
Parallel Graph Mining with Dynamic Load Balancing

Nilothpal Talukder
IBM Systems, Poughkeespie, NY

Email: ntalukd@us.ibm.com

Mohammed J. Zaki
Rensselaer Polytechnic Institute, Troy, NY

Email: zaki@cs.rpi.edu

Abstract—Frequent subgraph mining (FSM) has important
applications in areas such as bioinformatics, social networks
and others. In this paper, we present a highly scalable approach
called PARGRAPH that can efficiently mine from a single graph
in both distributed as well as shared-memory based systems. In
a distributed environment, we can leverage the local memory
of multiple compute nodes for storing a large number of
intermediate states for enumerating patterns. To address the
skewness in the pattern generation tree, our approach uses
a novel hybrid load balancing scheme to efficiently distribute
workload across both processes and threads. Our experiments
demonstrate good speedups using message passing interface
(MPI) and OpenMP threads.

Keywords-Parallel Frequent Graph Mining; Dynamic Load
Balancing; High Performance Computing

I. INTRODUCTION

Discovering frequent subgraph patterns from graph struc-
tures is a well-studied and very important problem in areas
such as computational chemistry, bioinformatics, and social
networks. For example, the scientists might be interested
in finding common substructures in labeled input graphs
representing protein structures, protein-protein interactions
or chemical compounds. Similarly, mining frequent sub-
graphs from a social graph or citation network can help
find communities which may interest social scientists. This
problem is known as frequent subgraph mining (FSM) and is
divided into two broad categories, namely, finding frequent
patterns in either i) a graph database comprising multiple
input graphs (e.g., a set of chemical compounds), or ii) a
single large input graph setting (e.g., a social network or
citation graph).

For both cases, the FSM task requires enumerating possi-
bly an exponential number of candidate subgraph patterns,
and checking their presence (subgraph isomorphisms) in the
input graph. Finally, it outputs all subgraphs with frequency
(or support) above some minimum support threshold. In the
multiple graphs case, frequency is simply the number of
graphs that contain the pattern. However, defining the notion
of support in a single graph is more challenging, since it is
not enough to simply state whether a pattern exists or not.
Instead, we have to find all the distinct isomorphisms from
the pattern to the input graph. However, this violates the anti-
monotonicity principle that is required for effective pruning
of the output pattern space. That is, a subgraph can have
fewer isomorphisms (i.e., lower support) than its supergraph
(e.g., assume that the input graph has only one vertex labeled
A, which is connected to 100 vertices labeled B, then the
vertex A occurs only once, but the edge A−B occurs 100
times). Several anti-monotonic support measures have been
proposed for use in the single graph setting [1].

A

A

A

A

A

A

A

B

A

A

B

B

A

A

B

A

A

B B

A

A

B

B

A

B

A

B

A

A

B

B

A

B B

A

B

A

B

A

B

A B

A

A

B

B

A

A

B B

A

A

A

B

Process i
Level 1

Level 2

Level 3

Level 4

Level 0 Φ

Process j

Figure 1. Vertical split of pattern lattice among processes

Most existing parallel [2–5] and mapreduce-based FSM
approaches [6–8] adopt the graph database setting. In con-
trast, our focus is on mining patterns from a single input
graph. Existing sequential solutions for this problem include
SiGraM [9] and GraMi [10], whereas existing parallel ap-
proaches target only shared-memory (SMP) systems [11].
More recent distributed approaches include Arabesque [12],
DistGraph [13] and Pregel-based [14]. However, our focus in
this paper is to leverage dynamic load balancing to efficiently
mine a moderate sized input graph that fits in the memory of
a compute node, by effectively leveraging both thread-based
and MPI-based parallelism.

In this paper, we present PARGRAPH, a scalable FSM
algorithm on a single graph that runs on distributed as
well as shared-memory (SMP) based systems. The algorithm
assumes that the input graph fits in the memory of a single
compute node. The largest processable input graph depends
on the size of the local memory of the compute nodes in a
distributed system. In the case of shared-memory systems
we determine the size of the local memory by dividing
the total memory among the processes. It is important
to note that programming for distributed environments is
considerably more challenging than SMP systems, since it
requires interprocess communication in the form of message
passing or some other means. Also, the mining task requires
us to keep the occurrences/embeddings of the expanding
candidate patterns in memory, which can lead to a large
amount of intermediate states that has to be maintained,
and that can be much larger than the input graph. That is
why it is often harder to scale FSM algorithm on a single
compute node. On a distributed or cluster environment, we
can leverage the local memory of multiple compute nodes,
which helps us to scale significantly.

The central idea of PARGRAPH is that we provide the
same input graph to all compute nodes/processes and per-
form the mining task in parallel. In fig. 1 we show an
example of a partial candidate pattern generation tree or

pattern lattice resulting from the extension of the patterns.
It is obvious that we can divide the tree vertically into
computationally independent parts among multiple processes
or threads. In addition, since the support of a pattern is
not dependant on the other parts of the tree we can do
a DFS (depth-first search) based traversal in the candidate
generation tree. We also consider canonical code [15] for
patterns to remove duplicates from the pattern lattice. From
fig. 1 it is also evident that the subtrees in the lattice can
have different depths, leading to unbalanced workload for
different processes. Therefore, to keep the processors and
threads busy at all times, we perform a hybrid workload
balancing scheme using MPI (message passing interface)
and OpenMP threads. Each process that is out of work
can request and obtain work from other active processes,
and then can redistribute the workload among its threads.
We report experimental results of our parallel graph mining
implementation using a multi-core (16-core) shared memory
machine and the HPC platfrom, IBM Blue Gene/Q.

The contributions of our work is the following:
• PARGRAPH utilizes both thread-based parallelism

within each compute node and distributed approach
across compute nodes (using MPI). Hence, it is suitable
for a wide variety of environments, such as distributed
systems, shared memory systems, and HPC systems.

• PARGRAPH adopts a hybrid dynamic load balancing
scheme that shares workload across both processes and
threads, making it very efficient and highly scalable in
any environment.

II. BACKGROUND

In this section, we review some definitions. Let V be the
set of vertices and E ⊆ V × V the set of edges. A graph is
defined as G = (V,E). In addition, we assume that L is a
labeling function for nodes and edges; we denote by L(v)
the label for vertex v ∈ V , and by L(v1, v2) the label for
the edge (v1, v2) ∈ E. In the following, we use G = (V,E)
for the single large input graph, and we use P = (VP , EP)
for a pattern graph, i.e., one of the subgraphs we wish to
mine in G.
Subgraph Isomorphism and Embedding: We say that the
pattern P = (VP , EP) is subgraph isomorphic to G =
(V,E), denoted as P ⊆ G, if there exists a injective func-
tion, φ : VP → V such that: 1) ∀v ∈ VP , L(v) = L(φ(v)),
and 2) ∀(vi, vj) ∈ EP , (φ(vi), φ(vj)) ∈ E and L(vi, vj) =
L(φ(vi), φ(vj)). In this case, the isomorphic subgraph in
G comprising the vertices φ(v1), φ(v2), · · · , φ(vp), is also
called an embedding of the pattern P in the input graph
G (here p = |VP |). We use the terms isomorphism and
embedding interchangeably, since given the isomorphism
function φ, we can uniquely identify the corresponding
embedding (which is a subgraph of G).
Canonical Code: Given a pattern P = (VP , EP), let
Aut(P) denote the automorphism group for P , i.e., the
set of all graphs isomorphic to P . The unique minimal
element of this set is called the canonical code for P .
There are several approaches for representing the canonical
code, such as minimal or canonical adjacency matrices [16–
18], and minimal DFS code [15]. In this paper, we use the

latter, i.e., we represent P using the minimal DFS code.
For example, a pattern A-B-A can have different DFS
code representations, such as (0, 1, A,−, B)(1, 2, B,−, A)
or (0, 1, B,−, A)(0, 2, B,−, A). Each entry in a DFS code
is a five element tuple (vi, vj , L(vi), L(vi, vj), L(vj)), where
vi and vj indicate the vertex ids that are assigned during the
DFS traversal from an arbitrary vertex in the pattern. Among
different codes for the pattern, (0, 1, A,−, B)(1, 2, B,−, A)
happens to be the canonical or minimal DFS code [15].
Pattern Extension: The search for frequent patterns is
usually done in a breadth-first or depth-first manner, starting
with single edge graphs and extending existing patterns with
an extra edge at each level or step. There are two types of
edge extensions: 1) a forward edge is one that introduces
a new vertex and joins an existing vertex to the new one,
and 2) a backward edge is one that connects two existing
vertices creating a cycle. For systematic pattern enumeration,
forward extensions are allowed only from the vertices on the
rightmost path [15], and backward extensions are allowed
only from the rightmost vertex [15], to the rest of the vertices
on rightmost path (we omit the details here for brevity).
This guarantees that all possible candidate patterns will be
generated.

Figure 2. Support in a single graph

Support: For a pattern P = (VP , EP) and input graph
G = (V,E), let Σ = {φ1, φ2, · · · } denote the set of all
isomorphisms/embeddings of P in G. The support of a
pattern P is defined based on some function of Σ. For
instance, support can be defined as the cardinality of Σ,
i.e., the number of embeddings of P in G. However, as we
saw in the introduction, in the case of a single input graph,
this definition violates the anti-monotonicity principle, which
requires that the support of a pattern should not be greater
than the support of its subgraphs. To address this issue a
support measure using the maximum independent set (MIS)
of the overlap graph between embeddings was proposed by
Kuramochi et al. [9]. However, MIS is known to be a NP-
hard problem.

In this paper we use the most restricted node (MRN)
support, also called as the minimum image based support
proposed in [1], where support is defined as the minimum
number of unique vertex mappings over any of the vertices
in P . More formally, given the set of embeddings Σ, the set
of unique vertex mappings for a node v ∈ VP is given as

Φ(v) = ∪|Σ|i=1φi(v)

and the MRN support of P is defined as:

σ(P) = min
v∈VP

{|Φ(v)|}

Fig.2 shows the embeddings of example pattern A−B−C−
A in the input graph. For instance, one of the embeddings is
φ1 = {0, 2, 5, 7} corresponding to the first column, and the
set of mappings for the first vertex is {0, 1, 7}. The number
of unique mappings for each pattern vertex are 3, 3, 2 and 2,
respectively. Thus the MRN support of P is σ(P) = 2. One
of the advantages of using the MRN support is that even if
there are an exponential number of embeddings, the storing
the mappings Φ(v) across all vertices v ∈ VP takes at most
polynomial space, namely O(|VP | × |V |).
Frequent Graph Mining: In the single-graph setting, the
input for frequent graph mining is G and a user specified
parameter called minimum support threshold, or in short,
minsup ∈ Z. The task is to discover all subgraph patterns,
such that for each pattern P , we have σ(P) ≥ minsup.

III. RELATED WORK

FSM is a very well studied problem in both trans-
actional [15–19] and single graph setting [9, 10, 20].
For transactional setting, the earlier algorithms, such as
AGM [17] and FSG [16] use the same principle as the
Apriori frequent itemsets mining algorithm [21]. The latter
algorithms, such as gSpan [15], Gaston [19] and FFSM [18]
adopt a unique ordering of the subgraph patterns which
results in a significant reduction of the search space of the
candidates. GSpan uses minimal DFS code as the canonical
representation of the subgraph patterns. Also, gSpan adopts a
pattern-growth based (depth-first) approach where a frequent
and minimal DFS code is extended recursively until all
frequent supergraphs are enumerated. The efforts in sequen-
tial single graph mining include SiGraM [9], and more
recently GraMi [10]. SiGraM uses maximum independent
set (MIS) based approach for computing support which is
expensive. The recent approach, GraMi avoids enumerating
all isomorphisms and maps the subgraph isomorphism prob-
lem into a constraint satisfaction problem (CSP). However,
both SiGraM and GraMi are sequential approaches and do
not scale. The parallel gSpan algorithm described in [2]
performs both breadth-first and depth-first exploration of
the pattern space using static and dynamic load balancing
of tasks, respectively. However, the algorithm only works
in shared-memory systems. A parallel single graph min-
ing method for SMP systems was proposed in [11]. The
work parallelizes VSiGraM algorithm [9] using OpenMP
taskq/task extensions. It demonstrates good speedup with
respect to the sequential VSiGraM, which in turn, uses costly
MIS support measure. Arabesque framework [12] proposes
a general embeddings centric or “think like an embedding”
paradigm for graph problems like FSM, motif discovery,
and clique finding. More recently, the distributed single
graph mining algorithm DistGraph [13] can mine massive
networks. It considers partitioned input graph and performs
BFS based exploration on the pattern lattice. Other recent
approaches use graph processing platforms, such as Pregel
to perform the mining task [14]. In this paper, our focus is on
developing a efficient parallel approach that can handle un-
partitioned moderated sized input graphs, such as a network
with millions of vertices, given sufficient memory.

IV. PARALLEL SINGLE GRAPH MINING

In this section, we discuss parallel single graph mining
in a step by step approach. The goal is to develop an
algorithm that can efficiently run on both distributed and
shared-memory based environments. First, we consider the
sequential graph mining algorithm and attempt to naı̈vely
parallelize it (BASIC-PARGRAPH algorithm). The algorithm
vertically partitions the pattern lattice where each process
obtains roughly equal number of subtrees rooted at a single
edge pattern, as shown in fig. 1. Then, based on this
we develop our parallel algorithm PARGRAPH that uses
dynamic load balancing with inter-process communication,
such as message passing. Finally, we discuss how our
algorithm performs hybrid load balancing using both threads
and processes, making it suitable for both shared-memory
and distributed environment.

A. Basic Parallel Approach
We start off with a simple approach BASIC-PARGRAPH

(Alg. 1) for single graph mining that performs naı̈ve par-
allelism on the sequential graph mining algorithm. The
algorithm is run by p processes in parallel with the same
input graph G. First, we determine all single edge patterns
F from the input graph G (step 1). Then, the processes
can equally divide the patterns among them and perform
mining on the corresponding set of single edge patterns
(Fi for process i). In other words, each process gets a
vertical partition of the pattern lattice and obtains roughly
equal number of subtrees rooted at a single edge pattern.
In step 2, the process i determines the part of the frequent
single-edge patterns it would consider to expand. To deter-
mine Fi no communication among the processes is needed.
Each process has access to F and hence, it can determine
the corresponding indices in F from the process id. The
mining process continues in each process independently
in depth-first manner by invoking the sequential mining
steps, i.e., SEQ-MAINLOOP function in step 5. Inside SEQ-
MAINLOOP, we use gSpan’s canonical labeling method for
the graphs, i.e., DFS code, that provides fast pruning of
duplicate subgraph patterns from the candidate generation
search tree (step 7). The embeddings Σ(P) are kept in
memory. Each time a pattern is extended, so is its set of
embeddings (step 8). From the embeddings Σ(P) the vertex
mappings are extracted, and the support σ(P) is computed.
Finally, the frequent patterns are presented in the output.

B. Single Graph Mining with Dynamic Load Balancing
For a parallel algorithm when a problem size is known

(e.g., matrix-matrix or matrix-vector multiplication) and
we have a constant number of process or nodes, we can
easily distribute the tasks statically. Unfortunately, this does
not hold for FSM, as we do not know the number of
frequent patterns in advance. One of the prime challenges
for parallel graph mining is that the candidate generation
tree is usually not balanced. This skewness (one subtree is
very deep compared to the others) of the tree can cause the
performance of the parallel algorithm to be as bad as it’s
sequential counterpart. Therefore, we need to dynamically
redistribute the work when some process is out of work.

Algorithm 1 Basic Parallel Single Graph Mining
BASIC-PARGRAPH(Graph G, Threshold minsup, Number of processes p,
Process id i)
1: Compute all single edge patterns F
2: Equally distribute F among p processes; process i gets Fi

3: for each P ∈ Fi do
4: Create initial embeddings Σ(P)
5: SEQ-MAINLOOP(G,P,Σ(P))
6: end for

SEQ-MAINLOOP(Graph G, Pattern P , Embeddings Σ(P))
7: if P is canonical then
8: Get all possible extensions E(P) of P from Σ(P) and G
9: for each e ∈ E(P) do

10: P ′ ← P extended by e
11: if support σ(P ′) ≥ minsup then
12: output P ′

13: SEQ-MAINLOOP(G,P ′,Σ(P ′))
14: end if
15: end for
16: end if

In this section, we discuss our parallel single graph mining
algorithm PARGRAPH that uses parallel formulation of the
depth first search (DFS) [22] on the candidate generation
tree. The parallel depth first search relies on dynamic load
balancing, where each process can perform a DFS walk
on disjoint parts of the tree, since they are computationally
independent.

When a process is done finding all frequent patterns in
its corresponding part of the tree, it actively requests an
unexplored part of the tree from other processes. In our
message passing architecture, the requester process asks
for work and the donor process responds to the request
with either some work from its search space or with a reply
indicating no availability of work. The work in our case is
the DFS code prefixes of the patterns stored at each level
of the candidate generation tree. We maintain a DFS prefix
queue for each level of the tree. The queue is populated in
the order of the DFS code extensions. Fig. 3 shows DFS
prefix queues for five levels. The DFS code of a candidate
pattern can be constructed by concatenating the currently
expanded prefixes from level 1 to the current level.

(0,1, A,-,A)

(1,2, A,-,A)

(2,0, A,-,A) (2,3, A,-,A)

(1,2, A,-,B)

(2,3, A,-,B)

(3,0, A,-,A) (3,4, A,-,A) (3,4, A,-,B) (2,4, A,-,A) (2,4, A,-,B)

(4,2, B,-,A) (4,5, B,-,A) (4,5, B,-,B) (3,5, A,-,B) (2,5, A,-,B) (1,5, A,-,B)

Levels

2

3

4

5 (0,5, A,-,B)

Split Top (Level)

Split All

(Levels)

DFS prefix queue for each level

(split_threshold = 2)

Currently expanded prefix

Past expanded prefix1 A A A

Donated

patterns Split Top

Split All

0 1 2 A
3

B
4

A A A
1 2 A

3

B
4

A A A
1 2 A

3

B
4

A A A
1 2 A

3

B
4

A A A
1 2 A

3

B
4

0

0

0

0

B 5

B
B

5
5

Figure 3. Work split strategies of DFS code prefix queues: Split Top and
Split All

The expanded DFS code prefixes are highlighted in
Fig. 3 for the sake of illustration (however, in the actual
implementation we remove the already expanded prefixes
from the queue and put the currently expanded DFS code
in a separate stack). Here, (0, 1, A,−, A)(1, 2, A,−, A)

(2, 3, A,−, A)(3, 4, A,−, B)(4, 2, B,−, A) is an example
DFS code. We refer the DFS queue as work queue in our
algorithm.

Algorithm 2 Parallel Single Graph Mining
PARGRAPH(Graph G, Threshold minsup, Number of processes p, Process
id i)
1: Compute all single edge patterns F
2: Equally distribute F among p processes; process i gets Fi

3: Populate patterns Fi in work queue Qi

4: state← ACTIVE
5: while termination not detected do
6: for each P ∈ Qi do
7: Create initial embeddings Σ(P)
8: PARGRAPH-MAIN(G,P,Σ(P))
9: end for

10: state← IDLE
11: DYN-LOAD-BALANCE()
12: end while

PARGRAPH-MAIN(Graph G, Pattern P , Embeddings Σ(P))
13: if P is canonical then
14: Get all possible extensions E(P) of P from Σ(P) and G
15: DYN-LOAD-BALANCE()
16: for each e ∈ E(P) do
17: P ′ ← P extended by e
18: if support σ(P ′) ≥ minsup then
19: output P ′

20: PARGRAPH-MAIN(G,P ′,Σ(P ′))
21: end if
22: end for
23: end if

DYN-LOAD-BALANCE()
24: if Process i has pending msg then
25: Get next msg from msg queue
26: if msg is a work request from requester process then
27: if state = ACTIVE and i can donate work then
28: Send work to requester process
29: else
30: Reply requester with no work availability
31: end if
32: end if
33: if msg is a work reply from donor process then
34: if donor has sent work then
35: Populate work in Qi

36: state← ACTIVE
37: end if
38: end if
39: end if
40: if state = IDLE and termination not detected then
41: Send work request to next process
42: end if

The pseudocode of PARGRAPH is shown in Alg. 2. Every
process maintains a list of available work or unexpanded
candidate patterns in the form of DFS codes. We skip the
details of work queue Qi here for simplicity of the algo-
rithm, and revisit it in the next section. Now, each process
runs Alg. 2 and starts off with it’s share of single edges
(length 1 DFS codes) Fi (step 2) and populating them in
work queue Qi (step 3). We maintain a state of the process
(ACTIVE or IDLE) to indicate whether it is currently
working or out of work. The basic structure of the algorithm
is still the same as Alg. 1; the new addition is DYN-LOAD-
BALANCE() invoked in steps 11 and 15. The work queue Qi

gets repopulated after a successful work request by process

i (step 35). Therefore, the requesting process will again be
in ACTIVE state and will continue to repeat the procedure
until a global termination of the distributed algorithm has
been reached (step 5). The termination is reached when
all processes become IDLE , i.e., there are no more work
across the whole system to be shared among the processes.
However, the detection of termination is nontrivial in a
distributed setting. When one process becomes IDLE it
continues to ask for work from other processes, even in the
situation when all other processes are IDLE . The processes
could perform a periodic broadcast of the states. Obviously,
it incurs high communication cost. In PARGRAPH we use
Dijkstra’s token based termination detection algorithm [23]
for this purpose. For a total number of p processes, the run-
time of this algorithm is O(p), which works well for small
number of processes (8 or 16).

In DYN-LOAD-BALANCE() function, the process i probes
for incoming messages (step 24) A work request from a
requester process is responded to accordingly based on
the current state of the process and work availability. The
availability of work is determined by the size of a DFS code
prefix queue being above a threshold (split threshold). We
set split threshold = 2 in our implementations. We discuss
work split strategies in subsection IV-D. When a process
receives a work response it populates the prefix queues
with the DFS codes obtained from the donor process. The
embeddings or even the vertex mappings can be very large
and are not sent through message passing interface, because
of the large network communication overhead. For example,
for the donor has to send O(|VP |× |V |) mappings for each
donated pattern P = (VP , EP). Rather, they are regenerated
locally with much less overhead by the requester process.

There are several choices for the load balancing
schemes [22] to request work from the “next” donor process
(step 41).
• Asynchronous or Local Round Robin (ARR): Each

process maintains a local variable for the next process
and increments it (as in a logical ring formation). The
next process is n← (n+1) mod p, where p is the total
number of processes.

• Global Round Robin (GRR): Each process probes for
a global variable for the next process (needs lock for
exclusive access). It is stored in a designated process.

• Random Polling (RP): The next process is randomly
chosen by each process.

We chose the first and third options (ARR and RP) in our
algorithm since they do not have locking contention and have
been shown [22] to have demonstrated good performance
with parallel DFS traversal.

C. Work Queue

As mentioned earlier, every process keeps a list or avail-
able work or unexpanded DFS codes. For that we maintain a
DFS code prefix queue for each level of candidate generation
tree. Fig. 3 shows the prefix queues for top five levels
from the root. The DFS code of a candidate pattern can be
constructed by concatenating the currently expanded prefixes
from level 1 to the current level. When a pattern is expanded
by right-most path extensions, the extensions are put into the

next level queue. The expanded DFS code prefixes are high-
lighted in Fig. 3 for convenience. However, as mentioned
earlier, in the actual implementation we remove the already
expanded prefixes from the queue. An example DFS code
is (0, 1, A,−, A)(1, 2, A,−, A)(2, 3, A,−, A)(3, 4, A,−, B)
(4, 2, B,−, A). That is, when a process is done finding
all frequent patterns in its corresponding part of the tree,
it actively requests an unexplored part of the tree from
other processes. In our message passing architecture, the
requester process asks for work and the donor process
responds to the request with either some work from its
search space or with a reply indicating no availability of
work.

D. Work Split Strategies
Now, we discuss how the work requests from a process

are handled by a donor process. As mentioned earlier, the
size of a DFS prefix queue is indicated by the number of
unexplored candidate prefixes in the queue. When a process
receives a work request, first it checks whether it is in
ACTIVE state. Then, it checks the size of DFS code pre-
fixes beginning from level 1. The work availability is deter-
mined by the size of the queue being above split threshold.
We term the first level to have such a criterion, the “topmost
available level”. If we consider split threshold = 2, in
Fig. 3 the topmost available level is level 4. It is shown
that splitting the work queue in half usually achieves the
best performance [22]. Therefore, the queue of DFS code
prefixes is split into half and given to the requesting process.
Also, it is better to give work from the top level rather than
the levels below [5]. The reason is that work from the top
level guarantees more expansions of the tree and hence more
work. We explore two work split strategies in our algorithm
as explained in the following.
• Split Top: The donor process only splits the queue at

the topmost available level and donates half of it.
• Split All: The donor process splits queues from the

topmost available level to the currently expanding level.
Then, it donates half of each queue.

In Fig. 3 for Split Top we split only level 4, whereas for
Split All we split levels 4 and 5. As mentioned earlier, in
our algorithm we only communicate DFS codes, and the
embeddings are regenerated by the receiving process.

E. Hybrid Approach: Distributed and Shared Memory
We consider a hybrid approach for PARGRAPH on a

cluster of computers or a distributed environment. Each
computing unit in a cluster or a distributed system is usually
a SMP machine. The basic idea of our algorithm is that we
run an instance of parallel graph mining algorithm (Alg. 2)
per compute node and inside each node we can run threads
to divide the work even further. Each process works on the
same input graph. It is possible to run a threads-based load
balancing inside a computing unit, and a process based load
balancing among the computing units. This gives rise to a
situation where one can conveniently choose the number of
processes or threads for the computation. For example, p
processes (1 per compute node) and k threads per process
can be used. Our threads load balancing is very similar

to the process based dynamic load balancing. However, in
addition to the private work queues, we now maintain a
shared work queue and a message queue for each thread.
Also, the messages do not need to be communicated through
network, rather they can be directly written to the donor
thread’s message queue. Other threads might also want to
write to the same message queue and hence we need to
use locks to prevent concurrent accesses. Upon receiving a
work request, the donor thread can now directly populate
the shared queue of the requesting thread instead of sending
it through the network. The work split strategy also remains
unchanged. When choosing the next thread for requesting
work ARR or RP schemes are used. If a donor thread finds
a work request, it determines whether it can split the work
and then directly populates the work queue of the requester
thread. Since the requester thread is IDLE at this point,
we don’t need a lock. The donor thread also changes the
state of the requester thread to ACTIVE so it can start
working again.

Thread 0

Work Queues

Thread 1 Thread 2 Thread 3

Process j (ACTIVE)

Requesting

Work

Thread 0

Work Queues

Thread 1 Thread 2 Thread 3

Process i (IDLE)

Thread 0

Work Queues

Thread 1 Thread 2 Thread 3

Process j (ACTIVE)

Donating

Work

Thread 0

Work Queues

Thread 1 Thread 2 Thread 3

Process i (IDLE)

Thread 0

Work Queues

Thread 1 Thread 2 Thread 3

Process j (ACTIVE)

Thread 0

Work Queues

Thread 1 Thread 2 Thread 3

Process i (ACTIVE)

Figure 4. Work splitting in hybrid load balancing

The process state becomes IDLE when all threads be-
come IDLE . We do not need a termination detection al-
gorithm, since the thread states can be accessed by any
thread. In this situation, the designated thread from the
thread group performs process based dynamic load balancing
(DYN-LOAD-BALANCE() in Alg. 2) or requests work from
other thread groups, i.e., processes. The designated thread
in the donor process then asks the rest of the threads to
donate work. All threads donate half of their work in the
same way we discussed earlier. The designated thread then
ships this work to the requesting process. Again, the corre-
sponding designated thread on the requesting side receives
and redistributes the work among the IDLE threads. Thus,
the snapshot of the work queue on the donor process is
effectively halved and given to the threads of the requesting
process. The threads that obtained work switch to the
ACTIVE state and so does the process itself. Fig. 4 shows
a conceptual diagram of how the work sharing is done in
the hybrid approach. In this scenario, process i is initially
in IDLE state and requests work from the process j. Each
process has 4 threads, and the state of the work queue of
each thread is shown. Upon obtaining the work request, all
threads in process j split work in half and donate to process
i. As a result, process i becomes ACTIVE .

V. EXPERIMENTS

In this section, we report results from our experiments
with PARGRAPH.

A. Setup

We implemented our parallel graph mining algorithm
PARGRAPH using C++ (compiled using g++ (v. 4.4.7)
and O3 optimization flag). We use the OpenMP (v. 3.0)
library for thread-based parallelism within compute nodes,
and the portable, open-source and freely available MPI
implementation MPICH2 (v. 1.5) for distributed compu-
tation across nodes. Our PARGRAPH code is available
for download at https://github.com/zakimjz/DistGraph/tree/
master/src/parallel.

In addition, we used two different environments to run
the experiments: 1) An SMP machine with 16-core, 2.9Ghz
AMD Opteron 6272 processor, 256 GB shared memory and
running Ubuntu SMP OS; and 2) the IBM Blue Gene/Q
supercomputer with upto 16 compute nodes, and each node
consisting of a 16-core 1.6 GHz A2 processor, with 16 GB
of DDR3 memory.

The datasets used are described in Table I. The single
graph datasets in the experiments were obtained from the
PDB dataset [24], with a small, a medium and a large
instance. The graphs represent protein structures, where
amino acids with different labels are connected with one
another.

Table I
DATASETS AND THEIR PROPERTIES: VERTICES |V |, EDGES |E|, LABELS

|L|, AVG. DEGREE AD, AND CLUSTERING COEFFICIENT CC

dataset |V | |E| |L| AD CC
PDBs 20226 83356 22 8.2 0.57
PDBm 90982 349779 22 3.9 0.57
PDBl 2020188 7905260 22 3.9 0.55

B. Results

The bar plots in Fig. 5 show the performance comparison
of the sequential run and our multi-core SMP machine runs.
The left Y axis shows the total time, and the bars show the
time for different methods with different minimum support
values. A value s on the X axis indicates minsup of s%
with respect to |V |, i.e., we are using relative support for
each pattern. So for a pattern to be frequent it must satisfy
the condition σ(P) ≥ |V |×s/100. In most cases the right Y
axis records the speedup with respect to a baseline method
in the same plot.

Fig. 5(a) and 5(b) show the results we obtained with PDBs
dataset, using 16 processes, and having two different load
balancing schemes (ARR and RP). On both plots we observe
that the work split strategy “split top” performs better than
the “split all”. This may be due to the high communication
cost incurred for the “split all” strategy. However, we do not
observe any significant difference between the performance
of ARR or RP. With the smallest support value 0.49%, both
ARR and RP strategies achieve a speedup of just over 15
with “split top”.

Fig. 5(c) and 5(d) show the results we obtained with the
PDBm and PDBl datasets, respectively, using 16 processes.
Again, with the PDBm dataset and the lowest support value

https://github.com/zakimjz/DistGraph/tree/master/src/parallel
https://github.com/zakimjz/DistGraph/tree/master/src/parallel

0.49 0.59 0.69 0.79 0.890
20

0
40

0
60

0
80

0
ARR p = 16, k = 1

Min support (%)

Ti
m

e
in

 s
ec

on
ds

0
5

10
15

20
S

pe
ed

up
 w

rt
 s

eq

Seq
ParGraph (split top)
ParGraph (split all)

(a) Seq vs MPI (PDBs ARR p=16)

0.49 0.59 0.69 0.79 0.890
20

0
40

0
60

0
80

0

RP p = 16, k = 1

Min support (%)

Ti
m

e
in

 s
ec

on
ds

0
5

10
15

S
pe

ed
up

 w
rt

 s
eq

Seq
ParGraph (split top)
ParGraph (split all)

(b) Seq vs MPI (PDBs RP p=16)

0.22 0.33 0.44 0.55 0.66 0.77 0.880
20

0
60

0
10

00
14

00 RP p = 16, k = 1

Min support (%)

Ti
m

e
in

 s
ec

on
ds

0
5

10
15

S
pe

ed
up

 w
rt

 s
eq

Seq
ParGraph (split top)
ParGraph (split all)

(c) Seq vs MPI (PDBm RP p=16)

0.40 0.50 0.59 0.69 0.79 0.89 0.990
10

00
0

30
00

0

RP p = 16, k = 1

Min support (%)

Ti
m

e
in

 s
ec

on
ds

0
5

10
15

S
pe

ed
up

 w
rt

 s
eq

Seq
ParGraph (split top)
ParGraph (split all)

(d) Seq vs MPI (PDBl RP p=16)
Figure 5. Results from multi-core

0.49 0.59 0.69 0.79 0.89 0.990
10

00
0

30
00

0

● ● ● ● ● ●

No load balancing, p = 1

Min support (%)

Ti
m

e
in

 s
ec

on
ds

0.
0

0.
5

1.
0

1.
5

2.
0

S
pe

ed
up

 w
rt

 k
 =

 1

●

k = 1
k = 4
k = 8
k = 16

(a) No load balancing (PDBs p=1)

0.49 0.59 0.69 0.79 0.89 0.990
10

00
0

30
00

0
●

●

●

●
●

●

Load balancing, p = 1

Min support (%)

Ti
m

e
in

 s
ec

on
ds

0
5

10
15

S
pe

ed
up

 w
rt

 k
 =

 1

●

k = 1
k = 4
k = 8
k = 16

(b) Load balancing (PDBs p=1)

0.22 0.33 0.44 0.55 0.66 0.77 0.880
10

00
0

30
00

0
50

00
0

●
● ●

●
● ● ●

No load balancing, p = 1

Min support (%)

Ti
m

e
in

 s
ec

on
ds

0
1

2
3

4
S

pe
ed

up
 w

rt
 k

 =
 1

●

k = 1
k = 4
k = 8
k = 16

(c) No load balancing (PDBm p=1)

0.22 0.33 0.44 0.55 0.66 0.77 0.880
10

00
0

30
00

0
50

00
0

●

●

●

●

●
●

●

Load balancing, p = 1

Min support (%)

Ti
m

e
in

 s
ec

on
ds

0
2

4
6

8
10

14
S

pe
ed

up
 w

rt
 k

 =
 1

●

k = 1
k = 4
k = 8
k = 16

(d) Load balancing (PDBm p=1)
Figure 6. Effect of load balancing Blue Gene/Q

of 0.22%, we achieve a speedup of 15.3 . However, with the
PDBl dataset the speedup is just under 15.

We show the effects of our dynamic load balancing
scheme in Fig. 6 on BG/Q platform. The communication
between the compute nodes is performed using MPI (for
example thread 0 is designated for the task of communi-
cating with external nodes during dynamic load balancing).
On BlueGene/Q each compute node has 16GB of shared
memory for 16 cores. Therefore, each core gets roughly 1GB
of memory for its independent use. In our hybrid approach
we load a single copy of the graph into the shared memory
of each compute node. The plots report results using thread
based parallelism, using 1, 4, 8 and 16 threads. Fig. 6(a) and
6(c) show results with no load balancing with the PDBs and
PDBm graphs, respectively.

0.49 0.59 0.69 0.79 0.89 0.990
10

00
0

30
00

0

k = 1

Min support (%)

Ti
m

e
in

 s
ec

on
ds

0
5

10
15

20
S

pe
ed

up
 w

rt
 s

eq

Seq
ParGraph(p = 8)
ParGraph(p = 16)

(a) Seq vs MPI (PDBs k = 1)

0.22 0.33 0.44 0.55 0.66 0.77 0.880
10

00
0

30
00

0
50

00
0 k = 1

Min support (%)

Ti
m

e
in

 s
ec

on
ds

0
5

10
15

S
pe

ed
up

 w
rt

 s
eq

Seq
ParGraph(p = 8)
ParGraph(p = 16)

(b) Seq vs MPI (PDBm k = 1)
Figure 7. Distributed run from Blue Gene/Q

There is almost no speedup with any number of threads
with the PDBs graph. However, there is a very low speedup
w.r.t the single-thread version, in the case of the PDBm
graph. For example, with 16 threads, the speedup is just
around 3. Due to the absence of dynamic load balancing,
many threads became IDLE very soon and without work
till the end of the run. BG/Q was not able to mine the PDBl
graph consisting more than 2M vertices. On the other hand,
Fig. 6(b) and 6(d) show effects of multi-threaded dynamic
load balancing. With PDBs and PDBm graphs we achieve
almost linear speedup. We observe speedups of 15 and 13.8,
respectively at the lowest support values.

0.59 0.69 0.79 0.89 0.990
20

00
60

00
10

00
0

p = 4

Min support (%)
Ti

m
e

in
 s

ec
on

ds

0
5

10
15

20
25

S
pe

ed
up

 w
rt

 s
eq

Seq
ParGraph(k = 8)
ParGraph(k = 16)

(a) Seq vs hybrid (PDBs p = 4)

0.22 0.33 0.44 0.55 0.66 0.77 0.880
10

00
0

30
00

0
50

00
0 p = 4

Min support (%)

Ti
m

e
in

 s
ec

on
ds

0
5

10
15

20
S

pe
ed

up
 w

rt
 s

eq

Seq
ParGraph(k = 8)
ParGraph(k = 16)

(b) Seq vs hybrid (PDBm p = 4)

0.22 0.33 0.44 0.55 0.66 0.77 0.880
10

00
0

30
00

0
50

00
0 p = 8

Min support (%)

Ti
m

e
in

 s
ec

on
ds

0
5

10
15

20
25

30
S

pe
ed

up
 w

rt
 s

eq

Seq
ParGraph(k = 8)
ParGraph(k = 16)

(c) Seq vs hybrid (PDBm p = 8)

Figure 8. Hybrid load balancing results from Blue Gene/Q

Fig. 7 shows the results from the multi-node run on
BG/Q. In this case, we ran a single thread instance (process)
on 8 and 16 compute nodes and performed dynamic load
balancing through MPI. For both PDBs and PDBm datasets
we observed an speedup around 7 and 15, respectively.
This shows that our implementation of the MPI based load
balancing is also very efficient.

Finally, Fig. 8(a) and 8(c) show the results with the hybrid
load balancing on BG/Q, using 4 and 8 MPI processes with
8 and 16 threads for both runs. The speedups obtained are
reasonable. For 4 processes and 16 threads, we have 64
instances running. However, with both PDBs and PDBm
datasets, we achieve a speedup right around 25. The reason
is that when a process (a group of threads) is out of work, it
has to wait much longer than in the case of the MPI based
dynamic load balancing. Each thread in the donor process
has to co-ordinate to donate tasks to the requesting process.
The performance suffers due to that.

C. Discussions

From the results we see that both the MPI and the
OpenMP thread based parallelism achieves almost linear
speedup in both distributed and SMP platforms. The per-
formance of the hybrid load balancing approach dampens a
little due to the coordination among the threads. Other pos-
sible approaches for thread based load balancing including
work donating (sender-initiated) and work stealing (receiver-
initiated) [3]. The status of local task queues are updated
in a global data structure, called global empty list (sender-
initiated case) and global available list (receiver-initiated
case). However, these approaches may require high locking
contention due to high number of accesses by the threads.
Therefore, careful design of the algorithm is required to
extract maximum performance or near-linear speedups using
these approaches. Our approach is very similar to “work do-
nating” except that we do not use a global empty list which
usually has high contention for locking. We rather reduce
the contention by using separate message queues. However,
for fewer number of threads (8 or 16) the performance of
these approaches usually have little difference.

VI. CONCLUSION

Most modern systems are distributed and equipped with
multi-core processors, and sometimes accelerators such as
GPUs. Our distributed algorithm leverages hybrid architec-
ture on a large distributed system. It is possible to design
a truly hybrid algorithm which combines message passing,
threads and accelerators for maximum performance. Tasks
such as the support computation of a pattern during the sin-
gle graph mining are currently done sequentially in a thread.
With accelerators we can perform the support computation
using multiple cores in parallel [4]. Furthermore, our work
can be extended to other graph mining tasks, such as closed
graph [25],and maximal graph [26] on a variety of platforms.

ACKNOWLEDGMENT

This work was supported by NSF Award IIS-1302231.
We also thank Robert Kessl for initial discussions on imple-
menting dynamic load balancing.

REFERENCES

[1] B. Bringmann and S. Nijssen, “What is Frequent in a Single
Graph?” in Proc. 12th Pacific-Asia Conf. on Knowl. Discovery
and Data Mining (PAKDD), 2008, pp. 858–863.

[2] G. Buehrer, S. Parthasarathy, and Y.-K. Chen, “Adaptive
Parallel Graph Mining for CMP Architectures,” in Proc. 6th
IEEE Int. Conf. on Data Mining (ICDM), 2006.

[3] T. Meinl, M. Wörlein, I. Fischer, and M. Philippsen, “Mining
Molecular Datasets on Symmetric Multiprocessor Systems,”
in Proc 2nd IEEE Int. Conf. on Syst., Man, and Cybern.,
2006, pp. 1269–1274.

[4] R. Kessl, N. Talukder, P. Anchuri, and M. J. Zaki, “ Parallel
Graph Mining with GPUs,” in Proc. 3rd Int. Workshop on
Big Data, Streams and Heterogeneous Source Mining, 2014,
pp. 1–16.

[5] G. D. Fatta and M. R. Berthold, “Dynamic Load Balancing
for the Distributed Mining of Molecular Structures,” IEEE
Trans. Parallel Distrib. Syst., vol. 17, no. 8, pp. 773–785,
Aug. 2006.

[6] B. Wu and Y. Bai, “An Efficient Distributed Subgraph Mining
Algorithm in Extreme Large Graphs,” in Proc. Int. Conf. on

Artifi. Intell. and Comput. Intell.: Part I (AICI), 2010, pp.
107–115.

[7] W. Lin, X. Xiao, and G. Ghinita, “Large-Scale Frequent
Subgraph Mining in MapReduce,” in Proc. 30th IEEE Int.
Conf. on Data Eng. (ICDE), 2014, pp. 844–855.

[8] M. Bhuiyan and M. Al Hasan, “An Iterative MapReduce
Based Frequent Subgraph Mining Algorithm,” IEEE Trans.
Knowl. Data Eng., vol. 27, no. 3, pp. 608–620, Mar. 2015.

[9] M. Kuramochi and G. Karypis, “Finding Frequent Patterns in
a Large Sparse Graph,” J. Data Mining and Knowl. Discovery,
vol. 11, no. 3, pp. 243–271, Nov. 2005.

[10] M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis,
“GRAMI: Frequent Subgraph and Pattern Mining in a Single
Large Graph,” Proc. VLDB Endow., vol. 7, no. 7, pp. 517–
528, Mar. 2014.

[11] S. Reinhardt and G. Karypis, “A Multi-Level Parallel Imple-
mentation of a Program for Finding Frequent Patterns in a
Large Sparse Graph.” in Proc. 12th Int. Workshop on High-
Level Parallel Program. Models and Supportive Environments
(HIPS), 2007.

[12] C. H. C. Teixeira, A. J. Fonseca, M. Serafini, G. Siganos,
M. J. Zaki, and A. Aboulnaga, “Arabesque: A System for
Distributed Graph Pattern Mining,” in Proc. 25th ACM Symp.
on Operating Syst. Principles (SOSP), 2015, pp. 425–440.

[13] N. Talukder and M. J. Zaki, “A Distributed Approach for
Graph Mining in Massive Networks,” J. Data Mining and
Knowl. Discovery, vol. 30, no. 5, pp. 1024–1052, 2016.

[14] X. Zhao, Y. Chen, C. Xiao, Y. Ishikawa, and J. Tang,
“Frequent Subgraph Mining Based on Pregel,” Comput. J.,
2016.

[15] X. Yan and J. Han, “gSpan: Graph-Based Substructure Pattern
Mining,” in Proc. 2nd IEEE Int. Conf. on Data Mining
(ICDM), 2002, pp. 721–724.

[16] M. Kuramochi and G. Karypis, “Frequent Subgraph Discov-
ery,” in Proc. 1st IEEE Int. Conf. on Data Mining (ICDM),
2001, pp. 313–320.

[17] A. Inokuchi, T. Washio, and H. Motoda, “An Apriori-Based
Algorithm for Mining Frequent Substructures from Graph
Data,” in Proc. 4th European Conf. on Principles of Data
Mining and Knowl. Discovery (PKDD), 2000, pp. 13–23.

[18] J. Huan, W. Wang, and J. Prins, “Efficient Mining of Frequent
Subgraphs in the Presence of Isomorphism,” in Proc. 3rd
IEEE Int. Conf. on Data Mining (ICDM), 2003, pp. 549–552.

[19] S. Nijssen and J. Kok, “A Quickstart in Frequent Structure
Mining can make a Difference,” in Proc. 10th ACM SIGKDD
Int. Conf. on Knowl. Discovery and Data Mining, 2004, pp.
647–652.

[20] D. J. Cook and L. B. Holder, “Substructure discovery using
minimum description length and background knowledge,” J.
Artif. Intell. Res., vol. 1, no. 1, pp. 231–255, Aug. 1993.

[21] R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules,” in Proc. 20th Int. Conf. on Very Large
Data Bases (VLDB), 1994, pp. 487–499.

[22] V. Kumar, A. Y. Grama, and N. R. Vempaty, “Scalable Load
Balancing Techniques for Parallel Computers,” J. Parallel
Distrib. Comput., vol. 22, no. 1, pp. 60–79, Jul. 1994.

[23] E. W. Dijkstra, W. H. J. Feijen, and A. J. M. van Gasteren,
“Derivation of a Termination Detection Algorithm for Dis-
tributed Computations,” Inform. Process. Lett., vol. 16, no. 5,
pp. 217–219, Jun. 1983.

[24] RCSB, “Protein Data Bank.” [Online]. Available: http:
//www.rcsb.org/pdb/home/home.do

[25] X. Yan and J. Han, “CloseGraph: mining closed frequent
graph patterns,” in Proc. 9th ACM SIGKDD Int. Conf. on
Knowl. Discovery and Data Mining, 2003, pp. 286–295.

[26] J. Huan, W. Wang, and J. Prins, “SPIN: Mining Maximal
Frequent Subgraphs from Graph Databases,” in Proc. 10th
ACM SIGKDD Int. Conf. on Knowl. Discovery and Data
Mining, 2004, pp. 581–586.

http://www.rcsb.org/pdb/home/home.do
http://www.rcsb.org/pdb/home/home.do

