks. In our method, we keep removing edges un-
til the graph disconnects; only if the component is small
enough, we stop the process and classify the module in one
of 31 non-isomorphic subgraphs (shown in Figure 3).

Note that in our approach each vertex can only belong
to one network module, in contrast to the network motifs

widely used in the literature [18, 24, 28, 31, 16], which are
based on exhaustive subgraph counting (SCNM) approach.
To make a distinction between our approach and SCNM
approach, we refer to our method as Graph Decomposition

Network Module (GDNM) approach.
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Figure 4: Comparing the exhaustive subgraph enu-
meration and random sampling on the graph Pro-
tein Structure3. The x-axis represents the subgraph
index (according to Figure 3), whereas the y-axis
represents the subgraph concentration. Subgraph
of size 3, 4 and 5 were sampled 100,000 times

3. REPRESENTATION OF GRAPH
FEATURES

Since the number of possible subgraphs grows exponen-
tially with the number of nodes, in this study we only con-
sider the number of occurrences of network modules of size
up to five nodes (as in papers [20, 28]). As illustrated in
Figure 3, there are 31 non-isomorphic subgraphs of size
up to k = 5. Each subgraph gi is indexed by an integer
i = 1, . . . , 31.

When a graph G is processed by the algorithm in Fig-
ure 2 where k = 5 and L = {g1, . . . , g31}, a feature vector
of 31 components is returned. Note that the number of oc-
currences of subgraphs of size one and two in the SCNM
approaches it is somewhat meaningless, since they corre-
spond respectively to the number of nodes and the number
of edges in the graph. As a consequence, the feature vector
for the exhaustive subgraph counting is 29-dimensional for
k = 5. In our approach it is meaningful to keep track of all
those 31 counts because when the network is broken down
into connected components, some of those components may
just have one or two nodes.

Before we can use these feature vectors to classify graphs,
we need to normalize the components to remove the depen-
dency on the absolute size of the graph. This will allow
us to compare graphs of different sizes. We consider two
normalizations, as explained below.

3.1 Subgraph Proportion Normalization
The first normalization tries to capture what proportion

of nodes belongs to each subgraph class gi. Given a graph
G = (V, E) and the vector [ni] of network module counts,
the i-th component of the subgraph proportion vector is de-
fined as ni|gi|/|V | where ni is the number of occurrences
for subgraph class gi. In the following we will use this nor-
malization for the feature vectors associated with network
building modules computed by our GDNM decomposition.
Note, that since

P31
i=1 ni|gi| = |V |, the sum of all the com-

ponents of the subgraph proportion vector is always 1.

3.2 Subgraph Concentration Normalization
The second (alternative) normalization denotes how fre-

quent is one subgraph class with respect to all the other
classes with the same number of nodes. Given the vector [ni]
of subgraph counts, the i-th component of the subgraph con-

centration [12] vector is defined as ni/
P

j:|gj |=|gi|
nj , where

ni is the number of occurrences of subgraph gi. It is easy
to realize that the sum of all the components of the sub-
graph concentration vector is always k. In the following we
will use this normalization for the vector associated with
the exhaustive SCNM approaches, since the subgraph pro-
portion vector is not feasible for it. If we used the subgraph
concentration normalization for the GDNM approach, we
would loose the information carried by the network modules
of size one and two (both components will be one).

4. RESULTS AND DISCUSSION
To test the effectiveness of our GDNM approach, we con-

ducted several experiments and compared the results with
the SCNM method. The first set of experiments is about
graph classification, both on simulated data and on real net-
works (see Table 1 for a summary of the dataset). Five PPI
networks were obtained from DIP database [29] and the rest
of the networks are from [2]. We also performed a robustness
test of our technique and computed the over-represented
modules in PPI networks. Then, we studied the biologi-
cal functions associated with the over-represented network
modules found by our algorithm on the yeast PPI network.

4.1 Graph classification

4.1.1 Estimating the subgraph counts
Due to the large size of some of the networks in our

dataset, the exhaustive subgraph enumeration is not always
possible. In order to obtain the network motifs based on
subgraph counting, we adopted the sampling algorithm by
Kashtan et al. [12] to compute the number of occurrences
of each subgraph in the network. For completeness of pre-
sentation, we briefly review the sampling procedure for a
subgraph of size k. (1) Pick an edge e = (u, v) ∈ E uni-
formly at random; (2) Set U = {u, v} (3) Compute the set
F of vertices that are adjacent to the vertices in U ; (4) Pick
one vertex from F at random and add it to U ; (5) Repeat
steps (3) and (4), until the target number k of vertices is
reached.

Figure 4 shows a comparison between the exhaustive sub-
graph enumeration and the sampling approach for the “Pro-
tein Structure 3” network. The figure shows that the sam-
pling algorithm gives good approximations of the subgraph
concentration. We compared the sampling approach to the
exhaustive count on many other relatively small graphs and
in all cases it was capable of producing good estimates.

4.1.2 Classification of Real Networks
The real-world networks summarized in Table 1 were pro-

cessed along the same lines as the previous experiment. It
is worth noting that we treated all networks as undirected
graphs although some of them (i.e., transcription regula-
tion networks, social networks and language networks) are
directed. Figure 5 shows the two Pearson correlation coef-
ficient matrices for the 26 networks for our decomposition
algorithm (left) and the subgraph counting approach (right).
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Figure 5: Pearson correlation coefficient matrix on the 26 real networks in Table 1 using decomposition
network module approach (LEFT) and subgraph counting network motif approach (RIGHT)

Both pictures use the same scale. An inspection of the right
matrix (corresponding to SCNM) shows that almost all net-
works are significantly correlated with one another. On the
other hand, the feature vectors computed with our approach
(left) show clearly that there are several distinct families of
networks. The first is a big cluster composed of biologi-
cal networks (PPI, transcriptional and neural), Internet AS-
level networks, and languages networks, although the neu-
ral network does not share significant similarity with some
members of this family. The second consists of circuit net-
works and the third consists of protein structure networks.
The two social networks are not strongly correlated probably
due to their small size. Note that circuit, protein structure
and social networks are clustered together in the SCNM cor-
relation matrix (right).

4.1.3 Principal component analysis
In order to establish an objective measure of the quality

of the features extracted by the two approaches, we per-
formed a principal component analysis (PCA) of the covari-
ance matrices for both methods and both datasets (random
and real data). The goal of this PCA analysis is to es-
tablish the effective dimensionality of the feature vectors
obtained by the two methods. Figure 6 shows the distribu-
tion of the eigenvalues of the covariance matrix for random
(left) and real networks (right). The value of the eigenvalues
clearly illustrates that our decomposition method extracts
more information from the graph. The analysis shows that
our approach has a larger number of significant indepen-
dent components in the feature vectors. For example on the
random dataset, 11 principal components have significant
eigenvalues whereas only three are obtained using the sub-
graph counting approach. On the real network dataset, our
method extracts 21 significant components against 14 of the
other approach. The fact that we have more “useful” com-
ponents in our feature vectors can explain why our approach
creates sharper and more accurate boundaries between dif-
ferent types of graphs.

4.2 Robustness
To test the sensitivity of the GDNM approach to random

perturbation to the graph, we conducted a few experiments
in which we swapped some of the edges of the network at

random. This process is called rewiring [4], and works as
follow.

Given a graph G(V, E), randomly pick two edges (u, v) ∈
E and (x, y) ∈ E. If (u, x) /∈ E and (v, y) /∈ E, add (u, x)
and (v, y) to E and delete (u, v) and (x, y) from E. Other-
wise, if (u, y) /∈ E and (v, x) /∈ E, add (u, y) and (v, x) to
E and delete (u, v) an d(x, y) from E. If both choices are
feasible, then whether we should connect (u, x) and (v, y) or
(u, y) and (v, x) is arbitrarily chosen at random.

Figure 7 shows the profile of the vectors computed by our
decomposition method before and after random perturba-
tions up to 10% edge-rewiring on the PPI networks of yeast
and fly. The figures indicate that our approach is quite ro-
bust to random perturbations.

4.3 Enrichment of Network Modules in PPI
We applied our GDNM algorithm to two large biological

networks, namely, the protein-protein interaction (PPI) net-
work for S. cerevisiae (yeast) and the PPI for D. melanogaster

(fly). According to [8] the PPI of drosophila was obtained
by high-throughput yeast two hybrid assays, whereas the
source of the PPI data for yeast is a mix of mass spectrome-
try and yeast two hybrid assays. Our objective on PPIs is to
identify network modules which are over-represented when
they are compared to corresponding random networks, and
possibly determine whether these over-represented modules
are associated with important biological functions. We stud-
ied over-represented network modules both analytically and
empirically. We performed an analytical analysis based on
ER random graph model and an empirical analysis based
on scale-free network model. We also report a preliminary
comparative analysis of PPI and AS-level networks.

Consider an Erdos-Renyi (ER) random graph G(V, E),
which has |V | = n labeled vertices and each pair of vertices is
connected with probability p. Given G we want to calculate
the expected number of occurrences of subgraphs Hr,l with
r vertices and l edges. Let Zr,l be the random variable
associated with the number of subgraphs Hr,l in G. The
expected number of occurrences of Hr,l can be obtained as
follows

E(Zr,l) =

 

n

r

! 

r(r − 1)/2

l

!

pl(1 − p)(r(r−1)/2)−l.
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Figure 6: The eigenvalue distribution of the covariance matrix for 20 random networks (LEFT) and 26 real
networks (RIGHT). The x-axis represents the ranks of the eigenvalues, the y-axis represent the absolute
value of the eigenvalues

Indeed, there are
`

n

r

´

ways of selecting r vertices from n
vertices, and the maximum number of edges over r vertices
is
`

r

2

´

= r(r − 1)/2. The probability of observing l edges

given r vertices is therefore
`

r(r−1)/2
l

´

pl(1 − p)(r(r−1)/2)−l.
The value of E(Zr,l) is not a tight reference point when
used to evaluate the significance of the subgraph counts
obtained using our GDNM approach. The reason is that
the count captured by Zr,l include overlapping and discon-
nected subgraphs, whereas our approach only considers non-
overlapping and connected subgraphs.

Table 2 lists the observed and expected number of sub-
graphs Hr,l in the yeast PPI network. It is obvious from
Table 2 that densely connected subgraphs, such as g28−g31,
are significantly over-represented when compared with the
ER random graph model.

When comparing network module counts with the ex-
pected number of subgraphs in the ER random model, an-
other fact need to be taken into account. Since our method
removes edges with high betweenness first, it tends to fa-
vor highly connected subgraphs to sparser subgraphs. This
observation has to be taken into account in the assessment
of the statistical significance of these findings. In order to
eliminate this bias, we also conducted an empirical analysis
of the statistical significance, as described next.

To better understand the distribution of the number of
subgraphs when the underlying random graph model has
the same degree distribution as the original network, we
performed an empirical study based on scale-free network
model. The random networks were generated using the same
method used to generate the scale-free networks above, but
this time the degree distributions are that of the yeast and
fly PPI networks. We made sure that the degree distribu-
tions are well preserved between real and random networks
(statistics not shown). Our GDNM approach was subse-
quently applied on the scale-free random networks.

Figure 8 shows the profile of the subgraph proportion
vectors for yeast (left) and fly (right) networks compared
to the subgraph proportion vectors obtained from the ran-
dom networks with the same degree distribution (averaged
over 10 random networks). The comparison shows that large
highly-connected subgraphs (i.e., those with high subgraph

Table 2: The observed and expected number of sub-
graphs with r vertices and l edges.

Network module r l Observed Expected
g3 3 2 214 97629
g4 3 3 8 45
g5 − g6 4 3 118 1.05 e6
g7 − g8 4 4 20 1085
g9 4 5 6 0.60
g10 4 6 3 1.38 e−4
g11 − g13 5 4 137 1.41 e7
g14 − g18 5 5 18 23430
g19 − g23 5 6 26 27
g24 − g27 5 7 18 0.02
g28 − g29 5 8 7 1.10 e−5
g30 5 9 18 3.38 e−9
g31 5 10 29 4.66 e−13

indices) occur significantly more often in PPI networks than
in random networks. This indicates that the occurrences of
densely connected modules in PPI networks cannot be ex-
plained by chance and may imply important biological roles
in the cell. When interpreting these results, we should not
forget how the PPI data is collected. For example, since co-
immunoprecipitation detects multi-protein complexes, this
in turn can possibly bias the number of occurrences of cliques
or other highly connected modules. An open question is how
to correct for this bias, since the technology used in the col-
lection of protein interaction data is likely to stay with us,
at least in the short term.

It is clear from both analytical and empirical approaches
that densely connected modules are significantly over-repre-
sented. In order to gain some insights in the functions of
these modules in PPI networks we concentrated on module
g31 (5-clique), which is one of the statistically significant
modules identified in the yeast network. The functional
analysis of the 29 occurrences of module g31 obtained by
our algorithm reveals two classes of modules. In the first we
found cellular protein complexes, such as 26S protease, RNA
polymerase II, spliceosome, origin recognition complex, nu-
clear pore complex, etc. In the second, we found proteins
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Figure 7: Testing the robustness of our decomposition approach before and after 10% edge rewiring in S.

cerevisiae (LEFT) and D. melanogaster (RIGHT)
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Figure 8: Comparing the occurrences of network modules in S. cerevisiae (LEFT) and D. melanogaster

(RIGHT) against the corresponding random graphs (averaged over 10 random graphs)

that share highly similar functions, of which are involved
in transcription regulation, translation initiation, cell cycle
control, cellular transportation, mRNA processing, signal
transduction cascades, etc. The functional categories of the
29 occurrences of module g31 are summarized in Table 3. Ex-
amples of the proteins involved in some of the modules g31

are given in Table 4. Due to lack of space, we refer the reader
to http://www.cs.ucr.edu/~qyang/ for the complete set of
annotations.

We also performed a comparative analysis of the network
modules in PPI networks against Internet AS-level networks.
The goal of the analysis was to determine whether the over-
represented modules in PPI are more or less interconnected
than in the AS-level graphs AS4 and AS5. Both PPI and
AS-level graphs have a skewed degree distribution. The“rich
club connectivity”[32] analysis on the AS4 and AS5 reported
one 10-clique among the vertices with the highest degree
(data not shown), which is referred as the core of the Inter-
net. Figure 9 shows that the yeast PPI has significantly more
occurrences of large network modules (e.g., g25, g26, . . . , g31)
than AS4 and AS5. Internet AS-level networks are known

Table 3: Distribution of the 5-cliques based on func-
tion annotation in S. cerevisiae PPI network

Function Category Number of 5-cliques
Transcription 7
mRNA processing 5
Cell cycle 5
Cellular transportation 4
Metabolism 3
Translation 2
Cytoskeleton 1

to have highly connected core structure, where the links in-
side the core carry higher amount of communication flow
than rest of the links in the network. Therefore, links inside
the core will have higher betweenness and will be removed
first in the decomposition process. The consequence is that
in AS-level networks the resulting decomposition will lack
these large network modules. In contrast, the highly con-
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Figure 9: Comparing the occurrences of network modules between S. cerevisiae PPI network and the Internet
AS-level network AS4 (LEFT) and AS5 (RIGHT)

nected large modules in PPI networks tend to be more fre-
quent and more loosely connected with each other. This
may indicate that PPI networks are organized in a decen-
tralized manner across multiple functional domains, inside
which strong connections among proteins may constitute the
core facility for carrying out specific functions.

5. CONCLUSIONS
In this paper we proposed a new graph decomposition ap-

proach that is based on the concept of edge betweenness.
The decomposition breaks the network into a set of small
network modules, whose frequency of occurrence is then
mapped to feature vectors and then normalized. The ex-
periments show that our decomposition method produces
normalized feature vectors that more clearly define classes
of graphs than the ones produced by the subgraph counting
(network motif) approach. More specifically, the analysis of
the eigenvalues of the principal components of the covariance
matrices shows that our approach extracts a larger number
of independent informative features.

Our method turns out to be quite robust to edge rewiring
and therefore not over-sensitive to small perturbations to the
graph. The analysis of the PPI networks of yeast and fly has
identified several over-represented modules when compared
to random networks with the same degree distribution, and
AS-level Internet graphs. A preliminary investigation on the
proteins associated with the cliques found by our decompo-
sition algorithm on the yeast PPI network shows that the
proteins involved either belong to the same complex or share
similar biological function.

We conclude by addressing some of the limitations of our
method that could point to future research direction. The
main advantage of a decomposition approach is that one
node belongs to only one module, thereby solving the prob-
lem of over-counting overlapping subgraphs. However, on
PPI graphs this is also a disadvantage because one protein
can belong to only one network module, but it is well-known
that proteins can be involved in multiple pathways or com-
plexes. In order to capture the notion of “soft-partitioning”
on graphs, a radically novel approach might be needed. For
example, recent approaches [33] use the notion of informa-

tion bottleneck [25] to obtain soft partitions of graphs. Also,
although our method is not as expensive as the process of
counting exhaustively all the subgraphs in a large network,
it is still quite computationally intensive. The high com-
putational cost of our method and other graph clustering
methods remains an hindrance to their application on large
networks.
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Table 4: Annotations of some 5-cliques in S. cerevisiae PPI network (all the annotation can be found at
http://www.cs.ucr.edu/~qyang/)

DIP ID Description of the proteins Molecular function
1 DIP:1112N Pre-mRNA splicing factor PRP19 Involved in pre-mRNA splicing and cell cycle control

DIP:1682N Pre-mRNA splicing factor ISY1
DIP:1681N Pre-mRNA splicing factor SYF1
DIP:1684N Pre-mRNA splicing factor SYF2
DIP:1685N Pre-mRNA splicing factor CLF1

2 DIP:2285N Origin recognition complex subunit 2 Components of origin recognition complex (ORC)
DIP:2286N Origin recognition complex subunit 3
DIP:2287N Origin recognition complex subunit 4
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ABSTRACT 
The Gene Ontology™ (GO) of biological process, molecular 
function and cellular component terms is the predominant source 
for functional annotation of gene products.  An important use of 
GO-based annotation has been in the interpretation of gene 
expression microarray results.  One of the challenges to gene 
expression microarray data analysis and interpretation is that 
cross-hybridization of probes to the related transcripts can 
contribute to the signal measured.  Several recent studies have 
reported revised microarray probe annotations designed to 
circumvent this problem by ensuring that the probe annotation 
matches the current version of the relevant genome sequence and 
by eliminating probes with sequence similarity to multiple gene, 
but the impact of these revised annotations remains to be assessed.  
Here we describe a general approach of using GO annotation co-
clustering characteristics to compare the performance of 
alternative data mining methods, and apply this approach to 
assess the impact of improved probe annotation on the results of 
gene expression microarray data interpretation.  Using this 
approach, we found that revised Affymetrix GeneChip® probe 
annotation gives rise to improved interpretation of microarray 
gene expression experiments related to the development, function 
and transformation of human B lymphocytes. 

Keywords 
Bioinformatics, gene ontology, microarray data analysis, 
microarray annotation. 

 

1. INTRODUCTION 
An ontology is a formal structured vocabulary that captures the 
semantic relationships between terms.  The standardization of 
terms and their definitions supports data management and 
exchange in and between bioinformatics systems.  In addition, the 
formal specification of semantic relationships between the 
vocabulary terms in the ontological structure supports inference 
and reasoning that can be used to enhance computational data 
mining. 
 
The Gene Ontology™ (GO) is one of the most successful 
biomedical ontologies, and includes biological process, molecular 
function and cellular component terms linked together in a 
directed acyclic graph with “is_a” and “part_of” relationships 
[13].  The GO has been used extensively to annotate prokaryotic 
and eukaryotic gene products based on information described in 
the scientific literature [2].  An important use of GO-based gene 
annotation has been to assist in the interpretation of gene 
expression microarray results [1; 4; 7; 10; 19; 21].  For example, 
the CLASSIFI algorithm uses GO annotation to classify groups of 
genes defined by gene cluster analysis using the statistical 
analysis of GO annotation co-clustering [19]. 
 
Gene expression microarrays [12; 24] have fueled a paradigm 
shift in biomedical research in which reductionistic molecular 
biology research on individual gene products is augmented by 
system-level analysis of how the entire transcriptome of a cell 
population is altered under different normal and pathological 
conditions.  Of the several types of gene expression microarrays 
that have been developed, the Affymetrix GeneChip® is the most 
widely used [16].  An Affymetrix GeneChip® can contain from 
six thousand to more than fifty thousand 25-mer perfect match 
(PM) oligonucleotide probes with sequences designed to match 
specific target genes, depending on the organism and platform.  
Usually the number of PM probes within a probe set is between 
11 and 20. 
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The nature of the microarray technique has brought with it 
significant challenges in data analysis because of the number of 
genes being interrogated, the difficulty in controlling and 
removing the experimental noise, and the need for data 
normalization to control for inter-experiment variability [11].  
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Several analytical algorithms, such as MAS5.0 
(http://www.affymetrix.com/ products/software/specific/mas.affx), 
MBEI [20], RMA [16], FARMS [15], and DFW [6] have been 
developed to deal with these challenges.  To assess the 
performance of these algorithms, a series of data sets were 
produced in which a group of known transcripts were mixed at 
known quantities and their levels in the mixture measured using 
standard microarray methodologies [8; 18].  These so-called 
“spike-in” data sets provide the ability to assess sensitivity and 
specificity performance because the true positive and true 
negative results are known [5; 18; 22].  
 
One of the challenges to gene expression microarray data analysis 
and interpretation is that cross-hybridization to transcripts related 
to the target gene of interest can contribute to the fluorescent 
signal measured.  This is especially problematic for the 
Affymetrix platform because of the relatively short length of each 
of the oligonucleotide probes.  Although the original probe 
sequences were selected to avoid sequence similarity to related 
genes, our knowledge of gene and genome sequences has 
continued to evolve since the current chips were designed.  
Several recent papers have investigated the quality of Affymetrix 
GeneChip® probe sets based on current sequence information and 
found that as much as 30% of the PM probes may be problematic 
due to potential cross-hybridization and mis-annotation [9; 14; 
25].  The Molecular and Behavioral Neuroscience Institute at the 
University of Michigan (BRAINARRAY, http://brainarray. 
mbni.med.umich.edu/Brainarray/) has developed new .cdf 
annotation files for the purposes of annotating Affymetrix chips 
based on the latest available knowledge of sequences.  However, 
it has been difficult to determine how much this improved 
annotation will improve the interpretation of Affymetrix 
GeneChip® using spike-in data sets due to their limited genome 
coverage. 
 
Here we describe a general approach for using GO annotation 
information to compare the performance of alternative methods 
for data mining.  The approach is based on the postulate that an 
improvement in any step in the microarray data analysis pipeline 
should be reflected in improved co-clustering of related genes in 
real biomedical data sets.  This approach was applied to assess the 
impact of improved Affymetrix GeneChip® probe annotation on 
the interpretation microarray gene expression experiments related 
to the development, function and transformation of human B 
lymphocytes. 
 

2.  METHODS 

2.1  Data Sets 
We used several Affymetrix gene expression data sets selected 
from the GSE2350 series [3] downloaded from the NCBI GEO 
database (http://www.ncbi.nlm.nih.gov /projects/geo/) in this 
study.  The “Myc” data set consists of 6 microarray chip 
measurements from cells that conditionally overexpress the c-
Myc proto-oncogene (GSM44096 to GSM44101) and 6 
measurements from similar cells that do not (GSM44102 to 
GSM44107).  The “Normal B cell Development” data set consists 

of 24 measurements of naïve B cell (GSM44133 to GSM44137), 
centroblast (GSM44143 to GSM44147), centrocyte (GSM44148 
to GSM44152), and memory B cell (GSM44138 to GSM44142).  
The “B cell Response” data set has 18 measurements of Burkitt’s 
lymphoma B cells stimulated with anti-IgM (GSM44063 to 
GSM44068) or anti-IgM and anti-CD40L (GSM44069 to 
GSM44074), and unstimulated controls (GSM44051 to 
GSM44056).  For detailed descriptions of each of the data set, 
please refer to http://www.ncbi.nlm.nih.gov/projects/geo/. 

2.2  Software to Generate the Revised .chp File   
The revised .cdf annotation file was obtained from the University 
of Michigan website: http://brainarray.mbni.med.umich.edu/ 
CustomCDF.  We have used the file HS95Av2_HS_3REFSEQ_6 
(ACSII version) for generating the revised .chp files.  The revised 
annotations found in this file are based on the use of RefSeq 
sequence records from the RefSeq database of non-redundant and 
curated sequences.  The original annotation package hgu95av2cdf 
was obtained from Bioconductor (http://www.bioconductor.org 
/packages/1.9/AnnotationData.html). 
 
For each .cel file, which contains probe-level intensities, .chp file, 
which contains summarized expression values, were derived 
following three steps (Figure 1A).  This approach to probe set 
summarization is identical to the default approach supported in 
the MAS5.0 Affymetrix software.  First, the detection p-value 
was calculated for each probe set using one-sided Wilcoxon 
signed rank test coded in perl.  The default value of τ  = 0.015 
was used.  Then the R value, where R = (PM-MM)/(PM +MM) 
was calculated for each probe pair.  The difference between R and 
τ was used to calculate the detection p-value for a one-sided 
Wilcoxon signed rank test.  The detection call, present (P), absent 
(A) or marginal (M), was assigned based on the detection p-value.  
P-values that were less than 0.04 were assigned a present call, 
between 0.04 and 0.06 a marginal call, and p-values more than 
0.06 received an absent call.  The original .chp files and the 
revised .chp files were generated using both the original .cdf 
annotation file (HG_U95Av2.cdf) and the revised .cdf annotation 
file (HS95Av2_HS_3REFSEQ_6.cdf) for each data set, 
respectively. 
 
Second, the summarized expression value for each probe set was 
calculated in R using MAS5.0 from the Bioconductor affy 
package (http://www.bioconductor.org/).  For the original .chp 
file calculation, the hgu95av2cdf_1.10.0.zip package was loaded 
into R, followed by the MAS 5.0 calculation.  For the revised .chp 
file calculation, we used the following R commands to calculate 
the summarized expression values for the GSM44096 .chp file 
from the .cel and .cdf files:  
 data<- ReadAffy('GSM44096.CEL') 
 data@cdfName <- "HS95Av2_HS_3REFSEQ_6" 
 s1 = mas5(data) 
 write.exprs(s1, file="revised_mas5_GSM44096.txt")  
 
Third, the final .chp files were generated using Perl code by 
merging the probe set ID, the number of probe pairs in the probe 
set, the summarized expression value, the detection call, the 
detection p-value, and the probe set description. 
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Figure 1. Data processing approaches.  A. Generation of revised .chp files using revised .cdf file probe set annotations.  B. Filtering, 
normalization, clustering and cluster classification approaches used to compare effects of revised probe set annotation on Affymetrix 
microarray data analysis. 

2.3  Data Analysis 
The data analysis approach used is illustrated in Figure 1B.  Data 
filtering, normalization, Significant Analysis of Microarray (SAM) 
selection of differentially-expressed genes [26] and k-means 
clustering were performed using TIGR Multiexperiment Viewer 
(MeV) version 4.0 [23] (http://www.tm4.org/mev.html) as follows.  
Each data analysis was performed with two categories of samples, 
with 6 experiment measurements each.  For data filtering, only 
probe sets with at least four present (P) detection calls in either 
category were selected for further analysis. 
 
Data was normalized by columns; specifically, the signal of each 
probe set in one measurement was adjusted by the mean and the 
standard deviation (STD) of the signals for this measurement.  
The normalized signal value equals (x - mean)/STD, where x is 
the original summarized expression value. 
 
SAM was used for the selection of differentially-expressed genes.  
Initial SAM analysis was performed using all the default settings.  
Several FDR cutoffs (1%FDR, 5%FDR, or 10%FDR) were used. 
 
The combined list of positive and negative differentially-
expressed genes from SAM was used to perform k-means 
clustering analysis.  Euclidean distance metric was used in k-
means clustering; different numbers of cluster (7, 9, 16, or 20) 
were used for data set analysis. 

 
The list of all the clusters was saved and formatted to conform to 
the web-based implementation of CLASSIFI found at: 
http://pathcuric1.swmed.edu/pathdb/classifi.html.  The input 
format for CLASSIFI is a tab-delimited text file that contains 
probe set ID (e.g., 13635_at for original annotation, 
NM_000025_NCBI_refseq for revised annotation), probe set 
description, and cluster ID.  One of the CLASSIFI output files, 
classifi_topfile, displays the GO term that has the lowest co-
clustering p-value for each cluster (see Table 1).  Another output 
file of CLASSIFI, classifi_outputfile, lists all the GO terms in all 
the clusters with their co-clustering p-values. 

2.4  P-value Distribution Assessment 
The p-values of the co-clustering of GO terms were compared 
between the CLASSIFI results using the original .cdf annotation 
and the revised .cdf annotation.  To compare the lowest GO term 
p-values for the clusters obtained, we calculated the mean, the 
median and the range of the log10 transformed the p-values.  To 
compare the whole distribution of all of the co-clustering GO term 
p-values for all of the clusters, the Wilcoxon rank sum test was 
utilized to test whether or not there is a statistically significant 
difference in the distributions.  Briefly, for original p-value list1 
of size n1 and revised p-value list2 of size n2, p-values from list1 
 

.cel File 

Detection P-value

One-Sided Wilcoxon’s 
Signed Rank Test 

MAS5
Probe Set Intensity

Revised .chp File 
.cel File 

Revised .cdf File 

perl

Bioconductor R

A 

Revised .chp file  filter absent genes   
data normalization  SAM significant genes 

cluster analysis  CLASSIFI analysis 

B 

Revised .cdf File 

Compare GO term P-values 
from CLASSIFI output 

Original .chp file  filter absent genes   
data normalization  SAM significant genes 

cluster analysis  CLASSIFI analysis 
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Cluster ID GO ID GO Term GO 
Type g f c n P Value 

O1 GO:0006365 35S primary transcript processing BP 1659 4 62 2 7.86E-03 

O2 GO:0005575 cellular component CC 1659 1425 191 178 7.26E-04 

O3 GO:0016763 transferase activity, transferring 
pentosyl groups MF 1659 6 22 2 2.44E-03 

O4 GO:0006397 mRNA processing BP 1659 73 130 13 3.35E-03 
O5 GO:0006796 phosphate metabolism BP 1659 124 68 13 1.09E-03 

O6 GO:0016879 ligase activity, forming carbon-
nitrogen bonds MF 1659 27 81 6 1.46E-03 

O7 GO:0003774 motor activity MF 1659 16 76 5 5.20E-04 

O8 GO:0016814 
hydrolase activity, acting on carbon-
nitrogen (but not peptide) bonds, in 

cyclic amidines 
MF 1659 4 73 3 3.17E-04 

O9 GO:0000165 MAPKKK cascade BP 1659 17 116 8 6.44E-06 
O10 GO:0030333 antigen processing BP 1659 8 72 4 2.00E-04 
O11 GO:0005643 nuclear pore MF 1659 14 231 9 1.81E-05 
O12 GO:0031301 integral to organelle membrane CC 1659 8 52 3 1.46E-03 
O13 GO:0051082 unfolded protein binding MF 1659 47 39 6 6.00E-04 
O14 GO:0019933 cAMP-mediated signaling BP 1659 3 27 2 7.58E-04 
O15 GO:0004871 signal transducer activity MF 1659 186 47 13 1.30E-03 

O16 GO:0042625 ATPase activity, coupled to 
transmembrane movement of ions MF 1659 12 44 4 1.83E-04 

O17 GO:0003676 nucleic acid binding MF 1659 396 20 14 1.47E-05 
O18 GO:0007165 signal transduction BP 1659 289 109 38 4.18E-06 
O19 GO:0044237 cellular metabolism BP 1659 899 31 28 1.49E-05 
O20 GO:0001568 blood vessel development BP 1659 7 168 5 1.79E-04 

 
         

R1 GO:0006968 cellular defense response BP 1497 9 16 4 1.07E-06 
R2 GO:0005625 soluble fraction CC 1497 25 56 8 1.53E-06 
R3 GO:0000062 acyl-CoA binding MF 1497 4 37 3 5.47E-05 

R4 GO:0008624 induction of apoptosis by 
extracellular signals BP 1497 9 36 4 3.27E-05 

R5 GO:0008204 ergosterol metabolism BP 1497 3 90 3 2.11E-04 
R6 GO:0005635 nuclear envelope CC 1497 26 194 12 2.99E-05 
R7 GO:0005663 DNA replication factor C complex CC 1497 4 104 4 2.21E-05 
R8 GO:0005537 mannose binding MF 1497 4 61 4 2.50E-06 
R9 GO:0000119 mediator complex CC 1497 6 51 4 1.71E-05 

R10 GO:0004556 alpha-amylase activity MF 1497 6 57 6 2.34E-09 
R11 GO:0006809 nitric oxide biosynthesis BP 1497 4 85 4 9.72E-06 
R12 GO:0030529 ribonucleoprotein complex CC 1497 83 32 12 3.49E-08 
R13 GO:0019992 diacylglycerol binding MF 1497 18 82 12 4.65E-12 

R14 GO:0016755 transferase activity, transferring 
amino-acyl groups MF 1497 7 69 7 3.27E-10 

R15 GO:0019722 calcium-mediated signaling BP 1497 5 54 5 5.08E-08 

R16 GO:0009066 aspartate family amino acid 
metabolism BP 1497 2 58 2 1.48E-03 

R17 GO:0015980 energy derivation by oxidation of 
organic compounds BP 1497 31 44 6 1.93E-04 

R18 GO:0004883 glucocorticoid receptor activity MF 1497 7 69 7 3.27E-10 
R19 GO:0005794 Golgi apparatus CC 1497 50 88 16 5.11E-09 

R20 GO:0000079 regulation of cyclin dependent 
protein kinase activity BP 1497 5 214 5 5.73E-05 

___________________________________________________________________________________________________ 
Table 1.  Comparison of data analysis results from the original and revised annotation files.   The "Myc" data set (see Methods) was 
used in this analysis.  Cluster IDs started with letter “O” or “R” represents the clusters obtained from the original or the revised annotation 
file respectively.  In GO type, “BP”, “MF”, or “CC” stands for “biological process”, “molecular function”, or “cellular component” 
respectively.  g, number of probes in data set; f, number of probes with a given ontology in data set; c, number of probes in the gene cluster; 
n, number of probes with a given ontology (Lee at al., 2006).  The GO terms with the lowest p-value in each cluster are displayed. 
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and list2 were combined and sorted in ascending order.  Ranks 
were assigned to each of the p-value with the smallest p-value 
getting the rank of 1.  The lists of p-values were then separated 
again and the rank sums were calculated for list1 (sum1) and list2 
(sum2).  Then, the z-score was calculated based on the 
approximation: 
           Average:  m= n1*(n1+n2+1)/2 
           Standard Deviation:  d=square root (n1*n2*(n1+n2+1)/12) 
           Z score: z= (sum1-m)/d 
Lastly, the p-value for the distributional comparison was obtained 
in R using Z-score as input for the function pnorm(). 

 

 3.  RESULTS 

Several groups have examined the quality of Affymetrix probe set 
gene annotation using updated gene/genome sequence 
information and have found that a substantial number of probes 
sets are affected [9; 14].  In theory, revisions to the gene 
annotation of Affymetrix probe sets based on updated genome 
sequence information would be expected to improve the 
interpretation of gene expression microarray data.  Unfortunately, 
it has been difficult to assess the impact of revisions to probe set 
annotation using classical approaches based on the processing of 
artificial spike-in data sets because a relatively small number of 
spiked-in transcripts have been used in these data sets and their 
selection is highly biased toward well-characterized genes.  We 
hypothesized that the co-clustering of genes involved in related 
biological processes using gene expression microarray data sets 
from real biological samples could be used to address this 
limitation, based on the postulate that any improvements made in 
the pre-processing of gene expression data should result in better 
co-clustering of related genes. 
 
To test the hypothesis that improvements in annotation translate 
into improvements in interpretation, we compared the extent of 
co-clustering of related genes using a series of publicly-available 
Affymetrix gene expression microarray data sets related to human 
B lymphocyte development and function - GSE2350 [3].  Initially, 
a microarray data set generated to assess the impact of c-myc 
overexpression on gene expression patterns in Burkitt’s 
lymphoma cell lines was evaluated.  Details of the data pre-
processing procedure employed are described in the Methods 
section.  Briefly (Figure 1), .chp files containing summarized 
probe set expression values were generated using Affymetrix’s 
original .cdf annotation files provided in Bioconductor 
(http://www.bioconductor.org/packages/1.9/AnnotationData.html) 
(original .chp files) and revised .cdf annotation files developed by 
the University of Michigan group 
(http://brainarray.mbni.med.umich.edu/CustomCDF) based on 
updated probe sequence analysis (revised .chp files).  The original 
and revised .chp files were then processed to remove genes that 
appeared not to be expressed in the samples used (absent calls), to 
normalize the summarized expression values to give similar 
distributions, to select genes that are differentially expressed in 
the data set using the SAM algorithm [26], to group genes 
together based on their expression patterns using k-means 
clustering, and to examine the co-clustering of related genes using 
the CLASSIFI algorithm [19]. 
 

Table 1 lists the GO terms showing the most significant co-
clustering characteristics for each of the gene clusters using the 
original .chp files (Clusters #O1 - #O20) and the revised .chp files 
(Clusters #R1 - #R20) for the Myc data set.  As an example, 
Cluster #O10 contained a total of 72 probe sets (c) with similar 
expression characteristics.  Four of these probe sets recognized 
genes that were annotated with the GO term “antigen processing” 
(n).  In this data set, 1659 total probe sets were found to be 
differentially expressed (g), and 8 of these differentially-
expressed genes were annotated with the GO term “antigen 
processing” (f).  Based on the hypergeometric distribution, the 
probability that 4 of the 8 “antigen processing” genes would co-
cluster in a gene cluster of size 72 given that there were 1659 
genes evaluated in the data set is 2.00E-04.  Out of all of the GO 
terms that were annotated to genes found in Cluster #O10, the GO 
term “antigen processing” showed the most significant co-
clustering (i.e. lowest p-value, the least likely to have co-clustered 
based on chance alone). 
 
It is difficult to directly compare the co-clustering results derived 
using the two annotation files based on cluster membership 
because the numbers and identities of genes that pass the filtering 
and normalization pre-processing steps differ.  However, the 
extent of co-clustering of related genes can be estimated by 
assessing the lowest GO term p-values for the clusters obtained.  
For the Myc data set, using the original .cdf annotation, the mean 
and median of the log10-transformed lowest p-values for the 20 
gene clusters were -3.56 and -3.25, respectively, whereas the 
mean and median of the log10-transformed lowest p-values using 
the revised .cdf annotation were -6.08 and -5.31, respectively.  In 
addition, 10 clusters contained all representative genes for a 
particular gene ontology term from the entire data set when 
analysis was performed using the revised .cdf annotation (e.g. all 
7 glucocorticoid receptor activity genes were found in gene 
cluster #R18).  Whereas no such case of complete co-clustering 
was found when analysis was performed using the original .cdf 
annotation file.  These data suggest that the use of the revised .cdf 
annotation leads to more significant co-clustering of related genes 
in this data set. 
 
 

FDR cdf Mean Median Range 
Original -3.56 -3.25 -2.10 to -5.38 

1% 
Revised -6.08 -5.31 -2.84 to -11.1 
Original -3.50 -3.58 -2.38 to -5.31 

5% 
Revised -6.98 -6.88 -3.56 to -12.1 
Original -4.05 -4.10 -2.12 to -5.39 

10% 
Revised -8.66 -8.80 -3.82 to -13.3 

 
Table 2.  Comparison of the co-clustering p-value for most 
significant GO term using different FDR cut off in SAM 
analysis.  The "Myc" data set (see Methods) was used in this 
analysis.  k-means cluster generated 20 clusters for each FDR cut 
off.  False discovery rate (FDR) cut off of 1%, 5%, or 10% was 
applied.  Values are log10 transformed of the lowest GO term p-
value in all the clusters, which represent the mean, the median or 
the range of the all clusters. 
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K cdf Mean Median Range 

Original -3.23 -3.12 -2.37 to -4.30 
7 

Revised -6.62 -5.48 -4.55 to -6.79 

Original -3.35 -3.12 -2.26 to -5.84 
9 

Revised -6.00 -5.94 -3.55 to -9.75 

Original -3.54 -3.47 -2.48 to -5.75 
16 

Revised -6.31 -5.57 -3.84 to -11.4 

Original -3.56 -3.25 -2.10 to -5.38 
20 

Revised -6.08 -5.31 -2.84 to -11.1 
 
Table 3.  Comparison of the co-clustering p-value for most 
significant GO term using different number of clusters in k-
means analysis.   "Revised" annotation or "Original" annotation 
files were used in analyzing the "Myc" data set (see Methods). 
1% FDR was used for SAM analysis.  7, 9, 16 or 20 clusters were 
generated from k-means clustering.  Values are log10 transformed 
of the lowest GO term p-value in all the clusters, which represent 
the mean, the median or the range of the all clusters. 
 
The use of the revised .cdf annotation also appeared to yield GO 
terms that reach deeper in the GO hierarchy (i.e. more specific 
process, function and component terms). For example, using the 
original .cdf annotation, the most significant GO terms for 6 of 
the 20 gene clusters were represented more than 100 times (f > 
100) in the entire data set indicating a relatively common, high-
level annotation term, as compared with zero gene clusters with f 
> 100 using the revised .cdf annotation (Table 1).  The mean 
value of f dropped from 178 to 15 using the revised .cdf 
annotation.  The assumption is that a greater number of genes 
would be annotated with GO terms that describe more general 
functions (e.g. “signal transduction”) than with GO terms that 
describe more specific functions (e.g. “cell defense response”). 
 
Because the numbers and identities of genes that pass the filtering 
and normalization pre-processing steps differed when using the 
two different annotation files, it was important to determine if the 
improved performance of the revised .cdf annotation file was 
robust to variations in parameters used during data pre-processing 
steps.  Thus, the effects of different false discovery rate (FDR) 
cutoffs used in the SAM algorithm for the selection of 
differentially expressed genes were evaluated (Table 2).  For all 
three FDR cutoffs evaluated, the mean, median and range of 
lowest GO term p-values were all substantially lower when the 
revised annotation file was used. 
 
The effects of different numbers of clusters used in the k-means 
algorithm were evaluated next (Table 3).  Again, for all four 
values of k evaluated, the mean, median and range of lowest GO 
term p-values were all substantially lower when the revised 
annotation file was used. 
 
To determine if the improved performance of the revised .cdf 
annotation might be dependent on the data set used, we evaluated 
four addition data sets derived from the GSE2350 series (Table 4).  
For the first three additional data sets, the revised .cdf annotation 
again out-performed the original .cdf annotation based on the 

lowest p-values observed.  However, for the fourth additional data 
set (naïve and memory B cells), the p-value characteristics were 
much more similar between the two results than was seen with all 
the other data sets.  One possible explanation for this is that the 
cells used for comparison in this last data set are likely to be much 
more similar to each other than the cells used in the other data sets.  
Both naïve and memory B cells are relatively quiescent, and 
probably only differ from each other by a small subset of genes 
that change during the relatively small number of differentiation 
steps between these two cell types.  Indeed, the number of 
differentially expressed genes selected in this data set was much 
smaller than in the other data sets (611 compared to 1497 from the 
Myc data set).  In the other data sets, many of the comparisons 
relate to the differences between resting and activated cells of 
various types, which might be expected to show much larger 
differences in gene expression patterns. 
 
The previous analyses focused on using the GO terms with the 
single lowest p-values in each gene cluster for comparison.  In 
order to obtain a more complete picture of related gene co-
clustering, the entire distribution of p-values for all GO terms in 
all gene clusters using the two .cdf annotations was compared  
 

 
Table 4.  Comparison of lowest GO term p-values with 
different microarray data sets.  Values are log10 transformed of 
the lowest GO term p-value in all the clusters, which represent the 
mean, the median or the range of the all clusters in each data set.  
The “B-cell anti-IgM” represents data for B cell stimulated with 
anti-IgM (GSM44063 to GSM44068) and B cell unstimulated 
controls (GSM44051 to GSM44056) from the “B cell Response” 
data set.  The “B-cell anti-IgM+anti-CD40L” represents data for 
B cell stimulated with both anti-IgM and anti-CD40L 
(GSM44069 to GSM44074), and B cell unstimulated controls 
(GSM44051 to GSM44056) from the “B cell Response” data set.  
The “Centroblasts&centrocytes” represents data for centroblasts 
(GSM44143 to GSM 44147) and centrocytes (GSM44148 to 
GSM44152) from the “Normal B cell Development” data set.  
The “Naïve and memory B-cell” represents data for naïve B cell 
(GSM44133 to GSM44137) and memory B cell (GSM44138 to 
GSM44142) from the “Normal B cell Development” data set.  
5%FDR was applied to all the data sets except “Centroblasts 
&centrocytes”, where 30% FDR was used.  Twenty clusters were 
generated using k-means clustering for all data sets. 

Data set cdf Mean Median Range 

Original -3.33 -3.39 -1.94  to -6.95
B cell anti-IgM

Revised -6.15 -5.33 -3.48  to -11.4

Original -4.93 -4.01 -2.81  to -15.3B cell anti-IgM 
+ anti-CD40 Revised -7.54 -6.83 -3.74  to -15.1

Original -3.25 -2.89 -1.86  to -10.26Centoblasts& 
centrocytes Revised -5.67 -4.8 -2.21  to -18.46

Original -4.04 -3.17 -1.98  to -18.02Naïve and 
memory B cells Revised -4.60 -3.96 -1.02  to -7.64

(Figure 2).  Throughout the distribution, the number of GO terms 
with relatively low p-values (p < 0.1) was much higher when 
using the revised .cdf annotation (Figure 2A).  For example, the 
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number (Figure 2B) and percent (Figure 2C) of GO terms giving 
p-values below 10-3 was three to four times higher using the 
revised .cdf annotation.  The Wilcoxon rank sum test was used to 
compare the entire distribution of GO term p-values, in two 
different data sets at two different FDR cutoffs and two different 
values for k.  The differences in the entire p-value distributions in 
every case were highly statistically significant (Table 5). 

 
4.  DISCUSSION 
At the present time, there are various tools to analyze microarray 
data; however, the quality and the validity of these analytical 
tools need to be assessed fairly.   One way to evaluate analytical 
tools is to analyze spike-in data using these tools and compare the 
receiver operating characteristic (ROC) curves produced [15; 22].  
While this approach is useful, there is some concern that 
analytical approaches that work well with spike-in data may not 
work as well with data derived from real, complex biological 
samples.  In addition, ROC analysis is not feasible for real 
biological data since the true expression values for target 
mRNA’s are rarely known, and so methods of comparison other 
than ROC curves are needed. 
 
In this study, we examined the possibility of using GO term co-
clustering as a comparative tool to assess the impact of using 
revised annotation on Affymetrix gene expression microarray data 
analysis.  This idea is based on the postulate that genes encoding 
proteins involved in the same biological process or protein 
complex will be coordinately expressed; that is, genes that have 
the same GO annotations are more likely to be in the same gene 
expression cluster.  Thus, better analytical algorithm that gives 
rise to results that better reflect the underlying biology would be 
expected to give rise to more significant co-clustering of GO 
terms.  Our analysis comparing the Affymetrix revised and 
original annotation is the first attempt to use this method to assess 
the impact the revised annotation has on data analysis.  We have 
analyzed several data sets utilizing different analysis parameters 
(different FDR, different number of clusters) and calculated the 
GO term co-clustering probability using the CLASSIFI tool.   Our 
results demonstrate that the p-values for the most significant GO 
terms in each cluster are significantly lower when using the 
revised annotation file.  In addition, the whole distribution of all 
the co-clustering p-values for all the GO terms is substantially 
lower when the revised annotation is used.  Thus, using revised 
annotation indeed produces much more significant co-clustering 
of related genes.  The results showing significant improvement in 
related gene co-clustering not only suggests that the revised .cdf 
annotation is better, but also support the general approach of 
using GO co-clustering as an algorithm evaluation tools with real 
biological data.  In the future, we plan to use the co-clustering 
method to compare the performance of various preprocessing 
algorithms on real data sets. 
 
Use of gene ontology terms to help interpret systems-level 
biological data is a great addition to the data analysis arsenal [1; 4; 
10; 21; 19].  Although this study has focused on microarray 
analysis, the same methodology can be applied to other large-
scale  
 

1% FDR 5%FDR 
Data set 

k=9 k=16 k=9 k=16 

B cell anti-IgM + 
anti-CD40 1.41E-25 5.18E-27 3.52E-19 4.96E-24

"Myc" data set 5.31E-18 3.01E-32 1.21E-19 2.98E-27

 
Table 5.  Significant differences in the p-value distributions 
between the results from the original and the revised 
annotation.  To compare the entire distribution of all GO term p-
values for all gene clusters using the two annotation files, 
Wilcoxon rank sum test was employed to test whether or not there 
is a statistically significant difference in the distributions.  1% or 
5%FDR was used in SAM.  9 or 16 clusters were used for k-
means cluster.  The B-cell stimulated with both anti-IgM and anti-
CD40L (GSM44069 to GSM44074) and the B-cell unstimulated 
controls (GSM44051 to GSM44056) from the “B cell Response” 
data set and the "Myc" data set (see Methods) were used in this 
analysis. 
 
data sets in which large sets of genes/proteins are analyzed (e.g. 
protein-protein and genetic interaction networks).  Thus, in 
addition to aiding in the understanding of the functions played by 
genes and proteins in the cell, the Gene Ontology can also play a 
role in assisting in the development of improved data mining 
approaches that reveal underlying functional properties in 
complex biological systems. 
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Figure 2.  Comparison of GO term p-value distributions between original and revised Affymetrix probe set annotation.  The 
“Myc” data set (see Methods) was used in this analysis.  1%FDR for SAM analysis and 20 clusters for k-means cluster were applied.   
A. The distribution of all the p-values for all the GO terms in every cluster.  The curve marked with “x” represents the co-clustering p-
values using the revised annotation. The dashed line represents the co-clustering p-values using the original annotation.  Number of GO 
terms (B) or the percent of GO terms (C) are plotted against different p-value cut off (P < 10-2, 10-3, 10-4, or 10-5).   
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ABSTRACT 
We are interested in the problem of grouping families of non-

alignable protein sequences, such as circular-permutation, multi-

domain and tandem-repeat proteins, into clusters (classes) of 

related biological functions. For such sequences, whose numbers 

are constantly growing, the commonly used alignment-dependent 

approaches fail to yield biologically plausible results. To the best 

of our knowledge, no automatic process yet exists to carry out 

clustering on these proteins. Biologists often use more complex 

manual approaches based on secondary and tertiary structures, 

which require considerably more resources and time. 

In this paper, we develop a new similarity measure SMS, applied 

directly on non-aligned sequences. It allows us to develop a new 

and original alignment-free algorithm, named CLUSS, for 

clustering protein families based on a spectral decomposition 

approach inspired by the latent semantic analysis (LSA) widely 

used in information retrieval. CLUSS, utilized jointly with SMS, 

is effective on both alignable and non-alignable protein 

sequences. To show this, we have extensively tested our algorithm 

on different benchmark protein databases and families; we have 

also compared its performance with many alignment-dependent 

mainstream algorithms. The source code, the application server, 

and all experimental results are available at CLUSS web site 

http://prospectus.usherbrooke.ca/CLUSS/. 

Categories and Subject Descriptors 
J.3 [Life and Medical Sciences]: Biology and Genetics; I.5.3 

[Pattern Recognition]: Clustering 

General Terms 
Algorithms, Measurement, Experimentation 

Keywords 
Clustering, Phylogenetic, Biological Function, Protein Sequences, 

Matching, Similarity Measure, Alignable, Non-Alignable 

1. INTRODUCTION 
With the rapid burgeoning of protein sequence data, the number 

of proteins for which no experimental data are available greatly 

exceeds the number of functionally characterized proteins. To 

predict a function for an uncharacterized protein, it is necessary 

not only to detect its similarities to proteins of known biochemical 

properties (i.e., to assign the unknown protein to a family), but 

also to adequately assess the differences in cases where similar 

proteins have different functions (i.e., to distinguish among 

subfamilies). One solution is to cluster each family into distinct 

subfamilies composed of functionally related proteins. 

Subfamilies resulting from clustering are easier to analyze 

experimentally. A subfamily member that attracts particular 

interest need to be compared only with the members of the same 

subfamily. A biological function can be attributed with high 

confidence to an uncharacterized protein, if a well-characterized 

protein within the same cluster is already known. Conversely, a 

biological function discovered for a newly characterized protein 

can be extended over all members of the same subfamily. 

Almost all automatic clustering approaches deal with only aligned 

protein sequences, which are performed via alignment algorithms 

such as the widely known MUSCLE [8], ClustalW [36], MAFFT 

[18] and T-Coffee [26], and many others. These algorithms often 

provide information on both conserved and mutated motifs, 

making it a good approach for measuring similarities between 

protein sequences. However, they have several serious limitations, 

including the following: 

 Dependence on the algorithm used. The results depend heavily 

on the algorithm selected and the parameters set by the user for 

the alignment algorithm (e.g., gap penalties). As far as easily-

alignable proteins are concerned, almost every existing alignment 

algorithm can yield good results. However, for protein sequences 

that are difficult to align, each alignment algorithm finds its own 

solution. Such variable results create ambiguities and can 

complicate the clustering task [25]. 

 Problem of non-alignable sequences. For the case of non-

alignable protein sequences (i.e., not yet definitively aligned), 

alignment-based algorithms do not succeed in producing 

biologically plausible results. This is due to the nature of the 

alignment approaches, which are based on the matching of 

subsequences in equivalent positions, while non-alignable 

proteins often have similar and conserved domains in non-

equivalent positions [25], such as circular-permutation, multi-

domain and tandem-repeat proteins 

 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. To copy 

otherwise, or republish, to post on servers or to redistribute to lists, 

requires prior specific permission and/or a fee. 

BIOKDD'07, August 12, 2007, San Jose, California, USA. 

Copyright 2007 ACM 978-1-59593-839-8/07/0008...$5.00. 

BIOKDD 2007: 7th Workshop on Data Mining in Bioinformatics 69



There are other known difficulties that limit the reliability of 

alignment, especially for the case of hard-to-align protein 

sequences, such as “repeat”, “substitution” and “gap” problems, 

which are well discussed by Higgins [15]. 

The number of protein sequences that are hard-to-align or not 

alignable at all is rapidly increasing. These proteins are frequently 

related to important biological phenomena, and their classification 

is of primary importance for the comprehension of these 

phenomena. One example is the group of 33 (/)8-barrel 

proteins belonging to the Glycoside Hydrolase (GH) family [35], 

which has an important role in the physiology of the alive cell, as 

discussed in [5,13]. A large number of these are still 

uncharacterized, since to date the process has been carried out 

manually with complicated approaches, such as those employed 

by Côté et al. [5] and Fukamizo et al. [13] for the characterization 

of the 33 (/)8-barrel proteins belonging to the GH [35] family. 

Most of the tools currently available are based on the alignment of 

protein sequences, making them inappropriate for this kind of 

proteins. 

Our aim in this paper is to develop a new approach to the 

biological interpretation of protein sequences, especially those 

which cause problems for alignment-dependent algorithms. Our 

work is an attempt to build an algorithm to help biologists 

perform analyses of certain kinds of protein sequences, which are 

now carried out almost manually. In the rest of the paper, we use 

the terms subfamily and cluster interchangeably. 

2. RELATED WORK 
The literature reports a number of algorithms for clustering 

protein databases, such as the widely used algorithm BLAST [1] 

and its improved versions Gaped-Blast and PSI-Blast [2], and 

SYSTERS [23], ProtClust [29] and ProtoMap [40] (see [32] for a 

review). These algorithms have been designed to deal with large 

sets of proteins by using various techniques to accelerate 

examination of the relationships between proteins. However, they 

are not very sensitive to the subtle differences among similar 

proteins. Consequently, these algorithms are not effective for 

clustering protein sequences in closely related families. On the 

other hand, more specific algorithms have also been developed, 

for instance, the widely cited algorithms BlastClust [3], which 

uses score-based single-linkage clustering, TRIBE-MCL [10], 

based on a Markov clustering approach, and gSPC [34], based on 

a method that is analogous to the treatment of an inhomogeneous 

ferromagnet in physics. Almost all of these algorithms are either 

based on sequence alignment or rely on alignment-dependent 

algorithms for computing pair-wise similarities. 

3. APPROACH OVERVIEW 
In this paper, we propose an efficient and original algorithm, 

CLUSS, for clustering protein families based on a new alignment-

free measure we propose for protein similarity. The novelty of 

CLUSS resides essentially in two features. First, CLUSS is 

applied directly to non-aligned sequences, thus eliminating the 

need for aligned sequences. Second, it adopts a new measure of 

similarity, directly exploiting the substitution matrices generally 

used to align protein sequences and showing a great sensitivity to 

the relations among similar and divergent protein sequences. 

CLUSS can be summarized as follows: 

Given F, a family containing a given number of proteins: 

1. Build a pairwise similarity matrix for the proteins in F using 

SMS our new similarity measure. 

2. Create a phylogenetic tree of the protein family F using our 

new clustering approach. 

3. Assign a co-similarity value to each node of the tree. 

4. Calculate a critical threshold for identifying subfamily 

branches, by computing the interclass inertia [7]. 

5. Collect each leaf from its subfamily branch into a distinct 

subfamily. 

4. SMS: SIMILARITY MEASURE 
Many approaches to measuring the similarity between protein 

sequences have been developed. Prominent among these are 

alignment-dependent approaches, including the well-known 

algorithm BLAST [1] and its improved versions Gaped-Blast and 

PSI-Blast [2], whose programs are available at [3], as well as 

several others such as the one introduced by Varré et al. [37] 

based on movements of segments, and the recent algorithm 

Scoredist introduced by Sonnhammer et al. [33] based on the 

logarithmic correction of observed divergence. These approaches 

often suffer from accuracy problems, especially for multi-domain 

proteins (in general case hard-to-align protein sequences). The 

similarity measures used in these approaches depend heavily on 

the alignability of the protein sequences. In many cases, 

alignment-free approaches can greatly improve protein 

comparison, especially for non-alignable protein sequences. These 

approaches have been reviewed in detail by several authors 

[30,31,9,38]. Their major drawback, in our opinion, is that they 

consider only the frequencies and lengths of similar regions 

within proteins and do not take into account the biological 

relationships that exist between amino acids. To correct this 

problem, some authors [9] have suggested the use of the Kimura 

correction method [22] or other types of correction, such as that 

of Felsenstein [12]. However, to obtain an acceptable 

phylogenetic tree, the approach described in [9] performs an 

iterative refinement including a profile-profile alignment at each 

iteration, which significantly increases its complexity. 

To overcome these difficulties of alignment-based approaches, we 

have developed SMS a new approach inspired by biological 

considerations and known observations related to protein structure 

and evolution. The goal is to make efficient use of the information 

contained in amino acid subsequences in the proteins, which leads 

to a better similarity measurement. The principal idea of our 

approach is to use a substitution matrix such as BLOSUM62 [14] 

or PAM250 [6] to measure the similarity between matched amino 

acids from the protein sequences being compared. 

4.1 Matching score 
In this section, we will use the symbol |.| to express the length of a 

sequence. Let X and Y be two protein sequences belonging to the 

protein family F. Let x and y be two identical subsequences 

belonging respectively to X and Y; we use x,y to represent the 

matched subsequence of x and y. We use l to represent the 

minimum length that x,y should have (i.e., we will be interested 

only in x,y whose length is at least l residues). We define El
XY, the 

key set of matched subsequences x,y for the definition of our 

similarity function, as follows (see Figure 1 for an example): 
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The expression (x  x) means that x is not included in x, either in 

terms of the composition of the subsequences or in terms of their 

respective positions in X. The matching set El
XY contains all the 

matched subsequences of maximal length between the sequences 

X and Y. It will be used to compute the matching score of the 

sequence pair. 

The formula El
XY adequately describes some known properties of 

polypeptides and proteins. First, protein motifs (i.e., series of 

defined residues) determine the tendency of the primary structure 

to adopt a particular secondary structure, a property exploited by 

several secondary-structure prediction algorithms. Such motifs 

can be as short as four residues (for instance those found in β-

turns), but the propensity to form an -helix or a β-sheet is 

usually defined by longer motifs. Second, our proposal to take 

into account multiple (i.e., ≥2) occurrences of a particular motif 

reflects the fact that sequence duplication is one of the most 

powerful mechanisms of gene and protein evolution, and if a 

motif is found twice (or more) in a protein it is more probable that 

it was acquired by duplication of a segment from a common 

ancestor than by acquisition from a distant ancestor. 

The construction of El
X,Y requires a CPU time proportional to 

|X|*|Y|. In practice, however, several optimizations are possible in 

the implementation, using encoding techniques to speed up this 

process. In our implementation of SMS, we used a technique that 

improved considerably the speed of the algorithm; we can 

summarize it as follows: 

By the property that all possible matched subsequences satisfy 

x,y ≥l, we know that each Γx,y in El
X,Y is an expansion of a 

matched subsequence of length l. Thus we first collect all the 

matched subsequences of length l, which takes linear time. 

Secondly, we expand each of the matched subsequences as much 

as possible on the both left and right sides. And finally, we select 

all the expanded matched sequences that are maximal according to 

the inclusion criterion. This technique is very efficient for 

reducing the execution time in practice. However, due to the 

variable lengths of the matched sequences, it may not be possible 

to reduce the worst-case complexity to a linear time. In the 

Results section, we provide a time comparison between our 

algorithm and several existing ones. 

 

Figure 1 shows an example of El
X,Y construction, with l=4. Let X 

and Y be two protein sequences, as illustrated. Among the matches 

shown in Figures 1.A and 1.B, the matched subsequence 1 of X1 

and Y1, will be added to the matching set E4
X,Y. Similarly, for 2 

the match of X1 and Y2, and 3 the match of X2 and Y1 will also be 

added to the matching set E4
XY. On the other hand, since X2  X3 

and Y2  Y3 , 4 the matched subsequence of X2 and Y2, will not be 

added to E4
XY. Instead, 5 the match of X3 and Y3, will be added to 

the set E4
XY, even though X3 overlaps with X2. 

Let M be a substitution matrix, and Γ a matched subsequence 

belonging to the matching set El
XY. We define a weight W(Γ) for 

the matched subsequence Γ, to quantify its importance compared 

to all the other subsequences of El
XY, as follows: 

     
1

(2)
Γ

i

W Γ M Γ i ,Γ i


     

where [i] is the ith amino acid of the matched subsequence Γ, and 

W[Γ[i],Γ[i]] is the substitution score of this amino acid with itself. 

Here, in order to make our measure biologically plausible, we use 

the substitution concept to emphasize the relation which binds one 

amino acid with itself. The value of M[Γ[i],Γ[i]] (i.e., entries on 

the diagonal of the substitution matrix) estimates the rate at which 

each possible amino acid in a sequence remains unchanged over 

time; in other words, W(Γ) measures the conservability of the 

matched subsequence Γ in both X and Y, which is an important 

concept in biology that emphasizes the importance of each region 

of the protein sequence. 

Now we define S the matrix of matching scores, such as SX,Y is the 

matching score between X and Y two protein sequences belonging 

to the family F. The matching score SX,Y, understood as 

representing the substitution relation of the conserved regions in 

both sequences, is defined as follows: 
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Finally, the pairwise similarity matrix SMS of the protein family F 

is calculated by applying the Pearson’s correlation coefficient to 

the matrix S. 

4.2 Minimum length l 
Our aim is to detect and make use of the significant motifs best 

conserved during evolution and to minimize the influence of those 

motifs which occur by chance. This motivates one of the major 

biological features of our similarity measure, the inclusion of all 

long conserved subsequences (i.e., multiple occurrences) in the 

matching, since it is well known that the longer the subsequences, 

the smaller the chance of their being identical by chance, and vice 

versa. Here we make use of the theory developed by Karlin et al. 

in [21,19,20] to calculate, for each pair of sequences, the value of 

l, the minimum length of matched subsequences. According to 

theorem 1 in [19] we have: 
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Figure 1. Matching subsequences 
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This formula calculates Kr,N, the expected length of the longest 

common word present by chance at least r times out of N m-letter 

sequences [19] (i.e., Seq1,…,SeqN), where pi
() is generally 

specified as the ith residue frequency of the observed th sequence, 

and r,N the asymptotic standard deviation of Kr,N. 

According to the conservative criterion proposed by Karlin et al. 

.[19], to measure the similarity between two protein sequences, 

we take into account all subsequences present 2 times out of the 2 

sequences which have a length that exceeds Kr,N by at least two 

standard deviations. In other words, for each pair of sequences, 

matched subsequences shorter than l=K2,2+2.2,2 (i.e., by fixing 

N=r=2) have a real chance of being similar as a result of random 

phenomena, while those with lengths greater than l=K2,2+2.2,2 are 

more likely to be conserved motifs. So, for each pair of protein 

sequences X and Y, we calculate a specific and appropriate value 

of l to calculate SX,Y the similarity between X and Y. 

5. CLUSS: CLUSTERING ALGORITHM 
CLUSS is composed of three main stages. The first one consists in 

building SMS, a pair-wise similarity matrix; the second, in 

building a phylogenetic tree according to this matrix, using a new 

clustering approach based on spectral decomposition; and the 

third, in identifying subfamily nodes from which leaves are 

grouped into subfamilies. 

5.1 Stage 1: Similarity matrix SMS 
Using one of the known substitution score matrices, such as 

BLOSUM62 [14] or PAM250 [6], we compute SMS, the NxN 

similarity matrix, where N is the number of sequences of the 

protein family F to be clustered, and SMSi,j is the similarity 

between the ith and the jth protein sequences of F. The 

construction of SMS takes CPU time proportional to N(N-1)T2/2, 

with T the typical sequence length of the N sequences. 

5.2 Stage 2: Phylogenetic tree 
To build the phylogenetic tree, we adopt a strategy inspired by the 

latent semantic analysis approach (LSA) [4], widely used in 

information retrieval, in which data are mapped to a vector space 

of reduced dimension (i.e., less than the number of data). By using 

a hierarchical strategy, and starting from the protein sequences, 

each of which is represented by a vector in a Euclidian space (i.e., 

step 1 of this stage), and considered as the root node of a (sub)tree 

containing only one node, we iteratively join a pair of root nodes 

in order to build a bigger subtree. At each iteration, a pair of root 

nodes is selected if they are the most similar root nodes (i.e., 

corresponding vectors have the largest cosine product). This 

process ends when there remains only one (sub)tree, which is the 

phylogenetic tree. The present stage is composed of three steps, as 

follows: 

5.2.1 Step1: Spectral decomposition of SMS 
The main idea is to perform a spectral decomposition of the 

similarity matrix SMS, to map the protein sequences onto a vector 

space, thereby making use of its advantages, of which the most 

important for us is the conservability of distances.  

Spectral decomposition of the square symmetric matrix SMS is 

done through Eigen decomposition [39]. We obtain: 
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where 1,…,p are the p non-negative eigenvalues of SMS and 

u1,…,up are the p eigenvectors corresponding to the p eigenvalues. 

For two vectors VX and VY, in N, representing the protein 

sequences X and Y, respectively, the Euclidian inner product is 

defined as: 
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When properly normalized (i.e., as proposed in section 4.1), the 

matrix SMS measures the correlation between protein sequences, 

which is similar to the role of the covariance matrix in principal 

component analysis (PCA). However, in the conventional PCA 

method, we must subtract the averages from the covariance 

matrix, which means that our method is not a PCA approach. 

5.2.2 Step 2: Building the tree 
The similarity between two root nodes referred to above is 

computed in the following way. At the beginning of the iteration, 

the similarity between any pair of nodes is initialized by the 

cosine product. We assign to each root node L (i.e., an individual 

leaf represents one protein sequence) a co-similarity cL according 

to its importance in F. 

By taking into account information about the neighborhood 

around each of the nodes L and R, the concept of co-similarity 

reflects the cluster compactness of all the sequences (leaf nodes) 

in the subtree. In fact, its value is inversely proportional to the 

within-cluster variance. As the subtree becomes larger, the co-

similarity tends to become smaller, which means that the 

sequences within the subtree become less similar and the 

difference (separation) between sequences in different clusters 

becomes less significant. In simpler terms, the co-similarity is a 

measure of the balance between two nodes.  

At the first iteration, all co-similarities are initialized to zero. Let 

L and R be the two most similar root nodes (i.e., cosine product of 

VL and VR is the largest) at a given iteration step; they are joined 

together to form a new subtree. Let P be the root node of the new 

subtree. P thus has two children, L and R, such that VP, the 

corresponding vector of the new root node P. P and VP have the 

following properties: 
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where VL, VR and VP are vectors corresponding respectively to the 

root nodes L, R, and P, while ||VL|| and ||VR|| are modules of VL and 

VR; and cP is the co-similarity of P. We assign a “length” value to 

each of the two branches connecting L and R to P, as follows: 
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These values are the estimate of the phylogenetic distance1 from 

either node L or R to their parent P in the tree. 

5.2.3 Step 3: Separating nodes 
The CLUSS algorithm makes use of a systematic method for 

deciding which subtrees to retain as a trade-off between searching 

for the highest co-similarity values and searching for the largest 

possible clusters. We first separate all the subtrees into two 

groups, one being the group of high co-similarity subtrees and the 

other the low co-similarity subtrees. This is done by sorting all 

possible subtrees in increasing order of co-similarity and 

computing a separation threshold according to the method based 

on the maximum interclass inertia [7]. 

5.3 Stage 3: Extracting clusters 
From the group of high co-similarity subtrees, we extract those 

that are largest. A high co-similarity subtree is largest if the 

following two conditions are satisfied: 1) it does not contain any 

low co-similarity subtree; and 2) if it is included in another high 

co-similarity subtree, the latter contains at least one low co-

similarity subtree. Each of these (largest) subtrees corresponds to 

a cluster and its leaves are then collected to form the 

corresponding cluster. 

6. RESULTS 
To illustrate its efficiency, we tested CLUSS extensively on a 

variety of protein datasets and databases and compared its 

performance with that of some mainstream clustering algorithms. 

We analyzed the results obtained for the different tests with 

support from the literature and functional annotations. Full data 

files and results cited in this section are available on CLUSS 

website. 

6.1 The clustering quality measure 
To highlight the functional characteristics and classifications of 

the clustered families, we introduce the Q-measure which 

quantifies the quality of a clustering by measuring the percentage 

of correctly clustered protein sequences based on their known 

functional annotations. This measure can be easily adapted to any 

protein sequence database. The Q-measure is defined as follows: 
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where N is the total number of clustered sequences, C is the 

number of clusters obtained, Pi is the largest number of obtained 

sequences in the ith cluster belonging to the same function group 

according to the known reference classification, and U is the 

number of orphan sequences. For the extreme case where each 

cluster contains one protein with all proteins classified as such, 

the Q-measure is 0, since C becomes equal to N, and each Pi the 

largest number of obtained sequences in the ith cluster is 1. 

                                                                 
1 This distance has no strict mathematical sense; it is merely a 

measure of the evolutionary distance between the nodes. It is 

closer to the notion of dissimilarity. 

6.2 COG and KOG databases 
To illustrate the efficiency of CLUSS in grouping protein 

sequences according to their functional annotation and biological 

classification, we performed extensive tests on the phylogenetic 

classification of proteins encoded in complete genomes, 

commonly named the Clusters of Orthologous Groups of proteins 

database [28]. As mentioned in the web site for the database, the 

COG (for unicellular organisms) and KOG (for eukaryotic 

organisms) clusters were delineated by comparing protein 

sequences encoded in complete genomes, representing major 

phylogenetic lineages. Each COG and KOG consists of individual 

proteins or groups of paralogs from at least 3 lineages and each 

thus corresponds to an ancient conserved domain. COG and KOG 

contain (to date) 192,987 and 112,920 classified protein 

sequences, respectively. 

To perform a biological and statistical evaluation of CLUSS, we 

randomly generated two sets of 1000 large subsets, one from the 

COG database and the other from the KOG database. Each subset 

contains between 47 and 1840 non-orphan protein sequences (i.e., 

each selected protein sequence has at least one similar from the 

same functional classification) from at least 10 distinct groups in 

the COG or KOG classification. We tested CLUSS on both sets of 

1000 subsets using each of the substitution matrices BLOSUM62 

[14] and PAM250 [6]. The average Q-measure value of the 

clusterings obtained for the COG classification is superior to 88% 

with a standard deviation of 5.61%, and the value for the KOG 

classification is superior to 80% with a standard deviation of 

9.50%. The results obtained show clearly that CLUSS is indeed 

effective in grouping sequences according to the known functional 

classification of COG and KOG databases. 

In the aim of comparing the efficiency of CLUSS to that of 

alignment-dependent clustering algorithms, we performed tests 

using CLUSS, BlastClust [3], TRIBE-MCL [10] and gSPC [34] 

on the COG and KOG classifications. In all of the tests performed, 

we used the widely known protein sequence comparison 

algorithm ClustalW [36] to calculate the similarity matrices used 

by TRIBE-MCL [10] and gSPC [34]. Due to the complexity of 

alignment, these tests were done on two sets of six randomly 

generated subsets, named COG1 to COG6 for COG and KOG1 to 

KOG6 for KOG. The obtained results are summarized in Table 1. 

The results in Table 1 show clearly that CLUSS obtained the best 

Q-measure compared to the other algorithms tested. Globally, the 

clusters obtained using our new algorithm CLUSS correspond 

better to the known characteristics of the biochemical activities 

and modular structures of the protein sequences according to 

COG and KOG classifications. 

The execution time reported in Table 1 for algorithm comparison, 

show clearly that the fastest algorithm is BlastClust [3], closely 

followed by our algorithm CLUSS, while TRIBE-MCL [10] and 

gSPC [34], which use ClustalW [36] as similarity measures, are 

much slower than BlastClust [3]. 

6.3 Glycoside Hydrolase family 2 (GH2) 
To show the performances of CLUSS with multi-domain protein 

families which are known to be hard-to-align and have not yet 

been definitively aligned, experimental tests were performed on 

316 proteins belonging to the Glycoside Hydrolases family 2 

(FASTA file is provided at CLUSS website) from the CAZy 
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database [35]. The CAZy database describes the families of 

structurally-related catalytic and carbohydrate-binding modules or 

functional domains of enzymes that degrade, modify, or create 

glycosidic bonds. Among proteins included in CAZy database, the 

Glycoside Hydrolases are a widespread group of enzymes which 

hydrolyse the glycosidic bond between two or more carbohydrates 

or between a carbohydrate and a non-carbohydrate moiety. 

Among Glycoside Hydrolases families, the GH2 family, 

extensively studied at the biochemical level includes enzymes that 

perform five distinct hydrolytic reactions. Only complete protein 

sequences were retained for this study. In our experimentation, the 

GH2 proteins were subdivided into 28 subfamilies, organized in 

four main branches. Three branches correspond perfectly to 

enzymes with known biochemical activities. The first branch 

(subfamilies 1–7) includes enzymes with “β-galactosidase” 

activity from both Prokaryotes and Eukaryotes. The third branch 

(subfamilies 18 to 22) groups enzymes with “β-mannosidase” 

activity, while the fourth branch (subfamilies 23 to 28) includes 

“β-glucuronidases”. 

The clustering scheme obtained warrants further comment. The 

“orphan” subfamily 17 includes nineteen sequences labelled as 

“β-galactosidases” in databases. While the branch 1 “β-

galactosidases” are composed of five modules, known as the 

“sugar binding domain”, the “immunoglobulin-like β-sandwich”, 

the “(αβ)8-barrel”, the “β-gal small_N domain” and the “β-gal 

small_C domain”, the members of subfamily 17 lack the last two 

of these domains, which makes them more similar to “β-

mannosidases” and “β-glucuronidases”. These enzymes are 

distinct from those of branch 1 [11] and their separate localization 

is justified. 

The second branch is the most heterogeneous in terms of enzyme 

activity. However, most of the subfamilies (9 to 16) group 

enzymes that are annotated as “putative β-galactosidases” in 

databases. To the best of our knowledge, none of these proteins, 

identified through genome sequencing projects, have been 

characterized by biochemical techniques, so their enzymatic 

activity remains hypothetical. At the beginning of this branch, 

subfamily 8 groups enzymes characterized very recently: “exo-β-

glucosaminidases” [5,16] and “endo-β-mannosidases” [17]. 

Again, theses enzymes share only three modules with the enzymes 

from branches 1, 3 and 4. The close proximity among “exo-β-

glucosaminidases” and “endo-β-mannosidases” emerging from 

this work has not been described so far. Furthermore, subfamily 8 

includes closely related plant enzymes with “endo-β-

mannosidase” activity and bacterial enzymes produced by 

members of the genus Xanthomonas, including several plant 

pathogens. This could be an example of horizontal genetic transfer 

between members of these two taxa. 

Subfamily 22, also found at the beginning of a branch, has been 

recently analyzed by Côté et al. [5] and Fukamizo et al. [13], 

using structure-based sequence alignments and biochemical 

structure-function studies. It was shown that proteins from this 

subfamily have a different catalytic doublet and could recognize a 

new substrate not yet associated with GH2 members. 

Globally, the clustering result for the GH2 proteins corresponds 

well to the known characteristics of their biochemical activities 

and modular structures. The results obtained with the CLUSS 

algorithm were highly comparable with those of the more complex 

analysis performed by Côté et al. [5] and Fukamizo et al. [13] 

using clustering based on structure-guided alignments, an 

approach which necessitates prior knowledge of at least one 3D 

protein structure. 

6.4 Group of 33 (/)8-barrel proteins 
To show the performance of CLUSS with multi-domain protein 

families which are known to be hard to align and have not yet 

been definitively aligned, experimental tests were performed on 

the group of the 33 (/)8-barrel proteins, a group within 

Glycoside Hydrolases family 2 (GH2), from the CAZy database 

[35], studied recently by Côté et al. [5] and Fukamizo et al. [13]. 

The periodic character of the catalytic module known as “(/)8-

barrel” makes these sequences hard to align using classical 

alignment approaches. The difficulties in aligning these modules 

are comparable to the problems encountered with the alignment of 

tandem-repeats, which have been exhaustively discussed [15]. 

The FASTA file and clustering results of this subfamily are 

available on the CLUSS website. This group of 33 protein 

sequences includes “β-galactosidase”, “β-mannosidase”, “β-

glucuronidase” and “exo-β-D-glucosaminidase” enzymatic 

Table 1. Q-measure (Q-m) and execution time (in seconds) obtained on each COG and KOG subset. 

Protein sets and 

number of 

sequences 

CLUSS+SMS BlastClust MCL+Clustal SPC+Clustal 

Q-m Time Q-m Time Q-m Time Q-m Time 

COG1 (336) 96.73 116 81.25 10 92.26 332 93.45 340 

COG2 (214) 95.33 49 84.22 7 88.78 141 93.92 146 

COG3 (215) 93.06 74 87.50 14 83.68 273 73.26 285 

COG4 (355) 90.42 86 82.81 12 78.59 315 79.71 324 

COG5 (667) 98,08 667 94.00 105 63.46 5393 70.01 5338 

COG6 (309) 95.15 68 88.02 18 87.70 224 88.99 239 

KOG1 (363) 96.14 414 67.21 44 69.69 1168 76.85 1209 

KOG2 (425) 90.12 289 31.01 27 68.70 1208 53.64 1230 

KOG3 (411) 93.92 258 42.33 55 74.85 270 75.91 325 

KOG4 (360) 93.06 361 38.88 127 66.66 1123 67.22 1220 

KOG5 (326) 97.24 221 77.91 33 75.46 688 82.51 718 

KOG6 (590) 90,68 779 50.33 405 85.25 3782 66.94 4181 
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activities, all extensively studied at the biochemical level. These 

sequences are multi-modular, with various types of modules, 

which complicate their alignment. Clustering such protein 

sequences using the alignment-dependent algorithms thus 

becomes problematic. In our experiments, we tested quite a few 

known algorithms to align the 33 protein sequences, such as 

MUSCLE [8], ClustalW [36], MAFFT [18], T-Coffee [26] etc. 

The alignment results of all these algorithms are in contradiction 

with those presented by Côté et al. [5] which in turn are supported 

by the structure-function studies of Fukamizo et al. [13]. This 

encouraged us to perform a clustering on this subfamily, to 

compare the behaviour of CLUSS with BlastClust [3], TRIBE-

MCL [10] and gSPC [34] in order to validate the use of CLUSS 

on the hard-to-align proteins. The experimental results with the 

different algorithms are summarized in Table 2, which shows the 

cluster correspondence of each of the sequences by approach 

used. An overview of the results is given below. The 

corresponding names and database entries of the 33 (/)8-barrel 

proteins group are indicated at CLUSS website. 

6.4.1 CLUSS results 
The 33 (/)8-barrel proteins were subdivided by CLUSS into 

five subfamilies, organized in five main branches (details in 

Figure 2). The first and the second branch correspond, 

respectively, to the first and the second clusters, which include 

enzymes with “β-mannosidase” activities; the third branch 

corresponds to the third cluster, which includes enzymes with “β-

glucuronidase” activities; the fourth branch corresponds to the 

forth cluster, which includes enzymes with “β-galactosidase” 

activities; the fifth branch corresponds to the fifth cluster, which 

includes enzymes with “exo-β-D-glucosaminidase” activities. 

 

6.4.2 BLAST results 
The 33 (/)8-barrel proteins were subdivided into five 

subfamilies. Almost all the enzymes were clustered in the 

appropriate clusters, except for seven proteins that were 

unclustered, among which we find the following well-classified 

enzymes: the “β-galactosidase” enzymes GaA, GaK and GaC; the 

“β-mannosidase” enzyme UnBc; and the “exo-β-D-

glucosaminidase” enzyme CsAo. 

 

6.4.3 Tribe-MCL results 
The 33 (/)8-barrel proteins were subdivided by TRIBE-MCL 

into two mixed subfamilies. We find the “β-mannosidase” 

enzymes MaA, MaC and MaT grouped in the “β-galactosidase” 

subfamily. Furthermore, the “exo-β-D-glucosaminidase” and “β-

glucuronidases” enzymes are grouped in the same subfamily. 

6.4.4 gSPC results 
The 33 (/)8-barrel proteins were subdivided by gSPC into three 

subfamilies. Almost all the enzymes were grouped in the 

appropriate subfamily, except for the “β-galactosidases” and the 

“β-glucuronidases” which were grouped in the same subfamily. 

Globally, the clustering of the 33 (/)8-barrel proteins generated 

by CLUSS corresponds better to the known characteristics of their 

biochemical activities and modular structures than do those 

yielded by the other algorithms tested. The results obtained with 

our new algorithm were highly comparable with those of the more 

complex, structure-based analysis performed by Côté et al. [5] 

and Fukamizo et al. [13]. 

 

Figure 2. Phylogenetic analysis of 33 (/)8-barrel group 

Table 2. Clustering results on 33 (/)8-barrel group 

Protein set Côté & al. CLUSS Blast MCL SPC 

UnA 1 1 1 1 1 

UnBv 1 1 1 1 1 

UnBc 1 1 / 1 1 

UnBm 1 1 1 1 1 

UnBp 1 1 1 1 1 

UnR 1 1 1 1 1 

MaA 2 2 2 2 1 

MaB 2 2 2 1 1 

MaH 2 2 2 1 1 

MaM 2 2 2 1 1 

MaC 2 2 2 2 1 

MaT 2 2 2 2 1 

GIC 3 3 3 2 2 

GIE 3 3 3 2 2 

GIH 3 3 3 2 2 

GIL 3 3 3 2 2 

GIM 3 3 3 2 2 

GIF 3 3 3 2 2 

GIS 3 3 3 2 2 

GaEco 4 4 4 2 2 

GaA 4 4 / 2 2 

GaK 4 4 / 2 2 

GaC 4 4 / 2 2 

GaEcl 4 4 4 2 2 

GaL 4 4 4 2 2 

CsAo 5 5 / 2 3 

CsS 5 5 5 2 3 

CsG 5 5 5 2 3 

CsM 5 5 5 2 3 

CsN 5 5 / 2 3 

CsAn 5 5 / 2 3 

CsH 5 5 5 2 3 

CsE 5 5 5 2 3 
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7. DISCUSSION 
The new similarity measure presented in this paper makes 

possible to measure the similarity between protein sequences 

based solely on the conserved motifs. Its major advantage 

compared to the alignment-dependent approaches is that it gives 

significant results with protein sequences independent of their 

alignability, which allows it to be effective on both easy-to-align 

and hard-to-align protein families. This property is inherited by 

CLUSS, our new clustering algorithm, which uses it as its 

similarity measure. CLUSS used jointly with SMS is an effective 

clustering algorithm for protein sets with a restricted number of 

functions, which is the case of almost all protein families. It more 

accurately highlights the characteristics of the biochemical 

activities and modular structures of the clustered protein 

sequences than do the alignment-dependent algorithms. 

Our new clustering algorithm CLUSS gains several advantages by 

adopting an approach inspired by latent semantic analysis (LSA). 

The first is its use of high-dimensional space to automate the 

encoding and comparison of semantic relations. The second is its 

use of spectral decomposition, thereby benefiting from the global 

nature of this approach [27], since the Eigen decomposition used 

depends essentially on the globality of the similarity matrix SMS, 

and a change in one value in SMS makes changes in the entire 

Eigen decomposition. 

So far, our similarity measure has been based on pre-determined 

substitution matrices. A possible future development is to propose 

an approach to automatically compute the weights of the 

conserved motifs instead of relying on pre-calculated substitution 

scores. There is also a need to speed up the extraction of the 

conserved motifs and the clustering of the phylogenetic tree, to 

scale the algorithm on datasets that are much larger in size with 

many more biological functions. 

We believe that CLUSS is an effective method and tool for 

clustering protein sequences to meet the needs of biologists in 

terms of phylogenetic analysis and function prediction. In fact, 

CLUSS gives an efficient evolutionary representation of the 

phylogenetic relationships between protein sequences. This 

algorithm constitutes a significant new tool for the study of 

protein families, the annotation of newly sequenced genomes and 

the prediction of protein functions, especially for proteins with 

multi-domain structures whose alignment is not definitively 

established. Finally, the tool can also be easily adapted to cluster 

other types of genomic data. 
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ABSTRACT
The advent of microarray data has opened new doorways for
biological discovery. However, over the years, not all of the
hoped-for possibilities have been realized, due to fundamen-
tal limitations of microarray data. In this paper, we present
a method for augmenting microarray analysis with gene on-
tology data to provide insight into possible biomarkers (crit-
ical genes) for ovarian cancer pathogenesis which is not pos-
sible using microarray expression data alone. Using expres-
sion data for 12558 genes in 43 patients with both benign and
malignant epithelial ovarian tumors, we apply representative
state-of-the-art methods for microarray biomarker analysis
including support vector machines, five data normalization
methods, five feature selection methods, and two dimen-
sionality reduction methods. Our findings showed that for
this data: 1) Guanine Cytosine Robust Multi-array Aver-
age (GCRMA) appears to outperform other normalization
methods, 2) the classification problem alone is not constrain-
ing enough to yield unique biomarkers with high confidence.
Our new method combining statistical microarray analysis
with ontological information is capable of finding putative
biomarkers whose expression values are not significantly dif-
ferent between patient groups, but instead may be mutated
or regulated at the post-translational level. For example, our
method was capable of recovering the known importance of
the TUMOR PROTEIN 53 (TP53) in the etiology of ep-
ithelial ovarian cancer (EOC) from expression data in which
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TP53 was not found to be differentially expressed.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Applications
of data mining (biomedicine, business, e-commerce, defense)
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1. INTRODUCTION
Our dataset consists of microarray data (Affymetrix U95Av2)

from 43 ovarian cancer patients 1 [34]. Of the 43 ovar-
ian cancer patients: 10 are benign cancer patients; 9 are
malignant cancer patients with no chemotherapy treatment;
24 are malignant cancer patients with chemotherapy treat-
ment. The gene expression dataset from this ovarian cancer
patient microarray is of size 43 × 12, 558 2, which is high
dimension low sample size data. This is a typical microar-
ray dataset from which biologists have to extract meaning-
ful information about genes and is hence hard to analyze.
We began the project by doing a thorough statistical mi-
croarray analysis applying state-of-the-art methods on this
unique dataset which has not been previously intensively
studied. Our findings showed that for this data 1) Gua-
nine Cytosine Robust Multi-array Average (GCRMA) ap-
pears to outperform other normalization methods, and 2)
the classification problem alone is not constraining enough

1This dataset is provided by Professor McDonald’s lab at
Dept. of Biology, Georgia Institute of Technology
2Of the total 12,625 probes, 67 are Affymetrix reference
probes, after microarray normalization, the expression value
they measured are discarded from further analysis
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to yield unique biomarkers with high confidence. We were
led to the method we present at the end because the tradi-
tional microarray-only analysis seems insufficient. Our new
method combining statistical microarray analysis with onto-
logical information is capable of finding putative biomarkers
whose expression values are not significantly different be-
tween patient groups, but instead may be mutated or regu-
lated at the post-translational level.

This microarray dataset is a high density oligonucleotide
microarray data, generated using Affymetrix U95Av2 GeneChip.
In this type of micorarray experiments, oligonucleotide se-
quences of length 25 base pairs are used to probe genes.
There are two types of probes: perfect match (PM) ref-
erence probes which match a target sequence exactly; and
mismatch (MM) partner probes which differ from perfect
matches only by a single base in the center of the sequence.
Typically 16-20 of probe pairs (PM+MM) interrogate dif-
ferent parts of a target gene sequence and are referred as a
probeset. Gene expression value of a probeset is composed by
the intensity information of each probe in the probeset [6].

This paper is organized as follows: Section 2 gives our
quantitative comparison on the five commonly used oligonu-
cleotide microarray normalization methods. Section 3 sum-
marizes the standard techniques in biomarker discovery, and
shows why the microarray-only methods are insufficient in
biomarker discovery on our microarray data. Section 4 presents
our novel gene selection method which incorporates the gene
ontology information extracted from Affymetrix annotation
files into the microarray data analysis. Finally, section 5
concludes this work and discusses the future directions.

2. NORMALIZATION ANALYSIS
Microarray normalization adjusts individual intensities to

remove differences that are purely technical and do not rep-
resent true biological variation. Examples of such differences
are difference in probe labelling (affinity to target genes,
amounts of sample and label used), heat and light sensitiv-
ities, systematic biases in measured expression levels, scan-
ner settings, print-tip variation and sample plate origin [2].
Determining an appropriate normalization method of a mi-
croarray dataset is thus a critical step which influences the
rest of the microarray analysis, so our goal is to obtain the
microarray gene expression data in its best possible normal-
ized form. We found that overall, Guanine Cytosine Robust
Multi-array Average (GCRMA) [36] appears preferable to
the other methods for our microarray data. For researchers
working on microarray data, there is still no consensus re-
garding the best normalization method. Hence the fact that
one of the normalization methods is better than the others
for our dataset is interesting in its own right. This section
thus can be skipped for those not interested in the details
and it is not directly related to the main result of our paper.

For oligonucleotide microarray data, there are five com-
monly used data normalization methods that preprocess the
raw microarray data into gene expression data matrices:
Affymetrix - Microarray Suite (MAS) [17], Model Based
Expression Index (MBEI) [21], Probe Logarithmic Intensity
Error Estimation (PLIER) [1], Robust Multiple-chip Anal-
ysis (RMA) [18, 6] and GCRMA [36]. These methods basi-
cally differ in error model, probe information for estimation
and background adjustment method being used [1]. We use

their implementation in Bioconductor 3 (part of the R sta-
tistical package).
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Figure 1: 2D Projection on the Ovarian Cancer Mi-
croarray Data through Dimension Reduction

We extend the idea from [35], in which the authors com-
pare ten cDNA microarray normalization methods according
to the Leave-One-Out-Cross-Validation (LOOCV) classifi-
cation accuracy using K nearest neighbor (kNN) classifier.
As shown in the dimension reduction results (Figure 1) 4

through Principal Component Analysis (PCA) [20], and Lo-
cal Linear Embedding (LLE) [26, 27], this high dimensional
microarray dataset (12558 genes) is linear separable. We
thus compare the performance of oligonucleotide microar-
ray normalization methods by evaluating SVM (linear ker-
nel) [7] LOOCV classification accuracy through the Support
Vector Machine Recursive Feature Elimination (SVMRFE)

3Bioconductor: http://www.bioconductor.org/download
4Dimension reduction on microarray data normalized by
other normalization methods (RMA, PLIER, MAS, MEBI)
generates similar linear separable projection
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process. The assumption is that the gene expression data ob-
tained from better normalization method should have better
discrimination among different groups of the patients, and
thus the expression data of genes selected by SVMRFE al-
gorithm at each iteration should also be more discriminative
among different groups of patients.

Given a gene expression dataset (data matrix of patients
by gene expression values), the SVM LOOCV classification
accuracy is calculated as follows: for each patient, we take
the corresponding gene expression value data out, and build
an SVM classifier using the gene expression value data of all
the other patients in the dataset, and then use the classifier
to classify the label of the patient taken-out, we repeat the
above procedure for all the patients and count how many
patients have been classified correctly.

The evaluation procedure on SVM LOOCV performance
through SVMRFE process is described in Table 1. For each
normalization method, we first obtain the gene expression
value dataset from our ovarian cancer microarray data pre-
processed using the normalization method. Then, at each
iteration of the SVMRFE process: we use the LOOCV clas-
sification accuracy with SVM classifier to measure the dis-
criminative capability of the current gene expression value
dataset X(N,D). Next, we apply the SVMRFE gene selection
method on gene expression data to remove non-discriminative
genes and thus select out gene expression dataset for the
next iteration.

Table 1: Evaluation procedure of SVM LOOCV
through SVMRFE process
For each normalization method Ma:

Obtain corresponding expression dataset X;
Repeat

LOOCV on current expression dataset X(N, D)
Build SVM classifier on the current dataset
Rank gene j according to score(j) =| wj |
Remove the bottom 10% genes
Obtain new dataset Xnew(N, Dnew) , Dnew = 0.9D

D = Dnew; X = Xnew

Until D < 1
end;

Figure 2 shows the comparison result of the SVM LOOCV
classification accuracy of the gene expression profiles of the
19 cancer patients without treatment, i.e. the training data
consists of the 10 benign cancer patients and 9 malignant
cancer patients. The x axis gives the logarithm of the num-
ber of genes using in the SVM LOOCV classification accu-
racy calculation. The y axis gives the SVM LOOCV classi-
fication accuracy.

Figure 3 displays the comparison result of the SVM LOOCV
classification accuracy on the expression values of the 24 ma-
lignant cancer patients with treatment. From the dimension
reduction results on the microarray dataset (Figure 1), we
can claim that our ovarian cancer microarray dataset is lin-
early separable, and the treated malignant cancer patients
can be classified into benign-like or malignant-like classes.
Therefore, we built an SVM classifier using the gene expres-
sion profiles of the 19 cancer patients without treatment,
and used the classifier to determine the class of the gene
expression profiles of the 24 malignant cancer patients with
chemotherapy treatment. The classification result as used
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Figure 2: SVMRFE LOOCV Results of non-treated
patients (benign 10: malignant 9)

as the basis of the experiment, i.e. the training data consists
of the 13 treated cancer patients whose expression values are
classified as benign like, and the 11 treated cancer patients
whose expression values are classified as malignant like.
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Figure 3: SVMRFE LOOCV Results of treated pa-
tients (benign-like 13: malign-like11)

As we can see from the resulting plots, gene expression
profiles obtained from PLIER normalization method have
the worst discriminative capability among different patient
groups, and so does the gene set selected using PLIER. Gene
expression profiles obtained from MAS and MEBI normal-
ization methods are better, but still worse comparing to
GCRMA and RMA. Gene expression profiles obtained from
normalization method GCRMA are very stable over the ex-
periments in treated patients and non-treated patient case
except only for the case of top gene (i.e. gene number = 1)
classification on treated cancer patients data. While gene ex-
pression profiles obtained from RMA normalization method
are very stable through SVMRFE process when the size of
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the selected gene set becomes small. Therefore, the gene
expression data normalized by GCRMA on the microarray
data will be used in the gene selection experiments in fol-
lowing sections.

3. CLASSIFICATION-BASED ANALYSIS
Our explorative analysis on this microarray data shows

that statistical microarray-only analysis does not appear ca-
pable of identifying unique biomarkers with high confidence.
This section first summarizes the traditional biomarker dis-
covery methods which are mainly gene-expression-only anal-
ysis. Next, four biomarker discovery methods are applied
to select out putative biomarkers from the dataset. The
gene selection results show that the traditional classification-
based analysis may be insufficient to identify biological mean-
ingful biomarkers in our microarray data.

3.1 Biomarker Discovery Methods
Biomarker discovery, i.e. gene selection methods are ba-

sically derived from feature selection methods used in text
categorization and other scientific applications. The results
of gene selection, i.e. putative biomarkers are usually evalu-
ated by their discriminative capability among different sam-
ple classes. There are mainly two types of gene selection
methods: filter-based approach and wrapper-based approach.

Filter-based approach uses statistical information between
genes (and classes), including: information gain, symmetri-
cal uncertainty, t-statistics, gini index, χ2 statistics, Signal
to Noise (S2N) ratio [13], RBF (Redundancy based filter)
algorithm [28], CFS (Correlation Feature selection) Crite-
ria [33], etc.

A micorarray experiment is a good example of multiple
hypothesis testing, in which thousand of genes are mea-
sured simultaneously against the null hypothesis that gene
j is not differentially expressed among two sample groups.
Thus gene selection is reduced to finding genes that reject
the null hypothesis. Therefore, false positive error control
methods can be applied to correct the raw two-sided p value
from Welch t-test on each gene. Putative biomarkers are
those genes with small p values after correction. The com-
monly used methods of this category are: Bonferroni cor-
rection [12]; Holms step-down adjustment of Bonferroni cor-
rection [15]; Benjamini and Hochberg false discovery rate
(BH-FDR) correction [4]; and Benjamini and Yekutieli false
discovery rate (BY-FDR) correction [5].

Wrapper-based approaches determine the importance of
gene(s) according to the discriminative capability over dif-
ferent classes of samples. One method is to build one di-
mensional support vector machine [29] for each gene, and
then rank the genes according to their classification perfor-
mance among different sample groups. Another method is to
select genes according to their projection on the first princi-
pal component by performing dimension reduction technique
PCA (principal component analysis) [20] on the dataset.

The most widely used method of this approach is Sup-
port Vector Machine Recursive Feature Elimination method
(SVMRFE) [14, 16]. This method will iteratively repeat
the following process until the desired number of remaining
genes is reached: i) train a linear-kernel SVM using all the
remaining genes; ii) sort the genes by score(j) =| wj |, w
is the slope of the discrimination hyperplane of the SVM
classifier; iii) remove 10% genes with lowest s(j). Recently,
more complex methods like MSVM-RFE (multiple SVM-

RFE) [10], PMBGA (probabilistic model building genetic
algorithm) method [25], LS-SVM (least squares SVM) [38]
method, etc. were proposed for handling gene selection in
more complicated datasets.

3.2 Insufficiency of Standard Biomarker Dis-
covery Methods

This subsection presents the gene selection results from
four standard biomarker discovery methods: SVMRFE, PCA,
1D-SVM, and hypothesis approach (t-test), and then de-
scribes exactly why we think the microarray-only method is
insufficient for obtaining reliable biomarkers.

Table 2, 3 lists the top 10 genes selected out using two
wrapper-based biomarker discovery methods: SVMRFE method
and PCA method, respectively.

Table 2: Top 10 Genes selected using SVMRFE
Symbol Gene Name
C10orf72 Chromosome 10 open reading frame 72
TNXA ///
TNXB

tenascin XA pseudogene /// tenascin
XB

LOC388388 Chromodomain helicase DNA binding
protein 3

PEG3 paternally expressed 3
TCF21 transcription factor 21
ECM2 extracellular matrix protein 2, female

organ and adipocyte specific
UST uronyl-2-sulfotransferase
CD22 ///
MAG

CD22 antigen /// myelin associated
glycoprotein

STAR steroidogenic acute regulator
SERPINE2 serpin peptidase inhibitor, clade E

(nexin, plasminogen activator inhibitor
type 1), member 2

Table 3: Top 10 Genes selected using PCA
Symbol Gene Name
TNXA ///
TNXB

tenascin XA pseudogene /// tenascin
XB

PEG3 paternally expressed 3
SPP1 secreted phosphoprotein 1 (osteopontin,

bone sialoprotein I, early T-lymphocyte
activation 1)

ECM2 extracellular matrix protein 2, female
organ and adipocyte specific

MYH11 myosin, heavy polypeptide 11, smooth
muscle

SPP1 secreted phosphoprotein 1 (osteopontin,
bone sialoprotein I, early T-lymphocyte
activation 1)

C7 complement component 7
STAR steroidogenic acute regulator
TCF21 transcription factor 21
C10orf72 Chromosome 10 open reading frame 72

Biomarker discovery methods like Hypothesis Testing based
methods and 1D-SVM classification method can give the es-
timation of the number of genes that are significantly dif-
ferentially expressed over different patient groups, i.e. the
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number of genes that would be putative biomarkers. Table 4
summarizes the number of statistically significant genes ac-
cording to the cut off value q under different false positive
error control methods of the hypothesis testing approach.
Table 5 summarizes the number of discriminative genes ac-
cording to the classification accuracy of its 1D-SVM classi-
fier built from gene expression data of the 19 non-treated
patients. In which, LOOCV classification accuracy refers
to the SVM LOOCV classification accuracy over the non-
treated cancer patients; Classification accuracy refers to the
classification performance over the 24 treated cancer pa-
tients using the classifier built from gene expression profiles
of the 19 non-treated cancer patients; and the Overlapped
Genes column gives the number of genes whose 1D-SVM
classifiers have both 100% LOOCV classification accuracy
over the non-treated cancer patients, and 100% classification
accuracy over the treated cancer patients, and these genes
are listed in Table 6. For comparison purpose, the top 17
genes selected out using hypothesis testing based approach
are listed in Table 7.

Table 4: Estimation on the number of significant
genes - Hypothesis testing approach

q Raw p
value

Bonferroni Holms FDR
BH

FDR
BY

0.01 2247 111 111 1080 362
0.05 3677 191 191 2130 791

Table 5: Estimation on the number of significant
genes - 1D-SVM approach
100% LOOCV
performance
(non-treated)

100% Classification
Accuracy (treated)

Overlapped
Genes

191 99 17

Since this microarray dataset is linearly separable by one
dimension as shown in Figure 1, many single genes can dis-
criminate between benign like patients class and malignant
like patients class (see Table 4, 5). Therefore, the classifica-
tion problem on this microarray dataset is too simple, admit-
ting too many possible solutions in such a high-dimensional
space for us to be able to pinpoint critical features. Also the
different feature selection methods (hypothesis testing ap-
proach, One-dimensional-SVM, as well as SVMRFE, PCA)
don’t give a lot of overlap (see Table 2, 3, 6, 7). Further-
more, the putative biomarkers found by these methods are
not biologically compelling, i.e. relevant to ovary cancer
pathogenesis. As an indication of this: we evaluate these
gene lists using the function annotation tools provided in
DAVID (Database of Annotation, Visualization, and Inte-
grated Discovery) [9]. DAVID statistically measures the
Gene-Enrichment, i.e. whether the user input gene list is
highly associated with certain biological annotations [24].
The results show that the gene lists generated by the tra-
ditional biomarker discovery methods, only associated with
a few biological pathway annotations with good confidence,
i.e. p-value < 0.1, which is computed through a variant of
Fish Exact test. Table 8 displays the genes that are an-
notated by these good-confidence biological pathways. In
which, gene list (10 genes each) generated by SVMRFE,

Table 6: Top 17 genes selected using 1D-SVM
Symbol Gene Name
ST13 suppression of tumorigenicity 13 (colon

carcinoma) (Hsp70 interacting protein)
PDZRN3 PDZ domain containing RING finger 3
PROS1 protein S (alpha)
PPT2 ///
EGFL8

palmitoyl-protein thioesterase 2 ///
EGF-like-domain, multiple 8

— Retinoic acid-inducible endogenous
retroviral DNA

TCEAL4 transcription elongation factor A (SII)-
like 4

RPL23 ribosomal protein L23
WDFY3 WD repeat and FYVE domain contain-

ing 3
KIAA0368 KIAA0368
ARHGEF9 Cdc42 guanine nucleotide exchange fac-

tor (GEF) 9
C16orf45 chromosome 16 open reading frame 45
PMM1 phosphomannomutase 1
FHL2 four and a half LIM domains 2
DIRAS3 DIRAS family, GTP-binding RAS-like

3
SDC2 syndecan 2 (heparan sulfate proteogly-

can 1, cell surface-associated, fibrogly-
can)

CIRBP cold inducible RNA binding protein
FOXO1A forkhead box O1A (rhabdomyosar-

coma)

PCA only have 3 genes associated with these biological path-
ways, respectively; gene lists (17 genes each) generated by
1D-SVM and hypothesis testing approach have 7 and 5 genes
associated with the high confidence biological pathways, re-
spectively. Gene expression is regulated by transcription,
thus differentially transcribed genes can be identified by
microarray-only analyses, which rely only on the gene ex-
pression values. However, biological molecules may be regu-
lated at other levels, called as post-translational levels: that
is, they are phosphorylated, sumoylated, glycosylated, etc.
These differences also render proteins active and inactive are
not picked up directly by expression analyses.

4. MICROARRAY+ONTOLOGY BIOMARKER
DISCOVERY METHOD

Traditional gene selection methods, like S2N, PCA, SVM-
RFE, etc. are able to select out differentially expressed genes
from the microarray data. However, some other biologically
important genes, like TP53 (tumor protein p53) which is
known to play a role in the etiology of many cancers [23],
are not differentially expressed across the different biological
samples (i.e. different patient classes). These microarray-
only gene selection methods only monitor one level of bio-
logical regulations, of which there are many. Thus they are
not biologically comprehensive, often fail to detect this kind
of biomarkers. Therefore, it is necessary to integrate expres-
sion data analyses in an easy and automatic way with other
levels of biological regulation that have been determined in
experimental literature. This section addresses this issue
using our new gene selection method which combines mi-
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Table 7: Top 17 genes selected using hypothesis test-
ing approach
Symbol Gene Name
C10orf72 Chromosome 10 open reading frame 72
COL14A1 collagen, type XIV, alpha 1 (undulin)
NAV3 neuron navigator 3
TCF21 transcription factor 21
EMILIN1 elastin microfibril interfacer 1
CDO1 cysteine dioxygenase, type I
MAPRE2 Microtubule-associated protein,

RP/EB family, member 2
STAR steroidogenic acute regulator
CSDC2 cold shock domain containing C2, RNA

binding
— CDNA FLJ26796 fis, clone PRS05079
— CDNA clone IMAGE:4820330
RECK reversion-inducing-cysteine-rich protein

with kazal motifs
NAP1L3 nucleosome assembly protein 1-like 3
GATM glycine amidinotransferase (L-

arginine:glycine amidinotransferase)
AOX1 aldehyde oxidase 1
ECM2 extracellular matrix protein 2, female

organ and adipocyte specific
TNXA ///
TNXB

tenascin XA pseudogene /// tenascin
XB

Table 8: Putative biomarkers that are functionally
annotated
Method Genes in the Pathways
SVM-RFE USF, CD22 /// MAG, TNXB
PCA SPP1, C7, TNXB
1D-SVM FOXO1A, PROS1, FHL2, PMM1,

SDC2, RPL23, PPT2 /// EGFL8
Hypothesis
Testing

RECK, AOX1, TNXB, GATM,
CDO1

croarray data analysis with the domain knowledge: Gene
Ontology [3, 8] information from the associated Affymetrix
annotation files (HU95Av2). This proposed method aims
to discover those biologically meaningful genes whose gene
expression values are non-differentially expressed across the
different biological samples; but may be recovered by onto-
logical linkage to genes that are differentially expressed.

The utility of our methods will be demonstrated using the
well-characterized tumor suppressor gene, TP53. In our mi-
croarray dataset, TP53 was measured by 3 probes (1939 at,
1974 s at, 31618 at, the expression values are listed in Fig-
ure 4). The p-values, which are computed from Welch t-
tests on the expression data of each probe, are listed in the
last-but-one row of Figure 4, and the LOOCV classification
results of the 1D-SVM classifiers of each probe are listed in
the last row of Figure 4.

Gene Ontology (GO) is produced by Gene Ontology Con-
sortium 5 to describe the function of gene products, their
location in the cell and the biological process they are in-
volved in. Three structured ontologies of defined terms have
been established: Biological Process, Cellular Component

5http://www.geneonotology.org/

Figure 4: Gene Expression Values of Probes on Gene
TP53

and Molecular Function [3, 8]. Gene Ontology, developed
manually by experts, is generally used for annotating genes.
In particular, it is useful in interpreting the significantly
differentiated genes selected from microarray data analysis,
or used for further analysis like grouping/classifying the se-
lected genes according to the functions of the genes, or bio-
logical process they are involved in [22, 19]. In summary, it
is mainly used as a resource to understand, annotate or val-
idate the gene selection results. Currently, there are several
attempts which try to integrate GO-based similarity [31, 30,
32], or GO-based structure [11] into microarray analysis like
missing value estimation, clustering, etc. In [37], the authors
proposed to select informative genes from micorarray data
by incorportating gene ontology. Our method differs from
their method in several aspects: 1) we determine the dis-
criminative capability of a GO term in a more sophisticated
way rather than a simple statistics of the ratio of discrimi-
native genes annotated by this GO-term, 2) we score genes
using the sum of discriminative capability of the GO-terms
annotated on the genes rather than using the raw discrimi-
native score of the genes.

Before we present our biomarker discovery method, we
first need to introduce the concept of function group, which
is defined as a group of genes with the same GO term anno-
tation. Since one gene could have more than one GO term
annotation, it is possible that different function groups can
have overlaps with each other. The gene expression data of
a function group is composed of the expression data of the
genes in the group. The discriminative capability of a func-
tion group is determined by discrimination among different
patient groups of its gene expression data. We predicate
our method on the assumption that the putative markers are
those genes that belong to the maximum number of function
groups with good discriminative capability.

Our method is composed of three steps (see Table 9). In
the first step, we incorporate the gene ontology knowledge
by dividing genes into functional groups according to their
annotated GO terms. For example, in the application to our
microarray data, we use the GO term annotations from the
Affymetric annotation file for HG U95Av2 microarray data.
We only use GO terms in the first level of the GO term
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Table 9: Incorporating Gene Ontology into
Biomarker Discovery
Divide Genes into Function Groups
Compute the discriminative capability of each function group

Obtain the gene expression submatrix of group j
Compute SVM LOOCV accuracy through SVMRFE process
Score group j by wj = f(LOOCV full, max LOOCV )

Rank gene i by s(i) =
∑m

j=1 mij ∗ wj

(Optional) Normalize on the gene score

hierarchy for each of the three parts of gene ontology, i.e.
hierarchies with root node (level 0) as biological process,
cellular component, molecular function, respectively. We
thus obtain a gene-function group mapping matrix (see Fig-
ure 5), I = (Ii,j)m,n, where I is a binary matrix and Ii,j = 1
means that gene i is included in function group j, n is the
number of genes, m is number of groups. For example, the
group of GO term with Locus Link ID 739 will consist of all
genes in the microarray data that have molecular function
739, namely, DNA strand annealing activity.

Figure 5: Illustration on the Algorithm - Step 1

Figure 6: Illustration on the Algorithm - Step 2

In the second step: the discriminative capability of a func-
tion group is determined using SVM LOOCV accuracy rate
through the SVMRFE process (described in Section 2). For
each function group, we first obtain the corresponding gene

expression value submatrix through the gene-probe map-
ping in the annotation file. Next, we evaluate the SVM
LOOCV classification accuracy rate of the gene expression
data through the SVMRFE process. We record two val-
ues in the process: i) LOOCV full: the LOOCV classifi-
cation accuracy with expression value of all the probes in
the group. ii) max LOOCV: the maximum LOOCV clas-
sification accuracy this gene expression dataset can achieve
through recursive gene elimination process. We then score
and rank the discriminative capability of the function group
as wj = f(LOOCV full, max LOOCV ), in which f is a
thresholding function on the LOOCV classification accuracy.

Figure 7: Illustration on the Algorithm - Step 3

In the third step, genes are scored and ranked based on
how many functions groups a gene participates in and the
discriminative capability of the function groups it belongs to.
For each gene i, its score are computed as s(i) =

∑n
j=1 Iij ∗

wj . We also considered normalization on the gene score to
reduce bias toward genes having a large number of ontol-
ogy entries, i.e. normalize the score of each gene by some
penalty function based on how many gene group it belongs
to. For example, give penalty p (some constant) on genes
belong to more than M ∗ r groups (M : maximal number
of gene groups a gene belongs to, r: penalizing ratio). But
the normalization either generates worse results or gives lit-
tle change to the results (position of TP53 in the gene rank
list, and overlapped gene of the top500 genes using each of
the three ontologies). Therefore, we just include it as an
optional step of our algorithm, and we only show the results
without gene score normalization.

We illustrate the proposed method in the example of TP53,
which is of particular interests for ovarian cancer pathogen-
esis. Since TP53 is involved in 26 biological process based
groups, 7 cellular component based groups, 12 molecular
function based groups, we reported on the molecular func-
tion based grouping because space limitations on this pa-
per. Table 10 lists the 12 function groups TP53 belongs to
and their SVM LOOCV performance through the SVMRFE
process. Thus the score for gene TP53 is

∑
j Iij ∗ wj = 8.

Therefore, gene TP53 has raw score 8 and it is among the
top 350 genes (out of 12558) selected by this method. Ta-
ble 11 lists the position of TP53 in the gene rank lists gen-
erated from our method by incorporating the annotation
information from the biological process, cellular component,
molecular function part of the Gene Ontology, respectively.

Table 12 lists the overlapped Genes from the top 500
genes obtained from our method by combining gene expres-
sion data with the annotation information from each of the
three parts of the Gene Ontology: biological process, cellu-
lar component, and molecular function. There are 13 genes
in total, where p-value is the minimum p-value of Welch
t-test on the gene expression values of each of the probe-
sets that measure the expression value of the gene, LOOCV
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Table 10: Function Groups that TP53 belongs to
LocusLink
ID

Annotated GO
Term

# of
Genes

LOOCV
full

max
LOOCV

739 DNA strand an-
nealing activity

3 46% 54%

3677 DNA binding 1591 100% 100%
3700 transcription fac-

tor activity
890 100% 100%

4518 nuclease activity 74 100% 100%
5507 copper ion bind-

ing
58 75% 100%

5515 protein binding 3242 100% 100%
5524 ATP binding 1294 100% 100%
8270 zinc ion binding 1288 96% 100%
19899 enzyme binding 44 79% 92%
46872 metal ion binding 1674 100% 100%
46982 protein het-

erodimerization
activity

89 96% 100%

47485 protein N-
terminus binding

11 42% 63%

Table 11: Position of TP53 in the Gene Rank List
Generated by the Method

Biological
Process

Cellular
Component

Molecular
Function

Rank of TP53 1 121 301
# of Genes that
rank the same as
TP53

0 47 50

rate is the maximum SVM LOOCV classification accuracy
on the gene expression values of each of the probesets that
measure the gene. As shown from the table, whether genes
like ADAM10, ATP2A2, CSF1R, EGFR, INSR, PDGFRA
are either with low p value or high LOOCV classification
accuracy, which can be detected through traditional gene
selection method, our method is capable to select out non-
differentially expressed genes like ALK, ATP1A1, EPHB1,
GPR125, NTRK1, RARA, and TP53. Since these addi-
tional genes are recovered in the same way that TP53 was
recovered, they warrant further investigation.

From a biological viewpoint, by combining microarray data
with gene ontology annotation information, our method seems
capable of detecting potential biomarkers whose expression
values are not significantly different but are likely to be mu-
tated or regulated at post-translation levels. For example,
TP53 function has been implicated in the clinical response
among those patients treated with chemotherapy prior to
surgery by Prof. McDonald’s lab [23]. Also the functional
annotation analysis from the Database for Annotation, Vi-
sualization, and Integrated Discovery (DAVID) [9] on our
gene list shows that: i) 8 of the 13 putative biomarkers found
by our method (see Table 12) are proteins capable of being
phosphorylated (i.e. post-translationally modified); ii) 8 of
these putative biomarkers listed in Table 12 are annotated
by those biological pathways that have high gene enrichment
confidence [24]. Table 13 lists these biological pathways and
the associated putative biomarkers found by our method,
where p-value is computed from a modified fisher exact test

Table 12: Overlap in the Top 500 Genes
Symbol Gene Name p-value LOOCV

rate
ADAM10 ADAM metallopepti-

dase domain 10
0.00072 79%

ALK anaplastic lymphoma
kinase (Ki-1)

0.25 54%

ATP1A1 ATPase, Na+/K+
transporting, alpha 1
polypeptide

0.077 58%

ATP2A2 ATPase, Ca++
transporting, cardiac
muscle, slow twitch 2

8.9E-07 88%

CSF1R colony stimulating
factor 1 receptor,
formerly McDonough
feline sarcoma viral
(v-fms) oncogene
homolog

0.0063 71%

EGFR epidermal growth
factor receptor (ery-
throblastic leukemia
viral (v-erb-b) onco-
gene homolog, avian)

0.0038 63%

EPHB1 EPH receptor B1 0.59 54%
GPR125 G protein-coupled re-

ceptor 125
0.37 50%

INSR insulin receptor 1.2E-05 50%
NTRK1 neurotrophic tyrosine

kinase, receptor, type
1

0.92 54%

PDGFRA platelet-derived
growth factor recep-
tor, alpha polypep-
tide

7.2E-05 96%

RARA retinoic acid receptor,
alpha

0.68 54%

TP53 tumor protein p53
(Li-Fraumeni syn-
drome)

0.39 54%

adopted in DAVID which measures the enrichment of the
pathway annotations on the input gene list, the smaller, the
more enriched. Comparing to the results in Table 8, we see
an increase in the number of putative biomarkers involved
in biological pathways. We also received more positive feed-
backs from the biologists: the biological investigations on
the roles these putative biomarkers plays in ovary cancer
pathogenesis are being conducted.

5. CONCLUSIONS
In this paper, we present a method for augmenting mi-

croarray analysis with gene ontology data to provide insight
on possible biomarkers (critical genes) for ovarian cancer
pathogenesis which is not possible with microarray data
alone. Using expression data for 12558 genes in 43 pa-
tients with both benign and malignant epithelial ovarian tu-
mors, we apply representative state-of-the-art methods for
microarray biomarker analysis including support vector ma-
chines, five data normalization methods (MAS5.0, MBEI,
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Table 13: Pathway Analysis (from DAVID database) on the putative Biomarkers
Database Pathway Term p-value Genes from Table 9
BIOCARTA h cblPathway: CBL mediated ligand-induced

downregulation of EGF receptors
0.0017 CSF1R, PDGFRA, EGFR,

BIOCARTA h telPathway: Telomeres 0.0804 TP53, EGFR,
KEGG PATHWAY HSA05120: EPITHELIAL CELL SIGNALING

IN HELICOBACTER PYLORI INFECTION
0.0857 ADAM10, EGFR

KEGG PATHWAY HSA04060: CYTOKINE-CYTOKINE RECEP-
TOR INTERACTION

0.0835 CSF1R, PDGFRA, EGFR

KEGG PATHWAY HSA04020: CALCIUM SIGNALING PATHWAY 0.0440 PDGFRA, ATP2A2, EGFR
KEGG PATHWAY HSA04010: MAPK SIGNALING PATHWAY 0.0129 TP53, NTRK1, PDGFRA, EGFR

PLIER, RMA, GCRMA), four feature selection methods,
and two dimensionality reduction methods (PCA, LLE).
Our findings showed that for this data 1) GCRMA appears
to outperform other oligonucleotide microarray normaliza-
tion methods through evaluation on reconstruction error af-
ter dimension reduction, as well as the SVM LOOCV clas-
sification accuracy through SVMRFE process; 2) the clas-
sification problem alone is not constraining enough to yield
unique biomarkers with high confidence. Our new method
combines statistical microarray analysis with ontological in-
formation. The result indicates that our method is capable
of finding key regulators of oncogenesis whose expression val-
ues are non-differentially expressed at gene expression level
but may be mutated or regulated at the post-transitional
level, as is TP53 [23].

Based on the current work, there are several possible fu-
ture research directions. Several studies are possible to im-
prove the approach: i) we can compare the normalization
methods on another data set or multiple data sets to get a
more conclusive evidence that GCRMA is indeed superior;
ii) We could benefit by incorporating the full hierarchical
structure of GO in our analysis. We would also improve
on our biomarker discovery methods to consider not only
gene-class correlation (relevance) but also gene-gene corre-
lation (redundancy) [28]. And gene ontology based similar-
ity [31] would be a good measure for redundancy between
genes. We would further incorporate domain knowledge on
biological pathways, such as KEGG (Kyoto Encyclopedia
of Genes and Genomes) PATHWAY6, BioCarta7databases,
into biomarker discovery, since one of the ultimate goals of
biomarker discovery is to analyze their roles in the patholog-
ical pathways. We could evaluate these putative biomarkers
through Hidden Markov Model sequence analysis/classification,
as well as the gene-expression/function correlation analysis.
Additional analyses of the literature and/or experimental
procedures will be needed to verify the biological significance
of the non-differentially expressed genes identified here to
ovarian cancer metastasis.
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