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Abstract

Frequent graph mining is an important though computationally hard problem because
it requires enumerating possibly an exponential number of candidate subgraph patterns,
and checking their presence in a database of graphs. In this paper, we propose a novel
approach for parallel graph mining on GPUs, which have emerged as a relatively cheap but
powerful architecture for general purpose computing. However, the thread-model for GPUs
is different from that of CPUs, which makes the parallelization of graph mining algorithms
on GPUs a challenging task. We investigate the major challenges for GPU-based graph
mining. We perform extensive experiments on several real-world and synthetic datasets,
achieving speedups up to 9 over the sequential algorithm.
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1. Introduction

Frequent graph mining has received a lot of attention in the recent past (Yan and Han,
2002; Inokuchi et al., 2000; Nijssen and Kok, 2004; Cook and Holder, 1994) with numerous
applications, such as finding frequent substructures in biological networks or chemical com-
pounds, similar communities in social networks, etc. Typically, graph mining requires one
to generate all possible subgraph patterns and check subgraph isomorphisms from the pat-
terns to the graphs in a database. Unfortunately, the number of subgraph patterns, even for
a moderate number of vertices is exponentially large. Furthermore, subgraph isomorphism
is known to be an NP-complete problem (Ullmann, 1976). Graph mining is computation-
ally very hard, therefore, it is important to design scalable algorithms for this interesting
problem.

In recent years, Graphics Processing Units (GPUs) have emerged as a cheap and rela-
tively powerful computing architecture. A very large number of processor cores on GPU
SIMT (single instruction multiple threads) architecture has made many compute-intensive
tasks possible on commodity desktops. Parallel programming platforms, such as OpenCL
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and CUDA have enabled researchers to harness GPUs’ computational prowess. However,
GPUs are different from traditional CPUs, and are not suitable for all kinds of data struc-
tures and applications. Although GPUs have a large number of cores, unlike CPU-cores
they are very compact and each core runs short-lived hardware threads in parallel. These
threads are called kernels and they are launched from the CPU. Usually, applications with
fine-grained parallelism and no communication among the parallel components are well-
suited for GPUs. Given the limitations of GPU cores, the question naturally arises why
we would choose GPUs for graph mining. The main reason is simply that most commod-
ity computers already have relatively powerful GPUs and therefore provide an opportunity
to harness them for performance gains, essentially for “free”. GPUs are also generally
cheaper than shared memory architectures with many cores or processors, and they require
considerably less power than large shared memory machines.

Whereas several sequential algorithms for frequent graph mining have been proposed
(Inokuchi et al., 2000; Kuramochi and Karypis, 2001; Yan and Han, 2002; Nijssen and Kok,
2004; Huan et al., 2003), parallel algorithms are not that prevalent. For instance, (Buehrer
et al., 2006) presents parallel graph mining on multi-core CPUs. However, designing an
effective graph mining algorithm on GPUs is challenging. One of the major bottlenecks is the
amount of sequential administration required for the parallel steps. These include allocation
of GPU memory and I/O transfers between the CPU and GPU, etc. Another challenge is
that random memory accesses on GPU-memory may cause performance degradation. In
this paper, we investigate and address all these challenges. In our GPU-based graph mining,
we use the canonical labeling or ordering of graphs adopted in gSpan algorithm (Yan and
Han, 2002), which efficiently prunes the duplicate subgraph patterns. Unlike in sequential
approaches, in the GPU version, we compute all of the frequent extensions of a given pattern
in parallel. Additionally, we show that having very fast parallel primitives like parallel scan
(i.e., prefix sum), reduction, and sort, is very important for parallelization of a GPU-based
algorithm. We describe how the data structures used by our algorithm are stored in the
GPU memory for efficient access. Finally, we show the performance comparison of our
algorithm and sequential graph mining using different real-world and synthetic datasets,
showing significant speedups.

2. Background

In this section, we review some definitions and discuss related work. Let V = 1, · · · ,m be
the set of vertices and E ⊆ V × V the set of edges. A graph is defined as G = (V,E,L),
where L is a labeling function. We denote by L(v) the label for the vertex v ∈ V , and by
L(u, v) the label for the edge (u, v) ∈ E.

Subgraph Isomorphism: A graph G1 = (V1, E1, L1) is subgraph isomorphic to G2 =
(V2, E2, L2), denoted as G1 ' G2, if there exists a injective function, f : V1 → V2 such
that: 1) ∀u ∈ V1, L1(u) = L2(f(u)), and 2) ∀(u, v) ∈ E1, (f(u), f(v)) ∈ E2 such that
L1(u, v) = L2(f(u), f(v)).

Support: Let D = {G1, · · · , Gn} be a database of graphs. The support of a pattern P
is defined as the number of graphs in D that contain a subgraph isomorphic to P , i.e.,
|{Gi : Gi ∈ D and P ' Gi}|. Further, an occurrence of a subgraph pattern in the graph
database corresponds to an isomorphism, and is called an embedding. Fig. 1 shows an
example database of 3 graphs (with edge labels omitted). The support of P is σ(P ) = 2 since
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Figure 1: Graph database, D and pattern, P

P is a subgraph of G1 and G3. A pattern graph is called frequent if σ(P ) ≥ minsup, where
minsup ∈ Z is a user-specified minimum support threshold. For example, if minsup = 2,
then P in Fig. 1 is frequent. Given D and minsup the frequent subgraph mining task is to
find all P such that σ(P ) ≥ minsup.
DFS Code: For a pattern P = (VP , EP ), and given a DFS (depth-first) tree over the
nodes of P , the DFS code for P with respect to the given tree is a list of five-tuples
in DFS order of the edges. Each five-tuple describes an edge (vi, vj , li, lij , lj) such that
vi, vj ∈ VP , (vi, vj) ∈ EP , li = L(vi), lj = L(vj) and lij = L(vi, vj). A DFS code of P is
therefore given as S = (s1, . . . , s|EP |), where s` = (vi, vj , li, lij , lj). For example, in Fig. 1 we
can represent P as the DFS code (0, 1, A,−, B)(1, 2, B,−, E). Here, ‘−’ denotes an empty
edge label. Another example of DFS code for P is (0, 1, B,−, A)(0, 2, B,−, E). There
can be exponentially many DFS codes for the same graph due to different DFS traversals
and automorphisms of P . However, one can define a precedence relation ≺ on them, so
that we obtain a total order on the DFS codes; the unique/minimum element is called
the canonical or minimal DFS code for P , and is denoted as minDFS(P ). For example,
minDFS(P ) = (0, 1, A,−, B)(1, 2, B,−, E). For the detailed ordering relation ≺ of DFS
codes, see Yan and Han (2002). Instead of minDFS one can also use minimal adjacency
matrices to define a unique representative for the automorphism group of P (Kuramochi
and Karypis, 2001; Inokuchi et al., 2000; Huan et al., 2003).

Rightmost Path and Edge Extension: The search for frequent patterns is usually done
in a breadth-first or depth-first manner, starting with single edge graphs and adding an
extra edge at each level or step, respectively. The use of minDFS allows one to prune
duplicate/isomorphic patterns. However, to generate new candidates for support computa-
tion, we have to consider two types of edge extensions in a DFS code: 1) a forward edge
(when vi < vj) introduces a new vertex in the DFS code, and 2) a backward edge (when
vi > vj) is between two existing vertices in the DFS code, resulting in a cycle. Define the
rightmost path R(P ) of a pattern P = (VP , EP ) as the shortest path from v1 ∈ V to the
rightmost vertex v|VP | ∈ VP in minDFS(P ), i.e., v|VP | is the rightmost child in the corre-
sponding DFS tree for P . Forward edge extensions are allowed only from the vertices on the
rightmost path R(P ), and the backward extensions are allowed only from the vertex, v|VP |
to the rest of the vertices on R(P ); it is guaranteed that all possible candidate patterns will
be generated (Yan and Han, 2002).

Related Work: Frequent graph mining is a well studied problem (Cook and Holder,
1994; Huan et al., 2003; Inokuchi et al., 2000; Kuramochi and Karypis, 2001; Nijssen and
Kok, 2004; Yan and Han, 2002; Chaoji et al., 2008). One of the earliest algorithms, SUB-
DUE (Cook and Holder, 1994), searches for the potential frequent substructures and their
ability to compress the graph database. The later approaches to the problem use systematic
generation of candidate subgraph patterns. Methods such as AGM (Inokuchi et al., 2000)
and FSG (Kuramochi and Karypis, 2001) use the level-wise growth of candidate patterns.
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However, these approach can generate a lot of duplicate candidate patterns, making them
inefficient. Instead, algorithms such as gSpan (Yan and Han, 2002), Gaston (Nijssen and
Kok, 2004) and FSM (Huan et al., 2003) use canonical ordering of the patterns to avoid du-
plicates. Further, Gaston generates simple patterns like paths and trees first before handling
full graphs (i.e., cycles). DMTL (Chaoji et al., 2008) is a generic framework for frequent
pattern mining that can handle different pattern types from itemsets to graphs. A parallel
implementation of gSpan on shared memory architecture was described in (Buehrer et al.,
2006), evaluating both static and dynamic task allocation. However, this parallelization
strategy cannot be applied to the GPU SIMT architecture as the threads are short-lived
and have many other limitations. A recent work (Lin et al., 2014) tackles the graph mining
problem using the mapreduce framework. We are aware of only one other work for graph
pattern mining on GPUs (Wang et al., 2013), which uses the dynamic parallelism supported
by the newer NVIDIA K20 GPU. They report speedups of 10-15, however, they used only
one very small dataset (422 chemical compounds with 27 avg. nodes and 28 avg. edges per
graph). Our results in Section 8 suggest that their reported speedups may be too optimistic.

3. Graph Mining on GPUs

Our GPU-based graph mining combines the best features of state-of-the-art graph min-
ing algorithms like gSpan (Yan and Han, 2002), Gaston (Nijssen and Kok, 2004) and
DMTL (Chaoji et al., 2008). First, it employs the canonical ordering of graphs, called
the DFS-code, from gSpan, which efficiently prunes duplicate subgraph patterns. Second,
like Gaston/DMTL, it stores all of the isomorphisms/embeddings for each pattern, which
leads to fast support computation (subgraph isomorphism testing), and is well-suited for
parallelizing on GPUs. Note that this is in contrast to the original gSpan algorithm that
performs subgraph isomorphism from scratch for each new pattern. A major advantage of
using embedding lists is that each embedding of a subgraph pattern can be processed inde-
pendently in parallel, which is conducive for GPU-based parallelization. On the other hand,
unlike these sequential methods, the GPU algorithm computes all the frequent extensions
(and their embeddings) of a given pattern in parallel, instead of one at a time.

The pseudo-code for GPU-based graph mining is shown in Algorithm 3, with the compu-
tationally expensive steps executed on the GPU as shown. Let ΣD(P ) denote the embedding
list for the pattern P in database D, i.e., the set of all the isomorphisms from P to graphs
in D. Initially the method is called with the pattern P = ∅, and all the canonical single
edge graphs are found. The algorithm always extends the canonical DFS representation of
an input P with an additional edge. It searches for the edges that are incident with the
rightmost path in each of the embeddings of P . We denote these edge extensions by ED(P ),
which comprise the candidate extensions from P . Thus, given an input frequent pattern P ,
the extend method first finds its extensions (Line 1), and then prunes out the infrequent
ones after computing their support (Line 2). Only those candidates that have the minimal
DFS are recursively extended (Line 5).

Those steps that are performed in parallel on the GPU are as marked. In brief, the
parallel steps include the search for all extensions of the current pattern P (Line 1), sup-
port computation for all the extensions and removal of the infrequent ones (Line 2), and
the creation of embedding lists for each extension (Line 7). These steps involve efficient
processing in parallel of a very large number of extensions or embeddings in each iteration.
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Algorithm 1 Graph Mining on GPUs (Database D, Threshold minsup, Pattern P , Embeddings
ΣD(P ))

//Initial Call: P = ∅, ΣD(P ) = ∅
1: (GPU step) Get all possible edge extensions ED(P ) of P
2: (GPU step) Compute support for all extensions in ED(P ) and remove infrequent extensions
3: for each e = (vi, vj , li, lij , li) ∈ ED(P ) do
4: P ′ ← P extended by e
5: if P ′ = minDFS(P ′) then
6: output P ′

7: (GPU step) Create ΣD(P ′)
8: GraphMining(D,minsup, P ′,ΣD(P ′))
9: end if

10: end for

It is important to note that unlike gSpan, we also perform support computation before
minimal DFS code checking, since we compute the support for many extensions in parallel.
However, DFS code minimality checking (Line 5) is not done on the GPU since there isn’t
enough parallelism to exploit when checking whether a single pattern is minimal or not. On
the other hand, checking minimality for all extensions simultaneously (in parallel) would
require too much memory.

Due to a different thread model, programming GPUs is quite different from traditional
CPU-based multi-threaded or multi-core approaches. In brief, the major challenges are
as follows: (1) Ensuring efficient access of data: In sequential graph mining, the graph
edges and the pattern embeddings are usually stored in main memory using efficient data
structures (e.g., hashmap or linked lists). However, we cannot take advantage of these on
GPUs. We need to store the data in GPU global memory where random memory access may
cause significant slowdown. GPU global memory is not cached and the consecutive memory
locations are read in blocks by multiple GPU threads. Therefore, we need to serialize
the data, fit them in GPU memory, and ensure access locality, or “coalesce” global memory
access. (2) Dynamic memory allocation and I/O cost: GPU threads or kernels are launched
from the CPU and they access data from the GPU memory. We need to perform dynamic
memory allocation on GPUs and transfer the data from the main memory. After the kernel
exits the results are transferred back to the CPU for further processing. Thus, the major
bottlenecks for GPU applications are the dynamic memory allocation on GPUs, and the
data transfers between the main-memory and the GPU-memory. We need to avoid the costly
dynamic allocations and I/O transfers as much as possible. (3) Parallelization with GPU
threads: Each GPU thread can perform a fine-grained task, and thus algorithms perform
better when threads do not need to communicate. For example, the support computation
(Line 2) for each new extension can be done in parallel. GPUs have many processor cores,
and one of their advantages is that parallel primitives, such as scan, reduction, etc., can
be efficiently implemented. The key for a high performance GPU-based algorithm is to
transform a parallelizable step into a set of fast parallel primitives. Below we describe in
detail how we address these challenges.
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4. GPU Data Structures

We now describe how the graph database and pattern embeddings are stored in GPU
global-memory.

Storage of the Graph Database: To ensure efficient access by the GPU threads we
serialize the graph database D in GPU global memory such that we can quickly lookup the
neighborhood of any given vertex, which is required for computing the set of edge extensions
from each of the embeddings of P . We also need to quickly determine the graph id of a vertex
during support computation. Each vertex in the serialized database has a unique number
that identifies the vertex in the whole database, called global vertex id, and we consider
the whole database D as one large (disconnected) graph GD = (V D, ED) comprising the
individual graphs Gi = (Vi, Ei). The maximal number of vertices over the database graphs
is stored in mV = maxi |Vi|, and the vertices of the i-th graph are re-numbered so they lie
in the interval

[
i ·mV , (i + 1) ·mV

)
. In Fig. 2 the graph database of Fig. 1 is renumbered

with the global vertex ids.
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(a) Graph database with global vertex ids

global id 0 1 2 3 4 5 6 7 8 9 10
N 1 2 0 3 4 0 3 4 1 2 1 2 6 7 5 7 8 5 6 9 6 7 11 12 13

global id 11 12 13
N(cont’d) 10 13 10 11 12 10 11 12

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
O 0 2 5 8 10 12 14 17 20 21 22 25 27 30 -1

(b) GPU representation (partial) of graph database

Figure 2: Graph database with global vertex ids and its storage in GPU memory.

The neighborhoods of all vertices are stored in an array N, where each N[l] indicates
a global vertex id. The offsets into N are stored in an array O of size |D| · mV , i.e., the
offset of the neighborhood of i-th vertex in N is stored in O[i]. The elements representing
invalid vertices in O are filled with -1. Finally, the labels of vertices and edges are stored in
two separate arrays of sizes |D| ·mV and |N|, respectively. In Fig. 2, the arrays N and O
for the example graph database are shown, e.g., node 0 has two neighbors, 1 and 2, which
comprise the first two elements of N, and node 1 has neighbors 0, 3, and 4, which comprise
the next three elements. Note that the global id row is shown only for convenience, since
the offsets into N are specified by O. As we can see, the neighborhood information is
stored in consecutive memory locations which ensures efficient lookup for any GPU thread.
Additionally, we can determine the graph id from the vertex id (by simply computing the
modulo function using mV ).

Storage of Embeddings: A pattern P can be located at many positions in a graph,
G ∈ D. Let G′ ' G be a subgraph of G, with G′ being isomorphic to P . In other words
G′ is an embedding of P in graph G. Let the minimal DFS code of P be minDFS(P ) =
(c1, . . . , c|EP |) and the set of edges in G′ be (d1, . . . , d|EP |), where each ck corresponds to
dk, so that the isomorphism is preserved. Both ck and dk can be described as a five-tuple
(vi, vj , li, lij , lj). The vertices, vi and vj of the embedding G′ are global vertex ids, whereas
for the pattern P they indicate the pattern vertex numbers used in minDFS(P ).

Fig. 3 shows the embeddings for the pattern P = (0, 1, A,−, B)(1, 2, B,−, E) (from
Fig. 1). Fig. 3(a) shows the edge representation. The edges here are shown as (vi, vj) where
vi and vj correspond to the global vertex ids. For example, the first isomorphism for the
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pattern is given as f(0) → 0, f(1) → 1 and f(2) → 3, which corresponds to the edges
(0, 1), (1, 3) in the graph database (using global ids). The number of pattern embeddings
in D can be very large due to the isomorphisms and automorphisms of the pattern. Since
different embeddings can share the same set of edges, a compact way to list them is in the
form of prefix trees as shown in Fig. 3(b). Furthermore, in order to store them in the limited
GPU-memory, we use a compact representation of the pattern embeddings by linearizing
the prefix trees as a sequence of vertices.

Embeddings of P = (0, 1, A,−, B)(1, 2, B,−, E) in D

(0, 1)(1, 3)
(0, 1)(1, 4)
(0, 2)(2, 3)
(0, 2)(2, 4)
(5, 6)
(13, 10)(10, 11)
(13, 10)(10, 12)

0
1 3

4

0
2 3

4
5 6

13
10 11

12

Q1

idxvid

-1 0
-1 0
-1 5
-1 13

Q2

idxvid

0 1
1 2
2 6
3 10

Q3

idxvid

0 3
0 4
1 3
1 4
3 11
3 12

Edge Prefix tree Embeddings stored in GPU
representation representation memory

(a) (b) (c)

Figure 3: Embeddings Representations for P

The compact GPU representation for our running example is shown in Fig. 3(c). Given
a pattern P with p vertices, its serialized embeddings comprise p columns, |Q1|, · · · , |Qp|.
Each element in the column consists of a pair (idx, vid), where idx is an index pointing to
the vertex of the same embedding in the previous column, and the vid is the global vertex
id. The entries in the last column, Qp, actually represent headers of different linked lists.
We can reconstruct an embedding by following idx from Qp for one particular element into
the previous column Qp−1, and continuing in the same manner until we reach Q1. The
idx of Q1[i] contains -1, marking the end of the chain. Thus, by following the back-links
from the last column, we can reconstruct the whole set of embeddings. For example, in
Fig. 3, we can trace back from the entry at index 2 of Q3, namely vid = 3 with idx = 1
to go to the entry at index 1 in Q2, which has vid = 2 and idx = 1. Next, we look
up index 1 in Q1, which has vid = 0 and idx = −1, which marks the end of the trace.
The isomorphism is the sequence of vids we obtained above, i.e., f(2) → 3, f(1) → 2,
and f(0) → 0, which corresponds to the embedding (0, 2)(2, 3) in the edge representation.
The example also shows remnants of invalid embeddings during the mining process. For
instance, the embeddings of the first pattern edge (0, 1, A,−, B) in the graph database
include (0, 1), (0, 2), (5, 6), (13, 10). Among these the mapping to (5, 6) cannot be extended
by the second pattern edge (1, 2, B,−, E). Whereas this remnant exists in Q1, and Q2, it
will be automatically discarded since we cannot trace it back from any embedding in Q3.

During pattern extension, for storing an additional forward edge, we need to add another
column Qp+1. The reason is that one vertex of the new edge must always be present in
the embeddings. On the other hand, we do not need to store the backward edges in the
embedding columns since those can be obtained from the DFS code of P . We also do not
store the graph id as it can be computed from global vertex id.
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5. Pattern Enumeration: Embedding Extension

We now discuss how we parallelize the pattern extension step in Algorithm 3 (Line 1).
The set of all one-edge extensions of the canonical DFS code for P comprise the candidate
patterns for the next level. Since we store the pattern embeddings, we can lookup the
neighborhood of the embedded vertices in the database to get only the relevant extensions,
i.e., ED(P ). The valid extensions are possible only from the vertices on the rightmost path,
R(P ), and they can be obtained independently of one another. This makes it very suitable
for parallelization using GPU threads as there is no communication required.

Algorithm 2Get-Extensions (Database D, Embedding columns Qk on R(P ), 1 ≤ k ≤ p)
1: (GPU step) Compute max degree m of vertices in Qk.
2: Allocate array V of size m× |Qk| to indicate valid extensions from a vertex; initialize with 0s.
3: (GPU step) Look-up the neighborhood of each vertex in Qk, and set the corresponding entry in

V to 1 for a valid forward/backward extension.
4: (GPU step) Perform exclusive scan of V to produce indexes for a new valid extensions array.
5: Allocate array EXTk to store valid extensions from Qk.
6: (GPU step) Store the extensions in EXTk using index array computed in step 4.
7: return EXTk

Let us assume that the pattern P has p vertices. As described in Section 4, we store
the embeddings of these p vertices as p columns, Qk, 1 ≤ k ≤ p. Therefore, we have |Qp|
embeddings that need to be processed. R(P ) comprises the set of indexes for the columns
Qk that contain vertices on the rightmost path. Algorithm 5 specifies the steps to obtain the
extensions of P . Each vertex on the rightmost path of an embedding is assigned to a thread.
The algorithm finds all the valid extensions of an embedding column Qk in parallel, assuming
Qk is on R(P ), with the GPU steps as indicated. The basic idea of the algorithm is that
each GPU thread performs a lookup of the neighborhood of its assigned vertex (Step 3) and
later only the valid forward/backward extensions are extracted into a new extensions array
called EXTk (Steps 4 to 6), which is used for support computation. As an example, the
valid forward and backward extensions from the pattern P = (0, 1, A,−, B)(1, 2, B,−, E) in
the example graph G3 are shown in Fig. 4(a). The last one is a backward extension (since
it introduces a cycle).
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G3 Extensions of P = (0, 1, A,−, B)(1, 2, B,−, E)

(a) Examples of forward/backward extensions

1(0) 7(1) 13(3)
2(0) 8(1) 14(4)
3(0) 9(2) 15(3)
4(0) 10(2) 16(4)
5(13) 11(10) 17(11)
6(13) 12(10) 18(12)

(b) Threads are allocated
column-wise. Table en-
tries: thread-id(vertex-id)

Figure 4: Example of valid extension and thread allocation

Assignment of the Threads: The linearized prefix tree representation of the embeddings
can be virtually treated as a matrix where each row indicates the vertices in an embedding,
and each column corresponds to a vertex in P . To obtain the extensions, each vertex on
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R(P ) is assigned to one thread, having a total of |R(P )| × |Qp| threads for all embedding
columns. For a valid forward extension each thread has to check that the new to vertex is
not already present in the embedding. The valid backward extensions are only obtained for
the vertices in the last column, and the thread has to check that the to vertex is present on
the rightmost path, R(P ).

To ensure the access locality on GPU, the threads are allocated in column-major order
of the embeddings. Fig. 4(b) shows the thread id and the vertex id assignment of our
running example in matrix form. The vertex ids are shown as subscripts in brackets. For
instance there are six possible embeddings of P ; we can see that the thread ids are assigned
in column-major order. Each thread is tasked to find extensions from its assigned vertex on
the rightmost path. The thread actually allocates its rightmost path vertex by computing
the assigned column and following the back-links. The threads with numbers 1, . . . , |Qp|
are assigned to the first vertex on the rightmost path, threads |Qp| + 1, . . . , 2 · |Qp| to
second vertex on the rightmost path, and so on. Since we assign the threads in column-
major fashion there is a sequence of threads that process the same vertex. For instance, in
Fig. 4(b) the first four threads in the first column process vertex 0. Although the vertex
logically belongs to different embeddings, during the processing of the vertex the threads
read the same neighborhood, i.e., the same memory locations. This gives us a good GPU
memory access pattern, since the GPU runs blocks of 32 threads at once and they can
efficiently access memory locations in one fetched block.

Storage of the Extensions: The extensions found by the threads are stored in an array,
EXT. The extensions are organized in segments, so that the extensions from k-th vertex
on the rightmost path R(P ) are stored in segment EXTk. Each element of EXT contains:
1) the DFS code, (vi, vj , li, lij , lj), where vi, vj are pattern vertex ids and 2) the embedding
description of the edge extension, which consists of: a) the global vertex id of the from
vertex, vgi , b) the global vertex id of the to vertex, vgj , and c) the row pointer to the from
vertex in the last embedding column Qp.

The storage of the extensions is performed in the following manner as shown in Al-
gorithm 5: 1) We compute the maximum degree m for every vertex on R(P ) (Step 1).
Then we use an array V of size m × |Qp| × |R(P )| to indicate the valid extensions of the
vertices on R(P ) (Step 2). Each entry in V can represent three different values: a forward
extension, a backward extension and no extension. For simplicity we omit the details. 2)
We then perform the parallel exclusive scan of V (Step 4), which gives the indexes of the
valid extensions from V into EXT. The exclusive scan stores at the i-th index the sum of
elements from index 0 to i−1 of the input array, i.e., prefix sum excluding the i-th element.
3) Finally in Step 6, we store the DFS code and the embedding description of an extension
in EXT at the positions looked-up in the scan results.

Extensions: Support Computation:
k EXT0 EXT1 EXT2

vgi 0 0 0 0 5 13 13 1 1 6 10 3 4 11 12
vgj 2 2 1 1 7 11 12 3 4 8 12 2 2 13 13

lj B B B B C E E E E D E B B A A

B 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0
scan B 0 0 0 0 1 2 2 0 0 1 2 0 0 1 1

(0, B) (0, C) (0, E) (1, E) (1, D)
F 1 0 0 0 1 0 0 0 1 1 0 1 0 1 0

scan of F 1 1 1 2 1

Figure 5: Extensions of P = (0, 1, A,−, B) (1, 2, B,−, E), and support computation of the exten-
sions from vertices 0 and 1. Array B contains 1 at graph boundaries within each segment.
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Fig. 5 shows the segments consisting of the valid extensions from the vertices 0, 1 and 2
from P . The global vertex id of the to vertex, i.e., vgj and its label lj are shown for each valid
extension. However, we do not show the row pointers to avoid clutter. For example, consider
the renumbered graph database from Fig. 2, and consider the three distinct extensions of
P in graph G3 shown in Fig. 4(a). Consider the embedding (13, 10)(10, 11) for the pattern
edges (0, 1)(1, 2). Here vertex 0 is mapped to f(0) → 13, and there is only one valid
forward extension possible, namely from 13 to 12. Likewise, from the second embedding
(13, 10)(10, 12) there is one forward extension, from 13 to 11. These two graph vertices,
namely 11 and 12, appear in the last two columns under the extensions for k = 0, EXT0.
Note that a backward extension is possible only from the rightmost vertex 2 in P . For
example, for G3, both of the embeddings above have 13 as the to vertex, as shown under
EXT2. The other entries for the all the database graphs can be obtained in a similar
manner.

Properties of EXT: It is important to note that the threads with the ids i and i+1 store
the extensions in adjacent memory locations in EXT. This order of storage gives us some
important properties of EXT which are as follows: 1) The extensions from a vertex in R(P )
are stored in consecutive locations and they form a segment of extensions. In other words,
the extensions with the same vi in the DFS code constitutes a segment. We denote k-th
segment by EXTk. 2) Additionally, in each segment EXTk there are blocks of elements
with the global vertex ids, vgi ’s and vgj ’s corresponding to the same database graph G ∈ D.
We will see in the next section that these properties are very useful for efficient support
computation.

6. Support Computation

Having obtained all the edge extensions of a pattern P from the database, we next compute
their support in parallel and discard the infrequent extensions. The segment EXTk contains
all extensions from a vertex on the rightmost path, and thus the segments can be processed
independently of each other. We do this in two GPU steps: 1) extraction of the unique
extensions from EXT, and 2) support computation of the extensions, as detailed next.

Extract Extensions: We extract forward extensions from all segments, EXTk, 1 ≤ k ≤
|R(P )|, and backward extensions only from the last segment, i.e., EXT|R(P )|. Recall that
an element in EXT consists of the DFS code edge (vi, vj , li, lij , lj) and the embedding
description. For a forward extension in EXTk the DFS extension (vi,vj) and the label of
the from vertex, li, remain the same. Let LV be the set of all vertex labels and LE , the set
of all edge labels. For the sake of simplicity, we also assume that li and lj are chosen from
the integer range [1, |LV |]. Similarly, the range of the edge label lij is [1, |LE |]. We observe
that there are at most |LE | × |LV | forward extensions in EXTk for different lij and lj ’s.
Also, there can be at most |LE | × (|R(P )| − 1) backward extensions. This is because in this
case the vj ’s are chosen only from R(P ), so there can be at most |R(P )| − 1 different lj ’s
(excluding li).

To obtain the forward extensions we allocate an array of size |LV |×|LE | initialized with
0s. Each GPU thread looks at the DFS code of an EXTk element and marks the array at
index (lij ×|LV |+ lj) with 1. Multiple threads may write to the same location, and at least
one of them will succeed. Finally, we extract the DFS codes of the marked locations into
another array using parallel primitives. The backward extensions can also be obtained in a
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similar fashion. For example, for the embedding 13 ← 10 ← 12 shown in Fig. 3, there is
a backward edge in Fig. 5 going from the global vertex id 12 to 13 (in the extensions from
segment 2). The DFS code of this extension is (2, 0, E,−, A). The rest of the examples in
Fig. 5 are forward extensions.

Algorithm 3 Compute-Support (Extension array EXTk, Extension e = (vgi , v
g
j , vi, vj , li, li,j , lj) )

1: Allocate array B that stores the boundaries of block of extensions of one graph in EXTk.
2: (GPU step) Fill B using graphid(EXTk[i]).
3: (GPU step) Exclusive scan of B that computes the index of each block in EXTk.
4: Allocate array F and fill with 0.
5: (GPU step) Store 1 in F if e matches an element in EXTk using index from B.
6: (GPU step) Compute support s by reduction of F.
7: return s

Support Computation of the Extensions: Consider the support computation for a
single DFS code extension that belongs to the segment, EXTk. From the properties of
the EXT described in Section 5 it follows that the segment EXTk consists of blocks of
extensions, each corresponding to some graph in D. However, the number of such blocks
or graphs in EXTk can be much smaller than |D|. Since the DFS code extension can
only be present in those graphs, we remap the database graph ids for EXTk. Let the
number of graphs in EXTk be g, with the graph ids remapped into the range [1, g]. Briefly,
the remapping is done by the following steps: 1) allocating an array B of size |EXTk|
initialized with 0s; 2) storing 1 at the graph boundaries, i.e., at the end of each block; and
3) finally, performing an exclusive scan on B. Now, B contains a mapping of the sparse
database graph ids into a continuous range (see Algorithm 6, Steps 1–3). Fig. 5 shows the
Boundary array and the result of the exclusive scan, which gives the remapped graph ids.
For example, EXT2 contains only two graphs, with remapped graph id 0 (vertices 1 and
2) and 1 (vertex 13). Note that the remapping can be re-used for computation of support
of all other extensions, amortizing the time spent in this step.

The support computation of the extension (see Algorithm 6, Steps 4–6), proceeds as
follows. In Algorithm 6 we use graphid(EXTk[i]) to denote the graph id of the i-th extension
of the array EXTk[i]. First, we allocate a flag array F of size g and initialize it with 0s.
Then, we execute |EXTk| threads, where each thread ti looks into EXTk[i] and checks
if its DFS code corresponds to the DFS extension in question. If the DFS code matches,
the thread performs a lookup on B[i] and stores 1 in F[B[i]]. Once again, there may be
simultaneous writes at the same location and at least one of them will succeed. Finally, we
perform reduction on F and outcome of the reduction is our desired support value of the
DFS extension. The mapping array can be retained for computation of all extensions in
EXTk. We tried several variants of the support computation, namely, 1) single-ext: We
process one extension at one time (the one we just described); 2) single-seg: We compute
support for all extensions in EXTk at once. For this variant we need to allocate flag array
Flags of size |E| · g, where E denotes the extensions extracted from EXTk; and 3) multiple-
seg: We perform support computation for extensions in multiple EXTk at once. The size
of the array F in this case would be |E| · gmax, where gmax indicates the maximum mapped
graph ids of all segments, EXTk, 1 ≤ k ≤ |R(P )|. To save memory, we limit the size
of F and perform the support computation by parts in multiple EXTk. The difference,
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from the algorithmic point of view, between variant 1 and others is just replacement of
reductions(scans) by segmented reductions(scans).

In Fig. 5 we show support computation for the extensions obtained from the vertices
0 and 1 of P . For each extension, we have three entries in the flag array, F (since there
are g = 3 graphs in those segments). Therefore, a 1 indicates the presence of the extension
in the corresponding graph in D. We perform a segmented reduction on F and obtain the
support values for the extensions as shown at the bottom of Fig. 5. For minsup = 2, the
only frequent extension from P is (1, E) in G1 and G3 (see Fig. 2).

7. Growing the embeddings

The frequent extensions from pattern P (with p vertices) can obtained using parallel prim-
itives as detailed here for the two types of extensions.

Algorithm 4 Forward-Ext(EXTk, Extension e = (vi, vj , li, li,j , lj))

Summary: construct new column Qp+1 by copying information from EXTk

1: Allocate array M of size |EXTk| and fill with 0.
2: (GPU step) Match elements e in EXTk and store 1 in M on matched positions.
3: (GPU step) Exclusive scan of M resulting in index S.
4: Allocate array Qp+1 that stores the new extensions of the embeddings.
5: (GPU step) Copy the matched elements EXTk into Qp+1 using the index S.
6: return Q

(1) Forward extensions: These introduce a new vertex into the pattern. Therefore, we
have to construct a new column Qp+1 using information from the k-th segment of EXT,
i.e., EXTk. The extraction proceeds as follows, as shown in Algorithm 4: a) Create an
array M of size |EXTk| filled with 0s. b) Launch |EXTk| threads, where thread ti stores
1 in M[i] if EXTk[i] matches the DFS code of the extension e. c) Perform exclusive scan
on M to create an index S. d) Allocate a new embedding column Qp+1 of size S[|EXTk|],
and store the embedding information into Qp+1 at the positions given by S.

Algorithm 5 Backward-Ext(EXTk, Qp, Extension e = (vi, vj , li, li,j , lj))

Summary: filter Qp using information from EXTk

1: Allocate array M of size |Qp| filled with 0.
2: (GPU step) Match e in EXTk and store 1 in M on matched positions given by back-links.
3: (GPU step) Exclusive scan of M resulting in indexing S into new array.
4: Allocate array Q′

p that stores the filtered column Qp.
5: (GPU step) From Qp copy into Q′

p i-th element if M[i] = 1 using the index S.
6: return Q′

(2) Backward extensions: These extensions do not introduce a new vertex into the
pattern, and thus we filter the last embedding column Qp by removing such vertices that
do not contain the backward edge, as shown in Algorithm 5: a) allocate a vector M of
the same size of the last column and initialize with 0s; b) execute |M| threads; thread with
index i stores 1 in M[i] if there exists a back-link from the elements of EXT; and c) perform
exclusive scan on M, and store the results in array S. The array S gives the new positions
in the filtered column. Finally, we copy the information from the last column, Qp into a
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new column Q′p. Thread ti checks whether M[i] = 1, and if so it copies the element from
Qp into Q′p at position S[i].

8. Experiments

We implemented our GPU-based graph mining algorithm using C++ NVIDIA CUDA li-
brary (version 5.5). For parallel primitives, such as inclusive/exclusive scan, reduction and
their segmented versions, we augmented the modern GPU library (http://www.moderngpu.
com). The sequential gSpan algorithm1 was executed on a 16 core CPU, the AMD Opteron
6272 “Interlagos” processor (2.1 GHz base clock rate, with up to 2.9GHz in turbo mode),
running Ubuntu SMP and having 256GB of memory and 2MB of cache. The GPU imple-
mentation was run on a Tesla C2075 GPU, which consists of 448 cores, 6GB of memory
and supports CUDA compute capability 2.0. We could not compare with the GPU im-
plementation in (Wang et al., 2013), since the authors did not respond to our request for
the code. Further, they report that the sequential gSpan with 35% minimum support took
70.7 seconds on a 3.0Ghz (3.3GHz turbo) Intel Core i5-2320 processor, which suggests a
very inefficient sequential/CPU implementation, since our sequential gSpan on the 2.1Ghz
(2.9Ghz turbo) AMD Opteron 6272 processor takes less than 4 seconds for the same set-
tings. This suggests that their reported speedups may not be reliable, but rather are likely
to be overly optimistic.

8.1. Datasets

We use four real-world and two synthetic datasets. The Protein dataset was created using
6875 proteins from the RCSB Protein Data Bank2. The NCI dataset consists of 25595
chemical compounds3. The Citation dataset consists of citations in high-energy physics
journals from SNAP4. A graph was created for each available month (from 1993 to 2003)
for the top 15 frequently citepd journals. The number of citations for each node was
restricted to 10. The DBLP dataset was created from the dblp.xml5 entries for 21 years
(from 1990 to 2010) considering conference proceedings in 26 different areas.6 The number
of authors was restricted to at most 5, and each pair of authors have to collaborate at least
twice in order to have an edge between them. The labels for authors are chosen to be their
active area of research in that year, and the largest 20 components were considered for
each year. Two synthetic graph datasets were generated using FSG generator (Kuramochi
and Karypis, 2001). For generating these datasets the average graph size and the average
pattern size were chosen as 30 and 4, respectively.

Some properties of these datasets are listed in Table 1. Protein has relatively large
sized graphs, whereas the others are smaller. It has a high average degree and relatively
high clustering coefficient. NCI is the largest among all real-world datasets. However, the
graphs are small with a moderate average degree (avg. deg) and low clustering coefficient

1. Taku Kudo’s code www.nowozin.net/sebastian/gboost.
2. http://www.rcsb.org/pdb
3. http://cactus.nci.nih.gov/download/nci
4. http://snap.stanford.edu/data/cit-HepTh.html
5. http://www.informatik.uni-trier.de/~ley/db
6. http://en.wikipedia.org/wiki/List of computer science conferences
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Figure 6: GPU versus Sequential Performance
avg. avg. V E avg. avg.

dataset |D| |V | |E| lbls lbls deg clustering coeff.

Citation 81 469 541 15 1 2.042 0.008
Protein 6875 1113 4392 22 1 7.891 0.554
DBLP 21 205 300 26 26 2.796 0.594
NCI 24595 39 78 54 1 3.954 0.0014

Syn500K 500K 25 31 5 5 2.517 0.383
Syn1000K 1000K 25 31 5 5 2.517 0.383

Table 1: Properties of the datasets

(avg. CC). Citation has a very low clustering coefficient as triangles are practically non-
existent. DBLP contains a large number of cliques (we observed many 5-cliques). This is
evident due to the high clustering coefficient. The two synthetic datasets have identical
properties.

8.2. Performance Results

We report in Fig. 6 the major results from our experiments. The bar plots show the per-
formance comparison of sequential and GPU-based graph mining on the different datasets
with various support values displayed on the x-axis. The y-axis on the left shows the time
in seconds for the bars, and the y-axis on the right indicates the GPU speedup compared
to the sequential CPU version. For the GPU implementation in “Seq vs GPU” plots we
consider the ‘single-seg’ approach from Section 6, since it demonstrates the best overall
performance among all versions. 7

The results show that we achieve a consistent speedup of 8 to 9 on Protein over the
sequential CPU run. For NCI the speedup was around 7. However, for DBLP and Citation
we observe a consistent speedup of around 4 and 5, respectively. In general, for denser
graphs, such as Protein, we observe better speedups. The DBLP dataset has many larger
cliques, resulting in a large number of embeddings which may cause an increase in the

7. Note that the speedups reported are with all 448 GPU cores. Since the Tesla GPU threads run in warps
of 32, and blocks of threads are scheduled automatically by the GPU on the symmetric multiprocessors,
it is not very meaningful to show traditional speedups charts that vary by the number of cores.
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level Protein NCI DBLP Citation Syn500K Syn1000K

1 121379 208010 1041 3536 45871 91668
2 94000 131287 2344 3878 19336 38652
3 117581 151537 8845 7686 14649 29268
4 157530 204052 22112 20935 13151 26297
5 157663 215258 49873 69061 12273 24503
6 - 198693 103170 154183 10447 20814
7 - 269869 100692 351918 9523 18976
8 - 297180 120243 106500 8840 17487

Table 2: Average number of embeddings per level
(upto level 8).

dataset supp #pat avg max avg max
pat pat #bkwd #bkwd
size size edges edges

Citation 39 630 3.83 8 0 0
Protein 4.8K 9436 3.00 5 0.07 1
DBLP 9 1048 7.16 11 1.19 4
NCI 7K 1591 8.37 13 0.49 1

Syn500K 5K 45470 4.54 11 0.21 4
Syn1000K 10K 45757 4.55 11 0.21 4

Table 3: Pattern Properties with Lowest
Support

speedup with lower minsup. Finally, on the synthetic datasets, due to the sparse graphs,
we obtain lower speedups of around 3.

We also show, in the barplots titled ‘GPU times’, the performance comparison among
the three GPU versions we implemented, namely ‘single-ext’, ‘single-seg’ and ‘multi-seg’,
which were described in Section 6 for parallel support computation of the extensions. We
observed that the version ’single-seg’ performs the best among the three. However, we did
not observe significant difference in speedups among the versions. This may be due to the
fact that the large array for support computation incurs huge I/O overhead. Therefore,
even though we process multiple segments in parallel with ‘multi-seg’ variant we do not
observe better speedup.

As seen above, we observe different speedups with different datasets. In general the
more the number of embeddings, the higher the speedup, as shown in Table 2, e.g., Protein
and NCI have higher, whereas the synthetic ones have lower speedups. Table 3 shows some
statistics of the obtained patterns using the lowest minimum support value. The patterns
in Citation do not have any backward edges as they are mostly star graphs. Proteins has
smaller patterns. On the other hand, DBLP, NCI and the synthetic datasets have larger
patterns. DBLP contains a high number of cycled graphs. The synthetic datasets yield
many patterns, but the average number of backward edges is not very high.

9. Discussion and Conclusions

GPUs have become attractive for general purpose parallel computing. However, program-
ming them is quite different from the traditional multi-threaded or multi-core programming
paradigm. We investigate in detail the challenges of implementing frequent graph min-
ing on GPUs. Our implementation achieves speedups up to 9 for real-world datasets and
around 3 for synthetic datasets. We used datasets with various characteristics to examine
the effectiveness of our GPU-based algorithm.

We observed that GPU memory allocation and I/O transfers between the CPU and
the GPU incur a large overhead. This affects the speedup of our GPU-based algorithm.
However, the memory transfers are necessary for fetching extensions and computing sup-
ports, etc. Memory allocation of various arrays during the computation is also unavoidable.
Therefore, we minimized as many calls to cudaMalloc and cudaMemcpy as possible. This
was mainly done by statically allocating the memory blocks for all the parallel operations,
and resizing them when necessary. The most important parallel operations for our algo-
rithms are: 1) parallel scan; 2) parallel segmented scan; 3) parallel reduction; 4) parallel
segmented reduction. These operations also influence the speedup of the GPU implemen-
tation as they need a lot of sequential administration. We implemented efficient parallel
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primitives by studying the Modern GPU documentation, and showed that this indeed makes
a substantial difference.

In future, we will consider alternative approaches for GPU-based implementation. Our
work can be extended to other graph mining tasks, such as closed graph, maximal graph
and temporal graph mining on GPUs. Our current algorithm runs on NVIDIA Fermi
Architecture that uses CUDA compute capability 2.0. We plan to explore advanced features
of NVIDIA’s new Kepler architecture, such as the dynamic parallelism. We also intend to
study efficacy of GPU-based parallelism versus multi-core CPUs and other accelerators,
such as Intel’s Many Integrated Core Xeon Phi coprocessor (61 cores, 1.238Ghz clock rate),
for similar tasks.
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