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REMARKS 
 
Bioinformatics is the science of managing, mining, and interpreting information from biological data. Various 
genome projects have contributed to an exponential growth in DNA and protein sequence databases. Advances 
in high-throughput technology such as microarrays and mass spectrometry have further created the fields of 
functional genomics and proteomics, in which one can monitor quantitatively the presence of multiple genes, 
proteins, metabolites, and compounds in a given biological state. The ongoing influx of these data, the 
presence of biological answers to data observed despite noise, and the gap between data collection and 
knowledge curation have collectively created exciting opportunities for data mining researchers. 
 
While tremendous progress has been made over the years, many of the fundamental problems in 
bioinformatics, such as protein structure prediction, gene-environment interaction, and regulatory pathway 
mapping, are still open. Beside these, new technologies such as next-generation sequencing are producing 
massive amount of sequence data; managing, mining and compressing these data raise challenging issues. Data 
mining will play an essential role in understanding these fundamental problems and development of novel 
therapeutic/diagnostic solutions in post-genome medicine.  
 
The goal of this workshop is to encourage KDD researchers to take on the numerous challenges that 
Bioinformatics offers. This year, the workshop will feature the theme of “Data Mining Challenges in Next-
generation Sequencing (NGS)”. NGS is revolutionizing biological, biomedical, and health research. There are 
enormous data analyses and knowledge discovery challenges in the NGS technology, including expression 
analysis, mutational analysis, alternative slicing pattern discovery, whole transcription sequence alignment, 
epigenetics site discovery, storing and compression of high volume sequence data and clustering and 
classification of structural variations in a population.  
 
We encourage papers that propose novel data mining techniques for areas including but not limited to 
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• NGS data processing  
• Genome structural variation analysis  
• Exome sequencing 
• Comparative assessment of data qualities between NGS and microarray-based technology 
• Comparative Genomics 
• Metagenomics using NGS 
• RNA-seq expression analysis 
• Genome-wide analysis of non-coding RNAs 
• Mutational analysis and disease risk assessment  
• Genome-wide motif finding 
• Modeling of biological networks and pathways from NGS data 
• NGS and structural bioinformatics applications 
• Correlating NGS with proteomics data analysis 
• Biomarker discoveries in NGS data 
• Gene functional annotation 
• Special biological data management techniques for NGS data 
• Special information visualization techniques for NGS data analysis 
• Semantic webs and ontology-driven NGS data integration methods 
• Knowledge discovery of genotype-phenotype associations in NGS 
• Privacy and security issues in mining genomic databases 

 
Papers should be at most 10 pages long, single-spaced, in font size 10 or larger with one-inch margins on all 
sides.  Paper in PDF format can be sent to both of the program co-chairs by email. Camera-ready format papers 
may be referenced from previous BIOKDD conference proceedings. 
 
PROGRAM  
The workshop is a half day event in conjunction with the 17th ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining, San Diego, CA USA, August 21, 2011. It was accepted into the full 
conference program after the SIGKDD conference organization committee reviewed the competitive proposal 
submitted by the workshop co-chairs. To promote this year’s program, we established an Internet web site at  
http://bio.informatics.iupui.edu/biokdd11/.  

 
This year, we accepted 3 full papers and 2 short papers out of 10 submissions. Each paper was peer reviewed 
by at least two members of the program committee and papers with declared conflict of interest were reviewed 
blindly to ensure impartiality. All papers, whether accepted or rejected, were given detailed review forms as a 
feedback. During the program, the full papers will have 25 minutes and the short papers will have 15 minutes 
of time. The above time is for both oral presentation and question & answers. 
 
We have two invited speakers for this year’s program, Dr. Vineet Bafna, Professor, University of California, 
San Diego and Dr. Harry Gao, Director, DNA Sequencing/Solexa Core Lab, City of Hope.  
 
WORKSHOP CO-CHAIRS 

• Mohammad Hasan, Computer Science, Indiana University–Purdue University 
Indianapolis 

• Jun (Luke) Huan, University of Kansas                           
• Jake Chen, Indiana University School of Informatics, Indiana University–Purdue 

University Indianapolis 
• Mohammed Zaki, Rensselaer Polytechnic Institute 

 
 

http://bio.informatics.iupui.edu/biokdd11/
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Algorithm for Low-Variance Biclusters to Identify
Coregulation Modules in Sequencing Datasets

Zhen Hu
School of Computing Sciences and Informatics

University of Cincinnati
huze@mail.uc.edu

Raj Bhatnagar
School of Computing Sciences and Informatics

University of Cincinnati
Raj.Bhatnagar@uc.edu

ABSTRACT
High-throughput sequencing (CHIP-Seq) data exhibit bind-
ing events with possible binding locations and their strengths,
followed by interpretations of the locations of peaks. Recent
methods tend to summarize all CHIP-Seq peaks detected
within a limited up and down region of each gene into one
real-valued score in order to quantify the probability of reg-
ulation in a region. Applying subspace clustering (or biclus-
tering) techniques on these scores would discover important
knowledge such as the potential co-regulation or co-factors
mechanisms. The ideal biclusters generated should contain
subsets of genes, and transcription factors (TF) such that
the cell-values in biclusters are distributed around a mean
value with low variance. Such biclusters would indicate TF
sets regulating gene sets with the same probability values.
However, most existing biclustering algorithms are neither
able to enforce variance as a strict limitation on the val-
ues contained in a bicluster, nor use variance as the guiding
metric while searching for the desirable biclusters. An algo-
rithm that uses search spaces defined by lattices containing
all overlapping biclusters and a bound on variance values as
the guiding metric is presented in this paper. The algorithm
is shown to be an efficient and effective method for discov-
ering the possibly overlapping biclusters under pre-defined
variance bounds. We present in this paper our algorithm,
its results with synthetic and CHIP-Seq and motif datasets,
and compare them with the results obtained by other al-
gorithms to demonstrate the power and effectiveness of our
algorithm.

1. BACKGROUND AND MOTIVATION
Mining biclusters (or co-clusters) from sequencing datasets

is one of the important ways to discover potential biologi-
cal mechanisms. Transcription Factors (TF) binding related
sequencing datasets, including High-throughput Chromatin
Immunoprecipitation Sequencing (CHIP-Seq) [22] and motif
searching [12] data, record potential matchings on genome
with many different metrics. For example, CHIP-Seq peaks
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bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
BIOKDD 2011, August 2011, San Diego, CA, USA
Copyright 200X ACM 978-1-4503-0839-7 ...$10.00.

records intensity and position. By balancing contributions
from several metrics, many researchers summarize them into
unified scores to quantify the binding strengths for gene-TF
pairs. These scores are very sensitive and minor differences
may reflect quite different binding scenarios. Biclusters con-
sisting of subsets of genes and TFs having very similar cell
values can help provide insights into coregulation. However,
traditional methods [29, 15, 14, 11] cannot be adapted eas-
ily to analyze the sequencing datasets because most of them
do not seek biclusters with specificable bounds on statistical
quantities such as the standard deviation (of the cell values).
We present in this paper an algorithm to solve this problem.
The generated biclusters are the largest possible in size such
that the cell values contained in them are distributed with
variance bounded by specified low thresholds.

High-throughput Chromatin Immunoprecipitation Sequenc-
ing (CHIP-Seq) experiments generate precise short DNA
sequences bound to Transcription Factors. After mapping
these short sequences back to the whole-genome sequence
and searching for enriched regions, CHIP-Seq datasets pro-
vide precise binding information in terms of binding loca-
tions and strengths (or peaks) [23, 26, 27, 2, 13]. Many
current methods summarize all peaks within up and down
regions of each gene into a unified score by combinding the
information of distances from peaks to transcription start
sites (TSS) and the information of binding strengths to-
gether. For example, Ouyang et. al [21] compute the score
by summing up all weighted peaks’ strengths, influenced by
the distances to TSS. Another similar type of sequencing
dataset is generated while searching for motifs matching
across the whole genome. The motifs are defined as posi-
tion weighted matrices (TRANSFC), and the final match-
ing scores are computed by using the method given in [12].
Both of these two types of sequencing scores are very sensi-
tive; slight differences in scores indicate quite different bind-
ing scenarios. For example, based on the Ouyang et. al’s
method, same intensity peaks (E2F1) bound at positions 500
and 800 away from TSS may lead to differences of less than
1 between the final scores.

For illustration, we consider a very small synthetic dataset
shown in Figure 1(a) in which the values are quite similar to
the CHIP-Seq scores and motif matching scores. Biclusters
shown in Figure 1(b) are such that the values in the selected
cells are all about the same (std. dev. < 0.5) and also sat-
isfy the size constraint, which is: biclusters should contain
at least two rows and two columns. For binary datasets the
theory of Formal Concept Analysis [17] treats all maximum
sized sub-matrices containing only 1’s as concepts and ar-



a b c d
g1 2.8 3.0 3.2 4.5
g2 3.0 2.7 2.7 1.6
g3 4.9 5.0 5.3 1.2
g4 2.1 5.2 4.8 0.8

(a) Data table

< {g1, g2}, {a, b, c} >
< {g1, g2}, {a, b} >
< {g1, g2}, {a, c} >
< {g1, g2}, {b, c} >
< {g3, g4}, {b, c} >

(b) Biclusters

Figure 1: Example Biclusters

ranges them in a partially ordered lattice. Here we consider
all those maximum sized sub-matrices as concepts for which
the standard deviation of all included cell values is below
some thresholds. The parent-child relationship in the lat-
tice is still defined by the superset-subset relationship among
the attributes included in the bicluster. In our extension of
the analogy to FCA lattices, each node of the lattice may
contain more than one bicluster. Biclusters shown in figure
1(b) meet all the above requirements and are qualified to be
concepts in the sense outlined above.

Potential co-factor or co-regulation mechanism could be
discovered from these sequencing datasets by taking subsets
of genes and subsets of TFs such that all TFs have sim-
ilar binding probability with select genes (or low-variance
cell values of the sub-matrices). The problem of discovering
the qualified biclusters, including the ones that may over-
lap some other biclusters, is NP-Hard [20] and most of the
proposed algorithms attack the problem in a greedy man-
ner [11, 8]. These algorithms, however, do not emphasis the
cell-values’ variance or STD. Some other algorithms utilize
pattern recognition techniques [28] to improve the quality
of clusters but they miss out on the many potential good
overlapping biclusters due to imposing hard pattern restric-
tions on real valued data. There are also many biclustering
algorithms which are based on statistical theory [15, 14, 25].
These algorithms use their own optimized metric for clus-
tering and it is still not clear how to control the variance of
the cell-values in biclusters.

One critical issue with real-valued datasets is that the
standard deviation of cell-values in any selected sub ma-
trix depends on the distribution of all of these values. This
means incremental addition of rows and/or columns to con-
struct a larger bicluster cannot be guided, in an algorithm,
by a monotonically increasing/decreasing variance of all the
included cell-values. The variance itself is not one such
monotonic metric and therefore, one challenge addressed by
us in this paper is to develop such a monotonic metric and
correlate it with the variance and standard deviation of a
bicluster.

A closed bicluster is one to which we cannot add either
an attribute (column) or an object (row) and still maintain
the standard deviation of all cells below the selected thresh-
old. Our analogy with Formal concept analysis, and also
our algorithms here, consider the lattice consisting of only
the closed biclusters. A lattice of partially ordered closed
biclusters is an efficient model of the search space in which

a search algorithm may look for desirable closed biclusters.
This approach has been adopted for finding biclusters in bi-
nary datasets [3, 7, 6, 30] and our work in this paper is
the first attempt to advance the same idea to datasets with
real-values entries in the cells.

In the following sections we formally define some ideas
including a monotonic quality that can be used to bound the
standard deviation of a non-closed bicluster. In section §3 we
prove the relationship between our monotonic metric with
standard deviation and present our algorithm; in section
§3.5 we present results of our algorithm after some efficiency
enhancing pruning is employed, and in section §4 we present
results with a synthetic dataset and two genomic datasets.

2. PRELIMINARIES
We need a monotonic metric to help us guide the search

for the best biclusters and we choose Range (max - min) of
all the values in a biclusters to be this metric. In this paper
we use dedicated symbols ∆ (and δ) to denote the Range
for a set of values in a submatrix.

Definition 1. The Range of a group of N data elements
is the difference between the maximum and the minimum
values of that group. That is,

∆ = max(N)−min(N) (1)

Given the range for a set of data elements we can de-
rive an upper bound on the standard deviation for the data
elements. This is possible because the standard deviation
depends on the difference between an element and the mean
and the value of Range is an upper bound on this difference
value. Consequently, we can derive the relationship between
standard deviation and range for single dimensional data in
equation 2, which means by limiting Range the standard
deviation is also limited.

s2 ≤ δ2 (2)

From the point of view of formulating a search algorithm,
we need a quantity that monotonically increases (or de-
creases) as the size of a potential biclusters increases. It
is easy to see that as the size of a biclusters is enlarged,
the Range of its values (and therefore the upper bound on
its standard deviation) can only increase. This information,
combined with the size of a potential biclusters, can be used
to prune some potential search paths and also determine the
most promising paths.

We represent a dataset as D = (R,C), where R indi-
cates the rows (or objects) of the table and C indicates
the columns (or features). A bicluster is represented as

B = (sr, sc) where sr ⊆ R and sc ⊆ C. We use B̂ to

indicate the number of columns in a bicluster B, B̃ to in-
dicate its number of rows, and sB to indicate its standard
deviation.

There are many algorithms [11, 25, 5, 18, 19, 28, 14] using
different metrics to define interesting biclusters. The quality
of desired biclusters are based on those metrics. Here we
give the definition of interesting biclusters which, compared
with others, is based on the statistical restriction (standard
deviation) directly:

Definition 2. A bicluster (B) is an interesting biclus-

ter if it satisfies all of the following constraints: (i) B̂ ≥ m;



(ii) B̃ ≥ n; and (iii) sB ≤ S′, where m and n are pre-
specified row and column sizes and S′ is the threshold for
the standard deviation.

In order to compare two biclusters, we also define several
operators that will be used in pruning some branches of the
search algorithm presented in section 3.3.

Definition 3. 1. A biclusters B1 = (sr1, sc1) is con-
tained in biclusters B2 = (sr2, sc2), if and only if,
sr1 ⊆ sr2 and sc1 ⊆ sc2.

2. A biclustersB1 = (sr1, sc1) is similar toB2 = (sr2, sc2),
that is, B1 ≈ B2 or B2 ≈ B1, if and only if,

|sr1 ∩ sr2|
|sr1 ∪ sr2|

≥ θ; and
|sc1 ∩ sc2|
|sc1 ∪ sc2|

≥ θ

where θ is a user defined threshold for similarity and
has a value between 0 and 1.

For comparing two bicluster’s interestingness based only on
their sizes, we define an operator below which uses the num-
ber of cells included in each bicluster as the criterion. In-
tuitively, extending the Range bound for the biclusters to
be found will lead our algorithm to generate biclusters with
larger sizes. The trade-off between size and Range bound
could be easily defined, if needed, and implemented in our
algorithm.

Definition 4. A bicluster(B1) is more interesting than
a bicluster (B2), that is, B1 � B2 or B2 ≺ B1 ,if and only
if

B̂1 × B̃1 ≥ B̂2 × B̃2 (3)

3. SEARCH ALGORITHM
The term Range is coined to restrict the statistical quality

of biclusters and conduct our searching algorithm. We will
prove its capability in restricting standard deviation and ex-
plain its usages in searching process. Relevant optimization
strategies used in the searching algorithm are also discussed
and analyzed.

3.1 Relating Range to Standard Deviation
Our criterion for choosing biclusters includes the standard

deviation for all the values included in a bicluster. In order
to construct relationship between range and standard devia-
tion we define a few qualities computing standard deviations
for individual rows and columns.

The Range for the ith row of elements is denoted by δi., for
the jth column it is denoted by δ.j , and for whole bicluster
it is denoted by ∆B . The symbol Bi. denotes all the data
in the ith rows of a bicluster B; |B|i. denotes the number of
cells in the ith row; B.j denotes the data in the jth column of
B; |B|.j denotes the number of data cells in jth column; and
µ and s denote the mean and standard deviation, defined as
follows:

µi. =

∑
dip∈Bi.

dip

|B|i.

s2i. =

∑
dip∈Bi.

(dip−µi.)
2

|B|i.

µ.j =

∑
dqj∈B.j

dqj

|B|.j

s2.j =

∑
dqj∈B.j

(dqj−µ.j)
2

|B|.j
(4)

Lemma 1. Given a bicluster B = (sr, sc), if for
{i ∈ sr| δi. ≤ S} and {j ∈ sc| δ.j ≤ S}, then ∆B ≤ 2 × S.
(That is, if the Range for each row and each column of a
bicluster is bounded by certain threshold S then the range
for the whole bicluster is bounded by 2S.)

Proof. Let dij indicate the maximum value in the bi-
cluster B, dpq indicate the minimum value, min(di.) indicate
the minimum value in the ith row and max(d.q) indicate the
maximum value in the qth column. From the definition of 1,
we can derive the following inequalities:

dij −min(di.) ≥ dij − diq
max(d.q)− dpq ≥ diq − dpq. (5)

The left hand side of each inequality is smaller than S and
adding the two expressions on the left and right hand sides
gives us:

dij − dpq ≤ 2× S. (6)

Then a stronger conclusion about the relationship between
the bound of the standard deviation and Range for the val-
ues in a bicluster can be derived.

Lemma 2. Given a bicluster B = (sr, sc), if for
{i ∈ sr| δi. ≤ S} and {j ∈ sc| δ.j ≤ S}, then the standard
deviation s2B is less than 2 × S2. (That is, if the range for
each row and each column of a bicluster is less than S then
the standard deviation of the bicluster is less than 2× S2.)

Proof. When a bicluster B = (sr, sc) has n rows and
m columns, each of which has an upper bound of S on its
Range. From equation 2, we can derive that:

s2i. ≤ δ2i. ≤ S2

s2.j ≤ δ2.j ≤ S2 (7)

We use µ̄ to denote the mean of all individual row means,
µi.’s, sµ to denote the standard deviation of all the individ-
ual row means, and µ is the mean of all the elements in the
bicluster. Then we can say that:

s2B =

∑n
i=1

∑m
j=1 (dij − µ)2

nm

=

∑n
i=1

∑m
j=1 d

2
ij − nmµ2

nm
(8)

µ̄ =

∑n
i=1 µi.

n
=

∑n
i=1

∑m
j=1 dij

nm

=

∑m
j=1 µ.j

m
= µ (9)

s2µ =

∑n
i=1 (µi. − µ̄)2

n
=

∑n
i=1 µ

2
i. − nµ̄2

n
(10)

Combining equations 4 and 8 we get:

s2B =

∑n
i=1 (s2i + µ2

i − µ̄2)

n

=

∑n
i=1 s

2
i.

n
+ s2µ

≤
∑n
i=1 δ

2
i.

n
+ s2µ (11)



Also, for any row p ∈ n we claim the following and then
prove it by induction.(∑m

j=1 (dpj − µ.j)
m

)2

≤
∑m
j=1 (dpj − µ.j)2

m
(12)

The main steps of the induction proof, done on the number
of columns, are as follows. Let φq = dpq − µ.q, and let k
indicate the number of columns. When k = 2, equation 12
is satisfied. Now assuming the equation 12 to be correct for
k = τ , we get: (

τ∑
q=1

φq

)2

≤ τ ∗
τ∑
q=1

φ2
q (13)

Then for k = τ + 1(
τ+1∑
q=1

φq

)2

=

(
τ∑
q=1

φq

)2

+ 2 ∗

(
τ∑
q=1

φq

)
∗ φτ+1 + φ2

τ+1

≤

(
τ∑
q=1

φq

)2

+

τ∑
q=1

φ2
q + τ ∗ φ2

τ+1 + φ2
τ+1

≤ (τ + 1) ∗
τ+1∑
q=1

φ2
q (14)

The above is done for a single row, and summing for all rows
we can derive that:

s2µ =

∑n
i=1 (µi. − µ̄)2

n

=

∑n
i=1 (

∑m
j=1 (dij − µ))2

m2 ∗ n

≤
∑n
i=1

∑m
j=1 (dij − µ)2

m ∗ n

=

∑m
j=1 s

2
.j

m
≤

∑m
j=1 δ

2
.j

m
(15)

Combining conclusions from equations 7,11 and 15 we can
derive that:

s2B ≤ 2 ∗ S2. (16)

This means that by bounding the Range for each row and
column (δ ≤ S), the standard deviation of the whole biclus-
ter also gets bounded (sB ≤

√
2S) which is also denoted as

S′ in definition 2. This conclusion is an important theoreti-
cal support for our search algorithm, which looks at biclus-
ters as combinations of rows and columns and advances in
the search space by adding columns or deleting rows. If the
search algorithm wants to find biclusters with some bound
on the standard deviation of its values, it could focus on a
bound on the Range for each row and column separately.

3.2 Enumerate Biclusters
There are many ways incorporating Range in clustering

procedure. What we are interested, also believed to be more
practical to real problems, is to discover most interesting
clusters base on definition 2 and 4. In order to discover
biclusters with largest possible size, we need to limit the
range of rows and columns separately which is also the rea-
son we need supports from Lemma 2. We start our searching
process by setting every single column with all rows as one
searching branch of lattice. It is also applied for setting rows

(a) Phase1

(b) Phase2

Figure 2: Prefix Tree

as one search branch. The basic operations for our search
algorithm performed on intermediate biclusters are adding
columns and removing rows. Biclusters which is covered by
larger ones will not occurred in the final results. For exam-
ple, in figure 1(b), < {g1, g2}, {a, b} >, < {g1, g2}, {a, c} >
and < {g1, g2}, {b, c} > will not appear since they are cov-
ered by < {g1, g2}, {a, b, c} >.

Prefix-based equivalence classes have been used to formu-
late many search algorithms. We can form prefixes either
from column headings or from row headings and in our case
we have chosen to use the column headings. This helps
divide the search space into independent sub-spaces of the
search space at each level. This approach has been success-
fully adopted in [30] and [3] for searching biclusters in binary
datasets.

Our search process can be viewed as made up of two
independent phases. In the first phase, we generate chil-
dren candidates by adding columns to each parent bicluster,
updating the range for each row in the context of newly
added columns, and removing those rows whose range val-
ues exceed the specified threshold. Such prefix tree based
enumeration guarantees that every possible combinations of



columns will be examined. The first phase of the search al-
gorithm for the example given earlier in figure 1 is shown in
figure 2(a) here. In the second phase we re-examine all the
generated candidate biclusters and check the Range values
for each column. If a column’s Range exceeds the specified
threshold, the offending rows are removed from the candi-
date to make each column comply with the Range threshold.

At top level of each search branch, we enumerate every
single column combined with all rows as one candidate bi-
cluster. Since the order of the columns (a, b, c, d) are fixed,
each candidate can only add columns that follow it. For
example the only column that could be added to candidate
< {g1, g2, g3}, {a, c} > is d. After adding some columns and
then removing rows, some candidate biclusters may violate
the size constraint, such as < {φ}, {a, d} >, < {φ}, {b, d} >,
and may be removed. The candidate < {g1, g2, g3}, {a, c} >
is removed because it is contained in an already generated
bicluster.

Phase-one guarantees that all prefix combinations will be
enumerated but the candidates may not comply with the
constraint on the Range value for each column; In phase-
two the algorithm removes some rows to bring each column
within the acceptable Range limit. For example, in figure
2(b)< {g1, g2, g3, g4}, {b, c} > generates< {g1, g2, g4}, {b, c} >
by removing g3, thus the only row could drop next is g4. Af-
ter the removal the final results are < {g1, g2, g3}, {a, c} >,
< {g1, g2}, {b, c} > and < {g3, g4}, {b, c} >.

3.3 Pruning
To reduce the computational cost of the search, we em-

ploy a number of pruning strategies while still guaranteeing
that all interesting biclusters will still be retained. These
strategies are outlined below.

Pruning based on containment: In figure 2(a), our
algorithms prune the candidate < {g1, g2, g3}, {a, c} > since
the depth first ordering of the search has already generated
the hypothesis < {g1, g2, g3}, {a, b, c} > which contains the
former.

Pruning based on size: As stated in definition 4 we
may compare the sizes of candidate biclusters and if only
top k biclusters were needed from the entire search, we may
without any loss, keep only top k candidates in each top
level branch of the search and prune the rest.

Pruning based on similarity: In most real world datasets,
a large number of the biclusters are similar to each other
(definition 3). Our algorithm prunes the smaller sized bi-
clusters among similar pairs of biclusters. All of the ex-
periments reported in this paper have a threshold value of
θ = 0.8 as cutoff for pruning.

Pruning based on redundancy: Many real world datasets
contain biclusters with very large number of rows. Instead
of keeping all permutations of fewer rows as biclusters hy-
potheses, we delete from the parent bicluster those rows that
reduce the Range the most and keep the rest of the rows in
the hypotheses.

Even after previous prunings, the searching bicluster still
could be more succinct. During the whole process, lattice
could generate millions of biclusters. However what scien-
tists really want to find is the biclusters which satisfy their
own interestingness definitions. With modifications of defi-
nition 4, our algorithm could cut off the search branch which
can not generate more interesting biclusters than those al-
ready had. Although this kind of pruning bring in some

computations, compared to its reduction of searching space,
it is really deserve. We also paralleled our algorithm by
setting each searching branch as one thread. Hence the al-
gorithm top K interesting biclusters for each thread and
generate final biclusters by comparing those biclusters from
each threads.

input : Data matrix DMX, Range δ, Share
memory all current final biclusters Result,
top interesting biclusters number K

output: semi-qualified bicluster set BS
begin1

Initialize BS each bs ∈ BS has one column with2

all rows ;
while ∃bs ∈ BS can add more column do3

c = Next column id satisfying depth-first4

search prefix-tree;
bs′ = Add c to bs ;5

bs′ remove rows which exceed δ;6

if bs′ is interesting then7

Remove8

{bs′′|bs′′ ∈ BS ∧ bs′′ ≈ bs′ ∧ bs′′ ≺ bs′} ;
if no9

{bs′′|bs′′ ∈ BS ∧ bs′′ ≈ bs′ ∧ bs′′ � bs′}
then

Add bs′ to BS ;10

if Result has K members then11

for bs′ ∈ Result do12

Remove {bs′′|bs′′ ∈ BS ∧ bs′′ ≺ bs′} ;13

Return(BS)14

end15

Procedure 1. Adding Columns

3.4 Pseudo Code
The prefixes are constructed by each column and its com-

binations with those that follow it in the column ordering.
Here we give the pseudo code of the algorithm to show how
one of the prefix branches is pursued by the search algorithm
(we call each branch a thread). The complete algorithm can
be easily parallelized by having each thread run on a sep-
arate processor which also saves running times. We search
biclusters from a real genetic dataset which contains 24190
rows and 5 columns on a computer equipped with a Intel
Core 2 Quad 2.66GHz processor. By setting size limita-
tion as 2000 rows, 2 column, range limitation as 2.1 and 4
threads working simultaneously, the searching process fin-
ishes in only 59 seconds.

3.5 Pruning Efficiency:
In order to analyze the effect of pruning we created a

synthetic dataset with 25 rows and 25 columns, as shown
in Figure 3(a); with the gray scale reflecting the cell val-
ues. There are four big blocks (biclusters) embedded in Fig-
ure 3(a), right-top, center, left-bottom and background, and
the cell values within each block are distributed uniformly
within a narrow range.

We count the number of intermediate candidate biclus-
ters generated before the biclusters are output. The perfor-
mances for various pruning strategies are shown in Figure
3(b). The x-axis shows the value of pre-specified Range



input : Data matrix DMX, Range δ,
semi-qualified bicluster set BS, top
interesting biclusters number K,

output: Share memory all current final biclusters
Result

begin1

while ∃bs ∈ BS do2

if System memory is not enough then3

r = Next row id increasing interest the4

most;
bs′ = Remove r from bs ;5

Remove bs ;6

else7

r = Next row id satisfying depth-first8

search prefix-tree;
bs′ = Remove r from bs ;9

if bs′ is interesting then10

Remove11

{bs′′|bs′′ ∈ BS ∧ bs′′ ≈ bs′ ∧ bs′′ ≺ bs′} ;
if no12

{bs′′|bs′′ ∈ BS ∧ bs′′ ≈ bs′ ∧ bs′′ � bs′}
then

Add bs′ to BS ;13

Add BS to Result;14

Keep top K interesting biclusters;15

Return(Result)16

end17

Procedure 2. Removing Rows

value and y-axis shows the number of intermediate biclus-
ters. There are four cases plotted in Figure 3(b): the line
with circles represents the performance of the original search
algorithm based on pruning based on containment only; the
line with triangles represents the performances of search us-
ing pruning based on size and containment; the line with
crosses represents search with pruning based on similarity
and containment; and the line with rectangles represents
search with all the pruning strategies combined. Thus we
can see that each pruning strategy has its impact on reduc-
ing the number of intermediate biclusters and using all the
pruning techniques simultaneously performs the best.

In real world dataset, the strategy of pruning based on
similarity will greatly improve the performance. The reason
why it dose not achieve much optimizations is that the the
standard judging two biclusters are similar is very critical for
this synthetic dataset. In our algorithm we set θ equals to
0.8 which means if two biclusters both have 9 columns and
9 rows, they are similar to each other only when 8 columns
and 8 rows are the same.

4. EMPIRICAL EVALUATION
There are many biclustering algorithms can be compared

with, we choose Cheng et al.’s algorithm [11] delegating di-
rect biclustering algorithm and SAMBA[25] algorithm del-
egating graph theory based biclustering algorithm for syn-
thetic dataset. We compare both accuracy and effectiveness
of our algorithm with them. We also test our algorithm
with two datasets from genomics domain to show the bio-
logical significance of output biclusters and compared with

(a) 25x25(uniform)

(b) Number Of Visits

Figure 3: Efficiency Test

two more recent algorithms: Co-clustering [14], OPSM [5]
and ISA [18, 19].

4.1 Synthetic Data Analysis
We consider the following metric for determining the qual-

ity of a bicluster found in a dataset. This evaluation metrics
is not objective function for our algorithms and we do permit
users to define their own interestingness setting by altering
definition 4.

λ =
B̂i × B̃i/s2Bi

D̂ × D̃/s2D
. (17)

Here D represents the whole dataset, D̂ denotes its number

of columns, D̃ denotes its number of rows, and sD denotes
the standard deviation of D. This metric gives larger values
for biclusters with larger sizes and smaller standard devia-
tions. The metric is also normalized by sD so that it is still
meaningful across different datasets.

We have used two synthetic datasets, shown in Figure
4(a) and 4(b). The dataset in Figure 4(a) is 100 rows by
100 columns and values are reflected by the gray code inten-
sity. There are five biclusters embedded in this dataset and
all of them follow a uniform distribution of values. Four of
the clusters are uniformly distributed around different cen-



(a) 100x100(uniform) (b) 100x100(normal)

(c) 100x100(uniform distribution) (d) 100x100(normal distribution)

Figure 4: Synthetic Data

ters and values are within a range 1.2. The background
cluster is distributed in the range of 2. Dataset in Figure
4(b) has the same size but the values of data cells in each
biclusters follow normal distributions. Four overlapping bi-
clusters are distributed normally with different µ and σ (less
than 1.2). The background cluster is distributed normally
with µ equals to zero and σ less than 2. We ran Cheng
et al’s algorithm by setting the size limit to 20 rows by 20
columns and our algorithm by setting the Range limit to 1.3.
We also run SAMBA by setting option files type valsp 3p,
with an overlap factor of 0.8, hashing kernel range from 1
to 7, and all other parameters as default value. We record
the top 10 interesting biclusters for our clustering algorithm,
first 10 biclusters generated by Cheng’s algorithm and top
10 best biclusters based on metric value. The performance
are presented in Figure 4(c). The x-axis in figure shows the
metric value (λ) and y-axis shows the number of biclusters.
There are three kind of bars in the figure: white bars repre-
sent the histogram of metric value for biclusters discovered
by our algorithms; gray bars represent histogram of Cheng’s
algorithm and black bars represent histogram of SAMBA
algorithm. biclusters discovered by our algorithm are shown
to achieve the best quality as per the above metric.

Figure 4(d) shows the clustering comparisons for dataset
in Figure 4(b). For Cheng et al’s algorithm and SAMBA,
parameter are set the same as in dataset in Figure 4(c). For

our algorithm we extend range limit to 2.5 which covers more
than two times the standard deviation for the normal dis-
tribution of biclusters (±2σ). We see again from the second
histogram that our algorithm performs significantly better
that the other two. SAMBA achieve worse performance in
both cases since it can not find biclusters with large size.

Figure 5: Effect of Parameter Changes

The impact of parameters on the performance of our algo-
rithm can be analyzed by examining the evaluation metric



Algorithm CLEAN Score Variance Of Biclusters Size (Rows X Cols) Average Column STD
Lattice(our algo-
rithm)

80.95 0.21 97x2 0.43

CC 33.65 1.27 847x12 0.89
OPSM 50.15 0.49 1726x6 0.53
Co-Clustering 40.44 0.99 469x2 0.99

Figure 6: Mouse Embryonic Stem Cell

Equation 17 for different values of the range and the value
of k used for selecting the top k candidates. Apparently,
our algorithm should generate more biclusters if we extend
the range limit and/or increase the number k. Intuitively,
extending range limit will increase allowable standard devia-
tion but may also increase the size of the bicluster, and thus
the metric may or may not be affected much. Meanwhile
keeping more of the less interesting biclusters will reduce
average of the metric value for the resulting biclusters. We
use the dataset in Figure 4(b) to analyze the performance
trend by modifying the parameters. For each parameter
combination we record the average metric value for the ob-
tained biclusters. Figure 5 shows the relationship between
the Range parameter and the average of the metric value
obtained. There are three lines in the figure: the top line
with crosses shows the performance when we keep the top 5
most interesting biclusters based on size criterion; the line
with circles shows the performance while keeping the top 10;
and line with triangles shows the performance while keeping
the top 15. When we extend the range from 2.2 to 2.5, the
metric value increase due to a faster increase in the sizes of
the resulting biclusters than the increases in their variances.
However, for range values larger than 2.5 the increase in
sizes is slower than the increase in the variances; see Figure
5; (This dataset consists of values that follow a normal dis-
tribution). Consequently, we can conclude that extending
the Range does not always improve the performance be-
cause after certain point the increase of bicluster’s size can
not compensate for the decrease of accuracy (or increase in
STD). Also, we see that keeping a smaller number of most
interesting biclusters will always increase the performance
for a specific value of Range because the standard deviation
of those biclusters is relatively stable.

4.2 Mouse Embryonic Stem Cell Dataset
The authors Ouyang et al. [21] have reported their CHIP-

Sequence scores on mouse embryonic stem cell in [10]. In
this dataset the rows represent genes, the columns repre-
sent transcription factors (proteins), and the cell-values rep-
resent the strength of binding between the row and col-
umn elements. Twelve proteins and 18936 genes included
in this dataset have been known to show correlations in
some other studies. Using our algorithm on their original
data without any normalization, we seek to discover un-
derlying co-factor mechanisms. One bicluster unveiled co-
regulated TFs (Nanog and Oct4) with a variance of 0.21
and that is well corroborated by [10]. In order to demon-
strate the functional coherence of the genes co-regulated in
the bicluster, we use the CLEAN [16] metric to check the
functional enrichment with Gene Ontology terms [4]. The
higher the CLEAN score the better is the functional coher-
ence of the genes. Low-Variance biclusters found by our

algorithm show the highest CLEAN-Score values and the
lowest variance when compared with the biclusters found
by other methods (first row in table of Figure 6 shows our
results). It should be noted that traditional biclustering al-
gorithms could discover biclusters with relatively low stan-
dard deviations within each column of a bicluster but the
variance of the whole data blocks is larger, and therefore
they could not find highly functionally correlated gene sets;
and therefore their CLEAN scores are lower. For each algo-
rithm, the data shown in the table represents the bicluster
with highest CLEAN score (if many biclusters were found
then the best one was selected and reported); the table also
lists the bicluster variance and the average column standard
deviation for each reported bicluster (Figure 6).

4.3 Human Genomic Dataset
We consider the dataset from human genome from hg18 [1]

and calculate the maximum possible relative probability as-
sociated with each gene-motif pair using the Sequence Motif-
Matching Scoring model [12]. The data contains 24190 genes
(rows) and 287 motifs (columns). Relative probability val-
ues in data cells are in the range of [0, 4.3]. The data is taken
from [24]. The other source of data that we use is based on
experiments [9]. They present the distributions of five mo-
tifs (ERE, AP-1, Oct, FKH and C/EBP) for these genes and
also the pair-wise relationships between those motifs. The
heat map of these five motifs with 24190 genes is shown in
Figure 7(a) and the distribution of values is shown in Figure
7(b) in the format of histogram.

We want to see whether biclusters found by our algorithm
in the theoretically obtained data match the ones reported
in the experimental results. We use the Fisher’s Exact Test
to determine whether our clustering algorithm could really
generate the biclusters predicted by the experimental re-
sults. The criteria used here is the negative of log 10 based
p-value, meaning the higher the value the more significantly
the two sets match. Results of our algorithm for various pa-
rameter values are shown in Figure 7(d). As we expected,
keeping Range the same and increasing the minimum row-
limit size reduces the number of clusters discovered (the first
row and the second row), and increasing the Range bound
discovers more biclusters but makes the accuracy worse (the
second, third, and fourth rows). The best p-value of this
test is 2.90× 10−7 (or 6.54 for − log10 (pvalue)) in the third
row which is much smaller than conventional cutoff 0.05 (or
1.3 for − log10 (pvalue)). Therefore we conclude that the
biclusters discovered by our algorithm significantly overlap
with the experimental results.

We also compare the results with some well known algo-
rithms [11, 5, 18, 19, 14] using the metric defined in equa-
tion 17. Parameters used in all of the algorithms are kept
as the default ones. For Cheng et al.’s algorithm, we re-



(a) Heatmap of Motif Data (b) Motif Data Distribution

Algorithm λ λ̂ Average Column STD
Lattice(our algo-
rithm)

0.91;0.80;0.81 0.84 0.31;0.25;0.32

CC 0.45 0.45 0.94
OPSM 0.19;0.22;0.23;0.23 0.22 0.31;0.57;0.77;0.87
Co-Clustering 0.43;0.29;0.19 0.30 0.27;0.63;0.34

(c) Motif Bicluster Comparison

δ Row Limit biclusters − log10 (pvalue)
2.1 6000 2 3.56
2.1 4000 3 6.54
2.3 4000 7 5.17
2.5 4000 8 5.35

(d) Motif Bicluster Statistics

Figure 7: Genomic Data Validation

tained the first bicluster that is generated; for biclustering
algorithm ISA [18, 19], we could not find any biclusters; for
biclustering algorithm OPSM [5], we kept all the biclusters
generated; for our algorithm, we kept the top 3 biclusters
with minimum size of 4000 rows and 2 columns in which
data values have a range of 2.1 and for Co-clustering [14]
algorithm we keep the same number of biclusters as our al-
gorithm. The biclustering results are summarized using the
metric (λ from equation 17) in Figure 7(c). We first listed
all metric values for each bicluster generated in the second
column, then we took the average of those metric values for
each algorithm and it is reported in the third column of the
table. ISA did not find any biclusters, so we did not put
in the table. It is clear from the results that our algorithm
could discover biclusters with largest metric values, either
considering individual biclusters or their average.

5. CONCLUSION
We have presented a search based algorithm for discover-

ing low-variance biclusters in sequencing datasets and have
shown that it performs much better than several other com-
peting algorithms using a statistical metric for merit. Our
algorithm can enumerate overlapping biclusters and gener-

ate the top K interesting biclusters based on the specified
size and standard deviation requirements. Other algorithms
are not capable of discovering all overlapping biclusters and
controlling the variance at the same time. Challenges still
exist for discovering the complete set of low-variance biclus-
ters because our algorithm presented here generates only
those biclusters that satisfy the low-variance criterion but
it cannot discover all low-variance biclusters - particularly
those that have low variance despite a large range for the in-
cluded values. But the combination of large range and low
variance is not desirable for the sequencing data applications
and our algorithm is therefore very suitable.

6. REFERENCES
[1] Ucsc genome browser website:.

http://genome.ucsc.edu/.

[2] V. A, J. DS, S. A, M. C, A. E, and et al. Genome-wide
analysis of transcription factor binding sites based on
chip-seq data. Nat Methods, 5:829–834, 2008.

[3] F. Alqadah and R. Bhatnagar. An effective algorithm
for mining 3-clusters in vertically partitioned data. In
Proceeding of the 17th ACM conference on



Information and knowledge management, pages
1103–1112, 2008.

[4] M. Ashburner, C. Ball, J. Blake, D. Botstein, H. B. J.
Cherry, A. Davis, K. Dolinski, S. Dwight, J. Eppig,
and et al. Gene ontology: tool for the unification of
biology. Nature Genetics, 25(1), 2000.

[5] B. C. Ben-Dor, R. Karp, and Z. Yakhini. Discovering
local structure in gene expression data: The
order-preserving submatrix problem. In Proceedings of
the 6th International Conference on Computational
Biology (RECOMB-02), pages 49–57, 2002.

[6] H. Bian and R. Bhatnagar. An algorithm for
lattice-structured subspace clustering. Proceedings of
the SIAM International Conference on Data Mining,
2005.

[7] H. Bian, R. Bhatnagar, and B. Young. An efficient
constraint-based closed set mining algorithm. In
Proceedings of the 6th international confernce on
Machine Learning, pages 172–177, 2007.

[8] K. Bryan, P. Cunningham, and BolshakovaN.
Biclustering of expression data using simulated
annealing. In Proceedings of the 18th IEEE symposium
on computer-based medical systems, pages 383–388,
2005.

[9] J. S. Carroll, C. A. Meyer, J. Song, W. Li, T. R.
Geistlinger, J. Eeckhoute, A. S. Brodsky, E. K.
Keeton, K. C. Fertuck, G. F. Hall, Q. Wang,
S. Bekiranov, V. Sementchenko, E. A. Fox, P. A.
Silver, T. R. Gingeras, X. S. Liu, and M. Brown.
Genome-wide analysis of estrogen receptor binding
sites. Nature Genetics, 38:1289–1297, 2006.

[10] X. Chen, H. Xu, P. Yuan, F. Fang, M. Huss, V. B.
Vega, E. Wong, Y. L. Orlov, W. Zhang, J. Jiang,
Y.-H. Loh, H. C. Yeo, Z. X. Yeo, V. Narang,
K. Ramamoorthy, Govindarajan, B. Leong,
A. Shahab, Y. Ruan, G. Bourque, W.-K. Sung, N. D.
Clarke, C.-L. Wei, and H.-H. Ng. Integration of
external signaling pathways with the core
transcriptional network in embryonic stem cells. Cell,
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ABSTRACT
Protein-protein interactions (PPI) are important in most biological
processes and their study is crucial in many applications. Identi-
fication of types of protein complexes is a particular problem that
has drawn the attention of the research community in the past few
years. We focus on obligate and non-obligate complexes, their
prediction and analysis. We propose a prediction model to dis-
tinguish between these two types of complexes, which uses des-
olvation energies of domain-domain interactions (DDI), pairs of
atoms and amino acids present in the interfaces of such complexes.
Principal components of the data were found and then the predic-
tion is performed via linear dimensionality reduction (LDR) and
support vector machines (SVM). Our results on a newly compiled
dataset, namely binary-PPID, which is a joint and modified version
of two well-known datasets consisting of 146 obligate and 169 non-
obligate complexes, show that the best prediction is achieved with
SVM (77.78%) when using desolvation energies of atom type fea-
tures. Furthermore, a detailed analysis shows that different DDIs
are present in obligate and non-obligate complexes, and that homo-
DDIs are more likely to be present in obligate interactions.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology—Classifier de-
sign and evaluation, Feature evaluation and selection

General Terms
Algorithms, Performance, Experimentation

Keywords
protein-protein interaction; domain-domain interaction; complex
type prediction

1. INTRODUCTION
Protein interactions are important in many essential biological

processes in living cells, including signal transduction, transport,
cellular motion and gene regulation. As a consequence of this, the
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identification of protein-protein interactions (PPIs) is a key topic in
life science research. Prediction of PPIs has been studied mostly
using computational approaches and from many different perspec-
tives. Prediction of interfaces (interactions between subunits) in
different molecules includes analysis of patches, sites, amino acids,
or even specific atoms. The physicochemical and geometric ar-
rangement of subunits in protein complexes is best known as dock-
ing. An important aspect that has recently drawn the attention of
the research community is to predict “when” the interactions will
occur – this is mostly studied at the protein interaction network
level. Another important aspect in studying PPIs is the identifica-
tion of different types of complexes, including similarities between
subunits (homo/hetero-oligomers), number of subunits involved in
the interaction (dimers, trimers, etc.), duration of the interaction
(transient vs. permanent), stability of the interaction (non-obligate
vs. obligate), among others; we focus on the latter problem.

Obligate interactions are usually considered as permanent, while
non-obligate interaction can be either permanent or transient [1].
Non-obligate and transient interactions are more difficult to study
and understand due to their instability and short life, while obli-
gate and permanent interactions last for a longer period of time,
and hence are more stable [2]. For these reasons, an important
problem is to distinguish between obligate and non-obligate com-
plexes. To study the behavior of obligate and non-obligate inter-
actions, in [3], it was shown that non-obligate complexes are rich
in aromatic residues and arginine, while depleted in other charged
residues. The study of [4] suggested that mobility differences of
amino acids are more significant for obligate and large interface
complexes than for transient and medium-sized ones.

Some studies in PPI consider the analysis of a wide range of
parameters, including desolvation energies, amino acid composi-
tion, conservation, electrostatic energies, and hydrophobicity for
predicting obligate and non-obligate complexes. In [1], a classifica-
tion of obligate and non-obligate interactions was proposed where
interactions are classified based on the lifetime of the complex.
In [5], three different types of interactions were studied, namely
crystal packing, obligate and non-obligate interactions. That study
was based on using solvent accessible surface area, conservation
scores, and the shapes of the interfaces. After classifying obligate
and transient protein interactions based on 300 different interface
attributes in [6], the difference in molecular weight between inter-
acting chains was reported as the best single feature to distinguish
transient from obligate interactions. Based on their results, interac-
tions with the same molecular weight or large interfaces are obli-
gate.

Different studies have claimed that only a few highly conserved
residues are crucial for protein interactions [7, 8]. Moreover, it has
been shown that physical interactions between proteins are mostly



controlled by their domains, as a domain is often the minimal and
fundamental module corresponding to a biochemical function [7,
8]. Thus, in previous studies, the physical interaction between pro-
teins is analyzed in terms of the interaction between residues of
their structural domains. For example, in [7], interactions between
residues were used for finding obligate and non-obligate residue
contacts of PPIs. That study concluded that non-obligate interfaces
occupy less than 2% of the area of the domain surfaces, while the
number of obligatory interfaces is between 0–6%. In [8], the in-
terface of 750 transient DDIs, interactions between domains that
are part of different proteins, and 2,000 obligate interactions were
studied. The interactions between domains of one amino acid chain
were analyzed to obtain a better understanding of molecular recog-
nition and identify frequent amino acids in the interfaces and on the
surfaces of PPIs. Also, in [9], the domain information from protein
complexes was used to predict four different types of PPIs includ-
ing transient enzyme inhibitor/non enzyme inhibitor and permanent
homo/hetero obligate complexes.

In a recent work [10], an approach to distinguish between obli-
gate and non-obligate complexes has been proposed in which de-
solvation energies of amino acids and atoms present in the inter-
faces of PPIs are considered as the input features of the classi-
fiers. The results of that classifier show that desolvation energies
are better discriminant than solvent accessibility and conservation
properties. In this paper, we present an analysis of PPIs that uses
properties of DDIs present in the interface to predict obligate and
non-obligate protein-protein interactions. Desolvation energies of
atom and amino acid pairs present in the interface of DDIs as well
as desolvation energies of all atom and amino acid pairs present in
the interface of interacting complexes are used in the prediction.
We have also performed an analysis on the DDIs present in the two
types of interactions. A visual analysis shows that that unique pairs
can be identified for both types of interactions, and highlight the
presence of homo-DDIs in obligate interactions. The prediction
approach resorts on two state-of-the-art classification techniques
of linear dimensionality reduction (LDR) and support vector ma-
chines (SVM). Ten-fold cross validation of the proposed scheme
on our binary-PPID dataset, which is an extended dataset that we
compiled from two well-known datasets of [5] and [11], demon-
strates that (a) using desolvation energies of atom type features are
better than the features used in [5] for predicting obligate and non-
obligate complexes, achieving 77.78% classification accuracy in
comparison to 71.80% (b) atom type features are better than amino
acid type features for prediction of these two types of complexes (c)
although the prediction accuracies by considering atom and amino
acid pairs present in the interacting domains instead of all interact-
ing atom and amino acid pairs of two chains are low, they are still
acceptable and provide additional information about the specific
domains.

2. MATERIALS AND METHODS

2.1 Dataset
We have compiled a new dataset by merging two existing, pre-

classified datasets of protein complexes obtained from the studies
of Zhu et al. [5], and Mintseris and Weng [11]. The former dataset
contains 75 obligate and 62 non-obligate interactions while the lat-
ter contains 115 obligate and 212 transient interactions. There are
39 common interactions between these two datasets and hence the
redundant complexes were removed. In addition, we carefully ex-
amined all the interactions and removed complexes with contradict-
ing class labels. For example "1eg9,A:B" is classified as both ob-
ligate and non-obligate in [5] and [11]. In total, seven complexes:

1eg9, 1hsa, 1i1a, 1raf, 1d09, 1jkj and 1cqi, showed this contra-
diction and were then removed from the new dataset. After this
pre-processing stage, the new dataset resulted in 417 complexes
from which 182 were obligate and 235 were non-obligate. In this
study, each complex is considered as the interaction of two chains
(two single sub-units). Since the dataset of [11] considers the in-
teraction of two units in which each may contain more than one
chain, e.g., "1qfu,AB:HL", all these complexes were converted to
interactions between two single chains (binary interactions). For
this, all binary interactions of each of the 93 multiple-chain com-
plexes were identified, obtaining 289 interactions, and each of these
was converted into a separate complex in the new dataset. For ex-
ample, the multiple-chain of 1qfu was transformed to four binary
chains as follows: A:H, A:L, B:H and B:L. Another step involves
taking the whole dataset of binary complexes and filtering non-
interacting pairs. Using the interface definition of [12], complexes
with interacting chains with less than five interface residues were
removed. Two residues (from different chains) are considered to be
interacting if at least one pair of atoms from these residues is 5Å
or less apart from each other. This resulted in a dataset that con-
tains 516 complexes, from which 303 are non-obligate and 213 are
obligate binary interactions. In a final step, we collected the do-
mains contained in each interacting chain from the Pfam database
[13]. The complexes that do not have any domain in at least one of
their subunits were discarded in the analysis. This resulted in our
final dataset of 315 complexes, from which 146 are obligate com-
plexes and 169 are non-obligate complexes - we call this dataset bi-
nary protein-protein interactions by considering domain definitions
(binary-PPID). The PDB IDs of these complexes and the interact-
ing chains are shown in Table 1.

2.2 Features
We use desolvation energies as the predicting properties, which

are shown to be very efficient for prediction of obligate and non-
obligate complexes [10]. Knowledge-based contact potential that
accounts for hydrophobic interactions, self-energy change upon de-
solvation of charged and polar atom groups, and side-chain entropy
loss compose the so-called binding-free energy. In [14], the total
desolvation energy is defined as follows:

∆Gdes = g(r)ΣΣeij . (1)
If we are considering the interaction between the ith atom of a

ligand and the jth atom of a receptor then eij is the atomic contact
potential (ACP) [15] between them, and g(r) is a smooth function
based on their distance. The value of g(r) is 1 for atoms that are
less than 5 Å apart [14]. For simplicity, we consider the smooth
function to be linear. Within the range of 5 and 7 Å, the value of
g(r) is (7− r)/2.

We collected the structural data from the Protein Data Bank (PDB)
[16] for each complex in our dataset. After adding domain infor-
mation obtained from Pfam to each atom present in the chain, each
PDB file was divided into two different ligand and receptor files
based on its side chains. From [15], we know that there are 18
atom types. Thus, for each protein complex a feature vector with
182 values was obtained, where each feature contains the desol-
vation energy of a pair of atom types. As the order of interacting
atom pairs is not important, the final length of feature vector for
each complex was 171 that correspond to unique pairs. We also
considered pairs of amino acids, and for this, we computed des-
olvation energy values for each pair of atoms using Eq. (1) and
accumulated the values for each pair of amino acids. Avoiding re-
peated pairs resulted in 210 different features (unique pair of amino
acids).



Table 1: binary-PPID dataset (146 obligate and 169 non-obligate binary complexes).

Obligate Complexes

1a0f , A:B 1byk , A:B 1eex , A:B 1hcn , A:B 1jk0 , A:B 1li1 , A:C 1qbi , A:B 2hdh , A:B

1a6d , A:B 1c3o , A:B 1eex , A:G 1hfe , L:S 1jk8 , A:B 1li1 , B:C 1qdl , A:B 2hhm , A:B

1ahj , A:B 1c7n , A:B 1efv , A:B 1hgx , A:B 1jkm , A:B 1lti , C:G 1qfe , A:B 2kau , A:C

1aj8 , A:B 1ccw , A:B 1ep3 , A:B 1hjr , A:C 1jmx , A:G 1lti , C:H 1qfh , A:B 2kau , B:C

1ajs , A:B 1cmb , A:B 1ezv , D:H 1hr6 , A:B 1jnr , A:B 1lti , C:D 1qu7 , A:B 2min , A:B

1aq6 , A:B 1cnz , A:B 1ezv , C:F 1hss , A:B 1jro , A:B 1lti , C:F 1sgf , A:B 2mta , A:H

1b34 , A:B 1coz , A:B 1f6y , A:B 1ihf , A:B 1jwh , A:C 1lti , C:E 1sgf , A:Y 2nac , A:B

1b3a , A:B 1cpc , A:B 1ffu , A:C 1jb0 , B:E 1jwh , A:D 1luc , A:B 1spp , A:B 2pfl , A:B

1b4u , A:B 1dce , A:B 1ffv , A:B 1jb0 , B:E 1k3u , A:B 1mro , A:B 1spu , A:B 2utg , A:B

1b5e , A:B 1dii , A:C 1fm0 , D:E 1jb0 , B:D 1k8k , A:B 1mro , B:C 1trk , A:B 3gtu , A:B

1b7b , A:C 1dj7 , A:B 1g8k , A:B 1jb0 , B:D 1k8k , B:F 1mro , A:C 1vcb , A:B 3pce , A:M

1b7y , A:B 1dkf , A:B 1gka , A:B 1jb0 , A:E 1k8k , A:E 1msp , A:B 1vlt , A:B 3tmk , A:B

1b8j , A:B 1dm0 , A:D 1go3 , E:F 1jb0 , A:E 1k8k , C:F 1poi , A:B 1wgj , A:B 4rub , A:T

1b8m , A:B 1dm0 , A:E 1gpe , A:B 1jb0 , A:C 1k8k , D:F 1pp2 , L:R 1xso , A:B

1b9m , A:B 1dor , A:B 1gpw , A:B 1jb0 , C:E 1kpe , A:B 1prc , C:H 1ypi , A:B

1be3 , G:A 1dtw , A:B 1gux , A:B 1jb0 , B:C 1kqf , B:C 1prc , C:L 1ytf , C:D

1bjn , A:B 1dxt , A:B 1h2a , L:S 1jb0 , A:D 1ktd , A:B 1prc , C:M 2aai , A:B

1brm , A:B 1e8o , A:B 1h2r , L:S 1jb0 , A:D 1l7v , A:C 1qae , A:B 2ae2 , A:B

1byf , A:B 1e9z , A:B 1h8e , A:D 1jb0 , C:D 1ld8 , A:B 1qax , A:B 2ahj , A:B

Non-obligate Complexes

1a14 , L:N 1bml , A:C 1eai , A:C 1fq1 , A:B 1i4d , B:D 1jsu , B:C 1n2c , B:E 2btc , E:I

1a14 , H:N 1buh , A:B 1eay , A:C 1fqj , A:C 1i4d , A:D 1jsu , A:C 1n2c , A:E 2btf , A:P

1a2k , B:C 1c1y , A:B 1ebd , A:C 1frv , A:B 1i7w , A:B 1jtg , A:B 1n2c , B:F 2mta , A:L

1a4y , A:B 1c4z , A:D 1ebd , B:C 1fss , A:B 1i85 , B:D 1jw9 , B:D 1nbf , A:D 2mta , A:C

1acb , E:I 1cc0 , A:E 1eer , A:B 1gaq , A:B 1i8l , A:C 1k5d , A:B 1nf5 , A:B 2mta , H:L

1agr , E:A 1cgi , E:I 1efu , A:B 1gcq , B:C 1ib1 , B:E 1kcg , A:C 1noc , A:B 2pcb , A:B

1akj , B:D 1cmx , A:B 1efx , A:D 1gh6 , A:B 1ib1 , A:E 1kcg , B:C 1pdk , A:B 2pcc , A:B

1akj , A:D 1cs4 , A:C 1eja , A:B 1gl1 , A:I 1icf , B:I 1kkl , A:H 1qbk , B:C 2prg , B:C

1ar1 , B:D 1cs4 , B:C 1es7 , C:B 1gla , F:G 1ijk , A:B 1kkl , C:H 1qgw , A:C 2sic , E:I

1avg , H:I 1cse , I:E 1es7 , A:B 1gp2 , A:B 1ijk , A:C 1kmi , Y:Z 1rlb , A:E 2tec , E:I

1avw , A:B 1cvs , A:C 1eth , A:B 1grn , A:B 1is8 , C:M 1kxp , A:D 1rlb , C:E 3hhr , A:B

1avx , A:B 1d4x , A:G 1euv , A:B 1gvn , A:B 1is8 , B:L 1kyo , O:W 1rlb , B:E 3sgb , E:I

1avz , B:C 1d5x , A:C 1evt , A:C 1gzs , A:B 1is8 , E:O 1lb1 , A:B 1rrp , A:B 3ygs , C:P

1awc , A:B 1de4 , C:A 1f02 , I:T 1h2k , A:S 1is8 , D:N 1lpb , A:B 1stf , E:I 4htc , H:I

1ay7 , A:B 1dev , A:B 1f34 , A:B 1h59 , A:B 1is8 , A:K 1m10 , A:B 1t7p , A:B 4sgb , E:I

1azz , A:D 1df9 , B:C 1f3v , A:B 1hlu , A:P 1is8 , D:O 1m1e , A:B 1tab , E:I

1azz , A:D 1dfj , E:I 1f80 , A:E 1hwg , A:C 1is8 , A:L 1m4u , A:L 1tgs , I:Z

1b6c , A:B 1doa , A:B 1fak , H:T 1hwg , A:B 1is8 , E:K 1mah , A:F 1toc , B:R

1b9y , A:C 1du3 , A:D 1fg9 , B:C 1hzz , B:C 1is8 , C:N 1mbu , A:C 1uea , A:B

1bdj , A:B 1du3 , A:F 1fg9 , A:C 1i2m , A:B 1is8 , B:M 1ml0 , A:D 1wq1 , G:R

1bi8 , A:B 1dx5 , M:I 1fin , A:B 1i3o , D:E 1itb , A:B 1mr1 , A:D 1ycs , A:B

1bkd , R:S 1e6e , A:B 1fle , E:I 1i3o , B:E 1jch , A:B 1n2c , A:F 1zbd , A:B



Table 2: Description of the subsets of features used in this study.
Name Feature Type Interacting Chains DDIs
PPID-AT atom type X -
PPID-AA amino acid X -
PPID-ATD atom type - X
PPID-AAD amino acid - X

A posterior step was to identify the 317 unique domains present
in the interface of at least one complex in the dataset. Consider-
ing all pairs of domains, the desolvation energies for all atoms and
amino acids present in each interacting domains were calculated
using Eq. (1) and finally each complex had 171 atom type and 210
amino acid type features. By using desolvation energies for dif-
ferent types of features, four subsets of features for prediction and
evaluation were generated (Table 2 ). The names of the subsets are
PPID-X where X is AT for atom type, AA for amino acid pairs,
ATD for atoms in interacting domains (DDIs) or AAD for amino
acid pairs in interacting domains.

2.3 Prediction Methods

2.3.1 Linear Dimensionality Reduction
One of the approaches we have used for prediction is LDR. The

basic idea of LDR is to represent an object of dimension n as a
lower-dimensional vector of dimension d, achieving this by per-
forming a linear transformation. We consider two classes, ω1 and
ω2, represented by two normally distributed random vectors x1 ∼
N(m1,S1) and x2 ∼ N(m2,S2), respectively, with p1 and p2 the
a priori probabilities. After the LDR is applied, two new random
vectors y1 = Ax1 and y2 = Ax2, where y1 ∼ N(Am1;AS1A

t)
and y2 ∼ N(Am2;AS2A

t) with mi and Si being the mean vec-
tors and covariance matrices in the original space, respectively. The
aim of LDR is to find a linear transformation matrix A in such a
way that the new classes (yi = Axi) are as separable as possible.
Let SW = p1S1 +p2S2 and SE = (m1−m2)(m1−m2)

t be the
within-class and between-class scatter matrices respectively. Var-
ious criteria have been proposed to measure this separability [17].
We consider the following two LDR methods:

(a) The heteroscedastic discriminant analysis (HDA) approach
[17], which aims to obtain the matrix A that maximizes the follow-
ing function, which is optimized via eigenvalue decomposition:

JHDA(A) = tr
{
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(b) The Chernoff discriminant analysis (CDA) approach [17],
which aims to maximize the following function, which is maxi-
mized via a gradient-based algorithm:

JCDA(A) = tr{p1p2ASEAt(ASW At)−1

+ log(ASW At)− p1 log(AS1A
t)− p2 log(AS2A

t)}.
(3)

In order to classify each complex, first a linear algebraic opera-
tion y = Ax is applied to the n-dimensional vector, obtaining y, a
d-dimensional vector, where d is ideally much smaller than n. The
linear transformation matrix A corresponds to the one obtained by
one of the LDR methods, namely HDA or CDA. The resulting vec-
tor y is then passed through a Quadratic Bayesian (QB) classifier

[17], which is the optimal classifier for normal distributions. For
additional tests, a linear Bayesian (LB) classifiers is considered, by
deriving a Bayesian classifier with a common covariance matrix:
S = S1 + S2.

2.3.2 Support Vector Machines
SVMs are well known machine learning techniques used for clas-

sification, regression and other tasks. The aim of SVM is to find the
support vectors (most difficult vectors to be classified), and derive a
linear classifier, which ideally separates the space into two regions.
Classification is normally inefficient when using a linear classifier,
because the data is not linearly separable, and so the use of kernels
is crucial in mapping the data onto a higher dimensional space in
which the classification is much more efficient. There are number
of kernels that can be used in SVM models. In our model, we use
polynomial, radial basis function (RBF) and sigmoid.

3. RESULTS AND DISCUSSIONS

3.1 Experimental Settings
For the LDR schemes, four different classifiers were implemented

and evaluated, namely the combinations of HDA and CDA, and QB
and LB classifiers. In a 10-fold cross validation setup, reductions
to dimensions d = 1, . . . , 20 were performed, followed by QB and
LB, and the maximum average classification accuracy was recorded
for each classifier. The best accuracy for each method for each
dataset is bolded to indicate the classifier that performed the best
for that dataset. Principal component analysis (PCA) was used as a
pre-processing step to eliminate ill-conditioned matrices present in
the LDR step. To select the principal components, we used differ-
ent threshold values (from λmax10−2 to λmax10−7), where λmax

is the largest eigenvalue of the scatter matrix. The results for the
threshold that achieves the highest accuracy are reported.

The SVM was also trained in a 10-fold cross validation setup
with three kernels: RBF, polynomial and sigmoid. The training
was carried out with the LIBSVM package [18]. A grid search
was performed on the parameters gamma and C, choosing the ones
that gives the maximum average accuracy for all kernels. For the
polynomial kernel, the degree of the polynomial was set to 3.

The subsets of features shown in Table 2 were used for predic-
tion. To analyze the power of desolvation energy in discriminat-
ing obligate and non-obligate complexes, NOXclass [5] was also
applied to our binary-PPID dataset. The following four interface
properties were analyzed, since in [5], these properties were recog-
nized as the best ones for prediction of different types of protein
protein interactions:

• Interface area

• Interface area ratio

• Amino acid composition of the interface

• Correlation between amino acid compositions of interface
and protein surface

We used NACCESS [19] to calculate solvent accessible surface
area (SASA). After running the classifiers in a 10-fold cross vali-
dation procedure for all subsets of features, the average accuracies
were computed. The accuracy for each individual fold was com-
puted as follows: acc = (TP + TN)/Nf , where TP and TN are
the true positive (obligate) and true negative (non-obligate) coun-
ters respectively, and Nf is the total number of complexes in the
test set of the corresponding fold.



Table 3: Prediction results for SVM and LDR classifiers on binary-PPID dataset.
SVM LDR

RBF Polynomial Sigmoid Linear Quadratic
HDA CDA HDA CDA

PPID-AT 77.78 76.83 72.70 71.76 74.08 72.73 74.55
PPID-AA 75.56 71.43 71.11 71.46 71.81 71.46 65.07
PPID-ATD 70.30 67.62 67.43 68.66 68.06 70.25 68.97
PPID-AAD 69.84 67.62 66.35 67.34 66.12 68.32 62.80

PPID-NOXclass 72.38 69.84 69.52 68.89 71.80 67.71 68.97

3.2 Analysis of Prediction
The results of SVM and LDR classifiers with different subsets

of features are depicted in Table 3. For SVM, it is clearly seen that
the RBF kernel performs better that polynomial and sigmoid ker-
nels for all subsets of features. The atom type features present in
interacting chains (PPID-AT) are best classified with SVM and a
RBF kernel, achieving an average accuracy of 77.78%, while accu-
racy for atom type features present in interacting domains (PPID-
ATD) is 70.30%. Similarly, the subset of amino acid type features
present in interacting chains (PPID-AA) with 75.56% classifica-
tion accuracy yields more efficient predictions than using the sub-
set of amino acid type features present in DDIs (PPID-AAD) with
69.84% classification accuracy. Furthermore, the subset based on
NOXclass features (with best accuracy of 72.38%) perform worse
than the best subset based on desolvation energy properties (PPID-
AT) on a SVM classifier.

For LDR, the best accuracy, 74.55%, is achieved by CDA with
the quadratic classifier, which is still lower than the best accuracy
achieved by SVM. Note that both of them are on the PPID-AT sub-
set. Additionally, as in SVM, subsets of atom and amino acid type
features present in interacting chains perform better than those in
DDIs. Also, the NOXclass subset of features (PPID-NOXclass)
yields lower accuracy (71.80%) than PPID-AT, which is based on
calculation of desolvation energies only, and also DDI subsets.

Generally, it can be concluded that in our binary-PPID dataset:
(a) SVM with RBF kernel performs better than LDR methods in

all subsets of features
(b) Amino acid type features (for both PPID-AA and PPID-AAT

subsets) yeild lower accuracies than atom type features (PPID-AT
and PPID-ATD) for both LDR and SVM classifiers

(c) Although the performance of both SVM and LDR classifiers
are lower for subsets of DDI features (PPID-ATD and PPID-AAD)
than subsets of interacting chain features (PPID-AT and PPID-AA),
they are acceptable results.

(d) Desolvation energy properties are more powerful than four
properties of NOXclass (interface area, interface area ratio, amino
acid composition of the interface and correlation between amino
acid compositions of interface and protein surface) in predicting
obligate and non-obligate complexes.

3.3 Analysis of DDIs
As discussed earlier, the total number of DDIs among 317 exist-

ing domains of our binary-PPID dataset is 100, 489. After prepro-
cessing and removing all zero-columns, we obtain only 256 DDI
pairs of which 125 are obligate and 131 are non-obligate DDIs.

The most salient feature in our binary-PPID dataset is the fact
that all DDIs are presented in either obligate or non-obligate com-
plexes and there are no DDIs in both obligate and non-obligate.
This clearly implies that the type of complex could just be predicted

by the DDIs present in the interactions, achieving nearly perfect
prediction rate of 100%. One could design a simple classifier that
contains binary features and indicates the presence or absence of
the DDI in the complex, and then a simple rule that checks those
binary flags. However, this would not be the case when predicting
new unknown complexes (not in this dataset). That is, when using
the training data to test the classifier. When cross-validation is ap-
plied, as it is done in this paper, presence of a DDI in the training
set may not imply its presence or absence in the test set. In addi-
tion, it is expected, though it would not be the case, that the DDI
desolvation properties are much more informative than simply bi-
nary features indicating the presence or absence of the DDI in the
complex.

We performed a visual analysis on our DDIs and discovered that
from 317 existing domains in our binary-PPID dataset, 135 are
present only in obligate DDIs, 158 are present only in non-obligate
DDIs and 21 domains are in both obligate and non-obligate DDIs.
We re-ordered the domain IDs based on their types (obligate, both
and non-obligate). To provide a visual insight of the distribution of
the DDIs in the different complexes, a schematic view of the DDIs
in the dataset is shown in Figure. 1. It is clearly seen that the most
homo-domain pairs are in obligate complexes (i.e. they lie on the
diagonal line (x = y) of the plot). Only a small part of the domain
IDs are common. This also implies we can achieve a reasonable
prediction only by finding the domains of each unknown complex.
This is an interesting issue that deserves a lot of attention, and that
we are currently investigating.

4. CONCLUSION
We have proposed an approach for prediction and analysis of ob-

ligate and non-obligate protein complexes. We have investigated
various interface properties of these interactions including atom
and amino acid types present in interacting chains or domains. Var-
ious features are extracted from each complex, including the de-
solvation energies for atom and amino acid type pairs and also
NOXclass properties. The classification is performed via differ-
ent LDR methods that involve homoscedastic and heteroscedastic
criteria and SVM with different kernels, namely RBF, polynomial
and sigmoid.

The results on our binary-PPID dataset, which is a joint and mod-
ified version of two well-known datasets, show that the SVM classi-
fier with 77.78% accuracy achieves much better classification per-
formance, even better than LDR schemes coupled with quadratic
and linear classifiers for all subset of features. The results also
demonstrate that desolvation energy is better than interface area and
composition for predicting obligate and non-obligate complexes.

Furthermore, visual and numerical analysis on DDIs show that
(i) most homo-domain pairs are in obligate interactions and (ii) no
common DDI is present in obligate and non-obligate complexes
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and all DDIs are present in either obligate or non-obligate com-
plexes.

Our future work involves the use of other features such as resid-
ual vicinity, shape of the structure of the interface, secondary struc-
ture, planarity, physicochemical features, hydrophobicity, structure
of domains and many others in our dataset, and also identifying
pseudo-domains and motifs present in interacting proteins.
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ABSTRACT
Residue coupling in protein families is an important indica-
tor for structural and functional conservation. Two residues
are coupled if changes of amino acid at one residue location
are correlated with changes in the other. Many algorith-
mic techniques have been proposed to discover couplings in
protein families. These approaches discover couplings over
amino acid combinations but do not yield mechanistic or
other explanations for such couplings. We propose to study
couplings in terms of amino acid classes such as polarity,
hydrophobicity, size, and reactivity, and present two algo-
rithms for learning probabilistic graphical models of amino
acid class-based residue couplings. Our probabilistic graph-
ical models provide a sound basis for predictive, diagnostic,
and abductive reasoning. Further, our methods can take
optional structural priors into account for building graph-
ical models. The resulting models are useful in assessing
the likelihood of a new protein to be a member of a family
and for designing new protein sequences by sampling from
the graphical model. We apply our approaches to under-
stand couplings in two protein families: Nickel-responsive
transription factors (NikR) and G-protein coupled recep-
tors (GPCRs). The results demonstrate that our graphcial
models based on sequences, physicochemical properties, and
protein structure are capable of detecting amino acid class-
based couplings between important residues that play roles
in activities of these two families.

Keywords
Residue coupling, graphical models, amino acid classes, evo-
lutionary co-variation.
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1. INTRODUCTION
Proteins are grouped into families based on similarity of

function and structure. It is generally assumed that evolu-
tionary pressures in protein families to maintain structure
and function manifest in the underlying sequences. Two
well-known types of constraints are conservation and cou-
pling. The most widely studied constraint is conservation
of individual residues. Within a protein family, a particu-
lar residue position is conserved if a particular amino acid
occurs at that residue position for most of the members
in the family [3]. Conservation of residues usually occurs
at functionally and/or structurally important sites within a
protein fold (shared by the protein family). For example
in Figure 1(a), a multiple sequence alignment (MSA) of 10
sequences, the second residue is 100% conserved with occur-
rence of amino acid “W”.

A variety of recent studies have used MSAs to calcu-
late correlations in mutations at several positions within an
alignment and between alignments [15, 10, 19, 14]. These
correlations have been hypothesized to result from struc-
tural/functional coupling between these positions within the
protein [8]. Two residues are coupled if certain amino acid
combinations occur at these positions in the MSA more fre-
quently than others [15, 7]. For example, residues 3 and 8
are coupled in Fig. 1(d) because the presence of “K”(or“M”)
at the third residue co-occurs with“T”(or“V”) at the eighth
residue position. Going beyond sequence conservation, cou-
plings provide additional information about potentially im-
portant structural/functional connections between residues
within a protein family. Previous studies [15, 8, 10] show
that residue couplings play key roles in transducing signals
in cellular systems.

In this paper, we study residue couplings that manifest at
the level of amino acid classes rather than just the occur-
rence of particular letters within an MSA. Our underlying
hypothesis is that if structural and functional behaviors are
the underlying cause of residue couplings within MSAs, then
couplings are more naturally studied at the level of amino
acid properties. We are motivated by the prior work of
Thomas et al. [9, 10] which proposes probabilistic graphical
models for capturing couplings in a protein family in terms
of amino acids. Graphical models are useful for support-
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ing better investigation, characterization, and design of pro-
teins. The above works infer an undirected graphical model
for couplings given an MSA where each node (variable) in
the graph corresponds to a residue (column) in the MSA and
an edge between two residues represents significant correla-
tion between them. Figure 1(a),(b) illustrates the typical
input (an MSA and a structural prior) and Figure 1(d) is
an output (undirected graphical model) of the procedure of
Thomas et al. In the output model (see Fig. 1(d)), three
residue pairs—(3,8), (6,7), and (9,10)—are coupled.

Evolution is the key factor determining the functions and
structures of proteins. It is assumed that the type of amino
acid at each residue position within a protein structure is
(at least somewhat) constrained by its surrounding residues.
Therefore, explaining the couplings in terms of amino acid
classes is desirable. To achieve this, we consider amino acid
classes based on physicochemical properties (see Fig. 2).

Graphical models can be made more expressive if we rep-
resent the couplings (edges in the graphs) in terms of un-
derlying physicochemical properties. Figure 1(c) is a Venn
diagram of three amino acid classes–polarity, hydrophobic-
ity, and size. Figure 1(e) illustrates three couplings in terms
of amino acid classes. For example, residue 3 and residue
8 are coupled in term of “polarity-polarity”, which means
correlated changes of polarities occur at these two positions
– a change from polar to nonpolar amino acids at residue
3, for instance, induces concomitant change from polar to
nonpolar amino acid at residue 8. Similarly, residue 6 and
residue 7 are also correlated since a change from hydropho-
bic to hydrophilic amino acids at residue 6 induces a change



from big to small amino acids at residue 7. There is no edge
between residue 5 and residue 7, however, because they are
independent given residue 6. Hence, the coupling between
residue 5 and residue 7 is explained via couplings (5,6) and
(6,7). This is one of the key features of undirected graphical
models as they help distinguish direct couplings from indi-
rect couplings. Note that the coupling between residue 9 and
residue 10 (originally present in Fig. 1(d)) does not occur in
Figure 1(e) due to class conservation in residues 9 and 10.
Also note that the coupling between residue 5 and residue
6 in Figure 1(e) is not apparent in Figure 1(d). Class-based
representations of couplings hence recognize a different set
of relationships than amino acid value-based couplings. We
show how the class-based representation leads to more ex-
plainable models and suggest alternative criteria for protein
design.

The key contributions of this paper are as follows:

1. We investigate whether residue couplings manifest at
the level of amino acid classes and answer this question
in the affirmative for the two protein families studied
here.

2. We design new probabilistic graphical models for cap-
turing residue coupling in terms of amino acid classes.
Like the work of Thomas et al. [10] our models are pre-
cise and give explainable representations of couplings
in a protein family. They can be used to assess the
likelihood of a protein to be in a family and thus con-
stitute the driver for protein design.

3. We demonstrate successful applications to the NikR
and GPCR protein families, two key demonstrators for
protein constraint modeling.

The rest of the paper is organized as follows. We review
related literature in Section 2. Methodologies for inferring
graphical models are described in Section 3. Experimental
results are provided in Section 4 followed by a discussion in
Section 5.

2. LITERATURE REVIEW
Early research on correlated amino acids was conducted

by Lockless and Ranganathan [15]. Through statistical anal-
ysis they quantified correlated amino acid positions in a pro-
tein family from its MSA. Their work is based on two hy-
potheses, which are derived from empirical observation of
sequence evolution. First, the distribution of amino acids
at a position should approach their mean abundance in all
proteins if there is a lack of evolutionary constraint at that
position; deviance from mean values would, therefore, indi-
cate evolutionary pressure to prefer particular amino acid(s).
Second, if two positions are functionally coupled, then there
should be mutually constrained evolution at the two posi-
tions even if they are distantly positioned in the protein
structure. The authors developed two statistical parameters
for conservation and coupling based on the above hypoth-
esis, and use these parameters to discover conserved and
correlated amino acid positions. In their SCA method, a
residue position in an MSA of the family is set to its most
frequent amino acid, and the distribution of amino acids at
another position (with deviant sequence at the first posi-
tion removed) is observed. If the observed distribution of
amino acids at the other position is significantly different

from the distribution in the original MSA, then these two
positions are considered to be coupled. Application of their
method on the PDZ protein family successfully determined
correlated amino acids that form a protein-protein binding
site.

Valdar surveyed different methods for scoring residue con-
servation [17]. Quantitative assessment of conservation is
important because it sets a baseline for determining cou-
pling. In particular, many algorithms for detecting corre-
lated residues run into trouble when there is an ‘in between’
level of conservation at a residue position. In this survey,
the author investigates about 20 conservation measures and
evaluates their strengths and weaknesses.

Fodor and Aldrich reviewed four broad categories of mea-
sures for detecting correlation in amino acids [11]. These cat-
egories are: 1) Observed Minus Expected Squared Covari-
ance Algorithm (OMES), 2) Mutual Information Covariance
Algorithm (MI), 3) Statistical Coupling Analysis Covari-
ance Algorithm (SCA; mentioned above), and 4) McLachlan
Based Substitution Correlation (McBASC). They applied
these four measures on synthetic as well as real datasets
and reported a general lack of agreement among the mea-
sures. One of the reasons for the discrepancy is sensitivity to
conservation among the methods, in particular, when they
try to correlate residues of intermediate-level conservation.
The sensitivity to conservation shows a clear trend with al-
gorithms favoring the order McBASC > OMES > SCA >
MI.

Although current research is successful in discovering con-
served and correlated amino acids, they fail to give a formal
probabilistic model. Thomas et al. [10] is a notable expec-
tion. This paper differentiates between direct and indirect
correlations which previous methods did not. Moreover, the
models discovered by this work can be extended into dif-
ferential graphical models which can be applied to protein
families with different functional classes and can be used
to discover subfamily-specific constraints (conservation and
coupling) as opposed to family-wide constraints.

The above research on coupling and conservation do not
aim to model evolutionary processes directly. Yeang and
Haussler, in contrast, suggest a new model of correlation in
and across protein families employing evolution [19]. They
refer to their model as a coevolutionary model and their key
claims are: coevolving protein domains are functionally cou-
pled, coevolving positions are spatially coupled, and coe-
volving positions are at functionally important sites. The
authors give a probabilistic formulation for the model em-
ploying a phylogenetic tree for detecting correlated residues.

A more recent work, by Little and Chen [14], studies cor-
related residues using mutual information to uncover evo-
lutionary constraints. The authors show that mutual in-
formation not only captures coevolutionary information but
also non-coevolutionary information such as conservation.
One of the strong non-coevolutionary biases is stochastic
bias. By first calculating mutual information between two
residues which have evolved randomly (referred to as ran-
dom mutual information), the authors then study relation-
ships with other mutual information quantities to detect the
presence of non-coevolutionary biases.

3. METHODS
A multiple sequence alignment S allows us to summarize

each residue position in terms of the probabilities of encoun-
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tering each of the 20 amino acids (or a gap) in that position.
Let V = {v1, . . . , vn} be a set of random variables, one for
each residue position. The MSA then gives a distribution
of amino acids for each random variable. We present two
different classes of probabilistic graphical models to detect
couplings. These inferred graphical models capture condi-
tional dependence and independence among residues, as re-
vealed by the MSA. The first approach uses an undirected
graphical model (UGM), also known as a Markov random
field. The second method employs a specific hierarchical la-
tent class model (HLCM) which is a two-layered Bayesian
network.

3.1 UGMs from Inflated MSAs
This approach can be viewed as an extension of the work

of Thomas et al. [10]. It induces an undirected graphical
model, G = (V,E), where each node, v ∈ V , corresponds to
a random variable and each edge, (u, v) ∈ E, represents a di-
rect relationship between random variables u and v. In our
problem setting, a node of G corresponds to a residue posi-
tion (a column of the given MSA) and each edge represents a
coupling between two residues. In this method, we redefine
the approach of Thomas et al. [10] to discover MSA residue
position couplings in terms of amino acid classes rather than
residue values.

3.1.1 Inflated MSA
We augment the MSA S of a protein family by introducing

extra ‘columns’ for each residue. Let l be the number of
amino acid classes and Ai be the alphabet for the ith class
where 1 ≤ i ≤ l. Legal vocabularies for the classes can be
constructed with the help of Taylor’s diagram (see Fig. 2).
For example, possible classes are polarity, hydrophobicity,
size, charge, and aromaticity. Moreover, we may consider
the amino acid sequence of a column as a “amino acid name”
class. These classes take different values; e.g., the polarity
class takes two values: polar and non-polar. Each column of
S is mapped to l subcolumns to obtain an inflated MSA Se
where the extra columns (referred to as subcolumns) encode
the corresponding class values. We use vik to denote the
kth subcolumn of residue vi. Figure 3 illustrates the above
procedure for obtaining an inflated alignment Se. (A gap
character in S is mapped to a gap character in Se.)

3.1.2 Detecting Coupled Residues
Couplings between residues can be quantified by many

statistical and information-theoretic metrics [11]. In our
model, we use conditional mutual information because it
allows us to separate direct from indirect correlations. Re-
call that the mutual information (MI), I(vi, vj), between
residues vi and vj is given by:

I(vi, vj) =
X
a∈A

X
b∈A

P (vi = a, vj = b)

· log
P (vi = a, vj = b)

P (vi = a)P (vj = b)

(1)

where the probabilities are all assessed from S. If I(vi, vj) is
non-zero, then they are dependent, and each residue position
(vi or vj) encodes information that can be used to predict the
other. In the original graphical models of residue coupling
(GMRC) model [10], Thomas et al. use conditional mutual
information:

I(vi, vj |vk) =
X
c∈A∗

X
a∈A

X
b∈A

P (vi = a, vj = b|vk = c)

· log
P (vi = a, vj = b|vk = c)

P (vi = a|vk = c)P (vj = b|vk = c)

(2)

to construct edges, where the conditionals are estimated by
subsetting residue k to its most frequently occurring amino
acid types (A∗ ⊂ A). The most frequently occurring amino
acid types are those that appear in at least 15% of the origi-
nal sequences in the subset. As discussed [15], such a bound
is required in order to ensure sufficient fidelity to the original
MSA and allow for evolutionary exploration.

For modeling residue position couplings in terms of amino
acid classes, we use Eq. 2. As each residue in Se has l
columns, we consider all O(l2) pairs of columns for estimat-
ing mutual information between two residues. For calculat-
ing conditional mutual information in an inflated MSA, we
condition a residue to its most appropriate class. The most
appropriate class is the one that reduces the overall network
score the most. The modified equation for conditional mu-
tual information is as follows:

Ie(vi, vj |vkr) =

lX
p=1

lX
q=1

Ie(vip, vjq|vkr) (3)

where



Ie(vip, vjq|vkr) =
X
c∈A∗r

X
a∈Ap

X
b∈Aq

P (vip = a, vjq = b|vkr = c)

· log
P (vip = a, vjq = b|vkr = c)

P (vip = a|vkr = c)P (vjq = b|vkr = c)
(4)

Here Ai denote the alphabet of the ith amino acid class
where 1 ≤ i ≤ l. The conditional variable vk is set to the
rth class. If Ie(vi, vj |vkr) = 0, then it implies that residue
vi and vj are independent conditioned on the rth class of
vk. Observe that we can subset the residue vk to any class
out of l classes. We take the minimum of Ie(vi, vj |vkr) for
1 ≤ r ≤ l to obtain the final mutual information between vi
and vj .

3.1.3 Normalized Mutual Information
In an inflated MSA, the subcolumns corresponding to a

residue take values from different alphabets of different sizes.
Let vip and vjq be two subcolumns that take values from al-
phabets Ap and Aq respectively. To understand the effect of
the sizes of alphabets in mutual information score, we cal-
culate pairwise mutual information of subcolumns for every
residue pair and produce a scatter plot (see Fig. 4(a)).

In Fig. 4(a), we see that MI(A,A) is dominating over
MI(P, P ), MI(H,H), and MI(S, S). This is expected,
because amino acids are of 21 types whereas polarity, hy-
drophobicity, and size have 3 types. We adopt the following
equation to normalize mutual information scores proposed
by Yao [18]:

Inorm(vip, vjq|vkr) =
I(vip, vjq|vkr)

min(H(vip|vkr), H(vjq|vkr)
(5)

where H(vip|vkr) and H(vjq|vkr) denote the conditional en-
tropy.

3.1.4 Learning UGMs
Given an expanded MSA Se, we infer a graphical model

by finding decouplers which are sets of variables that makes
other variables independent. If two residues vi and vj are
independent given vk, then vk is a decoupler for vi and vj .
In this case, we add edges (vi, vk) and (vj , vk) to the graph.
Thus the relationship between vi and vj is explained transi-
tively by edges (vi, vk) and (vj , vk). Moreover, we can con-
sider a prior that can be calculated from a contact graph of
a representative member of the family. A prior gives a set of
edges between residues which are close in three-dimensional
structure. When a residue contact network is given as a
prior, we consider each edge of the residue contact network
as a potential candidate for couplings. Without a prior, we
consider all pairwise residues for coupling. Algorithm 1 gives
the formal details for inferring a graphical model.

Our algorithm builds the graph in a greedy manner. At
each step, the algorithm chooses the edge from a set of pos-
sible couplings which scores best with respect to the current
graph. The score of the graph is given by:

SUGM (G = (V,E)) =
X
vi∈V

X
vj /∈N(vi)

Ie(vi, vj |N(vi)) (6)

where N(vi) is the set neighbors of vi.

Algorithm 1 GMRC-Inf(S, P )

Input: S (multiple sequence alignment), P (possible edges)
Output: G (a graph that captures couplings in S)

1. V = {v1, v2, . . . , vn}
2. E ← φ
3. s← SUGM (G = (V,E))
4. for all e = (vi, vj) ∈ P do
5. Ce ← s− SUGM (G = (V, {e}))
6. while stopping criterion is not satisfied do
7. e← arg maxe∈P−E Ce
8. if e is significant then
9. E ← E ∪ {e}

10. label e based on the score
11. s← s− Ce
12. for all e′ ∈ P − E s.t e and e′ share a vertex

do
13. Ce′ ← s− SUGM (G = (V,E ∪ {e′}))
14. return G = (V,E)

P

P

H

S

?

?

Figure 5: Class labeling of coupled edges. The blue edges are
already added to the network and dashed edges are not. The
red edge is under consideration for addition in the current
iteration of the algorithm. The “?” takes any of the four
classes: polarity (P), hydrophobicity (H), size (S), or the
default amino acid values (A).

The calculation of conditional mutual information and
labeling of edges with different properties is illustrated in
Fig. 5. In Fig. 5, we consider edge (vi, vk) for addition to
the graph where vi already has two neighbors vl and vm.
The edge (vi, vl) has the label S-H which means the cou-
pling models vi with respect to size and vl with respect to
hydrophobicity. Similarly, the edge (vi, vm) has the label
P-P which means the coupling between vi and vm can be de-
scribed with respect to their polarities. To evaluate the edge
(vi, vk), we condition on vm and vl first and then condition
vk on any of the properties. We then sum up all Ie(vi, vj),
where vj /∈ {vl, vm, vk}. The subsetting class of vk for which
we obtain a maximum for

P
Ie(vi, vj) is the label that we

finally assign to vk (the question mark in Fig. 5) if the edge
(vi, vk) is added. Similarly, we do the same calculation for
vk while subsetting only vi, as the residue vk does not have
any neighbors in the current network.

Algorithm 1 can incorporate various stopping criteria: 1)



Figure 4: Effect of alphabet length on mutual information. Here, A,P,H,S denote amino acid, polarity, hydrophobicity, and size column
respectively. (a) Scatter plot of mutual information for every residue pair without normalization. (b) Scatter plot of mutual information
for every residue pair with normalization. Notice the different scales of plots between (a) and (b).

stop when a newly added edge does not contribute much to
the score reduction of the graph, 2) stop when a designated
number of edges have been added, and 3) stop when the
likelihood of the model is within acceptable bounds. We use
the first criterion in our model. With naive implementation
of Algorithm 1 the running time is O(dn2) where n is the
number of residues in a family and d is the maximum degree
of nodes in the prior. By caching and preprocessing the
complexity can be reduced to O(dn).

3.2 Hierarchical Latent Class Models
A latent class model (LCM) is a hidden-variable model

which consists of a hidden (class) variable and a set of ob-
served variables [13]. The semantics of an LCM are that the
observed variables are independent given a value of the class
variable. Let u and v be two observed variables. The latent
class model of u and v introduces a latent variable z, so that

P (u, v) =
X
k

P (z = k)P (u|z = k)P (v|z = k) (7)

When the number of observed variables increases, the
LCM model performs poorly due to the strong assumption of
local independence. To improve the model, Zhang et al. pro-
posed a richer, tree-structured, latent variable model [20].
Our hierarchical model is a restricted case of the model pro-
posed by Zhang et al. We propose a two-layered binary
hierarchical latent class model where the lower layer con-
sists all the observed variables and the upper layer consists
of hidden class variables. In our problem setting, observed
variables correspond to residues and the hidden class vari-
ables take values from all possible permutations of pairwise
amino acid classes. Figure 6 illustrates a hypothetical hier-
archical latent class model.

Let Z be the set of all hidden variables and V be the set
of observed variables. The joint probability distribution of
the model is as follows:

P (Z)

nY
i=1

P (vi|Pa(vi)) (8)

:
s1 CYL

 s2 HYL
 s3 CYL
 s4 HYL
 s5 CYL
 s6 HFL
 s7 VFA
 s8 LFA
 s9 VFA
 s10 LFA
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p
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Figure 6: A hypothetical residue coupling in terms of amino acid
classes using a two-layered Bayesian network.

where Pa(vi) denotes the set of parents of vi.

3.2.1 Learning a HLCM
We learn this model in a greedy fashion as before. We

define the following scoring function:

SHLCM(G = ({V,Z}, E)) =
X
vi∈V

X
vj /∈Pa(vi)

Ie(vi, vj |Pa(vi))

(9)
where Pa(vi) is the set neighbors of vi. When we condi-
tion on the parent nodes, we use a 35% support threshold
for the sequences. This support threshold is required in
order to ensure sufficient fidelity to the original MSA and
allow for evolutionary exploration. From extensive experi-
ments with this parameter (data not shown), we found that
while there is some variation in the edges with changes of
this parameter from 15% to 60%, many of the best edges
are retained when support threshold is 35%. Moreover, the
model has less number of couplings when support thresh-
old is 35% which is an indication in the reduction of the
overfitting effect. Besides, we use a parameter minsupport
which is set to 2; minsupport is used to avoid class conser-
vation between sequences. The value of minsupport for two
residue positions is the number of class-values combinations
for which the number of sequences in each subset is greater



Algorithm 2 HLCM(S, P )

Input: S (multiple sequence alignment), P (possible pairs
of residues)

Output: G (a graph that captures couplings in S)

1. V = {v1, v2, . . . , vn}
2. Z ← φ � set of hidden nodes
3. E ← φ
4. T ← φ � tabu list of residue pairs
5. s← SHLCM(G = (V,E))
6. for all e = (vi, vj) ∈ P do
7. E′ ← {(he, vi), (he, vj)}

� he is a hidden class between vi and vj
8. Ce ← s− SHLCM(G = ({V, {hij}}, E′))
9. while stopping criterion is not satisfied do

10. e← arg maxe∈P−T Ce
11. if e is significant for coupling then
12. E ← E ∪ {(he, vi), (he, vj)}
13. Z ← Z ∪ {he}
14. T ← T ∪ {e}
15. label two edges of he based on the score
16. s← s− Ce
17. for all e′ = (vk, vl) ∈ P − T s.t e and e′ share

a vertex do
18. E′′ ← {(he′ , vk), (he′ , vl)}
19. Ce′ ← s− SHLCM(G = ({V,Z}, E ∪ E′′))
20. return G = (V,E)

than the support threshold. When minsupport is 1 for two
residue positions, we consider that a class conservation has
occurred in these residue positions. The algorithm chooses
a pair of residues for which introducing a hidden variable re-
duces the current network score the most. We then add the
hidden variable if it is statistically significant. Algorithm 2
gives the formal details for learning HLCMs. We can employ
various stopping criteria: 1) stop when a newly added hid-
den node does not contribute much to the score reduction
of the graph, 2) stop when a designated number of hidden
nodes have been added, and 3) stop when the likelihood of
the model is within acceptable bounds. We use the first
criterion in our model.

3.3 Statistical significance
While learning the edges, hidden nodes or factors of the

above graphical models, we assess the significance of each
coupling imputed. In both algorithms, we perform a statis-
tical significance test on potential pairs of residues before
adding an edge or hidden variable to the graph. To com-
pute the significance of the edge, we use p-values to assess
the probability that the null hypothesis is true. In this case,
the null hypothesis is that two residues are truly indepen-
dent rather than coupled. We use the χ-squared test on
potential edges. If p-value is less than a certain threshold
pθ, we add the edge to the graph. In our experiment, we use
pθ = 0.005.

3.4 Classification
The graphical models learned by algorithm are useful for

annotating protein sequences of unknown class membership
with functional classes. To demonstrate the classification
methodology, we consider HLCM as an example. We adopt
Eq. 10 to estimate the parameters of a residue in the HLCM

model. The reason for using this estimator is that the MSA
may not sufficiently represent every possible amino acid value
for each residue position. Therefore, we must consider the
possibility that an amino acid value may not occur in the
MSA but still be a member of the family. In Eq. 10, |S| is
number of sequences in the MSA and α is a parameter that
weights the importance of missing data. We employ a value
of .1 for α but tests (data not shown) indicate that results
are similar for values in [0.1, 0.3].

P (v = a) =
freq(v = a) + α|S|

21

|S|(1 + α)
(10)

Given two different graphical models, GC1 and GC2 , say
for two different classes, we can classify a new sequence s
into either functional class C1 or C2 by computing the log
likelihood ratio LLR:

LLR = log
LGC1

LGC2

(11)

If LLR is greater than 0 then, then we classify s to the class
C1; otherwise, we classify it to the class C2.

4. EXPERIMENTS
In this section, we describe the datasets that we use to

evaluate our model and show results that reflect the ca-
pabilities of our models. We seek to answer the following
questions using our evaluation:

1. How do our graphical models fare compared to other
methods? Do our learned models capture important
covariation in the protein family? (Section 4.2)

2. Do the learned graphical models have discriminatory
power to classify new protein sequences? (Section 4.3)

3. What forms of amino acid class combinations are preva-
lent in the couplings underlying a family? (Section 4.4)

4.1 Datasets

4.1.1 Nickel receptor protein family
The Nickel receptor protein family (NikR) consists of re-

pressor proteins that bind nickel and recognize a specific
DNA sequence when nickel is present, thereby repressing
gene transcription. In the E. coli bacterium, nickel ions
are necessary for the catalytic activity of metalloprotein en-
zymes under anaerobic conditions; NikABCDE permease ac-
quires Ni2+ ions for the bacterium [2]. NikR is one of the
two nickel-responsive repressors which control the excessive
accumulation of Ni2+ ions by repressing the expression of
NikABCDE. When Ni2+ binds to NikR, it undergoes con-
formational changes for binding to DNA at the NikABCDE
operator region and represses NikABCDE [2].

NikR is a homotetramer consisting of two distinct do-
mains [16]. The N-terminal domain of each chain has 50
amino acids and constitutes a ribbon-helix-helix (RHH) do-
mains that contact the DNA. The C-terminal of each chain
consisting of 83 amino acids form a tetramer composed of
four ACT domains that together contain the high-affinity
Ni2+ binding sites [2]. Figure 7 shows a representative NikR
structure determined by X-ray crystallography [2].
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40 A

Figure 7: A rendering of NikR protein (PDB id 1Q5V) show-
ing two domains: ACT domain (Nickel binding site) and RHH
domain (DNA binding site). The distance between these two do-

mains is 40ÅṪhe molecular image is generated using VMD 1.9 [5].

We organized an MSA of the NikR family that has 82
sequences which are used to study allosteric communication
in NikR [2]. Each sequence has 204 residues. For a structural
prior, we use Apo-NikR (pdb id 1Q5V) as a representative
member of the NikR family and calculate prior edges from
its contact map. Residue pairs within 7Å of each other are
considered to be in contact which gives us 734 edges as a
prior. We use this prior for the analysis to ensure that all
identified relationships have direct mechanistic explanations.

4.1.2 G-protein coupled receptors
G-protein coupled receptors (GPCRs; see Fig. 8) repre-

sent a class of large and diverse protein family and provide
an explicit demonstration of allosteric communication. The
primary function of this proteins is to transduce extracellu-
lar stimuli into intracellular signals [6]. GPCRs are a pri-
mary target for drug discovery.

We obtained an MSA of 940 GPCR sequences used in the
statistical coupling analysis by Ranganathan and colleagues
[8]. Each sequence has 348 residues. GPCRs can be or-
ganized into five major classes, labeled A through E. The
MSA that we obtained is from class A; using the GPCRDB
[4], we annotate each sequence with functional class infor-
mation according to the type of ligand the sequence binds
to. The three largest functional classes—Amine, Peptide,
and Rhodopsin—have more than 100 sequences. There are
12 other functional classes having less than 45 sequences.
There are 66 orphan sequences which do not belong to any
family. For prior couplings, we constructed a contact graph
network from the 3D structure of a prominent GPCR mem-
ber, viz. bovine rhodopsin (pdb id 1GZM). We identify 3109
edges as coupling priors using a pairwise distance threshold
of 7Å.

4.2 Evaluation of couplings
We evaluate four methods on the NikR and GPCR datasets:

the traditional GMRC method proposed by Thomas et al. [10,
9]; GMRC-Inf from this paper; GMRC-Inf* (a variant of
GMRC-Inf) where the inflated alignment uses only class-
based information; and HLCM. We consider three physic-
ochemical properties—polarity, hydrophobicity, and size—
of amino acids as classes. Although GMRC discovers cou-
plings in terms of amino acids, we compare our methods with
GMRC with respect to the number of discovered important
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Figure 8: A cartoon describing GPCR functionality. Figure re-
drawn from [12].

Table 1: Important residues for allosteric activity in NikR
collected from [2]. Residues are mapped from indices with
respect to Apo Nikr (PDB id 1Q5V) to the indices of
NikR MSA column. Important residues having conservation
greater than 90% are not shown.

Residue Sequence
Conserva-
tion

Significance

3 0.83 Specific DNA binding
5 0.62 Specific DNA binding
7 0.81 Specific DNA binding
9 0.58 Unknown
22 0.45 Unknown
27 0.64 Nonspecific DNA contact
30 0.81 Low-affinity Metal Site
33 0.87 Nonspecific DNA contact
34 0.71 Low-affinity Metal Site
37 0.85 Unknown
42 0.41 Unknown
58 0.60 Ni2+ site H-bond network
60 0.86 Close proximity to Ni2+ site
62 0.83 Close proximity to Ni2+ site
64 0.38 Nonspecific DNA contact
65 0.52 Nonspecific DNA contact
69 0.51 Unknown
75 0.74 Ni2+ site H-bond network
109 0.49 Unknown
114 0.47 Unknown
116 0.39 Low-affinity Metal Site
118 0.45 Low-affinity Metal Site
119 0.62 Nonspecific DNA contact
121 0.82 Low-affinity Metal Site



Table 2: Comparisons of methods for various feature on NikR
dataset.

Features GMRC GMRC-
Inf

GMRC-
Inf*

HLCM

Support
Threshold
(%)

15 15 35 35

Num of
couplings

80 65 26 51

Num of
important
residues
(out of 24)

15 11 9 15

Unique
residues
in the
network

81 61 38 74

Num of
compo-
nents

11 6 13 23

residues (we desire to investigate whether our models can
recapitulate important residues identified by previous meth-
ods). In Table 1, we list 24 important residues for NikR ac-
tivity from [2] which are not conserved. (We exclude seven
important residues for NikR which have a conservation of
more than 90%.) Table 2 gives comparisons between meth-
ods for these two datasets.

Likewise, we identify 47 important residues for the GPCR
family from [8]. The support threshold for GMRC and
GMRC-Inf is set to 15%; the support threshold and min-
support for HLCMis set to 35% and 2 respectively. (To be
more confident about the quality of the model, the support
for HLCMis set to a higher value.)

Bradley et al. [2] identify four residues (Res 9, Res 37,
Res 62, and Res 118) as highly connected “hubs”. In our
models, Res 9 and Res 118 are present, but Res 37 and Res
62 are not present since these residues are highly conserved.
Important residues discovered by four methods are shown
in Table 3. We see that GMRC-Inf and GMRC-Inf* are
progressively more strict than GMRC in the number of im-
portant residues discovered but GMRC-Inf* has a greater
ratio of important residues discovered to the total residues
in the network. HLCM provides as good performance as
the GMRC method in terms of the important residues but
compacts them into a smaller set of couplings.

Table 3: Important residues discovered by HLCM,
GMRC-Inf, GMRC-Inf*, and GMRC in NikR.

Method Important Residues
HLCM 3, 7, 9, 27, 30, 34, 42, 60, 97, 109, 114,

116, 118, 119, 121
GMRC-Inf 27, 30, 33, 34, 37, 58, 60, 97, 116, 118, 121
GMRC-Inf* 3, 5, 27, 33, 37, 42, 60, 116, 121
GMRC 3, 7, 9, 27, 30, 33, 34, 37, 58, 60, 97, 116,

118, 119, 121

4.3 Classification performance
Although our goal is to represent amino acid class-based

Table 4: Classification of GPCR subclasses.

Functional Class Total Sequence
Accuracy (%)

GMRC HLCM
Amine 196 99.5 100
Peptide 333 100 100
Rhodopsin 143 98.6 95.8

residues couplings in a formal probabilistic model, we demon-
strate that our models can also classify protein sequences.
We use the GPCR dataset to assess the classification power
of our models. The GPCR datasets has 16 subclasses with,
as stated earlier, the three major subclasses being amine,
peptide, and rhodopsin. We performed a five-fold cross-
validation test for these three major classes. A compari-
son between our HLCM model and the vanilla GMRC is
given in Table 4. We see an improved performance for the
Amine subclass and a slightly decreased performance for the
Rhodopsin subclass.

Recall that there are 66 orphan sequences in GPCR fam-
ily which are not assigned to any functional class. We apply
our model to classify these orphan sequences to any of the
three major classes: Amine, Peptide, and Rhodopsin. To-
ward this end, we build models for the three classes using
HLCM method by considering all of the sequences. Of the
66 sequences, 3 are classified to Amine and the rest are clas-
sified to the Peptide class. This result is the same as the
GMRC result reported in [10].

4.4 Finding coupling types
We determine the frequency of each class-coupling type

for the various models on the NikR dataset. Histograms
are shown in Figure 9. We see that there are a significant
number of class-based residue coupling relationships discov-
ered, although in the case of GMRC-Inf, there are many
value-based couplings as well (as expected). Many of the
couplings discovered by GMRC-Inf* and HLCM have po-
larity as one of the properties, but there are interesting dif-
ferences as well: HLCM identifies a significant number of
P-S couplings whereas GMRC-Inf* finds P-P, P-H, and S-
S couplings.

5. DISCUSSION
Our results on the NikR dataset demonstrate that em-

ploying amino acid types is useful for learning couplings
and the underlying properties of those couplings. This ap-
proach provides us with a way to build an expressive model
for residue couplings. We have shown that our extended
graphical model is more powerful than the previous graphi-
cal model approach of Thomas et al. [10].

Our use of conditional mutual information as a correla-
tion measure is subject to different biases [14]. Removing
possible biases is a direction for future work. A more uni-
fying probabilistic approach for residue couplings would be
a factor graph representation since it can capture couplings
among more than two residues. A factor graph is a bipartite
graph that represents how a joint probability distribution of
several variables factors into a product of local probability
distributions [1]. Let G = ({F, V }, E) be a factor graph,
where F = {f1, f2, . . . , fm} is a set of factor nodes and
V = {v1, . . . , vn} is a set of observed variables. A scope
of a factor fi is set a set of observed variables. Each factor
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Figure 9: Histograms for class-coupling types on the NikR dataset using three methods: (a) GMRC-Inf (b) GMRC-Inf*, and (c)
HLCM.
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Figure 10: A hypothetical residue coupling in terms of amino
acid classes using a factor graph model.

fi with scope C is a mapping from Val(C) to R+. The joint
probability distribution of V is as follows:

P (v1, v2, . . . , vn) =
1

Z

mY
j=1

fj(Cj) (12)

where Cj is the scope of the factor fj and the normalizing
constant Z is the partition function. Figure 10 illustrates
a hypothetical residue coupling network for four residues
with two factors. Observe how such a model can capture
couplings involving more than two residues.

While there are polynomial time algorithm for learning
factor graphs from polynomial samples [1], such methods re-
quire a canonical parameterization which constraints the ap-
plicability of factor graphs to learn couplings from an MSA.
Canonical parameterizations are defined relative to an arbi-
trary but fixed set of assignments to the random variable,
and it is hard to define such a ‘default sequence’ for an MSA.
Hence, newer algorithms need to be developed.
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ABSTRACT

Capturing mutation patterns of each individual influenza
virus sequence is often challenging; in this paper, we demon-
strated that using a binary encoding scheme coupled with
dimension reduction technique, we were able to capture the
intrinsic mutation pattern of the virus. Our approach looks
at the variance between sequences instead of the commonly
used p-distance or Hamming distance. We first convert the
influenza genetic sequence to a binary string and then ap-
ply Principal Component Analysis (PCA) to the converted
sequence. PCA also provides a prediction capability for de-
tecting reassortant virus by using data projection technique.
Due to the sparsity of the binary string, we were able to
analyze large volume of influenza sequence data in a very
short time. For protein sequences, our scheme also allows
the incorporation of biophysical properties of each amino
acid. Here, we present various results from analyzing in-
fluenza nucleotide, protein and genome sequences using the
proposed approach. With the Next-Generation Sequencing
(NGS) promises of sequencing DNA at unprecedented speed
and production of massive quantity of data, it is imperative
that new technique needs to be developed to provide quick
and reliable analysis of any sequence data. Here, we believe
our approach can be used at the upstream stage of sequence
data analysis pipeline to gain insight as to which direction
should be continued on in analyzing the available data.

Keywords

Influenza virus, Evolution, Binary Encoding, Principal Com-
ponent Analysis

1. INTRODUCTION
The influenza A virus is a negative stranded RNA virus

with eight gene segments that code for 10 proteins in its
genome. It is categorized by the serology and genetics of
its two surface glycoproteins hemagglutinin (HA) and neu-
raminidase (NA). The virus is capable of infecting about
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twenty five percent of the worldwide human population each
year [13]. 16 HA antigenetically distinct subtypes have been
isolated from mammalian and avian hosts, with the H3N2
being the most widespread and dominant circulating strain
in the human population [9]. Selective pressure exists for
the virus to generate immunological escape variants that are
antigenetically different and to diversity because immunized
hosts are resistant to infection with influenza they have been
exposed to for several years [10].

Large effort and vast amount of sequence data have been
used together to piece together the evolutionary history of
Influenza viruses. The influenza evolutionary tree itself is
one of the most popular and powerful tools we have in under-
standing the evolution of the virus. The continuous evolving
of the virus makes it challenging to get a global picture of
how all the viruses are inter-related. With an evolutionary
tree, we can: (1) build a more complete understanding of
how and where virus evolved that would help explain how
certain changes ended up in certain clade along the evolu-
tionary tree. (2) enable us to more easily decipher what’s
in the virus samples we already have and to make predic-
tion on what antigenic property we’ll find in newly isolated
viruses. Evolution turns out to be a good structural frame-
work for understanding influenza virus evolution dynamic
[7, 9]. However, with the large number of sequence data
continuously being deposited to the influenza database, the
data often appears to be clouded, unclear, and even redun-
dant. An approach that can quickly provide an overview of
the virus evolution under these challenges is most valuable
to influenza analysis.

Our aim in this paper is to present an alternative se-
quence representation method that is capable of capturing
the intrinsic patterns of mutation of the virus and extract
these patterns through a dimension reduction technique. To
show the utility and flexibility of the encoding scheme, we
performed influenza sequence analysis to expose avian-host
to human-host cross-overs using both nucleotide, protein
and genome sequences downloaded from NCBI Influenza
database [1].

2. RESULTS
In this section, we present various results from applying

our encoding scheme to influenza genetic sequences using
Principal Component Analysis as the processing algorithm.
We illustrate the evolution trajectory of H3N2 virus ob-
tained from using nucleotide sequences. We then provide
a global view of all the subtypes of influenza viruses based
on their HA surface protein. Next, we give result from in-



tegrating biophysical information of each amino acid to en-
hance the distinguishing feature of each virus sequence. We
tested this approach on H3 and H5 subtype viruses. Last,
we present results of the predictive power of PCA based on
our encoding scheme by detecting reassortant virus using
complete virus genome sequence.

2.1 H3N2 evolution trajectory
Multi-Dimensional Scaling (MDS) was used as a dimen-

sion reduction technique by [14] to project genetic and anti-
genic influenza data to visualize the relationship between
strains on a two dimensional plane. MDS must first com-
pute the pairwise distance between strains and then pro-
ceed to optimize an objective function to preserve the pair-
wise distance between strains as best as possible. MDS is
often used to provide visualization of influenza clusters to
gain a first hand understanding of their evolution trajectory.
On the other hand, the same objective can be achieved by
using PCA where strains’ pairwise distance computations
are not needed. To achieve this objective, PCA uses the
covariance between each strain and find the new and re-
duced dimensions to visualize the data (please see Materials
and Methods section for more detail on PCA). The results
from using the proposed encoding scheme on nucleotide se-
quences show that the evolution trajectory of the H3N2 virus
produced from Principal Component Analysis (PCA) is the
same as that produced from Multi-Dimensional Scaling al-
gorithm when the Euclidean metric was used for pairwise
distance calculation between strains. In the PCA case, two
dimensions are usually sufficient to explain most of the vari-
ability of the data. Here, in figure 1 top plot, we show that
it produced the same H3N2 evolution trajectory as MDS
using H3N2 nucleotide sequences. We colored the vaccine
strains in red in top figure and also listed them in table 1.
Each vaccine strain follows nicely in a chronological manner
in the curved pattern (from lower left to lower right) among
all other H3N2 strains. This trajectory indicates that H3N2
virus is evolving away from its earliest 1968 isolated strain.

Table 1: Vaccine strains shown in red in figure 1
(top).

Number Vaccine strain
1 A/Aichi/1968
2 A/Port Chalmers/1/1973
3 A/Philippines/2/1982
4 A/leningrad/360/1986
5 A/Shanghai/11/1987
6 A/Beijing/353/1989
7 A/Shangdong/9/1993
8 A/Johannesburg/33/1994
9 A/Sydney/5/1997
10 A/Moscow/10/1999
11 A/Fujian/411/2002
12 A/California/7/2004
13 A/Wisconsin/67/2005
14 A/Brisbane/10/2007
15 A/Perth/16/2009

2.2 Incorporating amino acid biophysical in-
formation
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Figure 1: H3N2 evolution trajectory using PCA
(top plot) and MDS (bottom plot)

The proposed encoding scheme with the inclusion of amino
acids’ biophysical properties leads to substantially better re-
sults in distinguishing different subtype when protein se-
quences are used. The biophysical property we have used
in this study is the hydrophobicity property of amino acids.
Ray [12] carried out a study to determine the most suitable
biophysical properties to use with unsupervised classifiers
[12] and found that three properties: Volume, Hydropho-
bicity, and Isoelectric property are best suited for classifi-
cation purposes. In our study, we have tried all three of
the said properties and found that hydrophobicity is best
suited for influenza sequences. We demonstrate this result
by applying our coding scheme combined with hydropho-
bicity values (H-value) on H3 and H5 subtypes nucleotide
sequences. We obtained the hydrophobicity values for all
the amino acids published from the study conducted by Ray
and Kepler [12]. After appending each H-value to the bi-
nary string of each amino acid and converted all the protein
H3 and H5 sequences into binary strings, PCA was used to
provide visualization (figure 2 and 3) between the two sub-
types on two dimensional plane. For comparison purpose,
we produced a projection of H3 and H5 sequence without
using the H-value, as shown in figure 2. Although we see
data separation in both cases, the projection result with H-



value applied clearly explained more variance (at 70 percent)
than the one without (at upper 30 percent). The separation
between H3 and H5 also has become more pronounced with
less overlapping strains from each subtype.
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Figure 2: PCA projection of H3 and H5 protein se-
quences without applying hydrophobicity informa-
tion.
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Figure 3: PCA projection of H3 and H5 protein se-
quences with hydrophobicity information incorpo-
rated.

2.3 Complete view of all subtypes of influenza
viruses

The diversity and distribution of the influenza virus has
been studied by [3, 7] by building a panorama of phyloge-
netic trees. Here, we decided to apply our encoding scheme
to all 16 subtypes of the influenza virus hemagglutinin nu-

cleotide sequences totalling 16993 to produce a two dimen-
sional whole view of all subtypes. After converting the
hemagglutinin nucleotide sequences to binary strings, we
used PCA to project all the subtypes (H1 to H16), obtaining
a global view of the virus. From figure 4, we see a tripod
shape with H1N1, H3N2, and H5 each occupying a tripod leg
(each of the green dots designates the earliest of each isolate
subtype). All the other subtypes remain in the center of the
tripod, showing very little change. This indicates that the
three subtypes H1N1, H3N2, and H5 are evolving faster than
the other subtypes. On the H3N2 leg, the black dots repre-
sent H3N2 vaccine strains used from 1968 to 2007. Among
the 16 subtypes, H13 and H16 are very close to each other.
This is in agreement with [7]. On the other hand, H2, H4,
H9, H10, and H15 appear to be close to each other. Subtypes
H2 and H9 are are very close to each other, but phylogenetic
analysis indicates that these two subtypes were derived from
different lineages. One explanation is that there is small syn-
onymous differences (mutation at nucleotide level but does
not change the encoded amino acid) exist between these two
subtypes based on sequence level analysis. The lineage dif-
ferent can come from viruses evolving within the same host
type (e.g. Human H1N1 and Human H3N2) but with dif-
ferent antigentic property for each lineage. Subtypes H4,
H10, and H15 are clustered together in the plot, and phylo-
genetic analysis from [7] showed that they were derived from
the same lineage.
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Figure 4: A complete view of all subtypes from 1918
to 2009. The three active evolving subtypes (H1,
H3, and H5) are spread out to each tripod leg in-
dicating their dominance in establishing their own
lineage.

2.4 Detecting reassortants
Due to the segmented nature of influenza virus genome (8

individual segments of single stranded RNA that encodes 2
surface proteins and 8 internal proteins), reassortment be-
tween influenza viruses are common and can lead to the gen-
eration of novel strains of the virus [8]. In fact, pandemic
strains have been found to carry gene segments originating
from multiple hosts within their genome [11]. Here, we de-
sire to test the predictive power of PCA coupled with our



binary encoding scheme with hydrophobicity information in-
corporated. We wish to identify influenza viruses originating
from a single host but carrying gene segments belonging to
multiple hosts. Our objective is to see whether PCA is able
to identify virus’s surface proteins that have gone through
reassortment process. For the first test, we built an artifi-
cial reassortant virus (RV) dataset consisting of viruses with
surface proteins HA and NA from avian hosts but internal
proteins originating from a human host. Each RV genome is
constructed by replacing the flu virus’s (FV1) human-host
HA and NA proteins with avian-host HA and NA proteins.
We first pre-computed the principal components using flu
virus (FV1) genome sequences whose genes all originated
from human host only. Then we projected the reassortant
virus (RV) genome sequences containing avian HA and NA
genes onto these pre-computed FV1 principal components.
From figure 5, we see that reassortant virus (RV) with pro-
teins originating from human host (green) are closely ”at-
tached” to the human proteins (black) of the flu virus(FV1).
On the other hand, its surface proteins (red dots) are clearly
isolated from the surface proteins of human-host origin (blue
dots).
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Figure 5: Plot of reassortant virus (RV) genome pro-
jected onto principal components computed using
flu virus (FV1) genome of human origin. Each dot
represents a gene sequence from the genome. RV
genome are represented by green dots (internal pro-
teins) and red dots (surface proteins). FV1 genome
are represented by black dots (internal proteins) and
blue dots (surface proteins).

We performed a second analysis test using a real reassor-
tant virus H3N2 A/SW/CO/77 genome sequence identified
in [5] to test the predictive power of our approach. We se-
lected this isolate because its genetic characterization by [5]
using phylogenetic trees indicated that
SW/CO/77 pig isolate’s HA and NA proteins are closely
related to the human influenza virus. In this second anal-
ysis, we conducted two tests: an experiment test and a
control test. For the experiment test (result shown in fig-
ure 6), we first computed the principal components using
field isolates of human origin flu viruses (see Materials and
Methods for human virus genomes used) and then projected

the A/Swine/CO/77 genome onto these precomputed prin-
cipal components. We see that the HA and NA proteins
of SW/CO/77 are closely ”attached” to the human HA and
NA counterparts, which suggests that these two surface pro-
teins were originated from a human-host type virus during
reassortment event.

For the control test (result shown in figure 7), we selected
the H3N2 A/swine/Wisconsin/2/1970 swine virus as the
control genome because SW/CO/77 was isolated in 1977.
The reason for selecting a 1977 strain as a control is that
the swine flu virus lineage at that time had not diverged
into multiple lineages that carried gene segments with mixed
host type [5]. This is also to assure that the control strain
contains only gene segments from a single host type of swine
origin. Based on phylogenetic analysis,
A/swine/Wisconsin/2/1970 does not contain foreign host
type gene. In this control test, we precomputed the prin-
cipal components using the control genome sequence and
then projected the A/SW/CO/77 genome onto the first two
components. Clearly, we can see that A/SW/CO/77 strain’s
HA and NA proteins (red dots) are clearly distantly apart
from the swine origin counterparts (blue dots). From the
results of these two reassortant detection tests, we can see
that there is an unique feature or a signature pattern that
represent each specific host type. With the right feature
representation, PCA can quickly isolate and identify these
type of attributes in the dataset.
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Figure 6: SW/CO/77 genome projected onto prin-
cipal components computed using human origin flu
viruses genomes. Green dots represent the Hu-
man HA and NA surface genes, red dots are the
SW/CO/77 genes, and blue dots are the internal
genes from human host genome.

3. DISCUSSION
In this paper, we have shown that using a flexible encod-

ing scheme to convert influenza virus’s nucleotide or pro-
tein sequence can enable us to automatically extract unique
mutation pattern that carries evolution information of the
virus. We have highlighted some analysis results using our
approach that are important in the field of influenza se-
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Figure 7: SW/CO/77 genome projected onto princi-
pal components computed using swine virus genome
as control. Red dots are the SW/CO/77 genes and
blue dots are the Control A/Swine/Wisconsin/ virus
genes.

quence analysis. For example, a hidden difficulty when an-
alyzing sequences from each flu season is that we do not
know which strains in the data evolved from which other
strains in the data, there is no indication or extra informa-
tion showing the relationship between strains [2]. A pairwise
comparison with this uncertainty can give results that could
be biased because pairwise comparison implicitly assumes
that one virus of the pair is the progenitor of the other [2].

The encoding approach proposed here still involves pair-
wise comparisons as part of the covariance calculation in
PCA, but the encoding scheme introduced here allows PCA
to automatically capture the locations of the mutation pat-
terns. This is to say that the location of mutation along the
sequence is more important than the pairwise distance infor-
mation. We have demonstrated this with the plots of H3N2
evolution trajectory using PCA (figure 1). With PCA, we
can quickly examine the variances associated with strains in-
stead of relying on pairwise Hamming or P distance between
strains. Usually only a small number K of components is
needed to capture a large fraction of the total variance. The
largest K variances are associated with the first K princi-
pal components, and there is usually a precipitous drop off
in the variances after the K-th. Therefore, the most inter-
esting dynamic of the data can be captured in the first K

dimensions. With influenza virus sequences showing a very
high genetic similarity characteristic within subtypes [15],
this means that most of the sites carry redundant informa-
tion and only a portion of the sequence contains vital genetic
variation signal. This underlying phenomenon seems to be
tailor made for PCA. We have shown that after convert-
ing the sequences to binary strings, PCA has no problem in
capturing the intrinsic pattern of the virus sequence data.
Although PCA and MDS yield approximately the same tra-
jectory results, an advantage of using PCA is that PCA
carries prediction capability. The prediction power of PCA
comes from the fact that one can pre-compute a set of prin-
cipal components with existing data (or training data) and

then project a set of new data (test data) onto the pre-
computed principal components. This simple procedure can
highlight the differences or similarity between the two data
sets. We illustrated this by using it to detect reassortant
viruses. To detect reassortant, we precomputed principal
components from existing virus dataset that do not contain
any mixed-host proteins within its genome. We then project
new virus genome dataset suspected to contain reassortant
proteins onto the precomputed principal components to de-
tect any outliner or abnormally. Here, we have shown that
PCA can quickly identify the mixing of human and avian
genes in a virus genome. This aspect of prediction power
from PCA is far more useful than using multidimensional
scaling approach.

Feature representation schemes for amino acids usually
employ a simple categorical representation where each amino
acid is grouped together according to its pre-defined charac-
teristic. Commonly found groups are charge group, polarity
group and structure group. Each amino acid within each
group is implicitly regarded as having equidistant from ev-
ery other amino acid. Only the category of each amino acid
is used, while the specifics for each individual amino acid is
discarded. To overcome this distance bias introduced by the
grouping strategy, we elected to directly incorporate each
individual amino acid’s property, including the individual
identities. In our case, we have shown examples using the
hydrophobicity property of amino acids as an extra infor-
mation as it is one of the key properties relating to protein
binding[4]. The extra information allows for a more accurate
representation for each amino acid. Through using PCA, the
results are encouraging as only two principal components
were enough to capture the hidden pattern of the data.

With the Next-Generation Sequencing (NGS) promises of
sequencing DNA at unprecedented speed and production of
massive quantity of data, it is imperative that new technique
needs to be developed to provide quick and reliable analysis
of any sequence data. Here, we believe our approach can be
used at the upstream stage of sequence data analysis pipeline
to gain insight as to which direction should be continued on
in analyzing the available data.

4. MATERIALS AND METHODS

4.1 Data
All influenza virus nucleotide, protein, and genome se-

quences used in this study were downloaded from NCBI In-
fluenza Virus Database [1] as of February 2011.239 H3N2
HA1 nucleotide sequences were used for the trajectory anal-
ysis (accession numbers available upon request). H3N2 and
H5N1 subtypes HA protein sequences totalling 5708 were
used in the analysis presented in section 2.2. 16,993 hemag-
glutinin nucleotide sequences representing all subtypes of
the flu virus were used to obtain the whole view plot of the
virus. The majority of sequences were from H1 with 6632
sequences, H3 with 4071 sequences, and H5 with 3088 se-
quences. For reassortant detection, we selected human host
flu genome sequences isolated from early 1970s to 1980s for
the experiment test. This test set consists of genome se-
quences of strain Port Chalmers: A/Port Chalmers/1/1973,
Udorn: A/udorn/1972, and Memphis: A/Memphis/15/1988
(accession numbers available upon request). For the control
test, we selected
A/swine/Wisconsin/2/1970 genome from NCBI flu genome



database. Each influenza virus genome is named by its sub-
type, host, geographic location, strain number and year.
The strain name refers to the virus genome which consists
of 8 segments that codes for 10 proteins. In our study, we
use the term genome to refer to a collection of 10 protein
sequences that belong to one influenza strain. The term ”se-
quence” is used to refer to a biological sequence of either
nucleotide or amino acid of each individual protein within a
genome.

4.2 Binary encoding
Transforming nucleotide or protein sequence to a feature

vector that captures the mutation pattern is the key in deter-
mining the evolution trajectory of the influenza virus. Our
approach is simple and has the ability to capture the mu-
tation pattern of the virus. The feature vector is a string
of zeros and ones that represents a biological sequence di-
rectly. This encoding is an embedding in high-dimensional
Euclidean space with the property that the distance between
each different ”letter”, or ”nucleotide” or ”amino acid” is the
same. It also allows one to add almost arbitrary weight-
ings to account for biological effects like hydrophobic vs.
hydrophylic amino acids. Using the usaul ASCII represen-
tation encoding would introduce a biologically meaningless
ordering to the individual letters. In addition, if protein
sequences are used, our approach allows the incorporation
of biophysical properties of each amino acid into each pro-
tein sequence which further enhances the differences between
each amino acid. For nucleotide sequences, we encode Ade-
nine (A) to ”1000”, Guanine (G) to ”0100”, Cytosine (C) to
”0010” and Thymine (T) to ”0001”. Each nucleotide base is
uniquely represented by a 4 digits binary string. For exam-
ple, to encode a nucleotide sequence of ”AGA” and another
of ”ACA”, AGA is transformed to 0 0 0 1 0 1 0 0 0 0 0 1 and
ACA is transformed to 0 0 0 1 0 0 1 0 0 0 0 1. When these
two sequences are compared, the mutation in the second po-
sition is captured by the different between 0100 and 0010.
This encoding scheme allows for direct capture of mutation
information between sequences and facilitate direct subse-
quent computational analysis. For protein sequences, we
convert each amino acid to a binary string of length twenty
and each string is different by only one bit. For example,
Alanine is coded as ”1 0 0 0...0 0 0” and Cysteine is coded
as ”0100...000”. In addition, the biophysical properties data
of each amino acid can be directly append to the end of the
twenty bits string. For example, the hydrophobicity value of
Alanine is 1.8 and the binary string of Alanine becomes ”1 0
0 0 ... 0 0 0 1.8” which further distinguishes the differences
between each amino acid. Even though the length of the
nucleotide sequence has been increased by a factor of 4 and
protein sequence by a factor of 20, the sparsity of the rep-
resentation does not incur a high computational overhead.
In fact, we were able to analyze over five thousand protein
sequences in a time of less than 15 minutes running on a
moderately powerful (2.1 GHz with 4GB memory) desktop
computer.

4.3 Principal Component Analysis
Principal Component Analysis (PCA) is used in all forms

of analysis from bioinformatics to computer vision. It is a
simple non-parametric method of extracting relevant infor-
mation from unstructured data sets. The extraction can be
viewed as dimensional reduction where a complex high di-

mension data set is reduced to a lower dimension in order to
reveal hidden, simplified structure buried within the data.
In order to find the best lower dimension to capture the
structure of the high dimensional data, PCA proceeds by
diagonalizing the covariance matrix of the data set, consis-
tent with the goal to maximize the variance captured in the
projected data onto the lower dimensions. One restriction
is that PCA requires the directions of projection be orthog-
onal to each other and the variance associated with each
direction be maximized. The orthogonal requirement makes
PCA solvable with highly efficient linear algebra decompo-
sition techniques. Here, we briefly introduce the working
mechanism of PCA from a linear algebra perspective. Con-
sider a data matrix Xm,n with dimensions of m by n with m

being the number of strains and n being the number of sites.
Each row of X corresponds to a strain of virus and each col-
umn of X corresponds to a particular site. We first need to
center the rows of the data matrix X (i.e. replace X with
X−

1
m

ee
T
X, where e is a column vector of all ones) and then

obtain the covariance matrix C from X by C = 1
(m−1)

XX
T .

C is a square symmetric m×m matrix whose diagonal entries
are the variances of the individual strains across sites and
the off-diagonal terms are the covariances between different
strains. If one wishes to reduce the row dimensions, one can
simply apply this entire computation to the transpose of the
data matrix. The goal of PCA is to find a set of orthonor-
mal axes that diagonalizes matrix C. The diagonalization
of C is computed by finding its eigenvectors. Since C is
symmetric and square, its eigenvectors are the orthonormal
principal directions, and its eigenvalues correspond to the
variances of the data along those principal directions. The
eigenvectors of C are now the new basis for the data X. The
projection of the data matrix X onto this new basis gives the
alternative ”PCA view”of the data with mean zero and vari-
ance maximized along each principal component direction.
A quick decomposition technique to obtain the orthonormal
basis is using the Singular Value Decomposition (SVD) [6].
One can center the matrix, calculate the C matrix, and then
applying SVD to C. SVD of C gives C = UΣV

T where the
matrix V contains the orthonormal basis we sought. We
can then project the data to these orthonormal basis with
X ∗ V ; The matrix Σ is a diagonal matrix that contains the
eigenvalues of C which are the variances of the orthonormal
basis/principal components.

For the H3N2 evolution trajectory analysis, the H3N2 HA
nucleotide sequences of the same length were converted to bi-
nary strings which yielded a data matrix that can be directly
used with PCA algorithm. The first two principal compo-
nents corresponding to the two largest eigenvalues were then
plotted to obtain the trajectory. In section 2.2, H3 and H5
HA protein sequences of the same length were used and con-
verted to binary strings. In section 2.3, all HA nucleotide
sequences with the same length were used and converted to
binary strings. For both sections 2.2 and 2.3, PCA were
then directly applied to the converted binary strings and
the first two principal components were selected for plotting
and visualization purposes. In section 2.4, influenza genome
(consisted of 10 protein sequences) was converted to binary
strings with H-value incorporated. PCA algorithm was then
used to find the first two principal components for the train-
ing data set (the FV1 genome, human flu virus genmoe, and
A/Swine/Wisconsin/72 genome). The projection of testing
dataset (RV genome, and A/Swine/CO/77 genome) onto



the two principal components were done as outlined above.
We perform all the computation using Matlab 7.6 version
software. The PCA results were generated by the princomp
function from Matlab’s Stats toolbox.
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ABSTRACT
We analyze the lung cancer data available from the SEER
program with the aim of developing accurate survival pre-
diction models for lung cancer using data mining techniques.
Carefully designed preprocessing steps resulted in removal/
modification/splitting of several attributes, and 2 of the 11
derived attributes were found to have significant predic-
tive power. Several data mining classification techniques
were used on the preprocessed data along with various data
mining optimizations and validations. In our experiments,
ensemble voting of five decision tree based classifiers and
meta-classifiers was found to result in the best prediction
performance in terms of accuracy and area under the ROC
curve. Further, we have developed an on-line lung cancer
outcome calculator for estimating risk of mortality after 6
months, 9 months, 1 year, 2 year, and 5 years of diagnosis,
for which a smaller non-redundant subset of 13 attributes
was carefully selected using attribute selection techniques,
while trying to retain the predictive power of the original
set of attributes. The on-line lung cancer outcome cal-
culator developed as a result of this study is available at
http://info.eecs.northwestern.edu:8080/ LungCancerOutcome-
Calculator/
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1. INTRODUCTION
Respiratory (lung) cancer is the second most common can-

cer [1], and the leading cause of cancer-related deaths among
men and women in the USA [2]. Survival rate for lung cancer
is estimated to be 15% after 5 years of diagnosis [28].

The Surveillance, Epidemiology, and End Results (SEER)
Program [4] of the National Cancer Institute is an author-
itative repository of cancer statistics in the United States
[3]. It is a population-based cancer registry which covers
about 26% of the US population across several geographic
regions and is the largest publicly available domestic cancer
dataset. The data includes patient demographics, cancer
type and site, stage, first course of treatment, and follow-up
vital status. The SEER program collects cancer data for all
invasive and in situ cancers, except basal and squamous cell
carcinomas of the skin and in situ carcinomas of the uterine
cervix [28]. The ‘SEER limited-use data’ is available from
the SEER website on submitting a SEER limited-use data
agreement form. [20] presents an overview study of the can-
cer data at all sites combined and on selected, frequently
occurring cancers from the SEER data. The SEER data at-
tributes can be broadly classified as demographic attributes
(e.g. age, gender, location), diagnosis attributes (e.g. pri-
mary site, histology, grade, tumor size), treatment attributes
(e.g. surgical procedure, radiation therapy), and outcome
attributes (e.g. survival time, cause of death), which makes
the SEER data ideal for performing outcome analysis stud-
ies.

There have been numerous statistical studies using the
SEER data like demographic and epidemiological studies of
rare cancers [35], assessing susceptibility to secondary can-
cers that emerge after a primary diagnosis [29], perform-
ing survival analysis [28], studying the impact of a certain
type of treatment on overall survival [12], studying condi-
tional survival (measuring prognosis of patients who have
already survived a period of time after diagnosis) [31, 32,
11], amongst many others. There also have been scattered
applications of data mining using SEER data for breast can-
cer survival prediction [25, 14, 6, 16] and a few studying lung
cancer survival [10, 13].

Applying data mining techniques to cancer data is useful
to rank and link cancer attributes to the survival outcome.
Further, accurate outcome prediction can be extremely use-
ful for doctors and patients to not only estimate surviv-
ability, but also aid in decision making to determine the
best course of treatment for a patient, based on patient-



specific attributes, rather than relying on personal experi-
ences, anecdotes, or population-wide risk assessments. Here
we use data mining techniques to predict survival of respi-
ratory cancer patients, at the end of 6 months, 9 months,
1 year, 2 years, and 5 years of diagnosis. Experiments with
several classifiers were conducted to find that many meta
classifiers used with decision trees can give impressive re-
sults, which can be further improved by combining the re-
sulting prediction probabilities from several classifiers using
an ensemble voting scheme. Further, we have developed an
an on-line lung cancer outcome calculator to estimate the
patient-specific risk for mortality due to lung cancer at the
end of 6 months, 9 months, 1 year, 2 years, and 5 years.
The rest of the paper is organized as follows: Section 2

summarizes the recent research relevant to the problem, fol-
lowed by a description of the major classification schemes
used in this study in Section 3. The survival prediction sys-
tem is presented in Section 4, and Experiments and results
are presented in Section 5. The lung cancer outcome calcu-
lator is described in Section 6, and the conclusion and future
work is presented in Section 7.

2. RELATED WORK
With SEER data being available in the public domain,

there is a mature literature on the statistics of SEER data
[35, 29, 28, 12, 31, 32, 11], many of them using the the
SEERStat software provided by SEER itself.
In addition, there also have been a few data mining ap-

plications, which has become a very significant component
of cancer research and survivability analysis. A number of
techniques based on data mining have been proposed for
the survivability analysis of various cancers. [36] uses de-
cision trees and artificial neural networks for survivability
analysis of breast cancer, diabetes and hepatitis. [25] uses
artificial neural networks on SEER data to predict breast
cancer survival. [14] empirically compared three data min-
ing techniques: neural networks, decision trees and logistic
regression for the task of predicting 60 months breast can-
cer survival. They applied these techniques on 2000 ver-
sion of SEER data. They found that decision trees per-
formed the best with 93.6% accuracy, followed by neural
networks. [6] found that the pre-classification process used
by [14] was not accurate in determining the records of the
’not survived’ class. The authors of [6] corrected this and
investigated Naive bayes, the back-propagated neural net-
works, and the C4.5 decision tree algorithm using the data
mining tool WEKA. Decision Trees and Neural networks
performed the best with 86.7% and 86.5% accuracy respec-
tively. According to the authors, the difference in results
reported by [14] and those obtained by them is due to the
facts that they used a newer database (2000 vs. 2002), a
different class-distribution (109, 659 and 93, 273 vs. 35, 148
and 116, 738) and different toolkits (industrial grade tools
vs. WEKA).
The authors in [16] studied 5-year survival of follow-up pa-

tients in SEER data in 2002 who were diagnosed as breast
cancer from 1992 − 1997. They compared seven data min-
ing algorithms (artificial neural network, naive bayes, bayes
net, decision trees with naive bayes, decision trees (ID3),
decision trees(J48)) and logistic regression model. The con-
clusion was that logistic regression (accuracy 85.8%) and de-
cision trees (accuracy 85.6%) were the best ones with high
accuracies and high sensitivities. [6, 16] also showed that

there is a significant imbalance between survived and not-
survived classes for the five year survival problem: 80%
survived, 20% not-survived. This imbalance in data can
potentially affect the accuracy of the developed model. [34]
addressed this problem and used under-sampling to balance
the two classes. The conclusion was that the performance of
the models is best while the distribution of data is approxi-
mately equal.

Modeling survival for lung cancer is not as developed as
for breast cancer. [27] performs a statistical analysis of the
SEER data and computes survival percentage based on gen-
der, race, geographic area, cancer stage, etc. [10] used SEER
data containing records of lung cancer patients diagnosed
from 1988 through 1998. They examined the following at-
tributes: AJCC stage, grade, histological type and gender.
For each of the first three attributes, they considered four
popular values that are generally used in lung cancer stud-
ies. The attribute gender had two values: male and female.
This gave them 128 (4× 4× 4× 2) possible combinations of
values. They applied ensemble clustering on those combina-
tions to get seven clusters and studied survival patterns of
those clusters. [13] used SEER data for patients diagnosed
of cancer of lung or bronchus from the year 1988 through
2001. They studied 8 months survivability of lung cancer.
They compared penalized logistic regression and SVM for
survival prediction of lung cancer, and found that logistic re-
gression resulted in better prediction performance (in terms
of <sensitivity, specificity> pair). They also note that SVM-
modeling is significantly slow, taking hours to train.

3. CLASSIFICATION SCHEMES
We used several classification schemes resulting in identi-

fication of top 5 classification schemes, plus ensemble voting
scheme to combine the prediction probabilities from the top
5 (details presented in Experiments and Results section).
This section presents a brief description of the classifiers and
meta-classifiers used in the experiments reported in this pa-
per.

1. Support vector machines: SVMs are based on the
Structural Risk Minimization(SRM) principle from sta-
tistical learning theory. A detailed description of SVMs
and SRM is available in [30]. In their basic form, SVMs
attempt to perform classification by constructing hy-
perplanes in a multidimensional space that separates
the cases of different class labels. It supports both clas-
sification and regression tasks and can handle multiple
continuous and nominal variables. Different types of
kernels can be used in SVM models, like linear, poly-
nomial, radial basis function (RBF), and sigmoid. Of
these, the RBF kernel is the most recommended and
popularly used, since it has finite response across the
entire range of the real x-axis.

2. Artificial neural networks: ANNs are networks of
interconnected artificial neurons, and are commonly
used for non-linear statistical data modeling to model
complex relationships between inputs and outputs. The
network includes a hidden layer of multiple artificial
neurons connected to the inputs and outputs with dif-
ferent edge weights. The internal edge weights are
‘learnt’ during the training process using techniques
like back propagation. Several good descriptions of
neural networks are available [7, 17].



3. J48 decision tree: In a decision tree classifier, the
internal nodes denote the different attributes whose
values would be used to decide on the classification
path, and the branches denote the split depending on
the attribute values, while the leaf nodes denote the
final value (classification) of the dependent variable.
While constructing the decision tree, the J48 algo-
rithm [26] identifies the attribute that must be used
to split the tree further based on the notion of infor-
mation gain/gini impurity.

4. Random forest: The Random Forest [8] classifier
consists of multiple decision trees. The final class of an
instance in a Random Forest is assigned by outputting
the class that is the mode of the outputs of individual
trees, which can produce robust and accurate classifi-
cation, and ability to handle a very large number of
input variables. It is relatively robust to overfitting
and can handle datasets with highly imbalance class
distributions.

5. LogitBoost: Boosting is a technique that can dramat-
ically improve the performance of several classification
techniques by sequentially applying them repeatedly
to re-weighted versions of the input data, and taking a
weighted majority vote of the sequence of classifiers
thereby produced. In [19], the authors explain the
theoretical connection between Boosting and additive
models. The LogitBoost algorithm is an implementa-
tion of additive logistic regression which performs clas-
sification using a regression scheme as the base learner,
and can handle multi-class problems.

6. Decision stump: A decision stump [33] is a weak
tree-based machine learning model consisting of a single-
level decision tree with a categorical or numeric class
label. Decision stumps are usually used in ensemble
machine learning techniques.

7. Random subspace: The Random Subspace classi-
fier [23] constructs a decision tree based classifier con-
sisting of multiple trees, which are constructed system-
atically by pseudo-randomly selecting subsets of fea-
tures, trying to achieve a balance between overfitting
and achieving maximum accuracy. It maintains high-
est accuracy on training data and improves on gener-
alization accuracy as it grows in complexity.

8. Reduced error pruning tree: Commonly known as
REPTree [33], it is a implementation of a fast decision
tree learner, which builds a decision/regression tree
using information gain/variance and prunes it using
reduced-error pruning.

9. Alternating decision tree: ADTree [18] is decision
tree classifier which supports only binary classification.
It consists of two types of nodes: decision nodes (spec-
ifying a predicate condition, like ’age’ > 45) and pre-
diction nodes (containing a single real-value number).
An instance is classified by following all paths for which
all decision nodes are true and summing the values of
any prediction nodes that are traversed. This is differ-
ent from the J48 decision tree algorithm in which an
instance follows only one path through the tree.

10. Voting: Voting is a popular ensemble technique for
combining multiple classifiers. It has been shown that
ensemble classifiers using voting may outperform the
individual classifiers in certain cases [24]. Here we com-
bine multiple classifiers by using the average of proba-
bilities generated by each classifier. The base classifiers
used for the voting scheme were LogitBoost (with De-
cisionStump), RandomSubSpace (with REPTree), J48
decision tree, Random Forests, and ADTree.

4. SURVIVAL PREDICTION SYSTEM
Understanding and cleaning data to prepare it for a data

mining analysis is one of the most important steps in the
data mining approaches. Appropriate preprocessing, there-
fore, becomes extremely crucial in any kind of predictive
modeling, including that of cancer survival, as also widely
accepted by numerous other related studies. The proposed
respiratory cancer survival prediction system consists of four
stages:

1. SEER-related preprocessing: This is the first stage
preprocessing designed according to the way SEER
program records, codes, and releases the data. There
are three principle steps in this stage:

(a) Convert apparently numeric attributes to nomi-
nal, e.g. marital status, sex.

(b) Split appropriate numeric attributes into numeric
and nominal parts, e.g. tumor size. (‘CS TU-
MOR SIZE’ gives the exact size of the tumor in
mm, if it is known. But in some cases, the doctor
notes may say ’less than 2cm’, in which case the
coder assigns a value of 992 to the field, which,
if used as a numeric value, would correspond to
992mm, which is incorrect)

(c) Construct survival time in months (numeric) from
SEER format of YYMM.

2. Problem-specific preprocessing: This is the sec-
ond stage preprocessing which is specific to the prob-
lem of survival prediction. The following are the steps
in this stage:

(a) Select data records for a particular time period of
interest.

(b) Filter the attributes that vary too much or too
little, since they do not have significant predictive
power.

(c) For cancer-specific survival analysis, remove records
where the patient died because of something other
than the cancer in study.

(d) For cancer-specific survival analysis, remove at-
tributes apart from survival time, which directly
or indirectly specify the outcome, e.g. cause of
death, whether the patient is still alive.

(e) For binary class prediction, derive appropriate bi-
nary attributes for survival, e.g. 5-year survival.

3. Predictive modeling: This is where data mining
classifiers are employed to construct predictive models
for cancer-specific survival, on the preprocessed data.
The two straightforward steps of this stage are:



Figure 1: Block-diagram of the survival prediction
system

(a) Split the preprocessed data in training and testing
sets (or use cross validation)

(b) Construct a model on the training data using data
mining classifiers, e.g. Naive bayes, logistic re-
gression, decision trees, etc., including an ensem-
ble of different classifiers.

4. Evaluation: In this stage, the predictive model is
evaluated on the testing data.

(a) Compare the survival predictions from the pre-
dictive model on unseen data (testing set) against
known survival.

(b) Calculate performance metrics like accuracy (per-
centage of predictions that are correct), precision
(percentage of positive predictions that are cor-
rect), recall/sensitivity (percentage of positive la-
beled records that were predicted as positive),
specificity (percentage of negatively labeled records
that were predicted as negative), area under the
ROC curve (a measure of discriminative power of
the model), etc.

Fig. 1 presents the block diagram of the survival predic-
tion system with carefully designed preprocessing steps fol-
lowed by modeling and evaluation with different data mining
optimizations and validations.

5. EXPERIMENTS AND RESULTS
In this study, we used the data in the SEER Novem-

ber 2008 Limited-Use Data files [4] (released in April 2009)
from nine SEER registries (Atlanta, Connecticut, Detroit,
Hawaii, Iowa, New Mexico, San Francisco-Oakland, Seattle-
Puget Sound, and Utah). The SEER data used in this study
had a follow-up cutoff date of December 31, 2006, i.e., the
patients were diagnosed and followed-up upto this date. In
our experiments, we used the WEKA toolkit for data mining
[22].
The SEER-related preprocessing resulted in modification

and splitting of several attributes, many of which were found
to have significant predictive power. In particular, 2 out of

11 newly created (derived) attributes were within the top
13 attributes that were selected to be used in the lung can-
cer outcome calculator. These were a) the number of re-
gional lymph nodes that were removed and examined by
the pathologist; and b) number of malignant/in-situ tumors.
These attributes were derived from ’Regional Nodes Ex-
amined’ and ’Sequence Number-Central’ respectively from
raw SEER data, both of which had nominal values encoded
within the same attribute, with the latter also encoding non-
malignant tumors.

Subsequently, we selected the data for the patients diag-
nosed between 1998 and 2001. This choice was made because
of the following: Since we wanted to do a survival predic-
tion for upto 5-years, and the follow-up cutoff date for the
SEER data in study was December 31, 2006, we used the
data for cancer patients with year of diagnosis as 2001 or
before. Moreover, since several important attributes were
introduced to the SEER data in 1998 (like RX Summ-Surg
Site 98-02, RX Summ-Scope Reg 98-02, RX Summ-Surg Oth
98-02, Summary stage 2000 (1998+)), we further restricted
the patient data with year of diagnosis as 1998 or after.
Thus, we selected the data of all cases of respiratory cancer
patients in the above mentioned nine SEER registries diag-
nosed between 1998 and 2001. There were a total of 70132
such instances. After removing the attributes which varied
too much or too little (and hence did not have significant
predictive power), we were left with a total of 68 attributes.
We further removed all instances where the patient died be-
cause of something other than respiratory cancer, reducing
the number of instances to 57254. After removing cause of
death and related attributes, we were left with 64 attributes
(including survival time in months). Since the survival rate
of respiratory cancer is extremely low, we derived binary
attributes for 6-month, 9-month, 1-year, 2-year, and 5-year
survival. The number of attributes were thus reduced from
118 in the initial dataset to 64, i.e., 63 predictor attributes
and 1 outcome attribute (which can be 6-month/9-month/1-
year/2-year/5-year survival).

Table 1 presents the distribution of not-survived and sur-
vived patients at the end of 6 months, 9 months, 1 year, 2
years, and 5 years of diagnosis. It clearly shows that the
distribution can be quite lopsided for some classes.

For classification, we built predictive models using more
than 30 different classification schemes, and of those which
completed execution in reasonable time, the top 5 were se-
lected:

1. J48 decision tree

2. Random forest

3. LogitBoost (with Decision Stump as the underlying
classifier)

4. Random subspace (with REPTree as the underlying
classifier)

5. Alternating decision tree

Because these 5 classification schemes gave good perfor-
mance, we also decided to use the ensemble voting tech-
nique for combining the results from these classifiers. Voting
can combine the probabilities generated by each classifier in
different ways, like average, product, majority, maximum,
minimum, median. After some initial experiments with the



Table 1: Class distribution
Fraction/Survival class 6-month 9-month 1-year 2-year 5-year

Not-survived 38.85% 49.12% 57.04% 72.79% 83.23%
Survived 61.15% 50.88% 42.96% 27.21% 16.77%

Figure 2: Prediction accuracy comparison amongst
different classification techniques. The lung cancer
outcome calculator uses ensemble voting scheme us-
ing just 13 predictor attributes.

different ways of combining the probabilities (which gave
similar results), we chose to calculate the resulting proba-
bility by taking the average of the probabilities generated
by each classifier.
We conducted experiments with the above mentioned 6

(=5+1) classification schemes, on each of the 5 datasets
(with class variable as 6-month, 9-month, 1-year, 2-year, and
5-year survival). 10-fold cross-validation was used for train-
ing and testing, and 10 runs of each <dataset, algorithm>
were conducted (with different cross-validation folds) for sta-
tistical analysis of the performance comparison. Thus, there
were a total of 5×6×10×10 = 3000 runs. Next, we present
the results.
The ZeroR classifier is commonly used as a baseline classi-

fier to measure the improvement in prediction performance
due to modeling over simply going by statistical majority,
i.e., always predicting the majority class. Fig. 2 presents the
overall prediction accuracy of the above-mentioned 6 classi-
fication schemes, along with ZeroR classifier, on each of the
five datasets. Since, accuracy results can be often mislead-
ing due to imbalanced classes, the area under the ROC curve
(AUC) is considered a better metric to measure the ability
of the model to discriminate between the different class val-
ues. Fig. 3 presents the area under the ROC curve (AUC)
for the same. For completeness, Fig. 2 and Fig. 3 also
present the classification results obtained by using support
vector machines (with RBF kernel) [15, 9] and neural net-
works, although their results were found to be less accurate
and inconsistent as compared to other classifiers. Moreover,
the execution time for constructing SVM and neural network
models was significantly larger as compared to other mod-
els. Therefore, instead of multiple runs of cross-validation,

Figure 3: Prediction performance comparison in
terms of area under the ROC curve (AUC). The
lung cancer outcome calculator uses ensemble vot-
ing scheme using just 13 predictor attributes.

a single run of training-testing split (training on 66% data,
and testing on 33%) was conducted to measure the accuracy
of these models. The SVM models required around 15 CPU
hours for construction (slow training of SVM models is also
acknowledged in [13]), and the neural network model con-
struction did not complete after more than 400 CPU hours
of execution time. The results for neural network reported
in this paper were obtained on the dataset with a reduced
attribute set (from 63 attributes to 13 attributes, used for
the tool as described later), which, for the ensemble vot-
ing scheme was found to give similar prediction accuracy
as with using all 63 attributes. Neural network modeling on
this smaller dataset took about 80 CPU hours. Since for this
data, better prediction quality was obtained by other mod-
els that could be constructed faster than SVM and neural
network models, these models were not investigated further.
Ability to construct the models in reasonable time is crucial
to enable regular model updates by incorporating new data
as and when it becomes available.

From Fig. 2 and Fig. 3, it is clear that ensemble voting
classification scheme gives the best prediction performance,
both in terms of prediction accuracy and AUC, which was
also found to be (statistically) significantly better than the
J48 decision tree as the base learner, at 5% significance
level. Some important observations from these figures are
as follows. For 5-year survival prediction, the baseline clas-
sifier (ZeroR) classifies all records as ’not survived’ (major-
ity class), achieving a prediction accuracy of 83.2% because
of the imbalanced class distribution, which seems quite im-
pressive, but is clearly uninformative and not useful in prac-
tice. Model-driven prediction for the same 5-year prediction
boosts the prediction accuracy up to 91.4%, which means an



effective reduction of error rate from 16.8% to 8.6%, thereby
reducing the error rate almost by a factor of 2. Apart from
prediction accuracy, an excellent discriminative power (dis-
crimination between death and survival) of 5-year survival
prediction model was also obtained with a high AUC of 0.94.
In general, it is not straightforward to compare predic-

tion results on different datasets with different class distri-
butions. The work in [10] had applied ensemble clustering
to study survival patterns of obtained clusters, but no test
results were reported. Moreover, the study used only 4 at-
tributes with popular values of those attributes. The pre-
dictive models used in the current study are more general
using all available attributes. The work in [13] studied 8
months survivability of lung cancer using variations of lo-
gistic regression and SVM techniques, and reported results
in terms of sensitivity and specificity. Again, their results
are not directly comparable to ours, since both the dataset
and the target class are different. More specifically, we use
a more recent release of the SEER database with newer at-
tributes, and a different time period of the diagnosed cases,
as compared to [13]. They report sensitivity and specificity
as measures of the quality of prediction. Some of the best
<sensitivity, specificity> combinations in their experiments
were: <74.62, 70.57>, <74.84, 68.26>, <75.44, 63.27>. We
had conducted experiments for 9-month survival, and the
<sensitivity, specificity> combination with ensemble voting
scheme was <78.90, 70.15>.

6. ON-LINE LUNG CANCER OUTCOME
CALCULATOR

Further, for the purpose of building an on-line tool for
lung cancer outcome prediction, we used correlation-based
feature subset selection technique [21] to identify a smaller
non-redundant subset of attributes which were highly cor-
related with the outcome variable while having low inter-
correlation amongst themselves. The goal here was to make
the tool convenient to use by reducing the number of at-
tributes, while trying to retain the predictive power of the
original set of attributes in the preprocessed data. The at-
tribute subsets obtained for the five different outcome vari-
ables were combined, and clearly redundant attributes were
manually removed. SEER-specific attributes were further
removed to make the calculator more easily applicable to
new patients. The calculator uses the resulting 13 input
variables as shown in Fig. 4 (with relative predictive power)
to estimate lung-cancer-specific mortality risk using the en-
semble voting scheme. Following is a brief description of
these attributes. The original SEER names of the attributes
are also mentioned wherever significantly different from the
names used in the calculator.

1. Age at diagnosis: Numeric age of the patient at the
time of diagnosis for lung cancer.

2. Birth place: The place of birth of the patient. There
are 198 options available to select for this attribute
(based on the values observed in the SEER database).

3. Cancer grade: A descriptor of how the cancer cells
appear and how fast they may grow and spread. Avail-
able options are - well-differentiated, moderately differ-
entiated, poorly differentiated, undifferentiated, and
undetermined.

Figure 4: The attributes used in the lung cancer out-
come calculator along with their relative predictive
power.

4. Diagnostic confirmation: The best method used to
confirm the presence of lung cancer. Available options
are - positive histology, positive cytology, positive mi-
croscopic confirmation (method unspecified), positive
laboratory test/marker study, direct visualization, ra-
diology, other clinical diagnosis, and unknown if mi-
croscopically confirmed.

5. Farthest extension of tumor: The farthest docu-
mented extension of tumor away from the lung, either
by contiguous extension (regional growth) or distant
metastases (cancer spreading to other organs far from
primary site through bloodstream or lymphatic sys-
tem). There are 20 options available to select for this
attribute. The original SEER name for this attribute
is ‘EOD extension’.

6. Lymph node involvement: The highest specific lymph
node chain that is involved by the tumor. Cancer cells
can spread to lymph nodes near the lung, which are
part of the lymphatic system (the system that pro-
duces, stores, and carries the infection-fighting-cells.
This can often lead to metastases. There are 8 options
available for this attribute. The original SEER name
for this attribute is ‘EOD Lymph Node Involv’.

7. Type of surgery performed: The surgical proce-
dure that removes and/or destroys cancerous tissue of
the lung, performed as part of the initial work-up or
first course of therapy. There are 25 options available
for this attribute, like cyrosurgery, fulguration, wedge
resection, laser excision, pneumonectomy, etc. The
original SEER name for this attribute is ‘RX Summ-
Surg Prim Site’.

8. Reason for no surgery: The reason why surgery was
not performed (if not). Available options are - surgery
performed, surgery not recommended, contraindicated
due to other conditions, unknown reason, patient or
patient’s guardian refused, recommended but unknown
if done, and unknown if surgery performed.



9. Order of surgery and radiation therapy: The
order in which surgery and radiation therapies were
administered for those patients who had both surgery
and radiation. Available options are - no radiation
and/or surgery, radiation before surgery, radiation af-
ter surgery, radiation both before and after surgery,
intraoperative radiation therapy, intraoperative radi-
ation with other radiation given before/after surgery,
and sequence unknown but both surgery and radiation
were given. The original SEER name for this attribute
is ‘RX Summ-Surg/Rad Seq’.

10. Scope of regional lymph node surgery: It de-
scribes the removal, biopsy, or aspiration of regional
lymph node(s) at the time of surgery of the primary
site or during a separate surgical event. There are 8
options available for this attribute. The original SEER
name for this attribute is ‘RX Summ-Scope Reg 98-02’.

11. Cancer stage: A descriptor of the extent the cancer
has spread, taking into account the size of the tumor,
depth of penetration, metastasis, etc. Available op-
tions are - in situ (noninvasive neoplasm), localized
(invasive neoplasm confined to the lung), regional (ex-
tended neoplasm), distant (spread neoplasm), and un-
staged/unknown. The original SEER name for this
attribute is ‘Summary Stage 2000 (1998+)’.

12. Number of malignant tumors in the past: An in-
teger denoting the number of malignant tumors in the
patient’s lifetime so far. This attribute is derived from
the SEER attribute ‘Sequence Number-Central’, which
encodes both numeric and categorical values for both
malignant and benign tumors within a single attribute.
As part of the preprocessing, the original SEER at-
tribute was split into numeric and nominal parts, and
the numeric part was further split into 2 attributes
representing number of malignant and benign tumors
respectively.

13. Total regional lymph nodes examined: An inte-
ger denoting the total number of regional lymph nodes
that were removed and examined by the pathologist.
This attributed was derived by extracting the numeric
part of the SEER attribute ‘Regional Nodes Exam-
ined’.

Prediction performance with just 13 attributes used in
the calculator is also presented in Fig. 2 and Fig. 3, which
shows only marginal decrease in prediction performance as
compared to using all 63 variables. A careful selection of
attributes for the calculator has therefore resulted in a de-
crease in the number of attributes from 63 to 13, while incur-
ring only a marginal cost on prediction accuracy (Prediction
accuracy = 91.2% for 5-year survival prediction with 13 at-
tributes, as compared to 91.4% with 63 attributes; AUC =
0.937 for 5-year survival prediction with 13 attributes, as
compared to 0.94 with 63 attributes). It seems that these
13 attributes were able to reasonably encode the informa-
tion available in the previously used 63 attributes, which
prevents any significant drop in accuracy. It is also interest-
ing that the birth place shows up as a significant attribute
in the set of 13 attributes. Fig. 5 shows a screenshot of the
lung cancer outcome calculator. A preliminary version of
the calculator was reported in a recent poster abstract [5].

7. CONCLUSION AND FUTURE WORK
In this paper, we used different meta classification schemes

with underlying decision tree classifiers to construct models
for survival prediction for respiratory cancer patients. Pre-
diction accuracies of 73.61%, 74.45%, 76.80%, 85.45%, and
91.35% was obtained for the 6-month, 9-month, 1-year, 2-
year, and 5-year respiratory cancer survival prediction using
the ensemble voting classification scheme. Further, a lung
cancer outcome calculator was developed using carefully se-
lected 13 attributes, while retaining the prediction quality.

Given the prediction quality, we believe that the calculator
can be very useful to not only accurately estimate survivabil-
ity of a lung cancer patient, but also aid doctors in decision
making and improve informed patient consent by providing
a better understanding of the risks involved in a particular
treatment procedure, based on patient-specific attributes.
Accurate risk prediction can potentially also save valuable
resources by avoiding high risk procedures that may not be
necessary for a particular patient.

Future work includes developing models for conditional
survival prediction (e.g. 5-year prediction, given that the
patient has already survived for 1 year), and exploring the
use of undersampling/oversampling to deal with unbalanced
data. We also plan to do similar analysis for other cancers,
and developing on-line cancer outcome calculators for them.
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