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ABSTRACT
We present cSPADE, an efficient algorithm for mining fre-
quent sequences considering a variety of syntactic constraints.
These take the form of length or width limitations on the
sequences, minimum or maximum gap constraints on con-
secutive sequence elements, applying a time window on al-
lowable sequences, incorporating item constraints, and find-
ing sequences predictive of one or more classes, even rare
ones. Our method is efficient and scalable. Experiments on
a number of synthetic and real databases show the utility
and performance of considering such constraints on the set
of mined sequences.

1. INTRODUCTION
This paper focuses on sequence data in which each ex-

ample is represented as a sequence of “events”, where each
event might be described by a set of predicates, i.e., we are
dealing with categorical sequential domains. Examples of se-
quence data include text, DNA sequences, web usage data,
multi-player games, plan execution traces, and so on. The
sequence mining task is to discover a sequence of attributes,
shared across time among a large number of objects in a giv-
en database. For example, consider a web access database at
a popular site, where an object is a web user and an attribute
is a web page. The discovered patterns are the sequences of
most frequently accessed pages at that site. This kind of
information can be used to restructure the web-site, or to
dynamically insert relevant links in web pages based on user
access patterns. There are many other domains where se-
quence mining has been applied, which include discovering
customer buying patterns in retail stores, identifying plan
failures [12], finding network alarms [3], and so on.

The task of discovering all frequent sequences in large
databases is quite challenging. The search space is extreme-
ly large. For example, with m attributes there are O(mk)
potentially frequent sequences of length at most k. Many
techniques have been proposed to mine temporal databases
for the frequently occurring sequences. However, an uncon-
strained search can produce millions of rules or may even
be intractable in some domains. Furthermore, in many do-
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mains, the user may be interested in interactively adding
certain syntactic constraints on the mined sequences. For
example the user may be interested in only those sequences
that occur close together, those that occur far apart, those
that occur within a specified time frame, those that contain
specific items or those that predict a given attribute.

Mining sequences with such constraints has not received
wide attention. In this paper we preset a new algorithm,
called cSPADE, for discovering the set of all frequent se-
quences with the following constraints: 1) length and width
restrictions, 2) minimum gap between sequence elements,
3) maximum gap between sequence elements, 4) a time win-
dow of occurrence of the whole sequence, 5) item constraints
for including or excluding certain items, and forming super-
items, and finally 6) finding sequences distinctive of at least
one class, i.e., a special attribute-value pair, that we are in-
terested in predicting. The approach that we take is that
each of these constraints is fully integrated inside the mining
process, with no post-processing step. We present experi-
mental results on a number of synthetic and real datasets
to show the effectiveness and performance of our approach.
We would like to point out that even though the constraints
we look at are not very complicated, they are representative
of a much broader class of constraints, and the approach we
develop can be applied to them without much change. Fur-
thermore, the performance it delivers, combined with the
ease with which it incorporates these constraints should be
seen as a very attractive feature of cSPADE.
Related Work The problem of mining sequences has been
studied in [1, 10, 6, 8, 11]. However, very little work has
been done in constrained sequence mining. The GSP algo-
rithm [10] was the first to consider minimum and maximum
gaps, as well as time windows. GSP is an iterative algo-
rithm; it counts candidate frequent sequences of length k in
the k-th database scan. Special data structures like Hash
Trees are used to speed up the frequency computation step.
GSP requires as many full data scans as the longest frequent
sequence. The problem of mining generalized episodes ap-
peared in [6]. An episode is essentially a frequent sequence,
but instead of being frequent across many input-sequences,
an episode is frequent within one (long) sequence. The gen-
eralization consists of allowing one to express arbitrary u-
nary conditions on individual episode events, or binary con-
ditions on event pairs. An incremental and interactive se-
quence mining approach was proposed by us in [9]. The idea
there was to cache previously mined results, which can then
be used to answer user queries a lot faster than re-mining
the entire dataset each time. Here our goal is to push the
constraints inside the mining step itself.

Previous work has addressed constrained mining for asso-
ciation rules . A mine-and-examine paradigm for interactive



exploration of associations and sequence episodes was pre-
sented in [4]. The idea is to mine and produce a large collec-
tion of frequent patterns. The user can then explore this col-
lection by the use of templates specifying what’s interesting
and what’s not. They only consider inclusive and exclusive
templates. A second approach to exploratory analysis is to
integrate the constraint checking inside the mining algorith-
m. Recently [7] presented the CAP algorithm for extracting
all frequent associations matching a rich class of constraints.
However, the temporal nature of sequences introduces new
kinds of constraints not considered by these works. Also,
sequences may destroy the succinctness and anti-monotone
properties of associations, i.e., when one incorporates con-
straints, we cannot guarantee that all subsequences will be
frequent. Thus some of the insights from constrained asso-
ciations [7] cannot be used for sequence mining.

The GSP method serves as a base for comparison against
cSPADE. Another relevant work is the SPIRIT family of al-
gorithms [2] for mining sequences that match user-specified
regular-expression constraints. They present four methods
which differ in the extent to which they push the constraints
inside the mining method. The most relaxed is SPIRIT(N)
which eliminates those items that do not appear in any RE.
A post-processing step is then required to extract the exact
answer. The most strict is SPIRIT(R), which applies the
constraints while mining, and only outputs the exact set. It
should be noted that if one specifies the most general RE
(to contain any ordering among all items), then the SPIR-
IT(N/L) variants default to the GSP algorithm.

As such SPIRIT is complementary to our methods since
we consider other kinds of constraints than regular-expressions.
For example, a novel constraint we introduce in this paper is
that of finding sequences predictive of at least one class for
temporal classification problems. Second, as we shall show
cSPADE (which is based on SPADE [11]) outperforms GSP
anywhere from a factor of 2 to more than an order of magni-
tude. Since SPIRIT(N/L) is essentially the same as GSP, we
expect cSPADE to outperform them as well. Additionally,
the method we developed independently to deal with non-
anti-monotone constraints is similar to SPIRIT(V/R). Once
again we expect cSPADE to outperform them. cSPADE
is also simple to implement, requiring no special internal
data-structures, unlike many other approaches. Thus, the
excellent performance and ease of incorporating constraints
should be seen as the two great strengths of cSPADE.

2. SEQUENCE MINING
The problem of mining sequential patterns can be stated

as follows: Let I = {i1, i2, · · · , im} be a set of m distinct
items comprising the alphabet. An event is a non-empty
unordered collection of items (without loss of generality, we
assume that items of an event are sorted in lexicographic
order). We also call an event an itemset. A sequence is an
ordered list of events. An event is denoted as (i1i2 · · · ik),
where ij is an item. A sequence α is denoted as (α1 → α2 →
· · · → αq), where αi is an event. The length of α is q and
its width is the maximum size of any αi for 1 ≤ i ≤ q. A
sequence with k items (k =

P

j
|αj |) is called a k-sequence.

For example, (B → AC) is a 3-sequence.
For a sequence α, if the event αi occurs before αj , we

denote it as αi < αj . We say α is a subsequence of an-
other sequence β, denoted as α � β, if there exists a one-
to-one order-preserving function f that maps events in α
to events in β, that is, 1) αi ⊆ f(αi), and 2) if αi < αj

then f(αi) < f(αj). For example the sequence (B → AC)
is a subsequence of (AB → E → ACD), since B ⊆ AB

and AC ⊆ ACD, and the order of events is preserved. For
k ≥ 3, the generating subsequences of a length k sequence
are the two length k−1 subsequences of α obtained by drop-
ping exactly one of its first or second items. By definition,
the generating sequences share a common suffix of length
k − 2. For example, the two generating subsequences of
AB → CD → E are A → CD → E and B → CD → E,
and they share the common suffix CD → E.

The database D for sequence mining consists of a collec-
tion of input-sequences. Each input-sequence in the database
has an unique identifier called sid, and each event in an
input-sequence also has a unique identifier called eid. We
assume that no sequence has more than one event with the
same time-stamp, so that we can use the time-stamp as eid.

An input-sequence C is said to contain another sequence α,
if α � C, i.e., if α is a subsequence of the input-sequence C.
The support or frequency of a sequence, denoted σ(α,D), is
the total number of input-sequences in the database D that
contain α. Given a user-specified threshold called the mini-
mum support (min sup), we say that a sequence is frequent
if it occurs more than min sup times. The set of frequent k-
sequences is denoted as Fk. A frequent sequence is maximal
if it is not a subsequence of any other frequent sequence.

Given a database D of input-sequences and min sup, the
problem of mining sequential patterns is to find all frequen-
t sequences in the database. For example, consider the
database shown in Figure 1. It has three items (A,B, C),
four input-sequences, and twelve events in all. The figure
also shows all the frequent sequences with a minimum sup-
port of 75% (i.e., 3 out of 4 input-sequences). The maximal
sequences are A → A, B → A, and AB → B.

Our problem formulation is quite general since: 1) We
discover sequences of subsets of items, and not just single
item sequences. For example, the set AB in (AB → B).
2) We discover sequences with arbitrary gaps among events,
and not just the consecutive subsequences. For example, the
sequence (AB → B) is a subsequence of input-sequence 4,
even though there is an intervening event A. The sequence
symbol → simply denotes a happens-after relationship. 3)
Our formulation is general enough to encompass almost any
categorical sequential domain. For example, if the input-
sequences are DNA strings, then an event consists of a s-
ingle item (one of A,C, G, T ), and the eid is the position
rather than time. If input-sequences represent text docu-
ments, then each word (along with any other attributes of
that word, e.g., noun, position, etc.) would comprise an
event. Even continuous domains can be represented after a
suitable discretization step.

3. THE SPADE ALGORITHM
In this section we describe SPADE [11], an algorithm for

fast discovery of frequent sequences, which forms the basis
for our constraint algorithm.
Sequence Lattice: SPADE uses the observation that the
subsequence relation � defines a partial order on the set of
sequences, i.e., if β is a frequent sequence, then all subse-
quences α � β are also frequent. The algorithm systemat-
ically searches the sequence lattice spanned by the subse-
quence relation, from the most general (single items) to the
most specific frequent sequences (maximal sequences) in a
depth-first (or breadth-first) manner. For instance, Figure 1
shows the lattice for the example dataset.
Support Counting: Most of the current sequence mining
algorithms [10] assume a horizontal database layout such as
the one shown in Figure 1A. In the horizontal format, the
database consists of a set of input-sequences of events (i.e.,
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Figure 1: A) Original Database, B) Frequent Sequence Lattice, and Temporal Joins
item sets). In contrast, we use a vertical database layout,
where we associate with each item X in the sequence lattice
its idlist, denoted L(X), which is a list of all input-sequence
(sid) and event identifier (eid) pairs containing the item. For
example, the idlist for the item C in the original database
(Figure 1) would consist of the tuples {〈2, 20〉, 〈2, 30〉}. Giv-
en the per item idlists, we can iteratively determine the sup-
port of any k-sequence by performing a temporal join on the
idlists of its two generating sequences (i.e., its (k−1) length
subsequences that share a common suffix). A simple check
on the support (i.e., the number of distinct sids) of the re-
sulting idlist tells us whether the new sequence is frequent
or not. Figure 1B shows the initial vertical database with
the idlist for each item. The intermediate idlist for A → B
is obtained by a temporal join on the lists of A and B. S-
ince the symbol → represents a temporal relationship, we
find all occurrences of A before a B in an input-sequence,
and store the corresponding time-stamps or eids, to obtain
L(A → B). We obtain the idlist for AB → B by joining the
idlist of its two generating sequences, A → B and B → B,
but this time we are looking for equality join, i.e., instances
where A and B co-occur before a B.

If we had enough main-memory, we could enumerate all
the frequent sequences by traversing the lattice, and per-
forming joins to obtain sequence supports. In practice, how-
ever, we only have a limited amount of main-memory, and
all the intermediate idlists will not fit in memory. SPADE
breaks up this large search space into small, manageable
chunks that can be processed independently in memory. This
is accomplished via suffix-based equivalence classes (hence-
forth denoted as a class). We say that two k length sequences
are in the same class if they share a common k − 1 length
suffix. The key observation is that each class is a sub-lattice
of the original lattice and can be processed independently.
Each suffix class is independent in the sense that it has com-
plete information for generating all frequent sequences that
share the same suffix, i.e., the generating subsequences for
any sequence must also be in the same class. SPADE recur-

SPADE (min sup):
1. P = { parent classes Pi};
2. for each parent class Pi ∈ P do Enumerate-Frequent(Pi);

Enumerate-Frequent(S):
1. for all sequences Ai ∈ S do
2. for all sequences Aj ∈ S, with j > i do
3. L(R) = Temporal-Join( L(Ai),L(Aj));
4. if (σ(R) ≥ min sup) then T = T ∪ {R}; print R;
5. Enumerate-Frequent(T );
6. delete S;

Figure 2: Pseudo-code for SPADE
sively decomposes the sequences at each new level into even

smaller independent classes. For instance, at level one it us-
es suffix classes of length one (X,Y), at level two it uses suffix
classes of length two (X → Y, XY) and so on. We refer to
level one suffix classes as parent classes. These suffix classes
are processed one-by-one using depth-first search. Figure 2
shows the pseudo-code (simplified for exposition, see [11] for
exact details) for the main procedure of the SPADE algo-
rithm. The input to the procedure Enumerate-Frequent is
a suffix class, along with the idlist for each of its elements.
Frequent sequences are generated by joining [11] the idlists
of all distinct pairs of sequences in each class and checking
the support of the resulting idlist against min sup. The se-
quences found frequent at the current level form classes for
the next level. This process is recursively repeated until all
frequent sequences have been enumerated. It is easy to see
that we need memory to store intermediate idlists for classes
along one path in the search lattice. Classes are deleted on
return from each recursive call.
Temporal Joins: We now describe how we perform the
temporal idlist joins for two sequences. Note that support
is incremented only once per input-sequence. Given a suffix
equivalence class [S], it can contain two kinds of elements:
an itemset of the form XS or a sequence of the form Y → S,
where X and Y are items, and S is some (suffix) sequence.
Let’s assume without loss of generality that the itemsets of
a class always precede its sequences. To extend the class for
the next level it is sufficient to join the idlists of all pairs of el-
ements. However, depending on the pairs being joined, there
can be up to three possible resulting frequent sequences: 1)
Itemset vs Itemset: If we are joining XS with Y S, then we
get a new itemset XY S. 2) Itemset vs Sequence: If we are
joining XS with Y → S, then the only possible outcome is
new sequence Y → XS. 3) Sequence vs Sequence: If we are
joining X → S with Y → S, then there are three possible
outcomes: a new itemset XY → S, and two new sequences
X → Y → S and Y → X → S. A special case arises when
we join X → S with itself, which can only produce the new
sequence X → X → S.

Consider the idlist for the items A and B shown in Fig-
ure 1 B). These are sequence elements A → ∅ and B → ∅
for the class [∅]. To get the idlist for the resultant item-
set AB, we need to check for equality of sid-eid pairs. In
our example, L(AB) = {〈1, 10〉, 〈1, 30〉, 〈2, 20〉, 〈4, 30〉}. It
is frequent at 75% minimum support level (i.e., 3 out of 4
input-sequences). To compute the idlist for the sequence
A → B, we need to check for a follows temporal relation-
ship, i.e., for a given pair (c, t1) in L(A), we check whether
there exists a pair (c, t2) in L(B) with the same sid c, but
with t2 > t1. If this is true, it means that the item B fol-
lows the item A for sequence c, and we add (c, t1) to the



idlist of A → B. The final idlist for A → B is shown in
Figure 1 B). We call A → B the forward follows join. The
idlist of B → A is obtained by reversing the roles of A and
B. We call B → A the reverse follows join. As a further
optimization, we generate the idlists of the three possible
new sequences in just one join.

At first thought, one might think that we need to main-
tain more information for the temporal join. For example,
how come the idlist L(A → B) is not {〈1, 10, 20〉, 〈1, 10, 30〉,-
〈2, 20, 30〉, 〈2, 20, 50〉, 〈2, 30, 50〉, 〈3, 10, 30〉, 〈4, 30, 50〉, 〈4, 40,-
50〉}. If we consult the original database in Figure 1A, we
find that these are exactly the time-stamps or eids where A
is followed by B for a given sid. However, since we know
that all members of a class share the same suffix (and conse-
quently the same eids for the suffix), it is sufficient to keep
only the time-stamp for the first item. For example, consider
the temporal join L(A → B → B) obtained from L(A → B)
and L(B → B). All that needs to be done is to find in-
stances where A precedes B, and one can simply ignore the
common suffix B. In this case the resulting idlist turns out
to be {〈1, 10〉, 〈2, 20〉}. One can verify, by looking at Fig-
ure 1, that there are only two instances where A → B → B
occur in the data, once in sid = 1 with the starting eid = 10,
and once in sid = 2 with the starting eid = 20.

4. INCORPORATING CONSTRAINTS
Here we look at different syntactic constraints on the mined

sequences, which include length and width restrictions, min-
imum gap, maximum gap, total time window of validity of
the sequence, item constraints, and enumerating sequences
predictive of a given class among a set of class values.

Definition 1. We say that a constraint is class-preserving
if in the presence of the constraint a suffix-class retains it’s
self-containment property, i.e., support of any k-sequence
can be found by joining the idlists of its two generating sub-
sequences of length (k − 1) within the same class.

Whether a constraint is class-preserving or not has a di-
rect effect on the cost of incorporating it into cSPADE. We
shall see that only maximum gap is not class-preserving.
It thus requires a different method of enumeration, which
can be costly, since it needs more global information. All
other constraints are class-preserving, and thus the frequent
sequences can be listed using local suffix class information
only. The class-preserving property is a new way of specify-
ing whether a constraint is anti-monotone or not.
Handling Length and Width Restrictions: In many
practical domains one has to restrict the maximum allowable
length or width of a pattern just to make the task tractable,
since otherwise one gets a combinatorial blowup in the num-
ber of frequent sequences. This is especially true for high-
ly structured data, where the item frequency is relatively
high. Incorporating restrictions on the length and width
of the sequences is straightforward. In Figure 2, at line 3,
we simply add a check to see if width(R) <= maxw and if
length(R) <= maxl, where maxw and maxl are the user-
specified restrictions on the maximum allowable width and
length of a sequence, respectively. Length and width have
no effect on the idlists, and thus they are class-preserving.
Handling Minimum Gaps: In many domains one would
like to see sequences that occur after some given interval.
For example, finding all DNA subsequences that occur more
than 20 positions apart, which can be useful for identifying
non-local patterns. Minimum gaps can be incorporated into
cSPADE without much trouble. The first observation is to
note that minimum gap is a class-preserving constraint. Let
X → S, and Y → S be two sequences in the class [S]. Now

if, say X → Y → S, is frequent with min gap at least δ,
then clearly Y and S must be δ apart, and also X and S
must be δ or more apart. In other words one can determine
if X → Y → S by joining the idlists of X → S, and Y → S.

Since each suffix class remains self-contained, the only
thing that needs changing is adding a min gap check in
the join operation. Assume that we would like to compute
L(A → B) from the generating items A and B in Figure 1.
Let’s assume that min gap is 20. Given a pair 〈c, ta〉 in
L(A), we check if there exists a pair 〈c, tb〉 in L(B) such
that tb 6= ta and tb − ta ≥ min gap. If so we add the
pair 〈c, ta〉 to the idlist of A → B. For example, the pair
〈c = 1, ta = 10〉 from A’s idlist is added to L(A → B), s-
ince there exists the pair 〈c = 1, tb = 30〉 in B’s idlist, with
tb−ta = 30−10 = 20 ≥ min gap. After doing this for all sids
we get L(A → B) = {〈1, 10〉, 〈2, 20〉, 〈2, 30〉, 〈3, 10〉, 〈4, 30〉}.
Minimum gaps have no effect on the equality join.
Handling Maximum Gaps: Unlike minimum gap, max-
imum gap is not class-preserving. For example, let max gap
be δ, and let X → S, and Y → S be two sequences in the
class [S]. Let X → Y → S be frequent with max gap=δ.
Clearly, Y and S must be at most δ apart, thus Y → S
is frequent. On the other hand, we cannot claim the same
thing for X → S. All we can claim is that X and S are
at most 2δ apart, and it may happen that there is no in-
stance where X and S are within δ distance. In other
words, X → S may be infrequent with max gap=δ, yet
X → Y → S can be frequent. Unfortunately, this destroys
the equivalence class self-containment. It requires a different
process for enumerating the candidate frequent sequences.
As such max gap represents many constraints that are non-
class-preserving, i.e., the new enumeration method we de-
velop should work for many other constraints that destroys
the class self-containment.

The first change required is that we need to augment the
temporal join method to incorporate the max gap constrain-
t. This is easy to implement. Assume that we would like
to compute L(A → B) from the generating items A and B
in Figure 1. Let’s assume that max gap is 15. Given a pair
〈c, ta〉 in L(A), we check if there exists a pair 〈c, tb〉 in L(B)
such that tb 6= ta and tb − ta ≤ max gap. If so we add the
pair 〈c, ta〉 to the idlist of A → B. For example, the pair
〈c = 1, ta = 10〉 from A’s idlist is added to L(A → B), s-
ince there exists the pair 〈c = 1, tb = 20〉 in B’s idlist, with
tb − ta = 20−10 = 10 ≤ 15 = max gap. After doing this for
all sids we get L(A → B) = {〈1, 10〉, 〈2, 20〉}. Like minimum
gaps, maximum gaps also have no effect on the equality join.

We now look at the new approach needed for enumerating
sequences with maximum gap. Since a class is no longer
self-contained, we cannot simply perform a self-join of the
class members against itself. Instead, we can do a join with
F2, the set of frequent 2-sequences, which is already known.
For example, let’s consider the suffix class [B] = {AB, A →
B, B → B}, and [A] = {A → A, B → A}. Let’s look at the
element A → B in class [B]. To extend this sequence by one
more item, we perform a temporal join with all members of
[A], since A is the first item of A → B. This produces the
new candidate class [A → B] = {A → A → B, B → A →
B}. If any of the candidates are frequent, the same process
is repeated for the class [A → B]. We recursively carry out
joins with F2 for each new class until no extension is found
to be frequent. In other words, to extend a sequence X → S
in class [S], we join it with all 2-sequences in the suffix class
[X]. For each Z → X (or ZX) in [X] we generate the
candidate Z → X → S (or ZX → S).
Handling Time Window: A time window indicates
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Figure 3: A) Database with Classes, B) Frequent Sequence Lattice and Frequency Computation

that we are interested in patterns that occurred within that
time-frame, i.e., instead of minimum and maximum gap con-
straints that apply between sequence elements, the time win-
dow restriction applies to the entire sequence. Fortunately,
time window is a class-preserving operation, requiring no
change to the enumeration, but only a small check while
performing joins. For example, if the sequence X → Y → S
is within time-window δ, then clearly any subsequence must
also be within the same widow-size.

Incorporating time windows is not altogether easy due to
our choice of idlist structure. It stores only the eid associat-
ed with the prefix item, but now we need to know the time
between the first and last items in a sequence. For example,
let window be 20, and let’s assume that X occurs at time 20,
XY at 30, and Y at time 50, for an input-sequence c. Then
the idlist for X → Y has the pairs {〈c, 20〉, 〈c, 30〉} and for
Y → Y the pair (c, 30). Then we don’t have enough infor-
mation to say if X → Y → Y occurs within a window of 20.
If we look only at the eid for the first items, the difference is
30 − 20 = 10. But clearly X → Y → Y occurs in a window
given by 50−20 = 30, and not within a window = 20. Thus
using the prefix eids alone one cannot determine the win-
dow length. We need to somehow know the time between
the first and the last eid for a sequence (call it diff), but
this information is not available in the idlist format. Our so-
lution is to add an extra column to the idlist, so that we have
triples of the form 〈sid, eid, diff〉, where initially diff = 0
for a single item. This is sufficient to check if a sequence is
within a given window. For our example above, the idlist of
X → Y now has {〈c, 20, 10〉, 〈c, 30, 20〉} and of Y → Y has
〈c, 30, 20〉. The gap between 〈c, 20, 10〉 and 〈c, 30, 20〉 is 10,
and if we add this to the diff = 20 of 〈c, 30, 20〉, we get a
number greater than our window size. Thus X → Y → Y
doesn’t occur within a window of 20.
Handling Item Constraints: An advantage of the verti-
cal format and equivalence classes is the ease with which one
can incorporate constraints on the items that can appear in
a sequence. Assume the task is to return sequences contain-
ing certain user-specified items, i.e., an inclusion constraint.
We can examine each suffix class as it is generated (starting
from the parent classes), and generate a new class from a se-
quence only if it contains any one of the specified items. Due
to the self contained nature of equivalence classes, all possi-
ble frequent sequences containing that item will eventually
be generated. Consider a related task of excluding certain
items. In this case we can simply remove that item from the
parent class. Thereafter, the item will never appear in any
sequence. Another example of an item constraint is to con-
sider a group of items or a sequence as a “super-item”. All
we have to do is compute the idlist for the super-item and

thereafter treat it as a single item. All sequences containing
the super-item can then be found.
Handling Classes: This constraint is applicable for classi-
fication datasets, i.e., where each input-sequence has a class
label. Let β be a sequence and c be a class label. The confi-
dence of the rule β ⇒ c, denoted conf(β, c), is the condition-
al probability that c is the label of a sequence given that it
contains sequence β. That is, conf(β, c) = fr(β,Dc)/fr(β,D)
where Dc is the subset of the database D with class label
c. Our goal is to find all frequent sequences with high con-
fidence. Figure 3 shows an example database with labels.
There are 7 sequences, 4 belonging to class c1, and 3 be-
longing to class c2. In general there can be more than two
classes. We are looking for different min sup in each class.
For example, while C is frequent for class c2, it’s not frequent
for class c1. The rule C ⇒ c2 has confidence 3/4 = 0.75,
while the rule C ⇒ c1 has confidence 1/4 = 0.25.

As before, we use temporal joins to enumerate the se-
quences. The join is essentially the same as in the non-class
case, except we now also maintain the class index table indi-
cating the classes for each input-sequence. Using this table
we are able to determine the frequency of a sequence in all
the classes at the same time. For example, A occurs in sids
{1, 2, 3, 4, 5, 6}. However sids {1, 2, 3, 4} have label c1 and
{5, 6} have label c2. Thus the frequency of A is 4 for c1, and
2 for c2. The class frequencies for each pattern are shown in
the frequency table in Figure 3.

cSPADE (min sup):
1. P = { parent classes Pi};
2. for each parent class Pi ∈ P do Enumerate-Frequent(Pi);

Enumerate-Frequent(S):
1. for all sequences Ai ∈ S do
2. if (maxgap) //join with F2

3. p = Prefix-Item(Ai);
4. N = { all 2-sequences Aj in class [p]}
5. else // self-join
6. N = { all sequences Aj ∈ S, with j ≥ i}
7. for all sequences α ∈ N do
8. if (length(R) <= maxl and width(R) <= maxw

and accuracy(R) 6= 100%)
9. L(R)=Constrained-Temporal-Join(L(Ai),

L(α), min gap, max gap, window);
10. if (σ(R, ci) ≥ min sup(ci)) then
11. T = T ∪ {R}; print R;
12. Enumerate-Frequent(T );
13. delete S;

Figure 4: Pseudo-code for cSPADE

Frequent sequences are enumerated in a depth-first man-
ner, however, this time sequences found to be frequent for
any class ci at the current level, form classes for the next



level, i.e., instead of a global minimum support value, we
use a class specific support value min sup(ci). This process
is repeated until all frequent sequences have been enumer-
ated. In recent work [5] we showed how to use the mined
sequences for feature extraction and selection in temporal
domains, by selecting the sequences highly predictive of a
class. These features were input to standard classification
algorithms, improving classification accuracy by 10-50%.

Here we briefly review two effective pruning techniques
that produce sequences that are not redundant and are dis-
tinctive of at least one class. Let M(s,D) be the sequences
in D that contain sequence s. We say that sequence s1

subsumes sequence s2 with respect to predicting class c iff
M(s2,Dc) ⊆ M(s1,Dc) and M(s1,D¬c) ⊆ M(s2,D¬c). In-
tuitively, if s1 subsumes s2 for class c then s1 is superior to
s2 for predicting c because s1 covers every example of c in
the training data that s2 covers and s1 covers only a subset
of the non-c examples that s2 covers. The first pruning rule
is that we do not extend any sequence with 100% accuracy,
i.e., it occurs in only one class. Let s1 be a sequence con-
tained by examples of only one class. Extensions of s1 will
be subsumed by s1, and thus need not be examined. The
second pruning rule is as follows: We say that A ; B in a
dataset if B occurs in every event in every sequence in which
A occurs. If A ; B then any feature containing an event
with both A and B will be subsumed by one of its subsets,
and thus we can prune it. The pseudo-code for cSPADE
incorporating the above constraints is shown in Figure 4.

5. EXPERIMENTAL RESULTS
Experiments were done on a 450Mhz Pentium II with

256MB memory running Linux 6.0.
Synthetic Datasets We used the publicly available dataset
generation code from IBM (http://www.almaden.ibm.com/-
cs/quest/syndata.html). These datasets mimic real-world
transactions, where people buy a sequence of sets of item-
s. Some customers may buy only some items from the se-
quences, or they may buy items from multiple sequences.
The customer sequence size and transaction size are clus-
tered around a mean and a few of them may have many
elements. The datasets are generated using the following
process. First NI maximal itemsets of average size I are
generated by choosing from N items. Then NS maximal
sequences of average size S are created by assigning item-
sets from NI to each sequence. Next a customer sequence
of average C transactions is created, and sequences in NS

are assigned to different customer elements, respecting the
average transaction size of T . The generation stops when D
customers have been generated. Like [10] we set NS = 5000,
NI = 25000 and N = 10000. Table 1 shows the datasets
with their parameter settings. We refer the reader to [1] for
additional details on the dataset generation.

Dataset C T S I D Size
C10T5S4I2.5D200K 10 5 4 2.5 200K 76MB
C20T5S8I2.5D200K 20 20 8 2.5 200K 151MB

EvacuationPlan 4.1 7.6 - - 202K 40MB
FireWorld 36.3 4.6 - - 1000 1.3MB
Spelling 27.3 3 - - 2917 2.17MB

Table 1: Synthetic and Real Dataset Parameters
EvacuationPlan This real-life dataset was obtained from
a evacuation planning domain. The planner generates plan-
s for routing commodities from one city to another. Each
plan is an input-sequence, with the plan identifier as the sid.
An event consists of an identifier, an outcome (such as “suc-
cess”, “late”, or “failure”), an action name (such as “move”,
or “load”), and a set of additional parameters specifying

things such as origin, destination, vehicle type (“truck”, or
“helicopter”), weather conditions, and so on. The mining
goal is to identify the causes of plan failures.
FireWorld We obtained this dataset from simple forest-
fire domain [5]. We use a grid representation of the terrain.
Each grid cell can contain vegetation, water, or a base. We
label each instance with SUCCESS if none of the locations
with bases have been burned in the final state, or FAILURE

otherwise. Thus, the goal is to predict if the bulldozers will
prevent the bases from burning, given a partial execution
trace of the plan. For this data, there were 38 items. In
the experiments reported below, we used min sup = 20%,
maxw = 3, and maxl = 3, to make the problem tractable.
Spelling To create this dataset, we chose two commonly
confused words, such as “there” and “their”, and searched
for sentences in the 1-million-word Brown corpus containing
either word [5]. We removed the target word and then rep-
resented each word by the word itself, the part-of-speech tag
in the Brown corpus, and the position relative to the tar-
get word. For “there” vs. “their” dataset there were 2917
input-sequences, and 5663 feature/value pairs or items. In
the experiments reported below, we used a min sup = 5%,
maxw = 3, and maxl = 2.
Number of Constrained Frequent Sequences: Fig-
ure 5 shows the total number of frequent sequences found for
different databases when we incorporate the minimum gap,
maximum gap, time window, and maxmin constraints. The
maxmin constraint only allows sequences that have elements
exactly δ apart, i.e.., with min gap = max gap = δ. The
’Base’ line is the total number of unconstrained sequences.
As expected the number of sequences decrease with increas-
ing minimum gap, while they increase with increasing max-
imum gap and window size. The total number of frequen-
t sequences when one imposes gap or window constraints
can be much smaller than the base case. In fact, in many
domains it is infeasible to mine all the frequent sequences
without any constraints due to combinatorial blowup.
Running Time with Gaps: Figure 6 shows the effect of
incorporating minimum gaps, maximum gaps and maxmin
gaps on the running time of cSPADE. In the figure a con-
straint value of 1 always denotes the unconstrained case.

For each database, we compare the performance of c-
SPADE with GSP [10] for the various gap constraints. Let’s
consider the unconstrained case (i.e., x-axis=1). We find
that cSPADE outperforms GSP by factor of 2 (to almost 10
on other datasets not shown here). When we consider mini-
mum and maxmin gaps, we find that the difference between
the two methods narrows. This is because the number of
frequent sequences decreases drastically with increasing gap
values. In other words, since minimum gap (and time win-
dows as well) preserve the suffix class structure, we find that
the time to incorporate these constraints is a fraction of the
cost of mining everything, varying with the selectivity of the
gap. Larger the minimum gap (and smaller the window), the
fewer are the patterns found, and vice versa.

On the other hand we find that the time difference be-
tween the two algorithms widens with increasing maximum
gap (and can be more than a factor of 10). Handling maxi-
mum gaps destroys the self-sufficiency of a suffix class, and
thus the performance drops because the number of frequent
sequences increases with increasing max gap. It should also
be noted that the running time of cSPADE is less sensitive
to an increase in the max gap than GSP, since the running
time only gradually increases with increasing values.

Figure 6 also shows the performance of two variants of c-
SPADE and GSP. For these two variants, called pre-cSPADE
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Experiment CPU seconds CPU seconds CPU seconds # Sequences #Sequences # Sequences
with no pruning with only with all with with only with

A ; B pruning pruning no pruning A ; B pruning all pruning
FireWorld 5.8 hours 560 559 25,336,097 511,215 511,215
Spelling 490 407 410 1,126,114 999,327 971,085

Table 2: Mining with Classes: with and without the A ; B pruning.

and pre-GSP, we assume some one-time pre-processed infor-
mation is available. Namely that an invariant set of frequent
2-sequences (above a minimum threshold) has been precom-
puted. Thus pre-cSPADE and pre-GSP can use these values
to directly start computing k-sequences with k ≥ 3. Here
we find that pre-cSPADE typically is 10 times better than
pre-GSP, and can be as high as 50 times better (the gap is
expected to widen if lower values of support are considered).
There are several reasons why cSPADE (pre-cSPADE) out-
performs GSP (pre-GSP): 1) cSPADE uses only simple join
operation on idlists. As the length of a frequent sequence in-
creases, the size of its idlist decreases, resulting in very fast
joins. 2) No complicated hash-tree structure is used, and
no overhead of generating and searching of subsequences is
incurred. These structures typically have very poor locality.
On the other hand SPADE has excellent locality, since a join
requires only a linear scan of two lists. 3) As the minimum
support is lowered, more and larger frequent sequences are
found. GSP makes a complete dataset scan for each itera-
tion. cSPADE on the other hand restricts itself to only a few
scans. It thus cuts down the I/O costs. Since SPIRIT [2]
and its variants (using the most general regular expression)
default to GSP we expect cSPADE to outperform it as well.

An very interesting property of the non-class-preserving
max gap constraint is that as one increases the gap size,
the time for mining exceeds the base (unconstrained) time,
sometimes by as much as a factor of 2 or 3 for pre-cSPADE,
and a factor of 3 to 4 for GSP-variants. cSPADE on the
other hand mined all the sequences within a factor of 1.2
of the base time, showing excellent resilience to changes in
max gap. For cSPADE variants the time increases since the
algorithms perform joins of Fk with F2 (instead of Fk) to
obtain the new candidates Fk+1, which leads to more un-
necessary intersections. For GSP variants the time increases
due to the complexity of incorporating the max gap check
during support counting. Since max gap is representative
of many of the other non-class-preserving constraints, we
expect this behavior to apply to those cases as well. Inci-
dentally, a similar observation was made in SPIRIT [2].
Effect of Window Size: Figure 7 shows how the running
time of cSPADE changes with window size (we did not im-
plement the window constraint for GSP). Since the window
constraint is class-preserving it runs very fast compared to
the base unconstrained case.

MS=100% MS=75% MS=60%
#Sequences 544 38386 642597
Time 0.2s 19.8s 185.0s

Table 3: EvacuationPlan
Effect of Length and Width Constraints: For Evacua-
tionPlan data, the number of frequent sequences of different
lengths for various levels of minimum support, as well as a
comparison of cSPADE and GSP (unconstrained case), are
plotted in Figure 8, while the running times and the total
number of frequent sequences is shown in Table 3. We can
also reduce the number of patterns generated by putting
limits on the maximum number of itemsets or events per
sequence or the maximum length of an itemset. Figure 8
plots the total number of frequent sequences discovered un-
der length restrictions. For example, there are 38386 total
sequences at 75% min sup (ISET-SA). But if we restrict the
maximum itemset length to 2, then there are only 14135 se-
quences. If we restrict the maximum number of itemsets per

sequence to 3, then we discover only 8037 sequences (ISET-
S3), and so on. Due to the high frequency character of this
domain, it was essential to put these restrictions, especially
on the maximum length of an itemset to be able to use a low
minimum support value, and to discover long sequences.
Handling Classes: Table 2 shows the impact on mining
time of the A ; B pruning rule described in Section 4 when
mining for sequences that are predictive of a class. The
pruning rule did not make a great difference for Spelling, but
made a tremendous difference in the FireWorld, where the
same event descriptors often appear together. Without A ;

B pruning, the FireWorld problem is essentially unsolvable
because cSPADE finds over 20 million frequent sequences.

In this paper we presented a new algorithm, called c-
SPADE, for discovering the set of all frequent sequences
with the following constraints: length and width restriction-
s, minimum and maximum gap between sequence elements,
time window of occurrence of the whole sequence, item con-
straints for including or excluding certain items, and find-
ing sequences distinctive of at least one class, i.e., a special
attribute-value pair, that we are interested in predicting. We
presented experimental results on a number of synthetic and
real datasets to show the effectiveness and performance of
our approach. The two main strengths of cSPADE are that
it delivers performance far superior to existing approach-
es to constrained sequences, and that it incorporates the
constraints with relative ease. As part of future work we
plan to introduce a much wider class of constraints within
cSPADE, such as regular expressions, relational or aggre-
gate constraints on items, etc. Another direction is to di-
rectly search for “interesting” sequences in the presence of
background information (such as user-specified beliefs), i.e.,
we would like to mine sequence that significantly bolster the
belief or contradict it.
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