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Predicting protein folding pathways
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ABSTRACT
Summary: A structured folding pathway, which is a time
ordered sequence of folding events, plays an important role in
the protein folding process and hence, in the conformational
search. Pathway prediction, thus gives more insight into the
folding process and is a valuable guiding tool to search the con-
formation space. In this paper, we propose a novel ‘unfolding’
approach to predict the folding pathway.We apply graph-based
methods on a weighted secondary structure graph of a protein
to predict the sequence of unfolding events. When viewed in
reverse this yields the folding pathway. We demonstrate the
success of our approach on several proteins whose pathway
is partially known.
Contact: zaki@cs.rpi.edu

1 INTRODUCTION
Given a protein’s amino acid sequence and its three-
dimensional (3D) structure, the pathway prediction problem
is to determine the time ordered sequence of folding events,
called the folding pathway, that leads from the primary to
the tertiary structure. Whereas the protein structure predic-
tion problem is widely acknowledged as an open problem,
the pathway prediction problem has received little atten-
tion. It is clear that the ability to predict folding pathways
can greatly enhance structure prediction methods. Folding
pathway prediction is also interesting in itself, since protein
misfolding has been identified as the cause of several diseases
such as Creutzfeldt–Jacob disease, cystic fibrosis, hereditary
emphysema and some cancers (Dobson, 2003).

Strong experimental evidence for pathway-based models
of protein folding has emerged over the years, e.g., experi-
ments revealing the structure of the ‘unfolded’ state in water
(Mok et al., 1999), burst-phase folding intermediates (Colon
and Roder, 1996), and the kinetic effects of point mutations
[‘phi-values’ (Nolting et al., 1997)]. These pathway models
indicate that certain events always occur early in the fold-
ing process and certain others always occur later. Currently,
there is no strong evidence that specific non-native contacts1

∗To whom correspondence should be addressed.
1A native contact is the one retained in the folded protein.

are required for the folding of any protein (Chikenji and
Kikuchi, 2000). Many simplified models for folding, such
as lattice simulations, tacitly assume that non-native contacts
are ‘off pathway’ and are not essential to the folding pro-
cess (Klimov and Thirumalai, 2001). Therefore, we choose
to encode the assumption of a ‘native pathway’ into our
algorithmic approaches. This simplifying assumption allows
us to define potential folding pathways based on known 3D
structure. We may further assume that native contacts are
formed only once in any given pathway.

One approach to enumerate folding pathways is to start
with an unfolded protein and consider the various possibil-
ities for the protein to fold. This approach is expensive due
to the explosively large number of possibilities to consider
for the pathways, although some recent progress has been
made by applying a probabilistic road map (motion plan-
ning) based approach (Song and Amato, 2002). However, the
roadmap approach is still expensive; it takes 2–15 hours even
for relatively small proteins (60–110 residues).

Our novel approach is to start with a folded protein in its
final state and learn how to ‘unfold’ the protein in an approx-
imately ordered sequence of steps, to its unfolded state. The
reversal of such a sequence then represents a plausible pro-
tein folding pathway, a view supported by Fersht and Daggett,
2002. We use a graph representation of a protein, where a ver-
tex denotes a secondary structure element (SSE) and an edge
denotes the interactions between two SSEs. The edges are
weighted by the strength of the SSE interactions. The basic
intuition behind our approach is to break the weakest inter-
actions to obtain a sequence of unfolding events. We present
two algorithms: Unfold, that predicts one unfolding sequence,
and MultiUnfold, that enumerates many folding pathways and
ranks the intermediates based on their expected frequency.
The approaches are extremely fast, taking on the order of
a few seconds (for proteins as large as 162 residues). Our
pathway predictions also show remarkable agreement with
experimentally determined pathways.

2 PRELIMINARIES
Weighted graphs An undirected graphG(V ,E) is a structure
that consists of a set of verticesV = {v1,v2, . . . ,vn} and a set
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of edgesE ⊆ V ×V , given asE = {ei = (s, t) | s, t ∈ V }, i.e.
each edgeei is an unordered pair of vertices. A weighted graph
is a graph with an associated weight functionW : E → �+
for the edge set. For each edgee ∈ E, W(e) is called the
weight of the edgee.

Minimum cuts A cut C of a weighted graphG, is a par-
tition of the set of vertices into two non-empty subsetsC

and C = V − C. We will mostly (unambiguously) refer
to a cut by specifying just one of the subsetsC. The capa-
city of the cutC is the sum of the weights of edges that
cross (i.e. have exactly one endpoint inC) the cut, given as
W(C) = ∑

e=(s,t)∈E,s∈C,t∈C W(e). A cutC is ans-t cut if ver-
ticess andt are in different partitions of the cut. A minimum
s-t cut is ans-t cut of minimum capacity. A (global) minimum
cut (mincut) is a minimums-t cut over all pairs of verticess
andt . Note that mincut need not be unique.

Cut-trees A cut tree of weighted graphG, is a weighted
treeT = (V ,E′) on V , which represents the structure of all
thes-t mincut values ofG as follows: for every pair of distinct
verticess, t ∈ V , lete ∈ E′ be a minimum weight edge on the
unique path froms to t in T . Deletinge from T separatesT
into two disjoint vertex setsS (with s ∈ S) andT = S (with
t ∈ T ). ThenS andT denote the two partitions in a minimum
s-t cut. Note thatT is not a subgraph ofG.

3 WEIGHTED SSE GRAPH
A protein can be represented as a weighted secondary struc-
ture element graph (WSG), where the vertices are the SSEs
comprising the protein and the edges denote proximity rela-
tionship between the secondary structures. Furthermore, the
edges are weighted by the strength of the interaction between
two SSEs. We construct the WSG for a given protein as
follows: we determine the list of SSEs and their sequence
positions from the known 3D structure taken from the Protein
Data Bank (PDB) (http://www.rcsb.org/pdb/). Every SSE is a
vertex in the WSG. LetV = {v1,v2, . . . ,vn} denote a protein
with n SSEs. Each SSEvi has starting (vi · s) and ending
(vi · e) sequence positions, where 1≤ vi · s < vi · e ≤ N ,
and N is the length of the protein. The edge weights are
determined as follows: Letvi andvj be a pair of SSEs. Let
the indicator variableb(vi ,vj ) = 1 if vi and vj are con-
secutive on the protein backbone chain, elseb(vi ,vj ) = 0.
Let κ(vi ,vj ) denote the interaction strength between the two
SSEs. An edge exists between two SSEs if their interaction
strength exceeds some threshold, i.e. ifκ(vi ,vj ) > κmin,
or if the two SSEs are consecutive on the backbone chain.
The weight assigned to the edge(vi ,vj ) is given as follows:
W(vi ,vj ) = � × b(vi ,vj ) + κ(vi ,vj ), where� is some
constant. In our study, we set� as the average interaction
strength between SSEs, i.e.� = [ ∑

κ(vi ,vj )∈S κ(vi ,vj )
]
/|S|,

whereS = {κ(vi ,vj ) > κmin | vi ,vj ∈ V }. This weight-
ing scheme gives higher weights to backbone edges and also
to SSEs with greater interaction strength between them. The

backbone edges are given higher weight since they represent
strong covalent bonds, while the other interactions represent
weaker non-covalent bonds.

There are several schemes to compute the strength of inter-
action between two SSEs: contact, distance and solvent
accessible surface (SAS) based.

Contact-based Given two amino acidsai and aj along
with the 3D coordinates of theirα-carbon atoms (or alternately
β-carbon),(xi ,yi , zi) and(xj ,yj , zj ), respectively, define the
Euclidean distance between them as follows:δ(ai ,aj ) =√

(xi − xj )2 + (yi − yj )2 + (zi − zj )2. We say thatai and

aj are in contact, ifδ(ak,al) ≤ δmax, whereδmax is some
maximum allowed distance threshold (a common value is
δmax = 7 Å). A contact map for a protein withN residues
is anN × N binary matrixC whose elementC(ai ,aj ) = 1 if
residuesai andaj are in contact, andC(ai ,aj ) = 0 otherwise.
The contact-based interaction strength is given as the number
of contacts between the two SSEs in the contact map, given
asκ(vi ,vj ) = ∑vi ·e

ak=vi ·s
∑vj ·e

al=vj ·s C(ak,al).
Distance based Let D(ak,al) = δmax/δ(ak,al), if

C(ak,al) = 1, and D(ak,al) = 0, otherwise. The
distance-based interaction strength is defined asκ(vi ,vj ) =∑vi ·e

ak=vi ·s
∑vj ·e

al=vj ·s D(ak,al). Intuitively, we consider only
interaction between residues within theδmax threshold [for
C(ak,al) = 1], and the closer the residues are the greater the
strength of interaction (δmax/δ(ak,al)). The distance-based
method is thus an extension of the contact-based method,
where we scale each residue pair interaction by how close
they are.

Solvent accessible surface based SAS is the area of the
molecular surface that is in contact with a spherical solvent
molecule of a defined size (1.4 Å). LetSi andSj denote the
SAS for residuesai andaj , andSij the SAS for the com-
bined atoms. We compute SAS using our MASKER (Bystroff,
2002) program. The buried surface (in Å2) between the two
amino acids is given as follows:λ(ai ,aj ) = Si + Sj − Sij .
The buried surface area between two residues is a good
measure of the amount of water displaced by the residue–
residue contact. Desolvation of hydrophobic groups and
hydrogen bonding groups is the primary driving force for
protein folding (Dill, 1990). The solvation free energy is
proportional to the buried surface area2. The SAS-based inter-
action strength between two SSEs is defined asκ(vi ,vj ) =∑vi ·e

ak=vi ·s
∑vj ·e

al=vj ·s λ(ak,al).

Consider the 3D structure of IgG-binding protein G (PDB
code 2IGD; 61 residues) as shown in Figure 1, which also
shows the WSG for 2IGD, using contact-based interaction
strength. Following the convention used in protein topology

2Ignoring differences in solvation energy between polar and non-polar atoms;
we can safely neglect these differences because we consider only native, or
generally favorable, contacts.
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Fig. 1. 3D structure and WSG for protein G (PDB 2IGD).

or TOPS diagrams (Westheadet al., 1999; Gilbertet al., 1999),
we use triangles to representβ-strands, and circles to represent
α-helices. The thick lines denote backbone edges. SSEs are
arranged from the N-terminus (start) to the C-terminus (end),
and numbered as given in the PDB file; 2IGD has five SSEs,
β2β1α1β4β3 arranged from the N- to C-terminus.

4 PREDICTING FOLDING PATHWAYS
In this section, we outline our approach to predict the fold-
ing pathway of a protein using the idea of unfolding. We first
describe Unfold, an algorithm that predicts one plausible fold-
ing pathway. We next present MultiUnfold that finds out many
possible folding pathways and then ranks the intermediate
configurations.

4.1 The Unfold algorithm
Given a weighted SSE graph for a protein, a mincut represents
the set of vertices that partition the WSG into two components
that have the weakest interactions between them, and hence,
a mincut indicates the point in the protein where unfolding is
likely to occur. Through a series of mincuts on the WSG, we

Fig. 2. The Unfold algorithm.

β2 β1

α1 β4 β3β2−β1

β2−β1−α1

β2−β1−α1−β4−β3

β4−β3

Fig. 3. Unfold 2IGD.

predict the most likely sequence of unfolding events. Revers-
ing the unfolding steps yields plausible pathways for protein
folding.

Figure 2 shows the pseudo-code for the Unfold algorithm
to determine the folding pathway for a given protein. An
unfolding event according to our model is a set of vertices
that form a mincut in the WSGG = (V ,E) for a pro-
tein. In Unfold, first, a mincutC for the initial WSG is
determined by the Nagamochi–Ono–Ibaraki (NOI-MinCut)
(Nagamochi et al., 1994) deterministic polynomial-time
mincut algorithm3, which is one of the fastest current meth-
ods, running in timeO(|V ||E|+ |V |2 log |V |). This gives the
first event in the unfolding process. The input graph is then
partitioned into two disjoint subgraphs,GC = (C,EC) and
GC = (C,EC), whereEC = {(u,v) ∈ E | u,v ∈ C} (EC is
defined similarly). We recursively process each subgraph to
yield a sequence of mincuts, corresponding to the unfolding
events. This sequence when reversed produces our prediction
for the folding pathway for the given protein.

As an example of how Unfold works, consider again pro-
tein 2IGD. Given the WSG for 2IGD in Figure 1, NOI-MinCut
determinesC = {β1α1β2} andC = {β4,β3} to be the mincut
with capacityW(C) = 11 + 14 = 25. After recursive pro-
cessing Unfold produces a sequence of mincuts which can be
easily visualized as a tree shown in Figure 3. Here each node
represents a set of vertices comprising a graph obtained in the
recursive application of Unfold, and the children of a node
are the partitions resulting from the mincut. For example, the
nodeβ2β1α1 is partitioned intoβ2β1 andα1. If we proceed

3NOI-MinCut breaks ties among mincuts arbitrarily.
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from the leaf nodes of the tree to the root, we obtain the pre-
dicted folding pathway of 2IGD. We find that SSEsβ2 and
β1 fold to form anti-parallelβ-sheet. Simultaneously SSEs
β3 andβ4 may also form an anti-parallelβ-sheet. SSEα1

then forms aβ2α1β1 arrangement, and then the whole protein
comes together by forming a parallelβ-sheet betweenβ2 and
β3. We should be careful not to impose a strict linear timeline
on the unfolding events predicted by Unfold; rather allow-
ance should be made for several folding events to take place
simultaneously. However, there may be intermediate stages
that must happen before higher order folding can take place.
We show that our approach is particularly suited to provide
insights into such intermediate folding states.

4.2 The MultiUnfold algorithm
The Unfold algorithm finds only one plausible folding path-
way, by always picking, at each recursive stage, only one
(arbitrary) mincut, out of possibly several mincuts of the same
capacity. We would like to enumerate several possible unfold-
ing sequences of the same capacity. Moreover, we may also
want to consider cuts with capacity close to the global mincut.
More formally, letW(Cmin) denote a mincut of graphG; a
near-mincut is a cut with capacityW(C) ≥ (1+ ε)W(Cmin),
whereε ≥ 0 is small non-negative margin of tolerance.

Our approach to find near-mincuts uses, as a substep, the
efficient Gomory–Hu (GH) (Gomory and Hu, 1961) algorithm
to determine the cut-treeT for a weighted graphG, which
takes timeO(|V |2|E|). The cut-tree for 2IGD WSG obtained
by GH algorithm is shown below:

β4β3β2β1α1 27 47 25 36

Note that by definition of cut-tree,C = {α1β1β2} is a mincut
for G with capacityW(C) = 25. If we setε = 0.1, then
C′ = {α1} is a near-mincut, since its capacityW(C′) = 27 ≤
(1 + ε)W(C) = (1 + 0.1)25 = 27.5.

Once the cut-treeT is obtained for a graphG, it is fairly
easy to enumerate possible near-mincuts. In a naive method,
we first determine the mincut by finding the lowest weight
(w) edge in the cut-treeT . Unlike Unfold which picks only
one mincut, we now pick each edgee ∈ T such thatW(e) ≤
w(1 + ε), and partition the graph into two subgraphs based
on each resulting cutC. By recursively processing each new
subgraph we can enumerate all possible mincuts, and we can
also obtain the frequency of each cut, i.e. how often does a
given set of vertices (SSEs) lie on some pathway. However,
this naive approach is rather expensive, since we may have to
repeatedly process the same cut over and over again, each time
it appears on a pathway, leading to combinatorial explosion.

Fig. 4. The MultiUnfold algorithm.

MultiUnfold adopts a more efficient approach. The basic
idea is to first determine the structure of the recursive near-
mincuts, processing each subgraph only once, since a given
(sub)graph always produces the same near-mincuts for a
givenε. The number of pathways and the frequency for each
graph can then be determined using the near-mincut graph.
Figure 4 shows the pseudo-code for MultiUnfold.

We first initialize a queueQ of graphs to be processed with
the original graphG (line 1). We then processQ until it
is empty. We remove each graphG′ from Q (line 3), and
check if we have already determined its near-mincuts [stored
in M(G′)]. If so, we move on to the next graph inQ. If
not, we compute the cut-treeT for G′ and process all the
near-mincuts (line 7). For each near-mincutS (lines 8–9), we
partitionG′ into GS andGS (line 10) and store each of such
pairs inM(G′) (line 11) and also add them toQ (line 12).
Once the near-mincut graphM has been determined by pro-
cessing every graph inQ, we call ComputePathways (line 13)
to find the frequency of each cut among all the pathways. Note
that the for loop on line 7 is linear in the number of distinct
near-mincuts.

As an example, consider the WSG for 2IGD (Fig. 1), with
ε = 0.5, allowing a near-mincut to have capacity at most
1.5 × 25 = 37.5. Thus in addition toC = {α1β1β2} with
W(C) = 25 andC′ = {α1} with W(C′) = 27, we also get
C′′ = {β4} with W(C′′) = 36 as a possible near-mincut. Thus
M(G) = {(α1β1β2,β3β4), (α1,β1β2β3β4), (α1β1β2β3,β4)}.
Likewise, it is easy to see that forG′′ = GC ′′ , M(G′′) =
{(α1β1β2,β3), (α1,β1β2β3)}, and so on. The complete near-
mincut graphM is shown in Figure 5 (a pair of edges with
same type denotes a pair of near-mincuts).
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α1β1β2

β4β3β1α1

β1β2β3β4α1β1β2β3

α1β1β2β3β4

β1β2β3

β3β4β1β2

β2

Fig. 5. Near-mincut graph for 2IGD.

Fig. 6. Computing the pathways.

Once the structure of the near-mincuts has been stored in
graphM, ComputePathways processes this graph bottom-up
from leaves to the root, as shown in Figure 6. We first compute
the number of pathways each node contributes. For any leaf,
there is only one pathway it can contribute (line 2). For a
non-leaf node, the number of pathways is given asN(G′) =∑

(C,C)∈M(G′) N(GC) × N(GC) (lines 3–4). For example, in
Figure 5, nodeC = α1β1β2β3 hasN(GC) = 1×1+1×1 = 2,
while for the original graphG, we haveN(G) = 1× 1+ 2×
1 + 1 × 1 = 4. The complexity of this step isO(|M| × f ),
wheref is the maximum cardinality ofM(G′) over allG′.

Next, we compute the frequency of each nodeF(G′) by
summing up the frequencies from all of its near-mincut pairs,
scaled by the number of pathways the pair contributes (lines
8 and 9), starting with the leaves4. The root node then
contains the final frequency of all the cuts (line 10). Con-
sider the near-mincut graph for 2IGD shown in Figure 5.
The intermediateF(G′) at each node is given in Table 1;
e.g.F(G) = {α1β1β2β3β4(4)} ∪ {F(α1) ∪ F(β1β2β3β4)} ∪

4 Note thatN × F(G′) means we multiply the counts of each cut inF(G)

by N .

Table 1. Frequencies of near-minCuts.

G′ F(G′)

β1β2 β1β2,β1,β2

β3β4 β3β4,β3,β4

α1β1β2 α1β1β2,α1,β1β2,β1,β2

β1β2β3 β1β2β3,β1β2,β1,β2,β3

β1β2β3β4 β1β2β3β4,β1β2,β1,β2,β3β4,β3,β4

α1β1β2β3 α1β1β2β3(2),α1β1β2,β1β2β3,α1(2),β1β2(2),β1(2),β2(2),-
β3(2)

α1β1β2β3β4 α1β1β2β3β4(4),α1β1β2β3(2),α1β1β2(2),β1β2β3β4,β1β2-
β3,α1(4),β1β2(4),β1(4),β2(4),β3β4(2),β3(4),β4(4)

{F(α1β1β2) ∪ F(β3β4)} ∪ {F(α1β1β2β3) ∪ 2× F(β4)}. The
complexity of this step isO(|M|2 × f ) in the worst case.

4.2.1 Ranking near-minCuts Once we obtain the fre-
quency with which a graph appears over all the possible
pathways, we need a way to rank the cuts. Note that a rank-
ing by frequency is not satisfactory; for instance, the original
graphG must appear on each pathway (since it is always the
starting point of MultiUnfold), and each individual SSE must
also always be on each pathway (since a sequence of mincuts
ends only when each graph contains a single vertex). Thus
frequency alone is not sufficient to rank the graphs. A better
method is to rank inversely proportional to the expected prob-
ability of occurrence of a graphG′. Since the full graph and
each vertex always occur on every pathway their probability
of occurrence is 1.0, and they will be ranked low. However,
it is not easy to analytically compute the probability of each
graph. We adopt the method of comparingG with a new graph,
UG = (V ,UE) with the same edge connectivity asG, but with
uniform edge weights [i.e.W(e) = 1,∀e ∈ UE ]. Let f (G′)
andf (UG′) be the relative frequency (defined as ratio of the
frequency ofG′ divided by the total number of pathways)
of graphG′ obtained by running MultiUnfold onG andUG,
respectively. Then we rank each graph in the decreasing order
of f (G′)/f (UG′).

4.3 Detailed example: Dihydrofolate Reductase
Although no one has determined the precise order of appear-
ance of secondary structures for any protein, there is evidence
that supports intermediate stages in the pathway for several
well-studied proteins, including specifically for the protein
Dihydrofolate Reductase (PDB 4DFR; 159 residues), a two-
domainα/β enzyme that maintains pools of tetrahydrofolate
used in nucleotide metabolism (Heidaryet al., 2000; Clementi
et al., 2000).

Experimental data indicate that the adenine-binding
domain, which encompasses the two tryptophans Trp-47
and Trp-74, is folded, and is an intermediate essential in
the folding of 4DFR, and happens early in the folding
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Fig. 7. WSG Dihydrofolate Reductase (4DFR).

Unfolding Sequence

α4

β4

α3

β1

β5

β3−α2−β2−β1

β3−α2−β2−β1−α3

β3−α2−β2−β1−α3−β4

β3−α2−β2−β1−α3−β4−α4

β5−β3−α2−β2−β1−α3−β4−α4−β6−β8−β7

β5−β6−β8−β7

β3−α2−β2

β6−β8−β7

β5−α1−β3−α2−β2−β1−α3−β4−α4−β6−β8−β7

α1

Fig. 8. 4DFR: unfolding sequence.

(Heidaryet al., 2000). Figures 7–11, shows the WSG, unfold-
ing sequence, and a series of intermediate stages in the folding
pathway of protein 4DFR. Trp-47 and Trp-74 lie in SSEsα2

andβ1, respectively. According to our mincut-based Unfold
algorithm, the vertex set{β2,α2,β3,β1} lies on the folding
pathway, in agreement with the experimental results!

We can see from Figure 7, that 4DFR has fourα-helices
and eightβ-strands. The WSG shows the interactions weights
among the different SSEs (the bold lines indicate the back-
bone). Applying Unfold to 4DFR yields the sequence of cuts
shown (Fig. 8). For clarity the unfolding sequence tree has
been stopped when there are no more than three SSEs in any
given node. The remaining illustrations show some selected
intermediate stages on the folding pathway by reversing the
unfolding sequence.

We find that SSE groupβ2α2β3 andβ6,β8,β7 are among
the first to fold (Fig. 9), suggesting that they might be the
folding initiation sites. Nextβ1 joins β2α2β3, in agreement
with the experimental results (Heidaryet al., 2000), as shown
in Figure 10; the Trp-47 and Trp-74 interaction is also shown,
and the other group now becomesβ5,β6,β8,β7. The final nat-
ive structure includingα3β4α4 andα1 is shown in Figure 11.

α2

β2 β3
β6

β7 β8

Fig. 9. 4DFR: early stages in the folding pathway.

Trp 74

Trp 47

β8
β7

β6

β5

α2

β2

β3

β1

Fig. 10. 4DFR: intermediate stages in the folding pathway.

We again underscore that the results should not be taken to
imply a strict folding timeline, but rather as a way to under-
stand major events that are mandatory in the folding pathway.
One such experimentally verified case is the{β2,α2,β3,β1}
group that is known to fold early, and our approach was able
to predict that.

5 PATHWAYS FOR OTHER PROTEINS
To establish the utility of our methodology we predict the
folding pathway for several proteins for which there are known
intermediate stages in the folding pathway.

Bovine Pancreatic Trypsin Inhibitor (PDB 6PTI; 58
residues) is a small protein containing 2α-helices and 2
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β4

β5

β6

β7
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Fig. 11. 4DFR: final stages and native structure of the folding
pathway.

β-strands (Kazmirski and Daggett, 1998). It is known that
the unfolding pathway of this protein involves the loss of the
helix structure followed by the beta structure. We found that
indeedβ2β3 remain together until the end.

Chymotrypsin Inhibitor 2 (PDB 2CI2; 83 residues) is also a
small protein with 1 helix and 4 strands, arranged in sequence
as followsβ1α1β4β3β2. Previous experimental and simulation
studies have suggested an early displacement ofβ1, and a key
event in the disruption of the hydrophobic core formed primar-
ily by α1 and the strandsβ3 andβ4 (Lazardis and Karplus,
1997). Our approach predicts thatβ1 is the first to go, while
β3β4 remain intact until the end.

The activation domain of Human Procarboxypeptidase A2
(PDB 1O6X) has 81 residues, with 2α-helice and 3β-strands
arranged as followsβ2α1β1α2β3. The folding nucleus of
1O6X is made by packing ofα2 with β2β1 (Villegas et al.,
1998). We found that the unfolding sequence indeed retains
β2β1α2 and then finallyβ2β1.

The pathway of cell-cycle protein p13suc1 (PDB 1SCE; 112
residues) shows the stability ofβ2β4 interaction even though
β4 is the strand involved in domain swapping (Alonsoet al.,
2000). 1SCE has four domains, with seven SSEs (threeα and
four β). β4C of domain C interacts withβ2 of domain A, and
vice versa (the same is true for domains B and D). We found
thatβ1β2β4C is the last to unfold.

β-Lactoglobulin (PDB 1CJ5; 162 residues) contains 10
strands and 3 helices. Beta strands F, G and H are formed
immediately once the refolding starts (Kuwataet al., 2001),
which was thus identified as the folding core of 1CJ5. In the

predicted unfolding sequence obtained for 1DV9, we found
that the SSEsβ8,β9,β10 corresponding to the F,G and H beta
strands remain together till the last stages of unfolding.

Interleukin-1β (PDB 1I1B; 153 residues) is an all-β protein
with 12 β-strands. Experiments indicate that strandsβ6β7β8

are well folded in the intermediate state andβ4β5 are partially
formed (Clementiet al., 2000). We foundβ4β5 andβ8β9 to
be among the last unfolding units, including other pairs.

Myoglobin (PDB 1MBC; from sperm whale; 153 residues)
and Leghemoglobin (PDB 1BIN; from Soybean; 143
residues), both belonging to the globin family of heme bind-
ing proteins, share a rather low sequence similarity, but share
highly similar structure. Both are all-α proteins with eight
helices, denotedα1(A)α2(B)α3(C)α4(D)α5(E)α6(F )α7(G)-
α8(H). Nishimuraet al. (2000) observed that the main
similarity of their folding pathways is in the stabilization
of the G and H helices in the burst phase folding inter-
mediates. However, the details of the folding pathways are
different. In 1MBC intermediate additional stabilizing inter-
actions come from helices A and B, while in 1BIN they
come form part of E helix. Running Unfold on 1MBC indeed
finds thatα2(B)α3(C)α7(G)α8(H) remain together until the
very last. For 1BIN, we found a pathway passing through
α2(B)α5(E)α7(G)α8(H). Unfold was thus able to detect the
similarity in the folding pathways, as well as the details. We
also ran MultiUnfold withε = 0.1, and the results confirmed
that in 1MBCα2(B)α7(G)α8(H) never occurs in the uniform
graph, and for 1BIN,α5(E)α7(G)α8(H) never occurs in the
uniform graph. We also found thatα5(E) showed interactions
with α7(G)α8(H) in 1BIN, but never for 1MBC.

Protein Acylphosphatase (PDB 2ACY; 98 residues), with
two α and fiveβ SSEs (β2α1β4β3α2β1β5), displays a trans-
ition state ensemble with a marked tendency for theβ-sheets to
be present, particularlyβ3 andβ4, and whileα2 is present, it is
highly disordered relative to rest of the structure (Vendruscolo
et al., 2001). We found thatβ2β4β3α2β1 form an intermediate
in the unfolding sequence.

Twitchin Immunoglobulin superfamily domain protein
(PDB 1WIT; 93 residues) has aβ-sandwich consisting of
nine β-strands, and one very small helix. The folding nuc-
leus consists of residues in the structural coreβ3β4β7β9β10

centered aroundβ3 andβ9 on opposite sheets (Clarkeet al.,
1999). We found that the unfolding sequence passes through
the intermediateβ3β4β7β9β10.

6 CONCLUSIONS
In this paper, we developed automated techniques to predict
protein folding pathways. We construct a weighted SSE graph
for a protein, where each vertex is an SSE, and each edge
represents the strength of interaction between two SSEs. We
use a repeated mincut approach (via the Unfold algorithm)
on the WSG graph to discover strongly inter-related groups
of SSEs and we then predict an (approximate) order of
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appearance of SSEs along the folding pathway. We also
proposed MultiUnfold algorithm to find many possible fold-
ing pathways, which also ranks each intermediate inversely
proportional to its expected frequency.

We proposed three methods for calculating the interaction
strength between SSEs: contact, distance and SAS based. The
SAS-based approach incorporates the solvation free energy of
the molecules. We found that while the three approaches give
similar results, the SAS-based approach seems to agree more
with the known pathways.

Currently, we consider interactions only among the
α-helices andβ-strands. In the future we also plan to incorpor-
ate the loop regions in the WSG, and see what effect it has on
the folding pathway. Furthermore, we plan to test our folding
pathways on the entire collection of proteins in the PDB. We
would like to study different proteins from the same family
and see if our methods predict consistent pathways; both sim-
ilarities and dissimilarities may be of interest. We also plan
to make our software available online so other researchers
may first try the pathways predictions before embarking on
time-consuming experiments and simulations.
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