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ABSTRACT

Summary: A structured folding pathway, which is a time
ordered sequence of folding events, plays an important role in
the protein folding process and hence, in the conformational
search. Pathway prediction, thus gives more insight into the
folding process and is a valuable guiding tool to search the con-
formation space. In this paper, we propose a novel ‘unfolding’
approach to predict the folding pathway. We apply graph-based
methods on a weighted secondary structure graph of a protein
to predict the sequence of unfolding events. When viewed in
reverse this yields the folding pathway. We demonstrate the
success of our approach on several proteins whose pathway
is partially known.

Contact: zaki@cs.rpi.edu

are required for the folding of any protein (Chikenji and
Kikuchi, 2000). Many simplified models for folding, such
as lattice simulations, tacitly assume that non-native contacts
are ‘off pathway’ and are not essential to the folding pro-
cess (Klimov and Thirumalai, 2001). Therefore, we choose
to encode the assumption of a ‘native pathway’ into our
algorithmic approaches. This simplifying assumption allows
us to define potential folding pathways based on known 3D
structure. We may further assume that native contacts are
formed only once in any given pathway.

One approach to enumerate folding pathways is to start
with an unfolded protein and consider the various possibil-
ities for the protein to fold. This approach is expensive due
to the explosively large number of possibilities to consider

for the pathways, although some recent progress has been
made by applying a probabilistic road map (motion plan-

1 INTRODUCTION !
. . . . . ning) based approach (Song and Amato, 2002). However, the
Given a protein’'s amino acid sequence and its three- o S
roadmap approach is still expensive; it takes 2—15 hours even

.d|menS|onaI. (3D) str.ucture, the pathway pred|ct|o_n problemfor relatively small proteins (60—110 residues).
is to determine the time ordered sequence of folding events, . : Lo
Our novel approach is to start with a folded protein in its

called the folding pathway, that leads from the primary to.. . ) S i
X : ~final state and learn how to ‘unfold’ the protein in an approx
t_he tertiary st_ructl_Jre. Whereas the protein structure IoredlCﬁ’nately ordered sequence of steps, to its unfolded state. The
tion problem is w@e!y acknowledged as an open IorObIemreversal of such a sequence then represents a plausible pro-
the pathway prediction problem has received little atten- . . .
. : . . ) tein folding pathway, a view supported by Fersht and Daggett,
tion. Itis clear that the ability to prgdlpt folding pathway; 2002. We use a graph representation of a protein, where a ver-
can greatly enhance structure prediction methods. Foldmgex denotes a secondary structure element (SSé) and an edge

pa_\thwa_y prediction IS alsq_lnterestmg in itself, since pr_Otemdenotes the interactions between two SSEs. The edges are
misfolding has been identified as the cause of several diseases . : ; .
: L : . ~weighted by the strength of the SSE interactions. The basic
such as Creutzfeldt—Jacob disease, cystic fibrosis, hereditary, *. . ) .
Intuition behind our approach is to break the weakest inter-
emphysema and some cancers (Dobson, 2003).

Strong experimental evidence for pathway-based modelactlons to obtain a sequence of unfolding events. We present

- : fwo algorithms: Unfold, that predicts one unfolding sequence,
of protein folding has emerged over the years, e.g., experi: . .

. . , ) and MultiUnfold, that enumerates many folding pathways and
ments revealing the structure of the ‘unfolded’ state in water

(Mok et al., 1999), burst-phase folding intermediates (COIOHEr&LnekSath?ogéiremse:::tiit?eﬁgf ?Qsih?gk?;(picr:et?]gri?g::]g
and Roder, 1996), and the kinetic effects of point mutations P y ' 9

['phi-values’ (Nolting et al., 1997)]. These pathway models a few second; (for proteins as large as 162 residues). Qur
S . ; pathway predictions also show remarkable agreement with
indicate that certain events always occur early in the fold- . :
: . experimentally determined pathways.
ing process and certain others always occur later. Currently,

there is no strong evidence that specific non-native cortacts
2 PRELIMINARIES

Weightedgraphs Anundirected grapty (V, E) isastructure
that consists of a set of vertic&= {v1, vo,...,v,} and a set

*To whom correspondence should be addressed.
1A native contact is the one retained in the folded protein.

1386 Bioinformatics 20(Suppl. 1) © Oxford University Press 2004; all rights reserved.



Predicting protein folding pathways

ofedgesE C VxV,givenast = {e; = (s,1) |s,t € V},i.e.  backbone edges are given higher weight since they represent
each edge; is an unordered pair of vertices. A weighted graphstrong covalent bonds, while the other interactions represent
is a graph with an associated weight functién: £ — %t  weaker non-covalent bonds.
for the edge set. For each edge= E, W(e) is called the There are several schemes to compute the strength of inter-
weight of the edges. action between two SSEs: contact, distance and solvent
Minimum cuts A cut C of a weighted grapl@, is a par- accessible surface (SAS) based.
tition of the set of vertices into two non-empty subseéts
andC = V — C. We will mostly (unambiguously) refer
to a cut by specifying just one of the subsétsThe capa-
city of the cutC is the sum of the weights of edges tha
cross (i.e. have exactly one endpointGi the cut, given as
W(C) = Yo (snersecace We). AcutCisansteutif ver- (xi —xj)%+ (yi — yj)?+ (zi — z;)%. We say that; and
ticess andr are in different partitions of the cut. A minimum aj are in contact, iffs(ak,al) < 6maX’ wheresdMX is some
stcutis anst cut of minimum capacity. A (global) minimum - maximum allowed distance threshold (a common value is
cut (mincut) is a minimuns-t cut over all pairs of vertices sgmax — 7A) A contact map for a protein WitV residues
andr. Note that mincut need not be unique. isanN x N binary matrixC whose element (a;,a;) = 1 if
Cut-trees A cut tree of weighted grapty, is a weighted  residues; anda; are in contact, and (a;, a;) = 0 otherwise.
treeT = (V,E) onV, which represents the structure of all The contact-based interaction strength is given as the number

thes-t mincut values of5 as follows: for every pair of distinct  of contacts between the two SSEs in the contact map, given
verticess,t € V, lete € E’ be a minimum weight edge onthe as(y;, v) =Y YU Clag,ap).

ag=v;-s a=v;-s

unique path fromy to 7 in 7. Deletinge from 7' separate§’ Distance based Let D(aw,a)) = 6™/8(ax,ar), if
into two disjoint vertex sets (with s € S)and7 = S (With (4, 4) = 1, and D(a;,a)) = O, otherwise. The

t € T). ThenS andT denote the two partitions in a minimum  gistance-based interaction strength is defined(as V) =

Contact-based Given two amino acids; anda; along
with the 3D coordinates of thei-carbon atoms (or alternately
t p-carbon),(x;, y;,z;) and(x;, y;,z;), respectively, define the
Euclidean distance between them as followss;,a;) =

st cut. Note thatl” is not a subgraph of. YLy Taly s Dlak,ap). Intuitively, we consider only
interaction between residues within tB&82* threshold [for
3 WEIGHTED SSE GRAPH C(ak,a;) = 1], and the closer the residues are the greater the

A protein can be represented as a weighted secondary :stru%t-rength ,Of interactioné("aX( 8(ay, ar)). The distance-based
ture element graph (WSG), where the vertices are the SSéQethOd s thus an extenslon of t_hg contapt—based method,
comprising the protein and the edges denote proximity relavhere we scale each residue pair interaction by how close
tionship between the secondary structures. Furthermore, tﬁgey are. : i

edges are weighted by the strength of the interaction betweenSOIVent accessible surfgce_ based SA.S Is the area of the
two SSEs. We construct the WSG for a given protein a{nolecular surface_ that is in contact with a spherical solvent
follows: we determine the list of SSEs and their sequencénOIGCUIe of a defined size (1.4A). Let ands; denote the

positions from the known 3D structure taken from the Proteir‘E.AS dfor reSidVl\J/eS” anda, ’SZnSd 5 i the S'\A/IisfirEtge; om- f
Data Bank (PDB) (http://www.rcsb.org/pdb/). Every SSE is a Ined atoms. We compute using our (Bystroff,

vertex in the WSG. Le¥ = {v1, vz, .. ., v} denote a protein 2002) program. The buried surface (if)%between the two

with n SSEs. Each SSE; has starting1; - s) and ending amino acids is given as follows:(a;, a;) = S; + S; — Sij.
(i - €) sequence positions, wheredlv; - s < v; - e < N The buried surface area between two residues is a good
] 1 —= ] ] — 1

and N is the length of the protein. The edge weights argheasure of the amount of.water displaced t_)y the residue-
determined as follows: Lef; andv; be a pair of SSEs. Let residue contact. Desolvatlpn of hydrophoplq groups and
the indicator variabléb(v;,v;) = 1 if v; andv; are con- hydrqgen b_ondlng_ groups s the primary driving force fpr
secutive on the protein backbone chain, gise, v;) = 0. protein folding (Dill, 1990). The solvation free energy is

Let « (v;, v;) denote the interaction strength between the twd” roportional to the buried surface afe@ihe SAS-based inter-
SSEs. An edge exists between two SSEs if their interactior%czggn Stfe?g}h between two SSEs is defined @s, v;) =
strength exceeds some threshold, i.ex(f;,v;) > «™", aivys 2ai=v;-s M@k, 1)

or if the two SSEs are consecutive on the backbone chain. consider the 3D structure of IgG-binding protein G (PDB
The weight assigned to the edge, v;) is given as follows:  code 2I1GD; 61 residues) as shown in Figure 1, which also
Wi, vj) = A x b(vj,vj) + k(vi,v), whereA is some  ghows the WSG for 2IGD, using contact-based interaction

constant. In our study, we set as the average interaction strength. Following the convention used in protein topology
strength between SSEs, i&.= [ Y, , esk (vi,v))]/IS,

— Sy min D i ight-
Wheres - {/c.(v, ! vl_) > K . | vi, vj € V}. This Welght 2|gnoring differences in solvation energy between polar and non-polar atoms;
Ing SChem_e gives h'Qher we|ghts to backbone edges and al§R can safely neglect these differences because we consider only native, or
to SSEs with greater interaction strength between them. Thgenerally favorable, contacts.
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/IG is a graph with weight function W
Unfold (G = (V,E),W : E — R"):
C = NOI-MinCut(G,W);
Ge = (C,Ec); G = (C, Eg);
if (|C| > 1) Unfold(G¢, W),
if (|C| > 1) Unfold(Gg, W);

Fig. 2. The Unfold algorithm.

B2-B1-a1-R4—P3

AN

B2-p1 al B4 B3
B2 B1

Fig. 3. Unfold 2IGD.

predict the most likely sequence of unfolding events. Revers-
ing the unfolding steps yields plausible pathways for protein
folding.

Figure 2 shows the pseudo-code for the Unfold algorithm
to determine the folding pathway for a given protein. An
unfolding event according to our model is a set of vertices
that form a mincut in the WS& = (V,E) for a pro-
tein. In Unfold, first, a mincutC for the initial WSG is
determined by the Nagamochi—Ono—-Ibaraki (NOI-MinCut)
or TOPS diagrams (Westheetd ., 1999; Gilberetal., 1999),  (Nagamochiet al., 1994) deterministic polynomial-time
we use triangles to represghstrands, and circles to represent mincut algorithni, which is one of the fastest current meth-
a-helices. The thick lines denote backbone edges. SSEs aggjs, running in time2 (|V||E| + |V|?log |V |). This gives the
arranged from the N-terminus (start) to the C-terminus (end)irst event in the unfolding process. The input graph is then
and numbered as given in the PDB file; 2IGD has five SSEspartitioned into two disjoint subgraph&,c = (C, E¢) and
B2P10:1BapB3 arranged from the N- to C-terminus. G¢ = (C,Ep), whereEc = {(u,v) € E | u,v € C} (Egis
defined similarly). We recursively process each subgraph to
yield a sequence of mincuts, corresponding to the unfolding
4 PREDICTING FOLDING PATHWAYS events. This sequence when reversed produces our prediction
In this section, we outline our approach to predict the fold-for the folding pathway for the given protein.
ing pathway of a protein using the idea of unfolding. We first As an example of how Unfold works, consider again pro-
describe Unfold, an algorithm that predicts one plausible foldtein 2IGD. Given the WSG for 2IGD in Figure 1, NOI-MinCut
ing pathway. We next present MultiUnfold that finds out manydetermines” = {81182} andC = {4, B3} to be the mincut
possible folding pathways and then ranks the intermediat@ith capacityW (C) = 11+ 14 = 25. After recursive pro-

Fig. 1. 3D structure and WSG for protein G (PDB 2IGD).

configurations. cessing Unfold produces a sequence of mincuts which can be
easily visualized as a tree shown in Figure 3. Here each node
4.1 TheUnfold algorithm represents a set of vertices comprising a graph obtained in the

Given a weighted SSE graph for a protein, a mincut represent&cursive application of Unfold, and the children of a node
the set of vertices that partition the WSG into two componentgre the partitions resulting from the mincut. For example, the
that have the weakest interactions between them, and hendéodefzp1c1 is partitioned intoBzf1 andaa. If we proceed

a mincut indicates the point in the protein where unfolding is

likely to occur. Through a series of mincuts on the WSG, we3NOI-MinCut breaks ties among mincuts arbitrarily.
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from the leaf nodes of the tree to the root, we obtain the pre-
dicted folding pathway of 2IGD. We find that SSBs and
B1 fold to form anti-parallelg-sheet. Simultaneously SSEs )
B3 and B4 may also form an anti-parall@d-sheet. SSky;
then forms 88,1 81 arrangement, and then the whole protein 2 )
comes together by forming a paralisheet betweefi, and 3 G'(V, E) = remove from front of Q;
Bs. We should be careful not to impose a strict linear timeline | 4- if M(G") exists, skip lines 5-12
on the unfolding events predicted by Unfold; rather allow- 5. T(V’, E') = GH-CutTree(G’,W);

6

7

8

/IG is a graph with weight function W
MultiUnfold (G, W):

Q={G}

while Q # ()

ance should be made for several folding events to take place w = min{W(e)le € E'};
simultaneously. However, there may be intermediate stages for all e € E' with W(e) < w(1 +¢)
that must happen before higher order folding can take place. S = connected component

We show that our approach is particularly suited to provide ' of T — {e} containing s;
insights into such intermediate folding states. 9. S=V-2_;
10. GS: (S,Es>,G§: (g,Eg),
. : 11. M(G') = M(G") U{(Gs,Gg)}s
4.2 TheMultiUnfold algorithm 12. Q=QU{Gs,Gg};
The Unfold algorithm finds only one plausible folding path- 13.  F(G) = ComputePathways(M);

way, by always picking, at each recursive stage, only one
(arbitrary) mincut, out of possibly several mincuts of the same
capacity. We would like to enumerate several possible unfoldFig. 4. The MultiUnfold algorithm.
ing sequences of the same capacity. Moreover, we may also
want to consider cuts with capacity close to the global mincut.
More formally, letW (Cnmin) denote a mincut of grapty; a
near-mincut is a cut with capacity (C) > (1+ €) W (Cmin),
wheree > 0 is small non-negative margin of tolerance.

Our approach to find near-mincuts uses, as a substep, t

MultiUnfold adopts a more efficient approach. The basic
idea is to first determine the structure of the recursive near-
incuts, processing each subgraph only once, since a given

efficient Gomory—Hu (GH) (Gomory and Hu, 1961) algorithm ;ub)graph always produces the same near-mincuts for a
to determine the cut-tre® for a weighted graptg, which givene. The number of pathways and the frequency for each

takes time0 (| V|2|E|). The cut-tree for 21GD WSG obtained graph can then be determined using the near-mincut graph.
by GH algorithm is shown below: Figure 4 shows the pseudo-code for MultiUnfold.

We first initialize a queu® of graphs to be processed with
the original graphG (line 1). We then proces® until it
is empty. We remove each gragk from Q (line 3), and
Bl 82 B B IR check if we have already determined its near-mincuts [stored
in M(G")]. If so, we move on to the next graph i@. If
not, we compute the cut-tree for G’ and process all the
near-mincuts (line 7). For each near-minsytines 8-9), we
Note that by definition of cut-tre€; = {«18182}isamincut  partition G’ into G andGy (line 10) and store each of such
for G with capacityW(C) = 25. If we sete = 0.1, then pairs inM(G’) (line 11) and also add them 1@ (line 12).
= {1} is a near-mincut, since its capaciy(C’) = 27 < Once the near-mincut graph has been determined by pro-
1+e)W(C)=(1+0.)25=27.5. cessing every graph i@, we call ComputePathways (line 13)
Once the cut-tred is obtained for a graply, it is fairly  tofind the frequency of each cut among all the pathways. Note
easy to enumerate possible near-mincuts. In a naive methothat the for loop on line 7 is linear in the number of distinct
we first determine the mincut by finding the lowest weightnear-mincuts.
(w) edge in the cut-tre& . Unlike Unfold which picks only As an example, consider the WSG for 2I1GD (Fig. 1), with
one mincut, we now pick each edge= T suchthatW(¢) < ¢ = 0.5, allowing a near-mincut to have capacity at most
w(l + €), and partition the graph into two subgraphs basedl.5 x 25 = 37.5. Thus in addition t@€ = {«18182} with
on each resulting cuf. By recursively processing each new W(C) = 25 andC’ = {a3} with W(C’) = 27, we also get
subgraph we can enumerate all possible mincuts, and we cafi’ = {84} with W(C”) = 36 as a possible near-mincut. Thus
also obtain the frequency of each cut, i.e. how often does 8 (G) = {(@18182, B3B4), (a1, B1B2B3B4), (w1B1B2B3, Ba)}.
given set of vertices (SSEs) lie on some pathway. Howevel.ikewise, it is easy to see that f{@" = G, M(G") =
this naive approach is rather expensive, since we may have {61 8182, 83), (a1, B18283)}, and so on. The complete near-
repeatedly process the same cut over and over again, each timéncut graphM is shown in Figure 5 (a pair of edges with
it appears on a pathway, leading to combinatorial explosion.same type denotes a pair of near-mincuts).
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alB1p2B3B4 Table 1. Frequencies of near-minCuts.

«1pip2p3  p1p2p3pa G’ F(G)
B1B2 B1B2, B1, B2
B3Ba B3Ba, B3, Pa

18182 a1B1B2, a1, B1B2, B1, B2

B1B2B3 B1B2B3, B1B2, B1, B2, B3

B1B2B3pa B1B2B3P4, B1B2, B1, B2, B3Pa, B3, Pa

\ a118283 a1B1B2P3(2), 01 B1B2, P1B2B3, @1(2), B1B2(2), B1(2), B2(2) -

al B1 B2 B3 B4 133(2)

a1B1B2P3Ba  a1B1B2P3Pa(4), a1B1B2P3(2), 21 8182(2), B1B2B3P4, B1B2-
B3, a1(4), B1B2(8), B1(4), B2(4), B3Pa(2), B3(4), Ba(4)

Fig. 5. Near-mincut graph for 2IGD.

ComputePathways (G, M):
//[Compute Number of Pathways {F(a1B1B2) U F(B3Ba)} U {F (a1B1B2P3) U2 x F(Ba)}. The
1. forall G'(V', E") € M from leaves to root complexity of this step i®) (M |2 x f) in the worst case.
2. if |[V/| = 1then N(G') = 1; ) ) )
3 else for all (G, G) € M(G') 421 Rank|ng near-mi nCuts Once we obtain the fref
4. N(G") = N(G") + N(G}) x N(GY):; qguency with which a graph appears over all the possible
/ICompute Frequency of Each Graph pathways, we ne_ed away to rank the cuts. Note that a r_ank-
5. forall G'(V’, E') € M from leaves to root ing by frequency is not satisfactory; for mgtanc_e: the original
6. F(G) = {,(G’, N(G')Y; grath mgst appear on each pathway .(5|r.1c.e it is always the
7. for all (G, G) € M(G") starting point of MultiUnfold), and e_ach individual SSE mpst
g F(Q) :’ F(G') UF(G}) x N(GY); also always be on each pathway (S|.nce a sequence of mincuts
0. F(G') = F(G') U F(G’l) " N(G?)j ends only when each graph contains a single vertex). Thus
10. return F(G); 2 1 frequency alone is not sufficient to rank the graphs. A better
) ’ method is to rank inversely proportional to the expected prob-

ability of occurrence of a grap&’. Since the full graph and

each vertex always occur on every pathway their probability

of occurrence is 1.0, and they will be ranked low. However,

it is not easy to analytically compute the probability of each
Once the structure of the near-mincuts has been stored graph. We adopt the method of compar@Ggith a new graph,

graphM, ComputePathways processes this graph bottom-up/¢ = (V, Ug) with the same edge connectivity@sbut with

from leaves to the root, as shown in Figure 6. We first computeiniform edge weights [i.eW (e) = 1,Ve € Ug]. Let f(G’)

the number of pathways each node contributes. For any lea#ind f (Ug') be the relative frequency (defined as ratio of the

there is only one pathway it can contribute (line 2). For afrequency ofG’ divided by the total number of pathways)

non-leaf node, the number of pathways is giverNd&’) = of graphG’ obtained by running MultiUnfold oG andUg,

Z(Cf)e,\,,(G,) N(Gc¢) x N(Gp) (lines 3-4). For example, in  respectively. Then we rank each graph in the decreasing order

Figure 5, nod€ = a1818283hasN(G¢) = 1x1+1x1 =2, of f(G"/f(Ug).

while for the original graplG, we haveN(G) = 1x 1+ 2 x ] )

1+ 1 x 1 = 4. The complexity of this step i©®(M| x f), 43 Detailed example: Dihydrofolate Reductase

where f is the maximum cardinality d¥1 (G") over allG’. Although no one has determined the precise order of appear-
Next, we compute the frequency of each ndd@’) by  ance of secondary structures for any protein, there is evidence

summing up the frequencies from all of its near-mincut pairsthat supports intermediate stages in the pathway for several

scaled by the number of pathways the pair contributes (linesvell-studied proteins, including specifically for the protein

8 and 9), starting with the leaves The root node then Dihydrofolate Reductase (PDB 4DFR; 159 residues), a two-

contains the final frequency of all the cuts (line 10). Con-domaina/B enzyme that maintains pools of tetrahydrofolate

sider the near-mincut graph for 2IGD shown in Figure 5.used in nucleotide metabolism (Heid&tyal., 2000; Clementi

The intermediateF (G’) at each node is given in Table 1; etal., 2000).

€.0.F(G) = {a1B1B2B3B4(d} U {F(a1) U F(B1B2B3B4)} U Experimental data indicate that the adenine-binding

domain, which encompasses the two tryptophans Trp-47
4Note thatN x F(G’) means we multiply the counts of each cutAtiG) and Trp-74, is folded, and is an intermediate essential in
by N. the folding of 4DFR, and happens early in the folding

Fig. 6. Computing the pathways.
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Weighted SSE Graph

Fig. 7. WSG Dihydrofolate Reductase (4DFR).

Unfolding Sequence

B5-a1-B3-a2-P2-B1l-a3—P4—ad—B6—R8—B7

B5-B3—a2-B2—-Rl-a3—-B4—ad4—B6—B8—-B7 al

B3—-02—-B2-Bl-a3—-pB4-a4d B5—-B6-B8—B7
B3-a2-p2-B1-a3-B4 a4 B5 B6—p8—p7
B3—-a2-p2—-pB1-a3 g4

B3-a2-p2-B1l a3

B3-a2-B2 B1

Fig. 8. 4DFR: unfolding sequence.

(Heidaryet al., 2000). Figures 7-11, shows the WSG, unfold-
ing sequence, and a series of intermediate stages in the foldin
pathway of protein 4DFR. Trp-47 and Trp-74 lie in SSks
and 1, respectively. According to our mincut-based Unfold
algorithm, the vertex s€f8,, a2, B3, 81} lies on the folding
pathway, in agreement with the experimental results!

We can see from Figure 7, that 4ADFR has fadhelices
and eights-strands. The WSG shows the interactions weights

among the different SSEs (the bold lines indicate the baCk\'Ne again underscore that the results should not be taken to

bone). Applying Unfold to 4DFR yields the sequence of cuts. . N
; : . imply a strict folding timeline, but rather as a way to under-
shown (Fig. 8). For clarity the unfolding sequence tree has . . ’
. stand major events that are mandatory in the folding pathway.
been stopped when there are no more than three SSEs in a : o .
e such experimentally verified case is fife, a2, B3, B1}

given node. The remaining illustrations show some selecte .
> ) : : roup that is known to fold early, and our approach was able
intermediate stages on the folding pathway by reversing th :
: 0 predict that.

unfolding sequence.

We find that SSE group.a283 and s, Bs, B7 are among
the first to fold (Fig. 9), suggesting that they might be the® PATHWAYS FOR OTHER PROTEINS
folding initiation sites. Nexi; joins BoazB3, in agreement  To establish the utility of our methodology we predict the
with the experimental results (Heidaatyal., 2000), as shown folding pathway for several proteins for which there are known
in Figure 10; the Trp-47 and Trp-74 interaction is also shownjntermediate stages in the folding pathway.
and the other group now becon®&s Bs, Bs, f7. The final nat- Bovine Pancreatic Trypsin Inhibitor (PDB 6PTI; 58
ive structure includingezBsa4 andeg is shown in Figure 11. residues) is a small protein containinga2helices and 2

Fig. 10. 4DFR: intermediate stages in the folding pathway.
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predicted unfolding sequence obtained for 1DV9, we found
that the SSEgs, B9, B10 corresponding to the F,G and H beta
strands remain together till the last stages of unfolding.

Interleukin-18 (PDB 111B; 153 residues) is an alprotein
with 12 g-strands. Experiments indicate that stragBSs
are well folded in the intermediate state ghgs are partially
formed (Clementkt al., 2000). We foundgB48s and g9 to
be among the last unfolding units, including other pairs.

Myoglobin (PDB 1MBC; from sperm whale; 153 residues)
and Leghemoglobin (PDB 1BIN; from Soybean; 143
residues), both belonging to the globin family of heme bind-
ing proteins, share a rather low sequence similarity, but share
highly similar structure. Both are adl-proteins with eight
helices, denoteeh (A)ao(B)a3(C)ag(D)as(E)ag(F)a7(G)-
ag(H). Nishimuraet al. (2000) observed that the main
similarity of their folding pathways is in the stabilization
of the G and H helices in the burst phase folding inter-
mediates. However, the details of the folding pathways are
different. In IMBC intermediate additional stabilizing inter-
actions come from helices A and B, while in 1BIN they
come form part of E helix. Running Unfold on 1MBC indeed
Fig. 11. 4DFR: final stages and native structure of the folding fjhds thatoa(B)as(C)a7(G)ag(H) remain together until the
pathway. very last. For 1BIN, we found a pathway passing through

az2(B)as(E)a7(G)ag(H). Unfold was thus able to detect the

similarity in the folding pathways, as well as the details. We
B-strands (Kazmirski and Daggett, 1998). It is known thatalso ran MultiUnfold withe = 0.1, and the results confirmed
the unfolding pathway of this protein involves the loss of thethat in IMBCua2(B)a7(G)ag(H) never occurs in the uniform
helix structure followed by the beta structure. We found thatgraph, and for 1BINs(E)a7(G)as(H) never occurs in the
indeedBz B3 remain together until the end. uniform graph. We also found thag( E) showed interactions

Chymotrypsin Inhibitor 2 (PDB 2CI2; 83 residues) is also awith a7(G)ag(H) in 1BIN, but never for IMBC.
small protein with 1 helix and 4 strands, arranged in sequence Protein Acylphosphatase (PDB 2ACY; 98 residues), with
as followsB1a1 B48382. Previous experimental and simulation two « and fiveg SSEs Boa18483028185), displays a trans-
studies have suggested an early displacemesit,aind a key ition state ensemble with a marked tendency foztsheets to
eventinthe disruption of the hydrophobic core formed primar-be present, particularl§s andss, and whilexs is present, itis
ily by a1 and the strandgs and 4 (Lazardis and Karplus, highly disordered relative to rest of the structure (Vendruscolo
1997). Our approach predicts that is the first to go, while  etal., 2001). We found tha#, 8483281 form an intermediate
B3B4 remain intact until the end. in the unfolding sequence.

The activation domain of Human Procarboxypeptidase A2 Twitchin Immunoglobulin superfamily domain protein
(PDB 106X) has 81 residues, withizhelice and 3-strands  (PDB 1WIT; 93 residues) has g-sandwich consisting of
arranged as followgsa1810283. The folding nucleus of nine g-strands, and one very small helix. The folding nuc-
106X is made by packing af, with 8281 (Villegaset al., leus consists of residues in the structural cBs848789810
1998). We found that the unfolding sequence indeed retainsentered aroung@s and Sg on opposite sheets (Clarletal.,
B2B1a2 and then finallyB,81. 1999). We found that the unfolding sequence passes through

The pathway of cell-cycle protein p13sucl (PDB 1SCE; 112the intermediates 48789810
residues) shows the stability 8584 interaction even though
Ba is the strand involved in domain swapping (Aloregtal .,

2000). 1SCE has four domains, with seven SSEs (tatared 6 CONCLUSIONS

four B). Bac of domain C interacts witls> of domain A, and  In this paper, we developed automated techniques to predict
vice versa (the same is true for domains B and D). We foungbrotein folding pathways. We construct a weighted SSE graph

that 818284c¢ is the last to unfold. for a protein, where each vertex is an SSE, and each edge

B-Lactoglobulin (PDB 1CJ5; 162 residues) contains 10represents the strength of interaction between two SSEs. We
strands and 3 helices. Beta strands F, G and H are formagse a repeated mincut approach (via the Unfold algorithm)
immediately once the refolding starts (Kuwataal., 2001), on the WSG graph to discover strongly inter-related groups
which was thus identified as the folding core of 1CJ5. In theof SSEs and we then predict an (approximate) order of
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appearance of SSEs along the folding pathway. We alsDobson,C.M. (2003) Protein folding and misfoldingature, 426,
proposed MultiUnfold algorithm to find many possible fold- ~ 884-890.
ing pathways, which also ranks each intermediate inverselfersht,A.R. and Daggett,V. (2002) Protein folding and unfolding at
proportional to its expected frequency. _atomic resolutionCell, 108, 573-582.

We proposed three methods for calculating the interactiof®!Pert.D-R., Westhead,D.R., Nagano,N. and Thornton,J.M. (1999)
strength between SSEs: contact, distance and SAS based. The/lti-based searching in tops protein topology databases.
SAS-based approach incorporates the solvation free energy 8f loinformatics, 5, 317-326.

. . Gomory,R.E. and Hu,T.C. (1961) Multi-terminal network flows.
the molecules. We found that while the three approaches give SIAM J. Appl. Math., 9, 551570,

similar results, the SAS-based approach seems to agree MQL€idary,D.K., O'Neill,J.C., Jr, Roy,M. and Jennings,P.A. (2000) An

with the known pathways. . essential intermediate in the folding of dihydrofolate reductase.
Currently, we consider interactions only among the proc. Natl Acad. Sci., USA, 97, 5866-5870.

a-helices ang-strands. In the future we also plan to incorpor- Kazmirski,S.L. and Daggett,V. (1998) Simulations of the structural
ate the loop regions in the WSG, and see what effect it has on and dynamical properties of denatured proteins: the molten coil
the folding pathway. Furthermore, we plan to test our folding state of bovine pancreatic trypsin inhibitdr. Mol. Biol., 277,
pathways on the entire collection of proteins in the PDB. We 487-506.

would like to study different proteins from the same family Klimov,D.K.and Thirumalai,D. (2001) Multiple protein folding nuc-
and see if our methods predict consistent pathways; both sim- lei and the transition state ensemble in two-state protBheseins,
ilarities and dissimilarities may be of interest. We also plan 43, 465-475.

to make our software available online so other researcherguwata’K" Shastry,R., -~ Cheng,H., Hoshino,M., Bhat,.C.A.,
Goto,Y. and Roder,H. (2001) Structural and kinetic charac-

may first try t.he pathways predictiqns be_fore embarking on terization of early folding events of lactoglobuliNature, 8,
time-consuming experiments and simulations. 151-155.

Lazardis,T. and Karplus,M. (1997) New view of protein folding
reconciled with the old through multiple unfolding simulations.
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