Compile-Time Scheduling
Algorithms for a Heterogeneous
Network of Workstations

MiCHAL CIERNIAK, MOHAMMED JAVEED ZAKI AND WEI LI

Computer Science Department, University of Rochester, Rochester, NY 14627, USA
Email: zaki@cs.rochester.edu

In this paper, we study the problem of scheduling parallel loops at compile time for a heterogeneous
network of workstations. We consider heterogeneity in various aspects of parallel programming:
program, processor, memory and network. A heterogeneous program has parallel loops with
different amounts of work being done in each iteration; heterogeneous processors have different
speeds; heterogeneous memory refers to the different amounts of user-available memory on the
machines and a heterogeneous network has different communication costs between processors.
We propose a simple yet comprehensive model for use in compiling for a network of processors,
and develop compiler algorithms for generating optimal and near-optimal schedules of loops for
load balancing, communication optimizations, network contention and memory heterogeneity.
Experiments show that a significant performance improvement is achieved using our techniques.

Received October 31, 1996; revised July 15, 1997

1. INTRODUCTION

Network-based distributed computing has attracted a lot
of attention lately, due to the recent advances in high-
speed networks (e.g. ATM, asynchronous transfer mode)
having low latency and high bandwidth, and due to the
ubiquitous presence of workstations linked over local-
area networks (LANs). With most of the machines
in a network underutilized, there has been research on
harnessing this power in a useful way, for example,
to use the workstations to solve the so-called ‘grand
challenge’ problems. Furthermore, such a network of
machines, the ‘virtual parallel machine’, may consist of
possibly different types of processors, along with vector
and multiprocessor machines. The inherently dynamic
nature of the configuration of the virtual machine, depending
on which machines are available at the time of running
the program, makes architecture-dependent programming
almost impossible. The role of generating an efficient
parallel code must be filled by compilers.

The sources of heterogeneity in a network of workstations
(NOW) include the processors, with processors of different
speeds; the memory, with different amounts of available
memory on different machines; the network, with varying
communication costs among pairs of processors and at
the program level, where the program may have parallel
loops that have varying amounts of work in each iteration.
There are a number of research issues that emerge in this
environment, such as:

Program domain. Parallel applications fall into a number
of categories. These programs may have regular

or irregular computation and communication, or they
may be composed of several subtasks with different
processor—machine affinities. Other characteristics,
such as the communication-to-computation ratio, could
dictate the decision to parallelize and the parallelization
used.

Different parallelizations. In heterogeneous environ-
ments, problem decomposition and task placement
can have dramatic effects on performance. Depending
on the wunderlying machine architecture and
other machine-specific characteristics, different
parallelizations may be required for good performance
on different machines.

Machine—processor heterogeneity. A heterogeneous sys-
tem may consist of various shared and distributed-
memory MIMD machines, SIMD and vector machines,
and sequential workstations interconnected by a net-
work. This has a significant impact on scheduling and
load balancing.

Processor selection. Typically a large number of machines
may be available for use, but we have to select the
optimal subset of these machines which will give us
the minimum overall execution time. We have to trade-
off increased computation power versus the increased
overhead as we increase the number of machines.

Mapping. Both the programs and machines may have
certain characteristics which require the subtasks to
be mapped to specific machines, to obtain the best
performance [1, 2].

Memory. The amount of physical memory may be different
for different machines. When we want to decide on the

THE COMPUTER JOURNAL,

Vol. 40, No.6, 1997

COMPILE-TIME SCHEDULING ALGORITHMS 357

largest problem that can be performed efficiently, we
must consider the available memory on each machine,
and also the memory requirements of the application.
We will discuss this point in more detail in Section 7.

Network latency. Network latency is one of the primary
concerns for a heterogeneous NOW. High latency can
make communication extremely expensive, and restrict
the scalability of the system.

Network bandwidth. Bandwidth is also a bottleneck,
especially for Ethernet LANs. Although it is easier
to increase the physical bandwidth (e.g. ATMs have a
much higher bandwidth), the amount of application-
level bandwidth remains a small fraction of the
available physical bandwidth [3]. With different
interconnection networks, the network heterogeneity
can become a significant factor in the parallel
performance of applications.

Contention effects. Communication on an Ethernet LAN is
more expensive due to high latency and low bandwidth.
The network traffic tends to be highly bursty on LANs.
Moreover, contention for the bus becomes a critical
performance factor. Any performance prediction model
for a heterogeneous NOW must take into account
the contention that may be caused in the network.
Modelling this is a very complex task.

Load balancing. Homogeneous static load-balancing algo-
rithms must be adapted to work for heterogeneous
NOWSs. For a multi-user set-up, run-time dynamic
load balancing may be required [4]. We have to trade-
off the task-switching cost versus the load-imbalance
cost. There are many dynamic load-balancing schemes
[5, 6], but these cannot be used for problems with
subtasks of various capabilities. Since NOWs are
usually loosely coupled, i.e. are connected via a non-
dedicated network, there is also the issue of external
load on the network.

Data coercion. Machine heterogeneity entails different
methods of data representation on different machines.
Although this introduces the overhead of data conver-
sion while sending messages among the machines, it is
generally not that significant [7].

Software issues. Differences in the host operating systems,
file systems, database systems, interprocess communi-
cation, compilers and languages available should be
masked while dealing with heterogeneous systems.
Efficient software systems are needed which automate
most of the decisions that need to be made in these
environments, such as automating the data decomposi-
tion, distribution, synchronization and communication
for the applications across a wide range of platforms.

In this paper, we assume an SPMD/master—slave model
of computation, i.e. all processes essentially execute the
same program, but on different data sets. We further
assume that all the parallelism comes from ‘doall’ loops.
Since all the tasks are similar, the problem consists of
efficient data partitioning among a set of machines, taking
into consideration the processor speeds and communication

costs, so as to minimize the execution time of the program.

The objective of this paper is to propose compile-time
techniques for scheduling parallel loops for a heterogeneous
NOW. In particular, we make the following technical
contributions:

e We propose a simple model for a heterogeneous
network of machines. It serves as a conceptual
starting point in compiling for load balancing and
communication in such an environment.

e We show by experiments that the conventional ways of
measuring processor speed and memory capacity are
insufficient for a heterogeneous NOW. We show that
normalized processor speed, which may be application
dependent, gives a better estimate of processor
performance, and that the resident memory size, which
may also be application dependent, gives a better
estimate of the memory requirement. Furthermore,
we show how these two parameters taken together
influence scheduling, and lead to better performance.

e We develop a set of architecture-conscious compile-
time scheduling approaches for generating optimal or
near-optimal scheduling of loops for load balancing
and communication, for a network of heterogeneous
machines.

e We present experimental results to verify that these
techniques produce very good results in practice.
We show that the architecture-conscious scheduling
algorithms result in much better performance than
the naive architecture-oblivious scheduling approach.
Examples are drawn from a mix of synthetic and real
applications, from scientific computing and economics
modelling [8].

The rest of this paper is organized as follows. We will
briefly present the related work in the next section, before
introducing our compile-time model. In Section 3, we
introduce our program model, which is followed by our
machine model in Section 4. In Section 5, we consider
scheduling for heterogeneous programs (on homogeneous
machines). In Section 6, we look at the case of
heterogeneous processors, with the same communication
links, which is followed by scheduling for heterogeneous
memory in Section 7. Section 8 deals with the case where the
network communication links are heterogeneous, i.e. there
are different communication costs between different points
in the network. In Section 9, we extend our model to handle
the case of scheduling for load balancing while avoiding
network contention. We then present experimental results on
our proposed techniques in Section 10. Finally, we conclude
in Section 11.

2. RELATED WORK

In this section we look at some of the load-balancing
schemes which have been proposed in the literature.

THE COMPUTER JOURNAL,

Vol. 40, No.6, 1997

358 M. CIERNIAK et al.

2.1. Static scheduling

Compile-time static loop scheduling is efficient and
introduces no additional run-time overhead. For UMA
(uniform memory access) parallel machines, usually loop
iterations can be scheduled in a block or cyclic fashion. For
NUMA (non-uniform memory access) parallel machines,
loop scheduling has to take data distribution into account
[9]. The simplest approach is the static-block scheduling
scheme, which assigns an equal block of iterations to each
of the available processors. The static interleaved scheme
assigns iterations in a cyclic fashion [10].

There has been relatively little work done on static
scheduling for heterogeneous NOW; it has also mainly
focused on homogeneous applications. Earlier work dealing
with processor heterogeneity appears in [7, 11, 12], and
the requirements for distributed computing over LANs have
been analysed in [3]. This paper presents compile-time
static scheduling algorithms for heterogeneous programs,
processors, memory and networks. Preliminary results of
this paper can be found in [13-15].

2.2. Dynamic scheduling

When the execution time of loop iterations is not predictable
at compile time, run-time dynamic scheduling can be used
at the additional run-time cost of managing task allocation.
The dynamic scheduling strategies fall under different
models, which include schemes based on predicting the
future from past loads, the task queue model and the
diffusion model.

Predicting the future. A common approach taken for load
balancing on a workstation network is to predict future
performance based on past information. For example,
in [16], a global distributed scheme is presented,
and load balancing involves periodic information
exchanges. Dome [17] implements a global central
and a local distributed scheme, and the load balancing
involves periodic exchanges. Siegell [18] also
presented a global centralized scheme, with periodic
information exchanges. The main contribution of this
paper was the methodology for automatic generation
of parallel programs with dynamic load balancing.
In Phish [19], a local distributed receiver-initiated
scheme is described, where the processor requesting
more tasks chooses a processor at random from which
to steal more work. CHARM [20] implements a
local distributed receiver-initiated scheme. In [4, 21]
the authors presented different strategies for dynamic
load balancing in the presence of transient external
load. They examined both global versus local, and
centralized versus distributed schemes, and presented a
hybrid compile and run-time system that automatically
selects the best load-balancing scheme for a given
loop/task from among the repertoire of different
strategies.

Task queue model. A host of approaches have been
proposed in the literature targeting shared memory

machines. These fall under the task queue model,
where there is a logically central task queue of loop
iterations. Once the processors have finished their
assigned portion, more work is obtained from this
queue. The simplest approach in this model is self-
scheduling [22], where each processor is allocated only
one iteration at a time. In fixed-size chunking [23], each
processor is allocated K iterations, while in guided
self-scheduling [5] each processor is assigned (1/P)th
of the remaining iterations, where P is the number of
processors. Affinity scheduling [6] also takes processor
affinity into account. A number of more elaborate
schemes based on the self-scheduling idea are also
extant.

Diffusion model. Other approaches include diffusion mod-
els with all the work initially distributed, and with work
movement between adjacent processors if an imbalance
is detected between their load and their neighbour’s
load. An example is the gradient model [24] approach.

3. PROGRAM MODEL

In this paper we will look at parallel loops, that is, loops
with iterations which do not depend on one another. We
have to address two issues—the amount of computation
and the amount of communication in each iteration of the
parallel loop. We would like to generate schedules for the
loop which are optimal, both in terms of communication
and computation, to achieve the best speed-up on a
heterogeneous NOW.

3.1. Parallel loops

To create a static schedule with a good load balance, we
have to know the amount of computation in every iteration.
We consider two cases of parallel loops: homogeneous and
heterogeneous. By homogeneous loops, we mean parallel
loops that have the same amount of computation in each
iteration. Heterogeneous loops have a varying amount of
work in each iteration. We introduce a program parameter
into our model: x;, the number of operations in iteration i.

For the homogeneous case, x; is constant; for the
heterogeneous case, we assume that x; = ai + b, ie.
we restrict our attention to loops where the computation
is an affine function of the normalized loop index, which
captures a large set of scientific programs. Examples include
Cholesky, TRFD from the Perfect benchmark suite [25] and
SPEC95 benchmark applications.

3.2. Communication

With the right placement of data, a parallel loop does not
require any communication during execution, i.e. there is no
data flow between iterations of a parallel loop. However,
communication may be necessary between different loops.
Therefore, there may be communication caused by each
iteration because of subsequent computation. We assume
that each iteration of the parallel loop contributes a precisely
defined amount of data to the messages sent after the loop

THE COMPUTER JOURNAL,

Vol. 40, No.6, 1997

COMPILE-TIME SCHEDULING ALGORITHMS 359

Normalized Processor Speed: SPARC LX

3-2 T T T T T
MxM ——
3 \ CHOLESKY —— -
ECQ, =—
28 | 2D-FFT ~— 1

26 r 1

NPS wrt SPARCstation 1
N
N

2.2 1
2 L i
1.8 M 1

1.6 : : : : :
0 0.5 15 2 2.5 3

1
Data Size (MBytes)

FIGURE 1. NPS: Sun SPARC LX versus SPARC 1.

completes. Further, we assume that the messages are being
sent after all iterations assigned to a given processor have
completed, i.e. there is only one message per processor,
consisting of data from all iterations, rather than one
message per iteration.

The example below illustrates this type of communica-
tion.

1: DOALLk =1,n
Y(k) =Y (k) + W(k)
end DOALL
2: DOALLk =1,n
doj=1,n
Ak) = AK) + V(k, j) % Y ()
end do
end DOALL

Values Y (k) produced in some of the iterations of loop 1,
will be used in more than one iteration of loop 2. Every
iteration of loop 1 contributes one word to the message sent
between loops 1 and 2.

We introduce the following program parameter which
denotes the amount of communication: y;, the number
of bytes that have to be sent as the result of iteration i.
Communication contributed by each iteration can be
constant (the homogeneous case)—as in the example
above—or it can vary (the heterogeneous case). In the
heterogeneous case, we assume that y; = ci + d, ie.
the amount of communication is an affine function of the
normalized loop index.

4. MACHINE MODEL

The machine model must account for processor, memory
and network heterogeneity. Below we present each case
separately.

4.1. Processor model

In a fully detailed processor model, we would need to
consider the speed of a processor in terms of the number

Normalized Procesor Speed: SPARC 10

8 T
MxM ——
71 ECO -+ |
CHOLESKY =

NPS wrt SPARCstation 1
[6)}

4 N I
3 1
2 1 1 1 1 1

0 0.5 1 1.5 2 25 3

Data Size (MBytes)

FIGURE 2. NPS: Sun SPARC 10 versus SPARC 1.

of floating point operations per second, and the number of
integer operations per second. We also need to consider
memory access time, and the interaction of these with
different cache and memory sizes. Multiple instruction
issue and instruction pipelining would further complicate the
performance model. The multitude of machine parameters
makes their use in performance prediction very difficult.
Therefore, for our discussion, we will only consider a single
parameter, y, to describe the speed of a machine: y; is the
time for one operation on processor i. The machines may be
homogeneous or heterogeneous.

There are a number of ways to calculate y, the speed
of the processor; for example, we could use the MIPS
(millions of instructions per second), MFLOPS (millions
of floating-point operations per second), Whetstone or
the Dhrystone ratings. In modern processors different
operations have a different cost, and furthermore, instruction
pipelining and multiple instruction issue render it quite
difficult to come up with a single figure that characterizes
the performance. Therefore, while these figures may give
an indication of the processor capabilities, a reliable and
consistent performance measure can only be found by using
the execution time of different real applications on the
machines under consideration.

In our approach, we summarize the processor speeds via
the notion of normalized processor speed (NPS), defined
as the ratio of the time taken to execute on the processor
under consideration, with respect to the time taken on a
base processor. Consider Figures 1 and 2, which show
the processor performance of a SPARCstation 10 and LX
on different applications (see Section 10 for a description
of these applications). The time is normalized against
the performance of a SPARCstation 1. Our experiments
indicate that machine performance varies for different
applications. Since the processor speeds vary from one
application to another, we approximate the speed based on
small trial application runs. On the other hand, we may
obtain these by compile-time performance prediction. In

THE COMPUTER JOURNAL,

Vol. 40, No.6, 1997

360 M. CIERNIAK et al.

TABLE 1. Performance ratios: SPARC 5 with respect to
SPARC LX

MIPS Normalized processor speed

ratio M x M CHO 2D-FFT

3.5 1.5 1.7 1.8

TABLE 2. Running time (SPARC 5 + SPARC LX)

Application MIPS (s) NPS (s)
M x M (600) 1486.3 1152.7
CHO (600) 99.1 87.1
2D-FFT (512) 36.8 32.3

[26], the author describes a detailed, architecture-specific,
compile-time performance-prediction framework. Porting
to different architectures and compilers is quite involved,
though possible.

Table 1 shows the MIPS ratio and the normalized
processor speeds for different applications, for the SPARC 5
versus LX. In Table 2 we show the execution times obtained
on a configuration of two machines—a SPARC 5 and an LX.
The second and third columns show the execution time using
the MIPS ratio and NPS values to balance the workload. It is
clearly seen that the normalized processor speed should be
used in scheduling, since it results in a balanced computation
load and hence gives better performance for the application.

4.2. Memory model

Heterogeneous NOWs have a large amount of computational
power as well as a large amount of combined memory.
We would like to exploit the available resources by solving
as large a problem as possible, for example, solving
large instances of numerical scientific applications, and
other real-world applications such as weather modelling,
computational dynamics and other ‘grand challenge’
applications. The largest data size is limited by the amount
of combined memory present in the system. The amount of
memory available may be different for different processors.
To summarize the memory heterogeneity, we introduce
the parameter m;, the amount of memory available on
processor i.

Table 3 shows the amount of actual physical memory
and the amount that is available to user applications in
our configuration. We can use the above values to decide
on the largest problem size we can run, by calculating
when the total memory requirement of an application would
exceed the user-available memory capacity on a given
machine. Ways of estimating the memory requirement for
an application will be discussed in Section 7.

TABLE 3. Memory capacities

Total Available
Machine type memory (Mb) memory (Mb)
Sun SPARC 1 16 12.5
Sun SPARC LX 32 24.5
Sun SPARC 5 32 24.5
Sun SPARC 10 128 102.0

4.3. Network model

For a network of workstations, we also have to consider
the cost of communication between any two machines, i.e.
we must consider the interplay of latency and bandwidth
between points in the network. Furthermore, when we talk
of communication between two machines we must consider
the cost of packing (marshalling) the data, receiving the
data and the cost of the ‘real’ communication, i.e. the
time actually spent in the physical medium. We have two
parameters for each of the above three cases—the startup
time (independent of the message size) and the actual time
spent in performing the action (proportional to the message
size).

Rather than dealing with six or more parameters, we
simplify our model and consider the startup time and the cost
for the action to be the sum of the costs for all three stages,
and thus have the following two parameters: «;, startup time
for a message on processor i, and f;, the time to send one
byte of data on processor i. The network of machines can be
either homogeneous or heterogeneous. In the former case,
o; = a and B; = B, for all the machines. In the latter case,
these vary with the machine. The values for the latency and
bandwidth are obtained via off-line network characterization
experiments.

The discussion so far has assumed that messages from
different machines can be sent at the same time. For many
machines this is not a realistic assumption. Contention in
the network adds complexity to the model. The discussion
of this, more complex, case will be deferred until Section 9.

5. SCHEDULING FOR HETEROGENEOUS
PROGRAMS

In this section we consider heterogeneous programs (parallel
loops) on parallel machines with homogeneous processors
and a homogeneous network. As discussed in Section 4, the
following machine parameters describe this type of machine:
p denotes the number of processors in the system, y the time
to execute one operation, & the communication initialization
time, B the time to send one byte of a message and n the
number of iterations of the loop.

As a simple introduction to loop scheduling, we first con-
sider homogeneous parallel loops without communication.
Every processor has the same speed, every iteration requires
the same amount of computation, and there is no commu-
nication. With these assumptions, every processor should

THE COMPUTER JOURNAL,

Vol. 40, No.6, 1997

COMPILE-TIME SCHEDULING ALGORITHMS 361

a Time

I
I
|
I
I
I
I
I

. I

Time |
I
I
I
I
I
I
|
|
I

T T T — —
1 N2 N 1 N2
Iterations Tterations
FIGURE 3. Transforming a heterogeneous loop into a

homogeneous loop.

execute approximately the same number of iterations. If n is
a multiple of p, every processor will have exactly the same
number of iterations: n/p. Otherwise, some processors will
execute |n/p] while others will have |n/p|+1 iterations. In
this case, it is not important which processors have one more
iteration to execute. In the case of homogeneous loops with
communication, every iteration causes the same number of
bytes to be sent. Therefore, the static scheduling above will
evenly distribute both computation and communication.

5.1. Heterogeneous loops: no communication

For heterogeneous loops, again, we deal with the
communication-free case first. As discussed earlier in this
section, this type of loop is characterized by the parameter
x; = ai + b, fori = 1,...,n. Rather than solving this
problem directly, we will show how to transform this loop
into a homogeneous parallel loop and use the scheduling
strategy for homogeneous loops presented above. This
transformation is shown graphically in Figure 3.

5.1.1. Case I: n = 2pt, for some integer t

We first consider a special case when the number of
iterations n is a multiple of 2p. We can transform this loop
into a homogeneous parallel loop with n/2 iterations. Note
that the sum of the work in iterations i and (n —i 4+ 1) is a
constant:

Xi+xp—iyi=ai+b+am—i+1)+b=amn+1)+2b.

We can therefore combine iterations i and (n — i + 1)
into one iteration of a new parallel loop. This new loop
is homogeneous with a(n + 1) 4+ 2b operations in every
iteration. As all processors execute exactly n/p iterations
of the transformed loop, there is no imbalance.

5.1.2. Case ll: n # 2pt, for any integer t

In the general case, there may be imbalance. Let r =
nmod(2p). If r # 0, the imbalance is caused by the
remaining r iterations. We can make the imbalance very
small by choosing those r iterations to be very short (the

loop is not homogeneous). To achieve this, we take the first
r iterations if @ > 0, since we have an increasing amount of
computation in this case, and the last r iterations otherwise.
Now, if r < p, then r processors get one iteration each,
otherwise the first » mod p processors get two iterations
(we can transform the 2(r mod p) consecutive iterations into
a homogeneous loop), the remaining processors take the
longest 2p — r iterations. The schedule obtained in this way
is close to optimal. We call this approach bitonic scheduling
[13], since the iterations are assigned to processors in an
increasing and decreasing fashion.

We shall illustrate this optimization with the following
example. Let the number of iterations, n = 10, and
the number of processors, p = 3. Let x; = i, ie.
a = 1and b = 0. To get the optimal schedule, we first
compute r = 10 mod 6 = 4. Because a > 0, we
take away the first four iterations. The last six iterations
can be perfectly balanced with each processor getting two
iterations. In our case processors 1, 2 and 3 get iterations
10, 5; 9, 6 and 8, 7 respectively. Since r > p, we compute
r mod p = 4 mod 3 = 1, and thus, the first processor gets
two iterations from the beginning, i.e. it gets iterations 1 and
2. The other two processors can pick up the two remaining
iterations. So processors 2 and 3 get iterations 3 and 4
respectively. Figure 4b represents pictorially our discussion
above; clearly, our schedule is optimal.

We will contrast our technique with another popular
technique for load balancing. Often, iterations of het-
erogeneous loops are assigned in an interleaved fashion—
using round-robin scheduling. For our example above,
with interleaved scheduling, processor 1 gets iterations
1,4,7, 10; processor 2 gets iterations 2, 5, 8 and processor 3
gets iterations 3,6,9. The completion time using our
schedule, 19 s, is shorter than the completion time using
interleaving, 22 s. Figure 4c clearly shows that this strategy
is non-optimal.

5.2. Heterogeneous loops: with communication

The case with communication can be handled with a slight
modification of the above transformation. Every iteration of
the new parallel loop will cause c(n+1)4-2d bytes to be sent.
When 2p divides n, the homogeneous loop obtained in this
way can be scheduled as described in Subsubsection 5.1.1.
When 2p does not divide n, we have to use an approach
similar to the approach used in Subsubsection 5.1.2. We
find r = nmod (2p). We can perfectly schedule n — r
iterations, and we choose the r iterations, such that they are
the ‘cheapest’ in terms of the imbalance they produce, and
assign them as before. The difference is that, this time we
do not use the sign of a to determine which iterations are the
‘cheapest’. We have to use the sign of (ya + Bc) (recall that
y = ci +d is the communication for iteration i), because this
constant determines whether the time spent on computation
and communication increases or decreases with the iteration
number.

THE COMPUTER JOURNAL,

Vol. 40, No.6, 1997

362 M. CIERNIAK et al.

19
18
10
8 - Time
Time 6 7
4 -
7
0 0
(a) Iterations (b)

227
Ty 18 e
3 4 10
2
1544
9
5 6 7 Time
8
7
6
10 9 8
5
4
3
2
il B
2 3 1 2 3
Processors (©) Processors

FIGURE 4. Bitonic scheduling versus round-robin scheduling. (a) Original non-uniform loop; (b) bitonic scheduling; (¢) round-robin

scheduling.

6. SCHEDULING FOR HETEROGENEOUS
PROCESSORS

In this section we consider parallel machines with
heterogeneous processors and a homogeneous network.
The following machine parameters describe these types of
machines: p, the number of processors in the system, y;,
the time for processor i to execute one operation, «, the
communication initialization time and S, the time to send
one byte of a message. As usual, n denotes the number of
iterations of the loop.

We call the straightforward way of assigning the same
amount of work to each processor the architecture-oblivious
approach, and the algorithms developed in the following
sections the architecture-conscious approach.

6.1. Homogeneous parallel loops: no communication

We create the schedules by trying to balance the computation
on all the processors. We note that, to evenly distribute
computation, every processor should have a fraction of all
the work given by the following formula:

v — i
[P M
Zk:l 1/«
To get the optimal load balance, we should assign z; =
w;n iterations to processor i. Since z; is not necessarily

an integer number, we have to decide whether |z;] or [z;]
should be used. If the iteration space is large this decision
is not very critical. We break the tie in the following
way. Processor i works on iterations LZ;;Il Zx] + 1 through
LZZ:] zx). The schedule obtained in this way is optimal.
A similar approach, by distributing the load proportionally
to the relative speeds of the processors, has been used with
success in [7].

6.2. Homogeneous parallel loops: with communication

When there is communication, the algorithm in Subsec-
tion 6.1 will not necessarily generate an optimal schedule.
Here we present an optimal solution. For the uniform case,
x; =xandy; = yfori = 1,...,n. The communication
time caused by z; iterations is o 4 Byz; (recall that all objects
to be sent are packed into one message and sent after the
computation has completed). Hence, the total time spent by
processor i on computation and communication is

i =yixzi +a+ Byzi = gizi +ao

where g = y;x + By. Note that for this to work, we
have to ensure that y;x and By are in the same units, say,
microseconds.

As in the other cases, our goal is to find a set of z; that
minimizes max!_, ;. If we assign a non-zero amount of

THE COMPUTER JOURNAL,

Vol. 40, No.6, 1997

COMPILE-TIME SCHEDULING ALGORITHMS 363

TABLE 4. Effect of NPS and total memory

Data Total NPS NPS-+total memory
size memory Memory Time Memory Time
1424 4877Mb 28.0Mb 2091.5s 245Mb 24184s

work to every processor, such a minimum will yield #; = ¢;
fori, j = 1,..., p. Asetof z; that minimizes max!_, g;z;
will also minimize maxf’:1 t;, because « is constant. We can
redefine w; to be

v — M8
Z}f:] 1/ gk

and proceed as in Subsection 6.1.

6.3. Heterogeneous parallel loops

In this case, we can again first transform a heterogeneous
loop into a homogeneous loop and then apply the methods
described above. Note that, although this approach
results in a schedule which is optimal for the transformed
homogeneous loop, it is not necessarily optimal for the
original heterogeneous loop. The possible load imbalance is,
however, very small. The work assigned to each processor
is different from the optimum by at most one iteration.

7. SCHEDULING FOR HETEROGENEOUS
MEMORY

In this section we examine ways of estimating the
memory requirement for an application. We then extend
our scheduling algorithms to account for heterogeneous
memory.

7.1. Resident memory size (RMS)

Our experiments show that using the total memory
requirement is generally not a good criterion for judging the
largest problem size we can run efficiently.

Table 4 shows the results obtained for the matrix mul-
tiplication program on a configuration having a SPARC 5
and a SPARC LX machine. @ We first distributed the
work among the two machines proportionally to their NPS
values, using the architecture-conscious technique from the
last section. This distribution causes the total memory
requirement for the SPARC 5 (28.0 Mb, column 3) to
exceed the user-available memory for it (24.5 Mb). We
then redistributed the data among the processors so that we
respect the memory constraint on the SPARC 5. But this
caused an increase in the execution time (see columns 4
and 6). The reason is that the total memory requirement
is a very conservative measure, and generally overestimates
the memory requirement of an application. We therefore
introduce a new notion, the resident memory size (RMS) for
a given program segment, defined as the minimum number
of pages of physical memory required to ensure that all page

fault misses are cold misses (i.e. due to the first reference) for
that segment, using a particular page replacement algorithm.
We believe that this gives a better indication of the memory
requirement for an application. Note that RMS is a program-
level analogue of the operating system’s notion of working
set size (WSS) with an appropriate window size (WSS is
defined as the set of pages in the most recent A, the window
size, page references).

For a particular application, as we increase the data
size we will reach a critical point beyond which the
performance of the program degrades rapidly. This critical
data size cannot simply be obtained from the total memory
requirement for the application. Usually the RMS should
be a good approximation of this critical point. For example
consider the matrix multiplication program, MXM, which
computes C = A x B, where A, B and C are N x N
matrices. The total memory requirement for this program
is 3N2. However, notice that all three matrices need not
occupy the memory at the same time. If we compute the C
matrix, a row at a time, we need to keep only one page of C
and one row of A in memory, but we must have the whole of
matrix B in memory. Therefore, if we calculate the resident
memory size for MXM, we get the following, approximate,
formula:

RMS = (N? + N) x ElementSize/PageSize + 1.

The above RMS is calculated using an ideal page
replacement scheme. Using the LRU (least recently used)
page replacement instead, would give

RMS = (N? +2N) x ElementSize/PageSize + 2.

We observe that if the resident memory size is less than
the user-available memory then our program will not suffer
from the effects of memory limitations. If, on the other hand,
the program’s RMS is larger than the available memory
then some of the pages required will not be in memory,
and we will have to take a page fault. As the input data
size increases, the RMS increases, ultimately exceeding
the available memory. If we attempt to run very large
programs then we will cause the machines to thrash, severely
degrading the performance.

We use a compile-time algorithm to approximate the
RMS. We compute the number of pages contributed to RMS
by every array reference in a loop nest. We first find the
stride vector [27] for a given reference and then determine
the outermost loop carrying reuse. For all loops enclosed
by this loop we use strides and loop bounds to calculate the
number of reused pages.

Let us illustrate the algorithm with an example. Consider
the following loop nest from the matrix multiply program.

for i = 1 to n do
for j =1 ton do
for k =1 to n do
c[i, j] += a[i, k] * b[k, J]

Assume row major mapping for all arrays. The stride

THE COMPUTER JOURNAL,

Vol. 40, No.6, 1997

364

M. CIERNIAK et al.

TABLE 5. Effect of NPS and RMS

Total Total Memory NPS MEM NPS + RMS
memory RMS SPARCS RMS Time RMS Time RMS Time
186.6 Mb 623Mb 24.5Mb 288 Mb ‘o0’ 125Mb 19902 s 245Mb 14477 s

vectors for references to arrays a, b and c are

n 0 n
va=1| 0 [, =\ 1], ve=1|1
1 n 0

For a given reference a stride vector has one element for
every loop enclosing this reference. An element of a
stride vector is equal to the memory stride for consecutive
iterations of the corresponding loop. In our example, the
bottom element of v, is 1, which means that the stride for
accesses to array a in loop-k is unitary. The two other
elements of v, inform that the stride in loop-j is 0, and the
stride in loop-1i is n.

Stride vectors are used to describe the locality of memory
accesses. Assume that a page holds p array elements and
that 1 < p < n. Consider the reference to array a. We
can see from the stride vector that there is temporal reuse
carried by loop-Jj and spatial reuse carried by loop-k. The
outermost loop carries no reuse.

For the reference to the array a, loop-3j is the outermost
loop with reuse. According to our algorithm, we consider all
loops enclosed by the loop-7j, that is loop-k. This reference
contributes RMS, = In/p = n/p pages, where 1 is the
stride in loop-k and 7 is the number of iterations of that loop.

Similarly for the reference to array b, loop-i is the
outermost loop carrying reuse, and we have to consider all
loops enclosed by it, i.e. loop-j and loop-k. Each of those
loops has n iterations and the strides are 1 and n respectively.
The number of pages (ignoring boundary conditions) is
RMS,;, = n(n/p), that is the number of iterations of loop-7j
multiplied by the number of pages referenced in loop-k.

Calculation of the RMS for the reference to array c is
similar to RMS,,. This time the stride in the innermost loop
is 0. Hence, RMS, = On/p = 0. Because we need at least
one page to keep the current element of ¢ in memory, we
take RMS, = 1.

The resident memory size for all three arrays in this
example is RMS = RMS, + RMS,;, + RMS... Hence,

2

2
RMS = 24
PP

p

+ L.

The result is the same as the formula shown earlier in this
section for an ideal page replacement algorithm.

The limitation of the above algorithm is that it is very
conservative. While the RMS value obtained for regular
problems should work well in practice, it may not be a good
approximation for irregular problems.

7.2. Combined effect of processor and memory
heterogeneity

In this subsection we point out how to efficiently run large
problem instances on a particular configuration of the NOW.
We look at the interaction of the normalized processor speed
and the resident memory size, both of which are application
dependent, and show their combined effect on scheduling.

Deciding on the largest problem instance to be solved is
a subtle issue. It depends on a number of criteria, such
as how long are we willing to wait? or what measure of
efficiency do we desire?, etc. In this subsection, we will
not deal with the problem of finding the largest problem
instance to solve. Instead, we will look at how we might
achieve good performance, i.e. minimal execution time,
for program instances where the RMS value exceeds the
memory available to a user application on at least one
processor in the NOW.

Table 5 shows the results obtained for MXM (2788 x
2788) on a configuration of SPARC 10 and SPARC 5
workstation. The SPARC 5 has approximately four times
less memory than the SPARC 10 (Table 3). We first ran
the program by distributing the work based on the NPS
values, but the RMS (28.8 Mb) exceeded the memory on
the SPARC 5 (24.5 Mb), and caused the machine to thrash.
We had to stop the execution. We then distributed the data
so that the RMS on the SPARC 5 was equal to the available
memory (see under NPS +RMS). We also used the memory
ratio of the machines to schedule the work (see under MEM),
however this results in a load imbalance as more work is
assigned to the SPARC 10, and thus it takes a longer time
to complete. We can clearly see that the execution time
obtained by using both the NPS and RMS values is the best,
while using just the NPS values we could not even run on
the chosen data size.

7.2.1. Scheduling algorithm

We first try to distribute the data among the processors in
proportion to their NPS values for the particular application
under consideration, using the algorithms from the previous
sections. We also calculate the RMS value for the program.
Using this RMS value and the user-available memory
we determine whether we exceed the memory on any
processor, and redistribute the excess amount among the
other processors by recursively applying the same technique.
The schedule obtained in this way tries to respect the
processor speed ratios, and even when memory becomes a
factor, it tries to be as close to the processor speed ratios
as possible, while satisfying the memory constraints. This

THE COMPUTER JOURNAL,

Vol. 40, No.6, 1997

COMPILE-TIME SCHEDULING ALGORITHMS 365

approach should give near-optimal performance for a given
data size.

8. SCHEDULING FOR HETEROGENEOUS
NETWORKS

In this section we consider parallel machines with
heterogeneous processors and a heterogeneous network.
The following machine parameters describe these types of
machines: p, the number of processors in the system; y;,
the time for processor i to execute one operation; «;, the
communication initialization time on processor i and f;,
the time to send one byte of a message from processor i.
As usual, n denotes the number of iterations of the loop.
Loops without communication are equivalent to the loops for
systems with a homogeneous network. Therefore, for these,
the solutions from Subsections 6.1 and 6.3 can be applied to
the case of a heterogeneous network.

8.1. Homogeneous parallel loops: with communication

The time spent by processor i on computation and
communication can be calculated in the same way as in the
homogeneous case, i.e. we will define the time to execute
one iteration of the loop on processor i, g; = y;x + Biy,
and note that time spent by processor i on computation and
communication as

i =gz +a.

To eliminate load imbalance caused by different com-
munication startup times, «;, we find a processor with the
largest value of «;, and we add extra iterations to processors
with shorter times.

Let o; = max/_, ;. The number of extra iterations for a

given processor is
a; —
)
8i

We can now use the algorithm from Subsection 6.2 on the
remaining (n — > ;_, ex) iterations to obtain z} and assign
zi = z; + ¢; iterations to every processor.

The solution presented in this section is not necessarily
optimal, but the schedule found by this algorithm is very
close to the optimum. The work allocated to any processor
is different by at most two iterations from the work
corresponding to the perfect load balance.

8.2. Heterogeneous parallel loops: with communication

To schedule a heterogeneous loop with communication,
we again transform it into a homogeneous parallel loop.
Transforming the loop first and then applying the algorithm
from Subsection 8.1, would cause the use of iterations
of the transformed loop as extra iterations to balance the
communication initialization cost. However, those iterations
have a higher cost, both in terms of computation and
communication, than any single iteration of the original
loop. It is therefore desirable to eliminate the initialization

imbalance first, and to then transform the remaining
iterations into a homogeneous parallel loop.

Because differences between the parameters «; may be
small in some cases, we want to use the iterations with the
smallest cost possible. Note that by cost, in this context, we
mean only the time contributed by an iteration, without the
communication startup cost. The cost of an iteration i on a
processor j is given by

&i.j = VjXi +,8jyi = (yja +ﬂj6)i +)/jb"‘ﬂjd,

since

x; =ai +b, and yi =ci+d.

To ensure the use of the shortest possible iterations, we
should use iterations from the beginning of the iteration
space if (y;a + Bjc) > 0, since in this case g;; is an
increasing function of i, and from the end of the iteration
space otherwise. The sign of (y;a + B;c) is machine
dependent, so for some processors we should allocate
iterations from the beginning of the iteration space, but
for other processors, from the end. This general case can
be handled by an extended version of our algorithm. In
practice, however, constants @ and ¢ have the same sign,
which implies the same sign for (y;a + ;c) no matter what
the machine parameters are (y; and B; are always positive).
Therefore, here we will describe a solution for this simpler
case only.

Let ;= max/_ ;. We will start assigning extra
iterations from iteration 1 upwards if (y;a + B;c) > 0 and
from iteration n downwards otherwise. Since the two cases
are very similar, we will describe the first one only.

To simplify the notation, let us introduce

Ei = lzek.
k=1

We will compute ¢; in order: e, e, ..., e,. For a given
processor i, we choose the maximum e;, such that

E, E,
Yo=Y, i+ Biv)

k=E;_+1 k=E;_+1

does not exceed (; — «;); that is, the time taken to execute
the extra iterations, k, on processor i, is less than or equal to
the initialization imbalance for that processor.

The next step transforms the parallel loop from E, to n
into a homogeneous loop. In effect every processor has two
sets of iterations to execute:

e iterations Ei 1 +1,...,E of the original loop, and
o iterations |Y i\ zil + 1,..., > k_, z] from the
transformed loop.

As in the previous section, the schedule found here is sub-
optimal, although very close to the perfect balance. The
difference for any processor between this schedule and the
perfect balance again does not exceed two iterations.

THE COMPUTER JOURNAL,

Vol. 40, No.6, 1997

366 M. CIERNIAK et al.

9. SCHEDULING FOR CONTENTION AVOIDANCE

Sections 5, 6 and 8 considered a machine model which
allowed messages sent from different machines to travel in
the network at the same time—in parallel. On many existing
parallel machines, for instance on a network of workstations
using Ethernet as the interconnect, the performance will
suffer if many messages are being sent at the same time.
On such parallel multicomputers, it is desirable to schedule
a parallel program in such a way that only one processor
(workstation) sends a message at a given time.

We assume that the machines effectively sequentialize all
messages; that is, at any given time only one message can be
in transit in the physical medium, which is not accessible to
the other processors until the send operation is completed.
This model should be a good approximation of many bus-
based multicomputers.

Programs running on machines that sequentialize com-
munication need a different set of optimizations. In this
section we will describe a method to minimize execution
time of a homogeneous parallel loop on a homogeneous
multicomputer.

9.1. The model

We will extend the machine model discussed in the previous
sections. The following parameters describe every processor
in the parallel machines considered in this section:

y, the time to execute one operation;
o', B, communication parameters for the part of the
send operation performed locally (this is the part of
communication that is not sequentialized);

e (", B”, communication parameters for the part of the
send operation that requires access to a shared physical
medium and which is sequentialized.

As before a homogeneous parallel loop is described by the
following two parameters: x, the number of operations to be
performed in one iteration and y, the length of the message
caused by a single iteration, but as in the earlier sections
messages from all iterations assigned to a given processor
are combined and sent as one larger message.

There are p processors. Processor i works on z; iterations.
If we assume that the message can be sent immediately
with no contention (without waiting for other processors to
free the shared communication medium), the total time to
execute z; iterations and broadcast a message resulting from
this iteration is

T =zixy + o + iy + " +ziyp" =t/ +1

where t/=z;xy + o« + z;yB’ is the work that can
be performed locally without interference with other
processors, and t/ = «o” + z;yp” is the part of
communication that has to be sequentialized.

In reality, every processor first performs local operations
for time #/, and then waits until the shared medium becomes
free and sends its data in time #;". During this period /', other
processors cannot send anything.

Without loss of generality, assume that processor i
broadcasts its message before processor i + 1. This is
justified, because all processors are identical and their
ordering is arbitrary. With this assumption, we can give
the real time that the processor i spends on computation and
communication:

T, = max(i/, Tr—y) + 1]

where Ty = 0. This formula expresses the simple fact that a
processor cannot begin accessing the shared medium before
its computation has completed (z)), or before its predecessor
has released the communication channel (7;_1).

9.2. Optimal schedule

A simple-minded strategy would assign the same number of
iterations to every processor—all processors have the same
speed and all iterations have the same cost. This strategy
would cause each processor, except the first one, to wait
for the communication channel. Moreover, every processor
would wait longer than its predecessor. If we define the total
execution time to be the time when the last send completes,
the execution time achieved by this strategy is not optimal.
This fact is illustrated in Figure 5b.

We show a static scheduling strategy that is optimal in that
it results in the shortest possible execution time on a given
number of processors (that is, all available processors are
used).

THEOREM 9.1. The shortest execution time is achieved
whent! =T,_y, fori =2,...,p.

Proof (sketch). The total time spent on the sequentialized
part of communication is the same for every schedule and
isequalto Y r_, t/ = pa” + nyp’.

Consider a schedule such that ti’ =T, fori =2,...,p.
Let us call it a contention-free schedule. We will show that
any change in this schedule will increase the execution time.

Consider a new schedule, in which processor i broadcasts
its message before processor i + 1 (this can be assumed
without loss of generality, because all processors are
identical). Let i be the first processor whose local time
t/ differs from the local time under the contention-free
schedule.

Note that the local time #; and the communication time
t/' are related and any change in the number of iterations
assigned to i will change both times for processor i. There
are two cases:

1. The local time under the new schedule is longer than
the local time under the contention-free schedule.

The sum of the remaining communication times
(including processor i), > ¢_.t/, is the same as in
the contention-free schedule. In the contention-free
schedule this was also the time left to the completion
of the execution. In the new schedule, because tl.’
has increased, we have to start communication for
processor i later than in the contention-free schedule.

The total time to complete is at least the same as that

THE COMPUTER JOURNAL,

Vol. 40, No.6, 1997

COMPILE-TIME SCHEDULING ALGORITHMS 367

(@)

processors

legend:

l Computation time and local communication time

| Sequentialized communication time

1 Idle time

Execution time

for the doall loop

(b)

processors

FIGURE 5. Contention-free schedule versus simple schedule. (a) Contention-free schedule; (b) simple schedule.

for the contention-free schedule so the execution time
will be longer.

2. The new local time is shorter.

We are left with some extra work that processor i did
in the contention-free schedule. If all processors j,
such that j > i, have the same amount of work as
they used to have under the contention-free schedule,
this extra work will be left over. Hence, one of the
remaining processors has to perform this additional
work increasing the execution time.

O

We will show below an algorithm that will find a
contention-free schedule if it exists. We can use Theorem 9.1
to simplify the formula for the completion time of the ith
processor, T; = t/ + t//. We can use this formula to find the
optimal schedule. A schedule is defined by the set of z;, for

i =1,..., p. By Theorem 9.1 we have t; = T;_;, but we
know that T;_; = t/_, 4+t |, so this equality can be rewritten
ast; =t/_, + 1 . If we expand this formula, we get

zxy +o + iy =zicixy +a' +ziyB + o +zim1yp”
or
wz; = vzi— + o

where w = xy + yB and v = xy + yB’ + yB”. We have
p — 1 of these equations fori = 2,..., p. These p — 1
equations together with the ‘exhaustiveness’ equation,

constitute a system of p linear equations with p unknowns

vz —wz = —a

THE COMPUTER JOURNAL,

Vol. 40, No.6, 1997

368 M. CIERNIAK et al.

V7 — w3 = —«
ey
vzpo1 —wz, = —ad
1+ t+...+zp, = n

The solution to this system of equations defines the optimal
schedule.

9.3. Validity of the solution

We will now show that the above system of equations (1) has
a unique solution. The coefficient matrix of this system of
equations is

v —w 0 0

0 v —w 0
M), = :

0O O 0o ... —w

1 1 1 1

where M, is a p x p matrix. Its determinant is equal to
-1
detM, =vdetM,_; + w”

where M,_; is a (p — 1) x (p — 1) matrix of the same
structure as M,. The matrix M,_; can be obtained from
M, by deleting the first row and the first column. Because
v, w,det M; > 0, by the recursive nature of this equation,
detM, > O for p = 1,2,.... Therefore, this system of
equations has a unique solution.

Note that we have not shown that the solution is always
valid—a solution may contain negative z;. This corresponds
to a set of parameters with a very high relative startup
communication cost. However, if a contention-free schedule
exists, the solution to the above system of equations will
describe this optimal schedule.

In practice the solution is always positive. Let us consider
an example with two processors:

V71 — W7 = —U

21+ 22 = n.

We have
(v+w)zy =wn —a’

hence z; is negative if and only if «” > wn = (xy + yB')n.
This condition would be true if the startup time for a send,
«”, was longer than all the computation in the loop, (xyn).
Clearly, we do not want to parallelize a loop like that in the
first place.

It is also worth noting that, for a given solution, if z; > 0,
then z; > O for j > i. This is true, because wz; =
vzi—1 + o, that is, if z;_; is positive, then z; is positive too.

10. EXPERIMENTAL EVALUATION

To verify the proposed scheduling techniques, we conducted
experiments and measured the execution time and the
speedup of several applications. Where appropriate, we also

compare our approach with straightforward scheduling. The
results of our experiments are encouraging. Our techniques
show significant performance improvements over traditional
approaches.

The rest of this section is organized similarly to the
whole paper. First we compare our approach to scheduling
heterogeneous loops on homogeneous processors with
the popular round-robin load-balancing technique. We
did not run experiments for homogeneous loops on
homogeneous processors, as scheduling those is easy and
well understood. Then we give results for scheduling both
homogeneous and heterogeneous loops on heterogeneous
processors. The last part of this section gives results for
our approach to contention avoidance. The experiments
for calculating the NPS, and for scheduling in the presence
of memory heterogeneity were presented in Section 4 and
Subsection 7.2 respectively.

All our experiments were performed on a network of
Sun workstations (SPARC 1, LX, 5 and 10), interconnected
via an Ethernet LAN. PVM (parallel virtual machine)
[28], a message passing software system mainly intended
for network-based distributed computing, was used to
parallelize the applications. The latency obtained with PVM
is ~2414.5 ps and bandwidth is ~0.96 Mb s~!. We assume
that there is no external load on the processors or network,
i.e. the NOW is used in a dedicated user mode.

10.1. Applications

The applications used for our experiments are:

Matrix multiply (MXM). Multiplication of two square
matrices.

2D-FFT. Two-dimensional fast Fourier transformation.

Cholesky factorization (CHO). Find a lower triangular
matrix L with positive diagonal elements such that
A = LLT, where A is a dense symmetric positive-
definite matrix.

Spatial price equilibrium modelling (ECO). A commod-
ity trade model [8]: for a set of supply and demand
markets with given tariffs, transportation costs, supply
and demand price functions, this program finds the
amount of goods shipped between different markets.

TRIANG. This is a synthetic program [13], which has a
loop nest with varying computation in each iteration of
the outermost loop.

Livermore Fortran kernel (LFK). Modified loop 10 from
Livermore Fortran kernels [13].

10.2. Scheduling for heterogeneous programs

Triang [15] is a program with a heterogeneous loop used
in the experiments presented in this section. Figure 6 shows
the speedups for two different parallelizations of Triang.
The label bitonic marks the results for the parallelization
from Section 5. We compare our approach with the round-
robin scheduling. The round-robin technique schedules a
doall loop on p processors by assigning iterations 0,0 +

THE COMPUTER JOURNAL,

Vol. 40, No.6, 1997

COMPILE-TIME SCHEDULING ALGORITHMS 369

Speedups
5-5 T T T T T T
bitoni
51 round-robin —— |
45 r]
4 L
s
32 3857 .
(0]
g 3t]
2]
25 r]
2 L 4
1.5]
1 L L L L L L
1 2 3 4 5 6 7 8
processors
FIGURE 6. Speedups—Triang.
TABLE 6. Normalized speeds for matrix multiply
Machine type Speed
SPARCstation 1 (T7) 1.00
SPARCstation LX (7;) 1.85
SPARCstation 10 (73) 3.00
p,0 + 2p,... to processor O, iterations 1,1 + p,1 +
2p, ... to processor 1 and so on. This approach is very
popular in practice. It is very simple and yields acceptable
performance.

In this experiment, we assume that the arrays are not
distributed before and after the loop nest. Therefore, our
timings include the time required to send out necessary
data to all processors and to gather results from all
participating processors. Because communication in a
network of workstations is very expensive, the speedups are
not close to the optimum. Figure 6 demonstrates that the
bitonic schedule consistently outperforms the round-robin
technique.

10.3. Scheduling for heterogeneous processors

We have chosen three applications to measure performance
of scheduling in a heterogeneous environment. Matrix
multiply and economics are examples of a homogeneous
loop. Triang is an example of a heterogeneous loop.

10.3.1. Homogeneous loops: no communication

To find a static schedule on a network of heterogeneous
computers, we use the normalized processor speeds, which
are shown in Table 6, for the MXM program.

We can use normalized speeds to compute a ‘speedup’
for a heterogeneous machine configuration. We can define
this generalized speedup to be a ratio of the uniprocessor
execution time on the base processor to the execution time of
the parallel program. We can also define the ‘ideal” speedup
for a particular configuration to be the sum of normalized

Speedups - MxM 600x600

T T T T

20 . .

18 ideal —— 1
architecture conscious —+—
16 [architecture oblivious —=—

speedup
o

! ! ! ! ! !

0O 2 4 6 8 10 12 14 16 18 20
processors

FIGURE 7. Speedups — matrix multiply.

TABLE 7. Speedups —matrix multiply.

Arch- Arch-
Configuration Ideal conscious oblivious
1Ty, 1T, 2.85 2.84 2.00
1Ty, 1T 4.00 3.74 2.05
2T, 1T, 1T; 6.85 6.68 4.03
1Ty, 31>, 2T; 12.55 10.26 6.12
1Ty, 8T, 1T; 18.8 18.75 10.06
10Ty, 315, 175 18.55 17.22 13.92
2Ty, 12T, 1T 26.2 23.09 15.40
15Ty, 1T 18.00 15.88 13.73

speeds of all processors in a given configuration.

The results for matrix multiply are given in Figure 7 and
Table 7. The program multiplies two square matrices of
size 600 x 600. The configuration column describes how
many machines of a given type were used in the experiment.
Type 1 (T)) is SPARCstation 1, type 2 (7,) is SPARCstation
LX and type 3 (73) is SPARCstation 10. The architecture-
oblivious schedule assigns the same number of iterations
to every processor. The architecture-conscious schedule
assigns a number proportional to the processor speed.

As expected, the results show that the architecture-
conscious schedule is always better than the architecture-
oblivious one. For some configurations the difference is
not significant, for others it is very large. Intuitively, the
slowest machine’s execution time will dominate the time
for the whole program. So, the configuration with many
fast machines and few slow ones will suffer most from
architecture-oblivious scheduling. If, on the other hand, a
configuration contains mostly slow machines, architecture-
conscious scheduling will not improve the execution time
significantly.

There is one more interpretation for the sum of normalized
speeds. It says how many base processors would be
equivalent in speed to a particular configuration. Note

THE COMPUTER JOURNAL,

Vol. 40, No.6, 1997

370 M. CIERNIAK et al.

Speedups - economics
6 ‘ ‘ ;

5.5 + architecture conscious ——— 1
architecture oblivious —=—
5r ideal —— 1

speedup

1.5 : : :
3 3.5 4 45 5 55 6
processors

FIGURE 8. Speedups—economics.

that this number can be fractional, so for example the
first configuration in Table 7 is equivalent to 2.85 base
processors. We can use this observation to plot the speedup
as a function of the number of processors. This approach
gives a concise visualization of the parallel performance, but
we should not overestimate its accuracy. In particular, there
may be many different configurations with the same base
processor equivalent, but their speedups may be different.

10.3.2. Homogeneous loops: with communication

The second example of the homogeneous loop case is
a program for spatial price equilibrium modelling in
economics, the ECO [8] application. This program has
a set of parallel loops. However, parallelization of the
program on a network of workstations is a non-trivial
task, since communication is required across the loops and
data has to be broadcast between the loops. Figure 8
shows the speedups obtained on a variety of heterogeneous
configurations of machines. The architecture-conscious
schedules consistently outperform the architecture-oblivious
schedules. In spite of the large amount of communication in
the program and the high cost of network communication, a
satisfactory parallel performance was achieved.

10.3.3. Heterogeneous parallel loops

For the heterogeneous loop case, we parallelized the
Triang program. We can verify the performance of
the parallelized code by plotting the normalized speedups
and speedups for homogeneous configurations that consist
of base processors. We can see that for bitonic
scheduling (Figure 9) the performance of the heterogeneous
parallelization is close to the homogeneous case.

The comparison with the homogeneous case is an interest-
ing metric. Since in most cases, the architecture-conscious
heterogeneous scheduling would be much better than the
naive architecture-oblivious scheduling, the architecture-
conscious homogeneous case provides an upper bound of
how well a heterogeneous solution can perform.

Execution times - bitonic
350 ‘ ‘ ‘ ;

homogenous machine ——
heterogenous machine —+— |

300 |

250

200

time [s]

150

100

5 o 1 1 1 1 1 1

processors

FIGURE 9. Execution times— Triang, bitonic scheduling.

Reducing contention effects
120

simple
M simp

D contention-free

)
=3

80

60

40

normalized execution time

20

4 6 7 8

number of processors

FIGURE 10. Execution times—LFK10.

10.4. Scheduling for contention avoidance

We show experimental results for contention avoidance
scheduling on the LFK program. The outermost loop is a
doall loop and it is being parallelized. We assume, however,
that for the next stage of computation the array PX must
be broadcast to all processors. This causes a high level
of contention in our Ethernet network. We can use the
algorithm developed in Section 9 to maximize the speedup
by minimizing contention.

Figure 10 shows the performance of two parallelizations
of the modified LFK 10 nest. We can see that for a small
number of processors contention is not a very big problem.
But as the number of processors increases, performance of
the simple parallelization deteriorates very quickly. The
architecture-conscious schedule results in a significantly
faster program.

For this example the speedups achieved by the
architecture-conscious schedule are not very good, which is

THE COMPUTER JOURNAL,

Vol. 40, No.6, 1997

COMPILE-TIME SCHEDULING ALGORITHMS 371

generally true about programs with excessive communica-
tion. We may expect that if a program exhibits contention,
the technique presented in Section 9 will improve its
performance, but the speedup will always be significantly
worse than the optimum. The reasons for using this
technique, even though it is inherently suboptimal, are:

e We get a better performance than the sequential
program. If we need high performance at any cost, we
may choose to parallelize such a code even if we know
that the machine will be underutilized.

e Most real applications have many phases in the
program. If most of the phases can be parallelized, then
it is better for data to remain distributed. Therefore,
parallelization of code fragments that do not display
great parallelism/speedups is still necessary to maintain
data locality and reduce communication in the later
phases, since data would have to be on a single node
if the code fragment were sequentialized.

11. CONCLUSIONS

In this paper, we looked at the general issues in
heterogeneous computing, and we studied the problem
of scheduling parallel loops at compile time for a
heterogeneous network of machines.

We proposed a simple yet comprehensive model for a
network of processors. To model heterogeneous processors,
we introduced the parameter, normalized processor speed,
which is highly application dependent. To solve large
problem instances, we need an estimate of the memory
requirement of an application. We proposed a new estimate
of this requirement, the resident memory size. Finally,
we developed compiler algorithms for generating optimal
and near-optimal schedules of loops for load balancing,
communication optimizations and network contention, in
the presence of program, processor, memory and network
heterogeneity. Our experiments showed that the new
techniques can significantly improve the performance of
parallel loops over existing techniques.

ACKNOWLEDGEMENTS

This work was supported in part by an NSF Research
Initiation Award and ARPA contract F19628-94-C-0057.

REFERENCES

[1] Bokhari, S. H. (1987) Assignment Problems in Parallel
and Distributed Computing. Kluwer Academic Publishers,
Dordrecht.

[2] Freund, R. F. (1989) Optimal selection theory for
superconcurrency. In Supercomputing ’89, November.

[3] Parashar, M., Hariri, S., Mohamed, A. G. and Fox, G. C.
(1992) A requirement analysis for high performance
distributed computing over LANs. In Ist IEEE Int. Symp.
on High Performance Distributed Computing, September,
pp- 142-151.

[4] Zaki, M. J., Li, W. and Parthasarathy, S. (1996) Customized
dynamic load balancing in a heterogeneous network of

workstations. In 5th IEEE Int. Symp. on High Performance
Distributed Computing, August (also CSTR-602, Computer
Science Department, University of Rochester).

[5] Polychronopoulos, C. D. and Kuck, D. J. (1987) Guided
self-scheduling: a practical scheduling scheme for parallel
supercomputers. IEEE Trans. Comp., C-36, 1425-1439.

[6] Markatos, E. P. and LeBlanc, T. J. (1994) Using
processor affinity in loop scheduling on shared-memory
multiprocessors. [EEE Trans. Parallel Distrib. Syst., PDS-5.

[7] Grimshaw, A. S., Weissman, J. B., West, E. A. and Loyot,
E. C. (1994) Metasystems: an approach combining parallel
processing and heterogeneous distributed computing systems.
J. Parallel Distrib. Comp., 21, 257-270.

[8] Nagurney, A., Nicholson, C. F. and Bishop, P. M. (1995)
Spatial price equilibrium models with discriminatory ad
valorem tariffs: formulation and comparative computation
using variational inequalities. In van den Bergh, J. C. J. M.,
Nijkamp, P. and Rietveld, P. (eds), Recent Advances in Spatial
Equilibrium Modeling: Methodology and Applications.
Springer-Verlag, Heidelberg.

[9] Li, W. and Pingali, K. (1993) Access normalization: loop
restructuring for NUMA compilers. ACM Trans. Comp. Syst.,
11, 353-375.

[10] Polychronopoulos, C. D. (1988) Parallel Programming and
Compilers. Kluwer Academic Publishers, Dordrecht.

[11] Cheung, A. L. and Reeves, A. P. (1992) High performance
computing on a cluster of workstations. In Ist IEEE
Int. Symp. on High Performance Distributed Computing,
September, pp. 52-160.

[12] Crandall, P. E. and Quinn, M. J. (1994) A decomposition
advisory system for heterogeneous data-parallel processing.
In 3rd IEEE Int. Symp. on High Performance Distributed
Computing, August.

[13] Cierniak, M., Li, W. and Zaki, M. J. (1995) Loop
scheduling for heterogeneity. In 4th I[EEFE Int. Symp. on High
Performance Distributed Computing, August.

[14] Zaki, M. J., Li, W. and Cierniak, M. (1995) Performance
impact of processor and memory heterogeneity in a network
of machines. In 4th Heterogeneous Computing Workshop,
April.

[15] Cierniak, M., Li, W. and Zaki, M. J. (1994) Loop Scheduling
for Heterogeneity. Technical Report 540, Computer Science
Department, University of Rochester.

[16] Nedeljkovic, N. and Quinn, M. J. (1992) Data-parallel
programming on a network of heterogeneous workstations.
In Ist IEEE Int. Symp. on High Performance Distributed
Computing, September.

[17] Arabe, J. N. C., Beguelin, A., Lowekamp, B., Seligman, E.,
Starkey, M. and Stephan, P. (1995) Dome: parallel
programming in a heterogeneous multi-user environment.
CMU-CS-95-137 30786, Carnegie Mellon University, School
of Computer Science.

[18] Siegell, B. S. (1995) Automatic generation of parallel
programs with dynamic load balancing for a network of
workstations. CMU-CS-95-168 30880, Carnegie Mellon
University, School of Computer Science.

[19] Blumofe, R. D. and Park, D. S. (1994) Scheduling large-
scale parallel computations on network of workstations.
In 3rd IEEE Int. Symp. on High-Performance Distributed
Computing, April.

[20] Saletore, V. A., Jacob, J. and Padala, M. (1994) Parallel
computations on the charm heterogeneous workstation

THE COMPUTER JOURNAL,

Vol. 40, No.6, 1997

372 M. CIERNIAK et al.

cluster. In 3rd IEEE Int. Symp. on High-Performance
Distributed Computing, April.

[21] Zaki, M. J., Li, W. and Parthasarathy, S. (1997) Customized
dynamic load balancing in a heterogeneous network of
workstations. J. Parallel Distrib. Comp., 43, 152-162.

[22] Tang, P. and Yew, P.-C. (1986) Processor self-scheduling
for multiple nested parallel loops. In Int. Conf. On Parallel
Processing, August.

[23] Kruskal, C. and Weiss, A. (1985) Allocating independent
subtasks on parallel processors. [EEE Trans. Software Eng.,
SE-11, 1001-16.

[24] Lin, F. C. H. and Keller, R. M. (1987) The gradient model
load balancing method. [EEE Trans. Software Eng., SE-13,
32-38.

[25] Kipp, L. (1993) Perfect Benchmarks Documentation, Suite
1 Center for Supercomputing Research and Development,
University of Illinois at Urbana-Champaign.

[26] Ko-Yang Wang (1994) Precise compile-time performance
prediction for superscalar-based computers. In Proc. PLDI,
June.

[27] Cierniak, M. and Li, W. (1995) Unifying data and control
transformations for distributed shared-memory machines. In
Proc. PLDI ’95, June.

[28] Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R.
and Sunderam, V. (1993) PVM 3 User’s Guide and Reference
Manual. Technical Report ORNL/TM-12187, Oak Ridge
National Laboratory, Oak Ridge, TN.

THE COMPUTER JOURNAL,

Vol. 40, No.6, 1997

