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ABSTRACT
We present a novel approach for classifying documents that
combines different pieces of evidence (e.g., textual features
of documents, links, and citations) transparently, through
a data mining technique which generates rules associating
these pieces of evidence to predefined classes. These rules
can contain any number and mixture of the available evi-
dence and are associated with several quality criteria which
can be used in conjunction to choose the “best” rule to be
applied at classification time. Our method is able to perform
evidence enhancement by link forwarding/backwarding (i.e.,
navigating among documents related through citation), so
that new pieces of link-based evidence are derived when nec-
essary. Furthermore, instead of inducing a single model (or
rule set) that is good on average for all predictions, the pro-
posed approach employs a lazy method which delays the
inductive process until a document is given for classifica-
tion, therefore taking advantage of better qualitative evi-
dence coming from the document. We conducted a system-
atic evaluation of the proposed approach using documents
from the ACM Digital Library and from a Brazilian Web
directory. Our approach was able to outperform in both
collections all classifiers based on the best available evidence
in isolation as well as state-of-the-art multi-evidence classi-
fiers. We also evaluated our approach using the standard
WebKB collection, where our approach showed gains of 1%
in accuracy, being 25 times faster. Further, our approach is
extremely efficient in terms of computational performance,
showing gains of more than one order of magnitude when
compared against other multi-evidence classifiers.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
Search and Retrieval; I.5.2 [Pattern Recognition]: Clas-
sifier design and evaluation
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1. INTRODUCTION
Automatic document classification has become a central

research topic in Information Retrieval due to the increasing
number of large document collections, the heterogeneity of
the documents (for instance, papers and Web pages), and
the need to organize them for users in a uniform fashion, so
that they are easy to find [15]. Utilization scenarios include
constructing online Web directories and digital libraries, im-
proving the precision of Web searching, and even helping
users to interact with search engines [20].

The task of building a (machine learning) document clas-
sifier may be divided into three main steps: 1) gathering
of the best evidence from any available source (e.g., textual
and linkage); 2) determining one or more sets of evidence,
or their combinations, to induce a classification model used
to predict classes for documents; and 3) ranking of the sets
of evidence within the induced model towards determining
the document category. Document classification is a well
known challenge, since classifiers must be robust to noisy,
conflicting, insufficient, and absent evidence, as well as able
to evolve, accounting for novel evidence.

In this paper, we present new techniques for improving the
effectiveness of all three main document classification steps.
Regarding evidence gathering, a novel lazy associative in-
duction approach is proposed. It not only takes advantage
of more focused and probably better qualitative evidence to
induce a classification model, but is also much more efficient.
Instead of inducing a single (and typically very large) model
that is good on average for all predictions1, in the proposed
lazy approach the inductive process is delayed until a docu-
ment is given for classification. Then, a specific (and much
smaller) model is induced, since it focus on the evidence
present in the document to be classified. Further, to deal
with the issue of poor or absent evidence, we also perform ev-
idence enhancement by progressively finding new link-based

1A typical decision tree classifier, for example, uses a stored
decision tree to classify documents by tracing the document
through the interior nodes until a leaf containing the cate-
gory is reached.



evidence using a link forwarding/backwarding process (i.e.,
documents citing the same documents, documents cited by
the same documents etc.). Different evidence are combined
transparently and naturally through an associative tech-
nique, which generates a model composed of a set of rules,
where each rule X → c denotes a strong association between
a combination of different pieces of evidence (X ) and a cate-
gory (c). These rules may contain any number and mixture
of the available evidence, given that they satisfy some prede-
fined quality criteria. Also, rules are generated on demand,
following a level-wise adaptive process that stops as soon as
sufficient rules are generated. Once a rule set is induced,
the evidence within the rules are ranked according to one
or more statistical criteria that quantify their quality. We
empirically conclude that error rate is reduced if multiple
criteria are combined, and we propose a multi-criteria ap-
proach, so that misclassification is minimized.

The techniques and strategies proposed here result in a
novel and enhanced classification approach. To evaluate its
effectiveness, we performed experiments using three differ-
ent collections: one derived from the ACM Digital Library,
one based on a Brazilian Web directory, and also the stan-
dard WebKB collection. In the first case, our classification
approach was able to achieve more than 90% accuracy, out-
performing the best previously known classifiers. Similar re-
sults were obtained for the second collection, with gains up
to 17% over the baseline results. Gains of 1% are observed
in the WebKB collection, but in this case, classification is
extremely fast compared with the baseline approach. In
fact, we also show that our approach is extremely efficient
in terms of computational performance, showing gains of
more than one order of magnitude when compared to other
existing multi-evidence classification approaches.

2. RELATED WORK

2.1 Multi-Evidence Classifiers
Several works have explored the combination of different

pieces of evidence, more notably, textual and linkage-based
evidence, to boost the performance of automated classifiers.
We can divide these in three main approaches: contextual,
mixture of experts, and mixture of evidence.

In the first one, the context in which the linkage informa-
tion occurs (e.g., terms extracted from linked pages, anchor
text describing the links, paragraphs surrounding the links)
is used either in isolation as textual evidence or to expand
the text of the document being classified. [9, 18] achieved
good results by using anchor text together with the para-
graphs and headlines that surround the links, whereas [22]
shows that the use of terms from linked documents works
better when neighboring documents are all in the same class.

In the mixture of experts approach, the output of several
classifiers based on the available evidence is combined. By
using a combination of link-based and text-based methods,
[5] improved classification accuracy over a text-based base-
line. This work was extended in [7], which shows that link
information is useful when the documents have a high link
density and most links are of high quality. In [4] the authors
explored similar ideas by combining the decisions of linkage
and text classifiers using a belief network strategy.

Finally, in the mixture of evidence approach, the available
evidence is explicitly combined to be used within standard
classifiers. [11] studied the linear combination of support

vector machine kernel functions representing co-citation and
textual information. [25] discovers non-linear similarity func-
tions through Genetic Programming techniques to combine
14 different types of textual and linkage evidence and used
these discovered functions within kNN-based classifiers[21].

The techniques proposed in this paper share similarities
and differences with both mixture-based approaches. Each
quality criteria used in our multi-criteria approach can be
thought of as a particular classification expert. The differ-
ences are exactly in the precise nature of these quality cri-
teria as well as in the fact that these experts are responsible
not only for classifying a given document but also for choos-
ing the best classification rules to be applied in this process.
Regarding mixture of evidence, differences reside in the way
the available evidence is explored. In previous works, each
type of evidence produces a different classification space;
these needed to be explicitly combined with others, through
linear or non-linear methods. In our approach, all evidence
is treated within a unique search/classification space in a
natural and transparent way. The pieces of evidence that
will enter in our classification rules, independently of their
types, will be the ones that are more discriminative of the
categories in which they occur according to our quality cri-
teria. The generated rules that mix these evidence will be
directly used to classify new incoming documents, instead
of being used within other algorithms.

2.2 Rule-Based Classifiers
We take decision tree induction [2, 14] as the represen-

tative of rule-based classifiers. The induction of decision
trees is based on a local search which attempts to append
most promising pieces of evidence to rules. Rules are col-
lectively generated, and the worth of rules is measured by
their contribution to the overall accuracy. Since the induc-
tion is based on a local search, the rule set is usually very
limited. As a consequence, decision tree induction usually
suffers from the missing rule problem [13] (i.e., when no rule
matches a test document), which must be handled using
a default category. Differently from decision tree induction,
associative classifiers [12, 13, 23] search globally for all inter-
esting rules. Therefore, associative classifiers usually cover
the training set better than decision trees. On the other
hand, associative classifiers usually generate very large rule
sets, and most of the rules are not used during classification.

2.3 Lazy Classifiers
In [8] the authors proposed a lazy algorithm for decision

tree induction which alleviates the missing rule problem,
since a specific decision tree is induced for each test doc-
ument. However, this approach still suffer from the miss-
ing rule problem, inherent from the decision tree induction
approach. Our proposed approach is similar to other lazy
approaches, such as kNN[21], in the sense that they sample
the training set at classification time. However, those lazy
approaches (especially the kNN-based ones) just reduce the
number of instances considered, employing all attributes,
and thus may be affected by the curse of dimensionality.
On the other hand, our approach samples based on a set of
attributes, which is usually much smaller than the attribute
domain. In summary, kNN reduces the numerosity of the
training set while our approach reduces the dimensionality
of the training set. There is a lack of studies for lazy asso-
ciative classification, which is one of our contributions.



3. LAZY ASSOCIATIVE INDUCTION
In this section we present our lazy inductive approach,

which consists of generating combinations of pieces of ev-
idence, and mapping them to predefined categories. This
mapping is done through the discovery of association rules
X → c, where the antecedent X is a combination of different
pieces of evidence, and the consequent c is a category.

Definition 1. [Documents] Let D denote the set of m

documents {d1, d2, . . . , dm}, where each di is composed of a
category (or class) c along with a set of pieces of evidence.

Definition 2. [Esets] Let E denote the set of all unique
pieces of evidence. We consider two main sources of evi-
dence: textual and linkage-based. Textual pieces of evidence
(t) are basically words that occur within the documents.
Linkage evidence is composed of incoming (i) and outcom-
ing (o) links or citations. An eset is simply a non-empty
subset of E , and it may contain different types of evidence.
We use | X | to denote the cardinality or size of eset X .

Definition 3. [Dsets] For an eset X there is a corre-
sponding document set, called dset, denoted as s(X ), which
is the set of all document identifiers in the training set which
contain X . Each category c also has a corresponding dset,
s(c), which is the set of all document identifiers belonging
to category c. The support (or frequency) of X is the frac-
tion of documents in the training set that contain X , given

by: σ(X ) = |{di∈D|{X}⊆di}|
m

= |s(X )|
m

. The eset X is called
frequent if σ(X ) ≥ σmin, where σmin is a user-specified min-
imum support threshold.

Consider the collection shown in Table 1, used as a run-
ning example in this paper. There are ten documents in
the training set, and three documents in the test set. The
textual evidence set consists of all the words that appear
in the documents (except stop words), t={algorithm(s), ap-
plication(s), approach(es), association, challenge(s), data,
database(s), digital, exception(s), expert(s), filtering, hyper-
text, information, large, library(ies), logic, mining, perfor-
mance, perspective, retrieval, rule(s), system(s), term(s),
text, weighting, workflow}. The linkage-based evidence con-
sists of incoming links, i={1,3,4,5,6,7,8,10,11,12}, and out-
going links o={1,2,4,5,6,7,8,9,10,11}. Notice, for instance,
that document d1 contains the linkage-based evidence i=12
and o=2, since it is pointed to by document d12, and it points
to document d2. The dset for t=mining is s(t=mining)={3,
4,5,6}, while the dset for i=6 is s(i=6)={4}. Different pieces
of evidence can be combined by performing the intersection
of their dsets, for example, the dset of {t=mining, i=6} can
be obtained as s({t=mining, i=6})=s(t=mining)∩s(i=6)=
{4}.

Definition 4. [Association Rules] The rule X
θ
−→ c

associates an eset X to a category c. The support of the rule

is given by σ(X , c) = |s(X )∩s(c)|
m

. The strength of the rule is
given in terms of its confidence, defined as the conditional
probability of the consequent when the antecedent is known:

θ =
σ(X , c)

σ(X )
. (1)

The rule X
θ
−→ c is strong if θ ≥ θmin, where θmin is a user-

specified minimum confidence threshold. The size of X → c

is given by | X |+1.
In general, the associative classification approach consists

of three major steps: 1) generating frequent esets (i.e., com-
bining pieces of evidence), 2) inducing strong rules, and 3)

ranking best rules. There are two main approaches for asso-
ciative classification: the traditional eager approach [13, 23]
or the novel lazy approach we employ in this paper.

Eager Approach: In the eager approach, rules are in-
duced from the frequent esets obtained from all documents
in the training set. For instance, consider the example
in Table 1, and suppose that σmin=0.30 (i.e., at least 3
occurrences are required in the training set of 10 docu-
ments) and θmin=0.75. The set of all frequent esets in the
training set is given by t=database(6), t=information(3),
t=mining(4), t=retrieval(4), t={information,retrieval}(3),
i=3(4), i=7(3). The number of occurrences of an eset is
given in brackets (e.g., i=3(4) means that i=3 occurs 4 times
in the training set). For each eset X we have to check the
rule X → c for each class c. The rule must pass both the
σmin and θmin thresholds to be retained. The rule set that
would be generated by the eager approach is then given by:

1 t=mining
θ=0.75
−−−−→c=data mining

2 t=information
θ=1.00
−−−−→c=inf. retrieval

3 t={information,retrieval}
θ=1.00
−−−−→c=inf. retrieval

4 t=retrieval
θ=1.00
−−−−→c=inf. retrieval

The other rules are either not frequent or do not have
enough confidence, and are thus discarded. Note that, in
general textual information is much more frequent than link-
based information, and therefore, important rules based on
link-based evidence will be possibly missed if σmin is set high
(as shown in the example above, there were no linkage-based
rules). On the other hand, the number of rules drastically
increases by lowering σmin value. For instance, if we drop
σmin to 0.20 the number of rules goes to 38, and if we drop
σmin to 0.10 the number of rules, in this simple example,
surpasses 1,000. Thus, the number of rules mined in the
eager approach can get very large, especially if there is a
skew in the class frequencies, and if we consequently have
to lower the minimum support threshold.

Lazy Approach: In the novel lazy approach that we adopt
in this paper, a different set of rules is induced from the
frequent esets obtained from the training set, for each test
document. Whereas eager approaches induce a single rule set
from the training set, lazy approaches induce a specific rule
set for a given test document. The lazy approach projects
the training set only on those attribute-values (pieces of ev-
idence) relevant to classifying a given test document, and
then it induces the rules from this projected training set.
The projected training set is composed of documents in the
training set that share at least one attribute with the test
document. That is, only the relevant portion of the training
set is used to induce the rules. For instance, suppose we
want to predict the category for document d11. The first
step is to project the training set for d11, which is composed
of documents {d1,d2,d3,d4,d5,d6,d7,d8,d10}. Document d9 is
not in the projected training set, since it has no attribute in
common with test document d11, and thus d9 is not relevant
for classifying d11. Once the projected training set is calcu-
lated, the rule induction starts. Since the number of strong
rules is bounded by the number of possibly frequent esets
within a specific test document (and not on all frequent es-
ets in the training set), we can employ lower values of σmin

without generating an overwhelming number of rules.



Document Document Textual In-link Out-link
Id Category Evidence Evidence Evidence

Training 1 Databases Rules in Database Systems 12 2
Set 2 Databases Applications of Logic Databases 1, 3

3 Databases Hypertext Databases and Data Mining 2, 4, 6, 7
4 Data Mining Mining Association Rules in Large Databases 3, 6 5
5 Data Mining Database Mining: A Performance Perspective 4, 7 6
6 Data Mining Algorithms for Mining Association Rules 3, 5 4
7 Inf. Retrieval Text Databases and Information Retrieval 3 5, 8, 10, 11, 13
8 Inf. Retrieval Information Filtering and Information Retrieval 7 9
9 Inf. Retrieval Term Weighting Approaches in Text Retrieval 8, 10, 11
10 Inf. Retrieval Performance of Information Retrieval Systems 7 9

Test 11 ? [Inf. Retrieval] Database Mining Challenges for Digital Libraries 7 9
Set 12 ? [Databases] Exceptions in Workflow Systems 1

13 ? [Databases] On Expert Database Systems 7

Table 1: Evidence and Documents.

Unlike the eager case, there is no explicity training phase.
Each test document is classified directly in the testing phase
using the rules generated on demand from the training set.
Our lazy approach consists in generating the top k rules that
are the most general and which satisfy the thresholds, σmin

and θmin. The value of k is chosen suitably to ensure that
there is enough information to classify the test document.

The rule induction proceeds in a level-wise manner, which
first induces all (most general) rules of size two (i.e., hav-
ing a single piece of evidence as the antecedent). If k rules
have been generated the process stops. Otherwise, rules of
size three are induced, looking at combinations of evidence
as antecedent. The rule support is obtained by perform-
ing the intersection of the dsets of the corresponding esets.
This process continues generating longer (and more specific)
rules until at most k rules are induced or there are no more
rules to induce. For instance, consider the example in Ta-
ble 1, and suppose we want to predict the category for doc-
ument d11. Also, suppose that we use a (lower) σmin=0.10,
θmin=0.75, and k=3. First, rules of size two are generated
by looking at each piece of evidence in document d11 in iso-
lation. For example, we find t=database(s)(6), t=mining(4),
i=7(3), o=9(2) as the only frequent esets; the other evidence
in the test case (t=challenge(s), t=digital, t=library(ies)) do
not occur even once in the training set. The rule set that is
finally induced is given by:

1 o=9
θ=1.00
−−−−→c=inf. retrieval

2 t=mining
θ=0.75
−−−−→c=data mining

No more rules can be generated, and the process stops,
even though we were not able to generate three rules. No-
tice that, even after lowering σmin value, the number of
rules generated by the lazy approach is smaller than the
number of rules generated by the eager approach. Further,
all rules generated by the lazy approach match document
d11, while only one of the rules generated by the eager ap-
proach matches this document. This shows the advantages
of inducing specific rule sets.

3.1 Rule Ranking
After induction, the mined rules are sorted/ranked in as-

cending order of θ. Ties are broken by also considering their
σ values, again in ascending order. Any remaining ties are
broken arbitrarily. The resulting ranking, given by Rθ, is

then used to assign a numerical weight to the rules; the
weight being the rank/position of the rule in Rθ, given by
Rθ(X → c). Thus each rule X→c ∈ Rθ is interpreted as
a (weighted) vote by eset X for category c. Higher ranked
rules thus count for more in the voting process. Formally,
the weighted vote given by eset X for category c is given by:

weight(X , c,Rθ) =



Rθ(X → c), ifX → c ∈ Rθ

0, otherwise
(2)

Finally, the score of a category is the sum of the weighted
votes assigned to it, represented by the function:

score(c) =
X

X→c∈Rθ

weight(X , c,Rθ). (3)

The category with highest score is chosen as the predicted
class (if two or more categories receive the same score, the
most frequent is chosen). For instance, consider the rule set
induced by our lazy approach. In this case, Rθ={2, 1} by
sorting in ascending order of θ. Thus rule 1 has rank 2 and
weights more heavily than rule 2. Rule 1 gives the predicted
class: “Inf. Retrieval”, which happens to be correct. Note
that, for this example, the eager approach leads to a wrong
prediction, since the only rule that matches document d11

is t=mining
θ=0.75
−−−−→c=data mining.

3.2 Link Forwarding/Backwarding
Having presented our basic lazy induction approach, we

now consider the effect of linkage-based evidence in more
detail. Different meanings from links and citations between
documents can be inferred. If two documents are linked,
their subjects are likely to be related. Similarly, if two doc-
uments are pointed by (or point to) common documents,
their subjects also can be related. Additional degrees of
relationships can also be explored. For example, one can
assume that if document A points to document B, and doc-
ument B points to document C, then documents A, B and C

are somewhat related [10]. These relationships can be used
to enhance link-based evidence. Consider again the exam-
ple shown in Table 1, and now assume we want to classify
document d12. If we set k=3, σmin=0.10, and θmin=0.50,
only two rules will be induced by our lazy approach:

1 t=system(s)
θ=0.50
−−−−→c=databases

2 t=system(s)
θ=0.50
−−−−→c=inf. retrieval



Notice that document d12 points to document d1, but no
rule can be induced from this information, because o=1 does
not occur in the training set. In our enhanced approach, we
derive other link-based evidential information by performing
a link forwarding approach, which replaces the piece of evi-
dence o=1 by the outlink of document d1 (i.e., o=2). Now,
the following rule also will be induced:

3 o=2
θ=1.00
−−−−→c=databases

Ranking these rules we have Rθ={1, 2, 3}, and thus cate-
gory “Databases”, which receives votes from the esets within
rules 1 and 3, will score 4 according to Eq. (3), and will be
the (correctly) predicted category.

3.3 Rule Caching
Processing a rule has a significant computational cost,

since it involves performing the intersection of several dsets.
Different documents may induce different rule sets, but dif-
ferent rule sets may share common rules. In this case, caching
is very effective in reducing work replication.

Our cache is a pool of entries, and it stores rules of the

form X
θ
−→ c. Each entry has the form <key, data>, where

key={X , c} and data={θ}. Our implementation has a lim-
ited storage and stores all cached rules in main memory.

Before generating a rule X
θ
−→c, the classifier first checks

whether this rule is already in the cache. If an entry is
found with a key matching {X , c}, the rule in the cache en-
try is used instead of processing it. If it is not found, the
rule is processed and then it is inserted into the cache.

The cache size is limited, and when the cache is full, some
rules to discard to make room for other rules. The best
procedure would be to always discard the rules that will
not be used for the longest time in the future. Since it is
impossible to predict how far in the future a specific rule
will be used, we choose the LFU (Least Frequently Used)
heuristic (which counts how often a rule is used, and those
that are used least are discarded first). Consider our running
example of Table 1. Notice that rules

t=system(s)
θ=0.50
−−−−→c=databases

t=system(s)
θ=0.50
−−−−→c=inf. retrieval

are common in the rule sets induced for documents d12 and
d13, and caching such rules would avoid work replication.
We show empirically that rule caching is extremely effective
in reducing the computation time for lazy induction.

4. MULTI-CRITERIA CLASSIFICATION
The use of a single statistical measure usually does not

capture all relevant characteristics of a rule [19]. Confidence
(θ), for instance, is often used to measure the accuracy of

a rule X
θ
−→ c. However, this information may be mislead-

ing, especially when σ(c)>θ[3]. Notice that confidence is
not affected by the class frequency, that is, it is not pos-
sible to correlate the class frequency to the confidence of
rules associated with that class. On the other hand, an
interesting property of θ (which is useful in sparse data,
such as text documents) is that it is null-invariant, in the
sense that adding documents that contain neither X nor c

to the collection does not change its value (i.e., co-presence
is more important than co-absence). This short discussion
just illustrates that, in practice, all measures imply some
trade-off and the best measure for sake of classification is a

function of the application and the input data. One charac-
teristic that is relevant to text classification is the asymme-
try under permutation of antecedent and consequent (i.e.,
θ(X→c) 6= θ(c→X )). Regarding this characteristic, confi-
dence is a weak measure of the reciprocal correlation be-
tween an eset and a class, and it is desirable to use other
criteria that better quantify the classification accuracy of
a rule. It is also important to remark that these criteria
may produce different rule rankings, making it necessary
to define a combination strategy to generate the final class
assignment. We discuss these issues in the next sections.

4.1 Statistical Measures
There are several measures that can be used as criteria

to select and rank rules. In our case, we are looking for
measures that emphasize, at various degrees, the strength
of the correlation between an eset and a class. Towards this
end, we adopt and evaluate three statistical measures:

Weighted Confidence[24]: An eset X may appear too
frequently in some categories, and too rarely in others. Rel-
ative support is the support of (X , c) divided by the support
of the category, and it is given by:

δ(X , c) =
σ(X , c)

σ(c)
. (4)

We define the weighted confidence of the rule X
β
−→ c as

β =
δ(X , c)

δ(X , c) + δ(X , c)
. (5)

which varies from 0 to 1. While confidence uses absolute
supports (i.e., σ), weighted confidence uses relative sup-
ports (i.e., δ). The higher the weighted confidence, the more
strongly X is associated only to category c.

Two-way Confidence: The two-way confidence of the rule
X

ω
−→ c, is given as

ω =
σ(X , c)

σ(X )
×

σ(X , c)

σ(c)
. (6)

and varies from 0 to 1. Two-way confidence is symmetric
under antecedent/consequent permutation, and thus higher
values of ω truly indicates perfect implications (X→c and
c→X ). Notice that rules with high θ values may have low
ω values if σ(c) ≫ σ(X ) .

Jaccard Coefficient[19]: The Jaccard coefficient of the

rule X
α
−→ c is given by

α =
σ(X , c)

σ(X ) + σ(c) − σ(X , c)
. (7)

and varies from 0 to 1. It measures the degree of strength
in which X implies, and only implies, c.

In terms of rule generation, we generalize the strategy
we used for confidence as follows. First, we have to decide
which criteria we are going to use. Second, for each chosen
criterion, we define the proper minimum threshold (βmin for
β, ωmin for ω, and αmin for α). Then we generate the rules,
which are considered strong if their chosen measures are all
above the respective threshold.

4.2 Class Prediction
Once we generate all strong rules for the given criteria, it is

necessary to determine the class that is best associated with
those rules. The issue here is that the criteria may generate
different rankings that must be combined. Each ranking is,



in fact, viewed as an expert (i.e., Rθ, Rβ , Rω, or Rα) which
knows the k best rules according to its corresponding mea-
sure (i.e., θ, β, ω, or α). Given a set of measures V, we start
by calculating the weight for each criterion, as defined in
Eq.(2); replacing Rθ with Rα etc. Our strategy to combine
different experts is based on an elementary principle: the
error risk of a consensual decision of multiple experts tends
to be lower than the risk of individual experts [6]. Thus, we
redefine the function score as:

score(c) =
X

v∈V

X

X
v
−→c∈Rv

weight(X , c,Rv). (8)

For instance, consider again the example in Table 1, and
suppose we want to predict the category of document d13.
Also, suppose that rules are evaluated using measures V={θ,
ω, α}, and that σmin=0.20, θmin=0.30, ωmin=0.25, and αmin

=0.25. In this case, the following rule set is induced:

1 t=databases
θ=0.33,ω=0.25,α=0.29
−−−−−−−−−−−−−−→c=data mining

2 t=databases
θ=0.50,ω=0.50,α=0.50
−−−−−−−−−−−−−−→c=databases

3 i=7
θ=0.67,ω=0.48,α=0.40
−−−−−−−−−−−−−−→c=inf. retrieval

Three rankings are built, Rθ={1,2,3}, Rω={1,3,2}, and
Rα={1,3,2}. Rule 1 has weight 1 in all experts. Rule 2 has
weight 2 in Rθ and weight 3 in Rω and Rα. Rule 3 has
weight 3 in Rθ, and weight 2 in Rω and Rα.

If only θ were used, then category “Inf. Retrieval” would
have score 3, and would be the (wrongly) predicted category.
On the other hand, if ω and α are also used, then category
“Databases” would have score 8 (according to Eq.(8)), and
therefore it would be the (correctly) predicted category.

There may be cases in which no strong rules are found. A
simple way to deal with these cases is to pick the majority
class in the training set. The problem with this method is
that documents coming from frequent classes are usually the
ones that provide better rules for classification and, there-
fore, choosing the majority class as the prediction when no
strong rules are found will possibly lead to misclassification.
The approach we adopt is to choose the most frequent class
within the projected training set. In this way, the prediction
is made based on the attributes within the test document,
instead of a fixed default class.

5. EXPERIMENTAL EVALUATION
In this section we describe the experimental results for

the evaluation of the proposed approach in terms of both
classification effectiveness and computational efficiency. Our
evaluation is based on a comparison against current state-
of-the-art classification approaches, whether single or multi-
evidence based. We first present the collections employed,
and then we discuss the effectiveness and the computational
efficiency of our approach in these collections.

Three collections were used in our experiments. The first
collection, Cade12, consists of a set of classified Web pages
indexed by the Cadê directory (http://www.cade.com.br/).
Cadê is a Brazilian Web directory pointing to Web pages
that were classified by human experts. The pages pointed
by entries of Cadê are also indexed by the TodoBr search
engine [16](http://www.todobr.com.br/). The content of
each document of Cade12 is made of the text contained in
the body and title of the Web page (excluding HTML tags
and stop words). The collection is a set of 44,099 pages
labelled using the 12 first level categories of Cadê (Comput-
ers, Culture, Education, Health, News, Internet, Recreation,

Science, Services, Shopping, Society, and Sports). Cadê has
a vocabulary of 191,962 unique words. Information about
the links related to the Cadê pages was also collected from
the TodoBR collection. We refer to pages in TodoBr col-
lection not classified in Cadê as external pages. Cadê has
a total of 3,830 internal links, 554,592 links pointed to by
external pages, and 5,584 links pointing to external pages.

The second collection, which is called ACM8, was ex-
tracted from the first level of the ACM Computing Classifi-
cation System (http://portal.acm.org/dl.cfm/). ACM8
is a set of 6,682 documents (metadata records) labelled us-
ing the 8 first level categories of ACM (General Litera-
ture, Hardware, Computer Systems Organization, Software,
Data, Theory of Computation, Mathematics of Computing,
Information Systems, Computing Methodologies, Computer
Applications, Computing Milieux)2. Only 55.80% of these
documents have abstracts, which makes it very hard to clas-
sify them using traditional content-based classifiers. For the
remaining documents, the only available textual content is
title. But titles contain normally only 5 to 10 words. As a
result, ACM8 has a vocabulary of just 9,840 unique words.
ACM8 has a total of 11,510 internal citations and 40,387
citations for papers outside of ACM DL.

The third collection, WebKB, consists of 8,282 Web pages
collected from computer science departments of various uni-
versities in January 1997 by the World Wide Knowledge
Base project (http://www.cs.cmu.edu/∼webkb/). All pages
were manually classified into seven categories (student, fac-
ulty, staff, department, course, project, and other). MIME
headers, HTML tags, and tokens that only occur once were
discarded. Further, for each train/test split, we performed
feature selection by removing all but the 2,000 words with
highest mutual information with the class variable. WebKB
has a total of 10,919 links between pages of the universities.

Figure 1 shows the category distribution for the three col-
lections. As we can see, the three collections have very
skewed distributions. In Cade12, the three most popular
categories represent more than 50% of all documents. The
ACM8 collection has similar features, with the two most
popular categories counting for more than a half of all doc-
uments in the collection. The more skewed collection, how-
ever, is WebKB. In this collection, the most popular class
contains half of the pages. Note that, for the three collec-
tions, each document is classified into just one category.

In all experiments with the aforementioned collections,
we used 10-fold cross-validation and the final results of each
experiment represent the average of the ten runs. We quan-
tify the classification effectiveness of the various approaches
through the conventional precision, recall and F1 measures.
Precision p is defined as the proportion of correctly classified
documents in the set of all documents. Recall r is defined as
the proportion of correctly classified documents out of all the
documents having the target category. F1 is a combination
of precision and recall defined as the harmonic mean 2pr

p+r
.

Macro- and micro-averaging [22] were applied to F1 to get
single performance values over all classification tasks. For
F1 macro-averaging (MacF1), scores were first computed for
individual categories and then averaged over all categories.
For F1 micro-averaging (MicF1), the decisions for all cate-

2The three remaining categories of the ACM taxonomy,
namely General Literature, Data and Computer Applica-
tions, had too few documents which prevented us to use
them in our experiments.
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Figure 1: Category Frequency Distribution.

gories were counted in a joint pool. The computational ef-
ficiency is evaluated through the total execution time, that
is, the processing time spent in training and classifying all
documents. We set σmin=0.001, θmin=0.975, βmin=0.800,
ωmin=0.750, and αmin=0.700. The experiments were per-
formed on a Linux-based PC with a Intel Pentium III 1.0
GHz processor and 1.0 GBytes RAM. All the results to be
presented were found statistically significant at the 99% con-
fidence level when tested with the two-tailed paired t-test.

5.1 Classification Effectiveness
We start our analysis by evaluating the effectiveness of our

method for different combinations of evidence (text, inlinks,
and outlinks) and criteria (θ, β, ω, and α). Table 2 shows
MicF1 numbers for each configuration used. With exception
of the WebKB collection, textual information (t) performs
poorly when compared against in-links (i) and out-links (o).
In the Cade12 collection, text-based classifiers presented a
very weak performance when compared with the results from
ACM8 and WebKB collections. This is due to the fact that
Web pages are usually noisy and contain little text. Further,
due to issues such as multiple authorship, Web pages lack
coherence in style, language, and structure. These prob-
lems are less common in the papers of a Digital Library.
As a result, the quality of the textual evidence in ACM8
is better than in Cade12, but still not as good as the cita-
tion based information. In the case of WebKB, the good
performance of textual classifiers is due to the skewness of
the collection. A simple strategy of assigning the majority
category to the test document is enough to ensure accuracy
figures greater than 70%. In the three collections, textual
evidence is a valuable source of information when combined
with other types of evidence (i+t, o+t). Combining all avail-
able evidence (i+o+t) showed to be the best strategy for all
collections. The combination of multiple evidence may lead
to deeper understanding of the document than when only
taking a single evidence into account. However, not all ev-
idence are relevant and of good quality. Taking irrelevant
or poor quality evidence into account may deteriorate the
accuracy. For instance, in some cases the combination of
different linkage evidence (i+o) did not show good accuracy
results for the WebKB collection.

As expected, different results were obtained from each cri-
terion. In general, two-way confidence (ω) gives the best re-
sults, while weighted confidence (β) generally gives the worst
results. The main reason for this is that only β is the one
that uses the complement factor (c). However, this factor
helped in classifying documents provenient from very low
frequent classes in the WebKB collection. Combining dif-
ferent criteria also shows great improvements. For Cade12

Cade12
Criteria t i o i+t o+t i+o i+o+t
θ 54.18 71.78 73.61 73.82 75.26 76.93 77.15
β 50.48 70.04 71.93 72.03 73.16 74.82 75.32
α 53.25 72.30 73.96 74.06 75.41 77.07 78.13
ω 52.83 72.81 74.22 74.33 75.68 77.25 78.41
θ+β 53.01 69.16 73.63 73.87 73.55 75.84 77.19
θ+α 55.37 72.79 74.48 74.82 75.80 77.91 78.80
θ+ω 55.00 73.07 74.76 74.82 75.85 78.04 78.80
β+α 52.72 69.42 73.68 74.03 75.08 76.14 77.46
β+ω 52.40 69.17 73.77 73.99 75.08 76.14 77.61
α+ω 55.12 73.21 75.64 75.93 76.55 77.43 78.98
θ+β+α 55.26 71.25 73.99 74.18 75.62 76.41 77.73
θ+β+ω 55.41 71.42 74.06 74.56 75.53 76.41 77.73
θ+α+ω 56.34 73.36 75.05 76.16 77.79 78.92 80.41

β+α+ω 54.22 71.20 74.11 74.30 75.35 76.49 77.84
θ+β+α+ω 56.02 71.58 74.52 75.74 77.09 78.01 79.59

ACM8
Criteria t i o i+t o+t i+o i+o+t
θ 62.42 71.36 72.68 74.26 74.39 77.55 79.13
β 61.76 70.01 71.33 73.69 74.00 76.24 77.79
α 62.95 72.12 72.94 74.79 75.66 78.04 80.34
ω 63.02 71.93 72.73 74.95 75.64 77.77 80.64
θ+β 62.88 71.06 72.63 73.65 73.95 76.50 79.06
θ+α 63.27 73.24 73.53 74.55 74.98 78.86 81.57
θ+ω 63.13 72.26 73.05 74.92 75.47 79.21 82.10
β+α 63.13 71.77 72.87 74.08 75.22 78.41 81.27
β+ω 62.60 71.52 72.76 74.28 75.29 78.74 81.60
α+ω 63.45 74.83 75.27 75.50 75.68 79.72 82.42
θ+β+α 63.24 73.31 74.27 77.85 78.25 79.97 81.90
θ+β+ω 63.22 73.05 74.03 76.26 80.76 81.81 82.96
θ+α+ω 62.85 75.90 76.60 79.65 82.15 83.80 85.15

β+α+ω 62.43 74.97 75.34 77.38 81.49 82.19 82.51
θ+β+α+ω 63.68 75.54 76.22 79.85 82.52 83.12 83.22

WebKB
Criteria t i o i+t o+t i+o i+o+t
θ 81.15 70.81 74.17 78.25 79.82 73.68 80.66
β 81.82 70.99 74.58 78.62 80.01 74.32 81.22
α 80.19 70.60 74.29 77.38 79.72 73.40 78.37
ω 81.06 70.45 74.70 78.84 80.37 75.02 81.71
θ+ω 81.36 71.82 76.44 79.47 80.56 76.83 81.96
θ+β 81.28 72.18 75.69 79.35 80.28 76.18 81.84
θ+α 80.03 71.96 75.12 78.16 78.70 75.90 79.60
β+ω 81.88 72.51 76.51 79.58 80.52 77.37 82.44
β+α 80.39 72.04 75.33 79.08 79.51 77.13 79.92
α+ω 81.01 71.87 75.28 78.06 79.11 77.02 80.09
θ+β+α 82.51 73.17 76.55 79.75 81.19 77.17 82.17
θ+β+ω 82.86 73.92 77.10 79.36 81.97 78.21 83.52

θ+α+ω 82.80 72.82 76.83 80.13 81.49 77.01 82.35
β+α+ω 82.66 72.98 76.17 79.59 81.82 78.07 82.68
θ+β+α+ω 82.97 73.60 76.91 80.58 82.12 78.58 83.04

Table 2: Different Evidence and Criteria.

Cade12 ACM8 WebKB
Degree MicF1 MacF1 MicF1 MacF1 MicF1 MacF1

0 56.64 59.75 62.85 57.14 82.86 46.95
1 80.41 81.94 85.15 84.12 83.52 49.12

2 76.28 77.52 90.55 89.83 80.27 45.66
3 67.12 68.34 86.60 85.12 77.02 41.27

Table 3: Link Forwarding and Backwarding.



Gains (%) over
Coll. Methods MicF1 MacF1 baselines

MicF1 MacF1

Cade12 Co-citation 68.51 75.60 – –
kNN(text) 50.18 44.50 -26.7 -41.1
SVM(text) 54.18 48.41 -20.9 -36.0
Assoc.(eager) 63.22 66.90 -7.7 -11.5
kNN(multi) 71.80 75.26 4.8 -0.4
SVM(multi) 75.45 73.54 10.1 -2.7
Bayesian 76.51 79.29 11.7 4.9
Assoc.(lazy) 80.41 81.94 17.4 8.0

ACM8 Amsler 83.20 78.29 – –
SVM(multi) 72.49 80.49 -12.9 2.8
kNN(text) 73.45 67.80 -1.7 -13.4
Assoc.(eager) 76.57 69.25 -7.9 -11.5
SVM(text) 76.95 70.57 -7.5 -9.9
kNN(multi) 83.33 77.39 0.1 -1.1
Bayesian 84.75 79.58 1.9 1.6
Multi-Kernel 85.87 81.25 3.2 3.7
Assoc.(lazy) 90.55 89.83 8.8 13.0

WebKB SVM(text) 82.69 51.14 – –
kNN(multi) 60.07 32.41 -27.3 -35.8
kNN(text) 60.24 32.77 -27.1 -36.2
Multi-Kernel 73.29 13.31 -11.4 -74.0
Assoc.(eager) 76.39 38.19 -7.6 -25.3
Bayesian 82.78 53.61 0.1 4.8

SVM(multi) 82.85 50.80 0.2 -0.6
Assoc.(lazy) 83.52 49.12 1.00 -3.9

Table 4: Comparison against Different Approaches.

and ACM8 collections, the best configuration uses criteria
θ, α, and ω, while for WebKB collection, the best configu-
ration uses θ, β and ω. Hence, for now on we will use the
configuration (i+o+t – θ+α+ω) (for Cade12 and ACM8 col-
lections), and (i+o+t – θ+β+ω) (for WebKB collection), for
the remaining experiments in this section.

We continue our analysis by evaluating the link forward-
ing/backwarding approach. Table 3 shows MicF1 and MacF1

numbers for different degrees of relationships between the
documents. For instance, degree 0 means that only textual
information within the given document was used. Degree 1
means that we are also allowed to use in-links and out-links
of the given document. Degree 2 means that we are also
allowed to use in-links/out-links of documents that point
to (or that are pointed by) the given document. Differ-
ent results were obtained for the three collections. For the
Cade12 and WebKB collections, the bests results (80.41%,
and 83.52%) were achieved using only one degree of rela-
tionship, while for the ACM8 the best result (90.55%) was
achieved when the second degree of relationship was also
explored. This was due to the inherent differences between
links and citations. Citations are used to provide back-
ground information, give credit to other authors, report or
criticize similar ideas, among others. Besides all the func-
tionality of citations, links have extra roles such as adver-
tising, providing access to databases, navigation etc. Such
roles can make them a less reliable source of evidence leading
to noise in the classification process

We used the best results obtained by our method and
compare them with the best results obtained by carefully
hand-tuned state-of-art single and multi-evidence methods.
SVM[18] is the best known text-based classifier and there-
fore a standard baseline. Co-citation[17] and Amsler[1] are
two bibliographic similarity measures that, when applied
within a k-Nearest-Neighbor (kNN)[21] algorithm, produce
classifiers whose performance is far superior than any text-
based classifier in these collections, the former being the

best measure for Cade12 and the latter the best one for
ACM8. Bayesian[4] and Multi-Kernel [11] are two state-of-
the-art representatives of the multiple experts and multiple
evidence approaches. Given the huge size of the combined
kernel matrix (about 500 million points for a symmetric
sparse representation) we were not able to compute the multi
kernel method for Cade12. Finally, since our method deals
with text and link evidence in the same way, we also rep-
resent the documents to be classified as bags of features in
which the features can be words and links taken indistinctly.
Our last two multi-evidence approaches, SVM(multi) and
kNN(multi), consist in classifying these documents using
kNN and SVM classifiers, respectively.

Table 4 depicts MicF1 and MacF1 numbers obtained for
each method. Co-citation, Amsler, and SVM(text), were
used as our baselines because they give good results when
considered in isolation. The first entry for each collection is
used as the baseline, and subsequent entries are sorted ac-
cording to MicF1. Text-based (SVM) and link-based classi-
fiers present very distinct classification performance. Multi-
evidence methods (Bayesian, multi-evidence kNN, multi-
evidence SVM, Multi-Kernel and Associative) show the best
classification performance, our method being clearly the best
performer in all collections. The gains over the baseline are
up to 17% depending to the collection. On the other hand,
its eager counterpart performed poorly in all collections, and
this is mainly due to the missing rule problem (many irrel-
evant rules, and only few relevant, were generated).

Recall Precision
Docs Assoc. Bayes. Gain Assoc. Bayes. Gain

per Class (lazy) (%) (lazy) (%)

Cade12
20.6% 75.83 86.93 -12.8 81.83 64.32 27.2
17.6% 74.26 70.49 5.3 64.49 66.24 -2.6
13.6% 83.52 82.78 0.9 83.97 83.02 1.1
11.1% 73.81 63.60 16.0 85.24 82.94 2.7
7.8% 87.46 76.72 14.0 88.37 92.07 -4.0
6.9% 86.09 81.40 5.8 85.02 88.16 -3.5
5.9% 80.41 67.33 19.4 77.13 82.46 -6.4
5.2% 76.26 63.32 20.4 81.96 88.65 -7.5
4.7% 91.13 84.16 8.3 88.91 92.57 -3.9
2.7% 87.00 80.51 8.0 81.12 92.32 -12.1
2.1% 88.26 70.41 25.3 81.58 90.65 -10.0
1.8% 94.45 81.78 15.5 84.80 91.07 -6.9

ACM8
27.6% 92.47 91.50 1.1 88.45 78.46 12.7
23.2% 96.59 94.46 2.2 93.63 86.50 8.2
15.9% 93.71 88.54 5.8 95.32 93.00 2.5
10.5% 91.17 82.19 10.9 90.01 89.18 0.9
9.9% 84.50 71.58 18.0 85.67 83.51 2.6
6.4% 74.05 60.71 21.9 82.28 79.69 3.2
3.6% 80.59 62.87 28.2 84.09 93.12 -9.7
2.9% 71.57 54.82 30.5 89.24 87.10 2.4

WebKB
73.8% 89.31 90.1 -0.87 90.22 89.23 1.1
13.4% 63.80 63.8 0.0 98.89 73.40 34.7
5.8% 95.88 67.5 42.0 52.95 65.86 -19.6
3.7% 73.86 77.8 -5.0 48.29 54.84 -11.9
2.1% 10.47 44.2 -76.3 56.25 39.58 42.1
1.1% 30.43 2.2 1283.2 87.50 50.00 75.0
0.1% 0.00 5.0 -100.0 0.00 30.00 -100.0

Table 5: Comparison against Bayesian Combination.

Table 5 shows detailed comparisons between our approach
and the Bayesian combination approach (which was the most
competitive performer). The table presents recall and preci-
sion figures for each category, considering all documents in
the three collections. For Cade12, we observe a gain of 27%



in precision in the most frequent category, which is respon-
sible for the overall gain in classification effectiveness. This
is mainly due to the fact that the Bayesian combination ap-
proach uses the most frequent category in the training set as
the fixed default prediction, which results in high recall and
low precision numbers for more frequent categories. On the
other hand, our approach uses the most frequent category
in the projected training set. As a consequence, several doc-
uments that were misclassified by the Bayesian combination
approach were correctly classified by our approach. Simi-
larly to Cade12, the Bayesian combination approach prefers
to assign documents to most frequent categories in WebKB.
However, due to the skewness observed in this collection,
this simple strategy leads to high gains. For ACM8 we ob-
serve more impressive gains in both precison and recall. The
less frequent the category, the more is the gain in recall, and
consequently, the opposite trend is observed in precision.
In this case, the gains are mainly due to the link forward-
ing/backwarding technique, as previously observed in Ta-
ble 3. Thus, instead of applying a fixed default prediction,
our method performs link enhancement, which is succesful
in this case because of the citation regularity observed in
the ACM8 collection.

5.2 Computational Efficiency
The computational performance of our method was also

evaluated. Table 6 depicts the execution times obtained by
employing different cache sizes. We allowed the cache to
store from 0 to 100,000 rules (approximately 82 MBytes),
and for each storage capacity we obtained the corresponding
execution time. As expected, execution time is sensitive to
cache size, showing improvements of about 200% for larger
cache sizes. Similar trends were observed in all collections.
Further, higher execution times were observed when textual
evidence is used. This is explained by the fact that there is
much more textual evidence than link-based evidence, and
thus the number of rules based on textual information is
much higher than the number of rules based on linkage in-
formation. Classification is extremely fast if only linkage ev-
idence is used. For instance, our method is able to perform
all ten folds of the ACM8 collection within two minutes.

Cache
Coll. Size t i o i+t o+t i+o i+o+t

Cade12 0 2272 216 228 1926 2261 485 2371
1K 1638 159 177 1521 1644 381 1827
10K 1138 96 122 1048 1129 246 1392
100K 616 74 91 535 598 131 873

ACM8 0 1611 120 177 1441 1707 417 1927
1K 1402 104 151 1251 1501 342 1664
10K 1032 82 116 936 1102 239 1276
100K 562 62 84 501 603 126 704

WebKB 0 1281 71 101 1023 1211 184 1381
1K 826 64 88 789 806 138 917
10K 599 58 72 563 593 117 620

Table 6: Caching and Execution Times(secs).

Table 7 shows the comparison between different methods.
Lazy approaches learn quickly but classify slowly, while ea-
ger appoaches learn slowly but classify quickly. However,
the use of caching is extremely useful for speeding up lazy
classification. Only the Co-citation method was faster than
ours in the Cade12 collection. Its effectiveness, however, was
much worse than ours. Our method was the best performer
in the ACM8 and WebKB collections. Its eager counter-
part, on the other hand, spent much time generating a large

Collection Method Time MicF1

Cade12 SVM(text) ≈20 hours 54.18
Bayesian ≈20 hours 76.51
SVM(multi) ≈4.5 days 71.80
Associative(eager) ≈5,220 secs 63.22
Associative(lazy) ≈870 secs 80.41

Amsler ≈820 secs 68.56
Co-citation ≈790 secs 68.51

ACM8 Multi-Kernel ≈4.1 hours 85.87
Bayesian ≈2.3 hours 84.75
SVM(multi) ≈2 hours 72.49
SVM(text) ≈2 hours 76.95
Associative(eager) ≈2,350 secs 76.57
Co-citation ≈1,200 secs 61.60
Amsler ≈1,200 secs 83.20
Associative(lazy) ≈700 secs 90.55

WebKB Multi-Kernel ≈5.5 hours 73.29
SVM(text) ≈5 hours 82.69
SVM(multi) ≈4 hours 82.85
Associative(eager) ≈5,280 secs 76.39
Associative(lazy) ≈620 secs 83.52

Table 7: Performance Comparison.

number of irrelevant rules (i.e., rules that were not used to
classify any document in the test set), hurting the compu-
tational performance.

Finally, we analyzed the sensitivity of our method by vary-
ing the ranking size, k (i.e., the number of rules within each
ranking). The analysis was carried in terms of execution
time and accuracy, which are depicted in Table 8. As ex-
pected, the execution time increases for larger ranking sizes,
since more rules have to be generated in order to complete
the ranking. Further, we notice that large increases and
decreases of the ranking lead to low accuracy. This is due
to the fact that larger rankings require more rules to be in-
duced, and the direct consequence of applying our level-wise
rule induction is that longer (and more specific) rules will be
induced. We can see this by analyzing the average rule size
column in Table 8, which clearly increases with the ranking
size. By using a large number of specific rules, the classifier
tends to overfit the data hurting the accuracy. On the other
hand, by using only a low number of general rules, the clas-
sifier will underfit the data also hurting the accuracy. Thus,
the choice of the proper ranking size is a trade-off between
underfitting and overfitting.

6. CONCLUSIONS
In this paper we propose and evaluate a novel document

classification method which introduces innovations in all
main steps of the automatic classification task. First, we
propose a lazy method, which delays the model induction
process until a new document is given for classification, in-
curring not only in classification accuracy gains, but also in
performance improvement. Our lazy approach also performs
evidence enhancement by looking forward/backward new
pieces of link-based evidence in the citation/link graph. Sec-
ond, we present a technique in which all evidence is treated
within a unique search/classification space in a natural and
transparent way. The pieces of evidence that enter in our
classification model, independently of its type, are the ones
that are more discriminative of the categories in which they
occur according to our quality criteria. Finally, multiple
quality criteria are combined in order to choose the best
rules to be used to predict the correct category. Experimen-
tal results demonstrated that these innovations combined



Collection Ranking Time MicF1 Avg. Rule
Size (k) (secs) Size

Cade12 10 278 77.33 2.25
15 581 78.60 3.09
20 876 80.41 3.62
25 993 80.78 3.91
30 1109 80.99 4.27
35 1147 80.69 4.35
40 1232 80.10 4.72

ACM8 10 403 86.64 2.91
15 673 88.83 3.72
20 704 90.55 4.03
25 746 90.21 4.29
30 793 90.29 4.52
35 853 90.06 4.68
40 979 88.28 4.91

WebKB 10 481 80.48 2.78
15 573 81.83 3.22
20 623 83.52 3.46
25 685 81.77 3.75
30 817 82.05 4.11
35 889 80.27 4.66
40 1076 78.69 4.93

Table 8: Ranking and Classification Performance.

together produce more effective and faster classifiers than
state-of-the-art approaches in the collections used, achiev-
ing more than 90% accuracy in some cases.

As future work, we intend to design and evaluate novel
rank criteria and combination strategies for these rankings.
We want also to consider evidence weighting strategies, dur-
ing the whole process. Finally, we will explore application
scenarios such as bioinformatics and spam detection.
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