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Structural similarity between proteins gives us insights on the evolutionary relationship between proteins which have
low sequence similarity. In this paper, we present a novel approach called STSA for non-sequential pair-wise structural
alignment. Starting from an initial alignment, our approach iterates over a two-step process, a superposition step
and an alignment step, until convergence. Given two superposed structures, we propose a novel greedy algorithm
to construct both sequential and non-sequential alignments. The quality of STSA alignments is evident in the high
agreement it has with the reference alignments in the challenging-to-align RPIC set. Moreover, on a dataset of
4410 protein pairs selected from the CATH database, STSA has a high sensitivity and high specificity values and
is competitive with state-of-the-art alignment methods and gives longer alignments with lower rmsd. The STSA

software along with the data sets will be made available on line at http://www.cs.rpi.edu/∼zaki/software/STSA.
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1. INTRODUCTION

Over the past years, the number of known protein
structures has been increasing at a relatively fast
pace, thanks to advancement in MR spectroscopy
and X-ray crystallography. Recently (as of Oct 2007)
the number of protein structures in the Protein Data
Bank(PDB) [1] has reached 46377. Despite having
the structural information about so many proteins,
the function of a lot of these proteins is still unknown.
Structural similarity highlights the functional rela-
tionship between proteins. Moreover, structural sim-
ilarity between proteins allows us to study evolution-
ary relationship between remotely homologous pro-
teins (with sequence similarity in the twilight-zone),
thus allowing us to look farther in evolutionary time
[2]. The goal of protein structural alignment is to
find maximal substructures of proteins A and B,
such that the similarity score is maximized. The two
most commonly used similarity measures are: The
coordinate distance-based root mean squared devi-
ation (rmsd), which measures the spatial euclidean
distance between aligned residues; and the distance
matrix based measure that computes the similarity
based on intra-molecular distances representing pro-
tein structures.

The complexity of protein structural alignment
depends on how the similarity is assessed. Kolodny
and Linial [3] showed that the problem is NP-
hard if the similarity score is distance matrix based.
Moreover, they presented an approximate polyno-

mial time solution by discrediting the the rigid-body
transformation space. In a more recent work, Xu
et al. [4] proposed an approximate polynomial time
solution, when the contact map based similarity
score is used, using similar democratization tech-
niques. Despite the polynomial time approximate al-
gorithms and as the authors themselves noted, these
methods are still too slow to be used in search tools.

There is no current algorithm that guarantees
an optimal answer for the pair-wise structural align-
ment problem. Over the years, a number of heuristic
approaches have been proposed, which can mainly be
classified into two main categories.

1.1. Dynamic Programming Approach

Dynamic Programming (DP) is a general paradigm
to solve problems that exhibit the optimal substruc-
ture property [5]. DP-based methods [6, 7, 8, 9, 10]
construct a scoring matrix S, where each entry
SOJ corresponds to the score of matching the i-Th
residue in protein A and the j-Th residue in pro-
tein B. Given a scoring scheme between residues
in the two proteins, dynamic programming finds the
global alignment that maximizes the score. Once
the best equivalence is found, a superposition step
is performed to find the transformation that mini-
mizes the rmsd between the corresponding residues.
In STRUCTAL [7], the structures are first superim-
posed onto each other using initial seeds (random or
sequence-based). The similarity score SOJ of match-
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ing the residues is a function of the spatial displace-
ment between the residue pairs in the superimposed
structures. DP is applied on the scoring matrix to get
an alignment. The alignment obtained is an initial
seed and the process of superposition and alignment
is repeated till convergence.

Other methods employed local geometrical fea-
tures to calculate the similarity score. CTSS [11]
used a smooth spline with minimum curvature to de-
fine a feature vector of the protein backbone which is
used to calculate the similarity score. Tyagi et al. [10]
proposed a DP-based method where the similarity is
the substitution value obtained from a substitution
matrix for a set of 16 structural symbols. DP-based
methods suffer from two main limitations: first, the
alignment is sequential and thus non-topological sim-
ilarity cannot be detected, and second, it is difficult
to design a scoring function that is globally optimal
[3].

1.2. Clustering Approach

Clustering-based methods [12, 13, 14, 15, 16, 17] seek
to assemble the alignment out of smaller compati-
ble (similar) element pairs such that the score of the
alignment is as high as possible [18]. Two compatible
element pairs are consistent (can be assembled to-
gether) if the substructures obtained by elements of
the pairs are similar. The clustering problem is NP-
hard [19], thus several heuristics have been proposed.
The approaches differ in how the set of compatible
element pairs is constructed and how the consistency
is measured.

In [20], initial compatible triplets are found us-
ing geometric hashing. Two compatible triplets
are consistent if they have similar transformations,
where the transformation is defined such that it can
transform one triplet onto the other with minimum
distance. DALI [12] finds gapless fragment com-
patible pairs, which are similar hexapeptide frag-
ments. It then uses a Monte Carlo procedure to com-
bine consistent fragments into a larger set of pairs.
The optimization starts from different seeds and the
best alignment is reported. Compatible elements in
SARF2 [13] are similar secondary structure elements
(SSEs) which are obtained by sliding a typical α-
helix or β-strand over the Cα trace of the protein.
The set of the compatible pairs of the SSEs are fil-
tered based on some distance and angle constraints;
the final alignment is obtained by finding the largest

set of mutually consistent fragment pairs. In an ef-
fort to reduce the search space in clustering methods,
CE [14] starts with an initial fragment pair and the
alignment is extended by the best fragment that sat-
isfies a similarity criteria. In FATCAT [17], DP is
used to chain the fragment pairs.

1.3. Our Contributions

We present STSAa, an efficient non-sequential pair-
wise structural alignment algorithm. STSA is an it-
erative algorithm similar in spirit to the iterative Dy-
namic Programming(DP)-based methods, yet it em-
ploys a different technique in constructing the align-
ment. Specifically, we propose a greedy chaining ap-
proach to construct the alignment for a pair of super-
posed structures. One limitation of DP-based meth-
ods is that they only generate sequential alignments.
Another limitation is the fact that we do not yet
know how to design a scoring function that is globally
optimal [3]. Our approach addresses these challenges
by looking directly at the superposed structures and
assembles the alignment from small closely super-
posed fragments. Unlike DP, this greedy approach
allows for non-topological (non-sequential) similarity
to be extracted.

We employ PSIST [21] to generate a list of simi-
lar substructures which serve as the initial alignment
seeds. Our approach is decoupled such that we can
use initial alignment seeds from other methods. In
fact, we use SCALI seeds [16] for the RIPC results.

To assess the quality of the STSA alignment,
we tested it on the recently published hard-to-align
RIPC set [22]. STSA alignments have higher agree-
ment (accuracy) with the reference alignment than
state-of-the-art methods: CE, DALI, FATCAT, MA-
TRAS, CA, SHEBA, and SARF. Moreover, we com-
piled a dataset of 4410 protein pairs from the CATH
classification [23]. We measured the overall sensi-
tivity and specificity of STSA to determine if two
proteins have the same classification. Results from
the CATH dataset indicate that STSA achieves high
sensitivities at high specificity levels and is compet-
itive to well established structure comparison meth-
ods like DALI, STRUCTAL, and FAST, as judged
by the geometric match measure SASk [6].

aan acronym of STructural pair-wiSe Alignment
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2. STSA ALIGNMENT

Our approach is based on finding an alignment based
on initial seeds. We first discuss how to get the ini-
tial seeds and then explain our greedy chaining algo-
rithm.

2.1. Alignment Seeding

The initial alignment seeds are similar substructures
between protein A and protein B. An initial seed is
an equivalence between a set of pairs. We obtain the
seeds from our previous work PSIST [21]. PSIST
converts each protein structure into a Structure-
Feature (SF) sequence and then uses suffix tree in-
dexing to find the set of maximal matching segments
(initial seeds)

Another source of seeds we use is the SCALI
seeds [16]. The SCALI seeds are gapless local
sequence-structure alignments obtained using HMM-
STR [24], which is an HMM built on top of a library
of local motifs.

An initial seed s = FA
i FB

j (l) indicates that the
fragment of protein A that starts at residue i matches
the fragment from protein B that starts at residue j
and both the fragments has equal length of l.

2.2. Iterative Superposition-Alignment

Approach

Each alignment seed (FA
i FB

j (l)) is treated as
an initial equivalence, E0, between a set of
residues from protein A and a set of residues
from protein B. The correspondence between the
residues in the equivalence is linear, i.e. E =
{(ai, bj), · · · , (ai+l−1, bj+l−1)}. Given an equivalence
E, we construct an alignment of the two structures
as follows.

2.2.1. Finding Optimal Transformation

We first find a transformation matrix Topt that op-
timally superposes the set of pairs of residues in the
equivalence E such that the rmsd between the su-
perposed substructures of A and B is minimized:

Topt = argmin(T ) RMSDT (E) ,

where RMSDT (E) = 1
|E|

∑
(i,j)∈E d(T [ai], bj). We

find the optimal transformation Topt using the Sin-
gular Value Decomposition [25, 26].

2.2.2. Constructing Scoring Matrix

We next apply the optimal transformation Topt ob-
tained in the previous step to protein A to ob-
tain A∗. We then construct a n × m binary scor-
ing matrix S, where n and m denote the number
of residues in proteins A and B, respectively and
Sij = score(dist(a∗

i , bj)); the score is 1 if the dis-
tance between corresponding elements, a∗

i and bj is
less than a threshold δ, and 0 otherwise.

2.2.3. Finding an Alignment

An alignment is a set of pair of residues {(ai, bj)},
ai in A, and bj in B. Based on the scoring matrix
S we find the maximum correspondence by finding
the maximum cardinality matching in the bipartite
graph G(U, V,E) where U is the set of residues in
protein A, V is the set of residues in proteins B, and
there is an edge (ai, bj) ∈ E if Sij = 1. However, the
problem with the maximum matching approach is
that it may yield several short, disjoint and even ar-
bitrary matchings that may not be biologically very
meaningful. Our goal is to find an alignment com-
posed of a set of segments such that each segment
has at least r residue pairs.

A run Ri is a set of consecutive diagonal 1’s in
the scoring matrix S which constitutes an equiva-
lence, between a substructure in A and another in
B, that can be aligned with a small rmsd. Specifi-
cally, a run R is a triplet (ai, bj , l), where ai is the
starting residue for the run in A (similarly bj for
B), and the the length of the run is l. The corre-
spondence between residues in the run is as follows:
{(ai, bj), · · · , (ai+l−1, bj+l−1)}.

The matrix S has a set of runs R =
{R1, R2, · · · , Rk} such that |Ri| ≥ r, where r is the
minimum threshold length for a run. We are inter-
ested in finding a subset of runs C ⊆ R such that
all the runs in C are mutually non-overlapping and
the length of the runs in C, L(C) =

∑
i∈C |Ri| is as

large as possible. The problem of finding the sub-
set of runs with the largest length is essentially the
same as finding the maximum weighted clique in a
graph G = (V,E) where V is the set of runs, with the
weight for vertex i given as wi = |Ri|, and there is
an edge (i, j) ∈ E if the runs Ri and Rj do not over-
lap. The problem of finding the maximum weighted
clique is NP-hard [19], therefore we use greedy algo-
rithms to find an approximate solution. Note that
it is also possible to use a dynamic programming
approach to align the proteins based on the scoring
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matrix S, however, this would yield only a sequential
alignment. Since we are interested in non-sequential
alignments, we adopt the greedy weighted clique fin-
ing approach.

The simplest greedy algorithm chooses the
longest run Ri ∈ R to be included in C, and then
removes from R all the runs Rj that overlap with
Ri. It then chooses the longest remaining run in R,
and iterates this process until R is empty. We also
implemented an enhanced greedy algorithm that dif-
fers in how it chooses the run to include in C. It
chooses the run Ri ∈ R that has the highest weight
w where w(Ri) is the length of Ri plus the lengths
of all the remaining non-overlapping runs. In other
words, this approach not only favors the longest run,
but also favors those runs that do not preclude many
other (long) runs.

Through our experiments, we found that the
simple greedy algorithm gives similar alignments in
terms of the length and rmsd as the enhanced one.
Moreover, it is faster since we do not have to cal-
culate the weights every time we choose a run to
include to C. Therefore, we adopt the first heuristic
as our basic approach. Note that it is also possible to
use other recently proposed segment chaining algo-
rithms [27]. The subset of runs in C makes up a new
equivalence E1 between residues in proteins A and
B. The length of the alignment is the length of the
equivalence |E1| =

∑
i∈C |Ri| and the rmsd of the

alignment is the rmsd of the optimal superposition
of the residue pairs in E1.

2.2.4. Refining the Alignment

To further improve the structural alignment we
treat the newly found equivalence E1 as an ini-
tial alignment and repeat the previous steps all
over again. The algorithm alternates between the
superposition step and the alignment step until
convergence (score does not improve) or until a
maximum number of iterations has been reached.
Figure 1 shows the pseudo-code for our iterative
superposition-alignment structural alignment algo-
rithm. The method accepts the set of maximal
matching segments M = {FA

i FB
j (l)} as initial seeds.

It also uses three threshold values: δ for creating the
scoring matrix, r for the minimum run length in S,
and L for the maximum rmsd allowed for an equiv-
alence. For every initial seed we find the optimal
transformation (lines 4-5), create a scoring matrix
(line 6), and derive a new alignment E1 via chain-
ing (line 7). If the rmsd of the alignment is above

the threshold L we move on to the next seed, or else
we repeat the steps (lines 3-10) until the score no
longer improves or we exceed the maximum num-
ber of iterations. The best alignment found for each
seed is stored in the set of potential alignments E
(line 11). Once all seeds are processed, we output
the best alignment found (line 13). We use the SASk

[6] geometric match measure (explained in the next
section) to score the alignments. We noticed that
typically three iterations were enough for the con-
vergence of the algorithm.

M = {FA
i FB

j (l)}, set of seed alignments

L, the rmsd threshold

r, the min threshold for the length of a run in S

δ, the max distance threshold for S

Seed-Based Alignment (M,L, r, δ):

1. for every FA
i FB

j (l) ∈M

2. E is the equivalence based on FA
i FB

j (l)

3. repeat

4. Topt = RMSDopt(E)

5. A∗ = ToptA

6. Sij = 1 if d(a∗
i , bj) < δ, 0 otherwise

7. E1= chain-segments(S, r)

8. if RMSDopt(E1) ≥ L go to step 2

9. E ←− E1

10. until score does not improve

11. add E to the set of alignments E

12. end for

13. Output best alignment from E

Fig. 1. The STSA Algorithm

2.3. Scoring the alignments

We assess the significance of STSA alignments by us-
ing the geometric match measure, SASk, introduced
in [6], defined as follows:

SASk = rmsd(100/Nmat)
k

where rmsd is the coordinate root mean square de-
viation, Nmat is the length of the alignment, and k
is the degree to which the score favors longer align-
ments at the expense of rmsd values. In our im-
plementation, we use k = 1, k = 2 and k = 3 to
score the alignments, to study the effect of the scor-
ing function. For each of the three scoring schemes
SAS1, SAS2 and SAS3, a lower score indicates a bet-
ter alignment, since we desire lower rmsd and longer
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alignment lengths. Kolodny et al. [28] recently con-
tended that scoring alignment methods by geometric
measures yields better specificity and sensitivity; we
observe consistent behavior in our results.

2.4. Initial Seeds Pruning

Since the quality of the alignment depends on the
initial alignment (seed), we start with different ini-
tial seeds in an attempt to reach a global optimum
alignment. This, however, results in a slow algorithm
since we could potentially have a large number of ini-
tial seeds. Let the size of protein A be n and of B
be m, respectively and n ≤ m. The number of max-
imal matching segments can be as large as nm/lmin,
where lmin is the length threshold. Most of these
seeds do not constitute good initial seeds as judged
by their final global alignments. In order to circum-
vent this problem, we only select heuristically the
most promising seeds based on two heuristics: first,
the length of the seed; second, the DALI rigid simi-
larity score [12]. In the results section, we study the
effect of these pruning heuristics on the quality of
the alignments and the improvement in the running
time that we gain.

2.5. Computational Complexity

The worst case complexity of finding the maximal
matching segments using PSIST is O(nm), where m
and n denote the lengths of proteins A and B [21].
Assuming m ≤ n, the complexity of constructing the
full set of runs R is O(nm), since we have to visit
every entry of the scoring matrix. Since we use a
threshold of δ = 5Å to set Sij = 1 in the scoring
matrix, each residue, due to distance geometry, in A
can be close to only a few residues in B (after su-
perposition). Therefore, there are O(n) 1’s in the
matrix S. And thus, we have dO(n) diagonal runs,
and sorting these runs takes O(n log n) time. In the
greedy chaining approach, for every run we choose,
we have to eliminate other overlapping runs, which
can be done in O(n) time per check, for a total time
of O(n2). Over all the steps the complexity of our
approach is therefore O(n2).

3. RESULTS

To assess the quality of STSA alignments compared
to other structural alignment methods, we tested our

method on the hard-to-align RIPC set [22]. More-
over, we evaluated the overall sensitivity and speci-
ficity of STSA compared to other alignment meth-
ods over 4410 alignment pairs using the CATH [23]
classification as a gold standard.

The criteria on which we selected the other al-
gorithms to compare with were: the availability
of the program so that we could run it in-house,
and the running time of the algorithm. We com-
pared our approach against DALI [12], STRUC-
TAL [6], SARF2 [13], and FAST [15]. For the RIPC
dataset, we used the published results for CE [14],
FATCAT [17], CA b, MATRAS c, LGA [29], and
SHEBA [30].

All the experiments were run on a 1.66 GHz In-
tel Core Duo machine with 1 GB of main memory
running Ubuntu Linux. The default parameters for
STSA were r = 3, δ = 5.5Å and using top 100 initial
seeds (see Section 3.3 for more details).

3.1. RIPC set

The RIPC set contains 40 structurally related pro-
tein pairs which are problematic to align. Reference
alignments for 23 (out of the 40) structure pairs have
been derived based on sequence and function conser-
vation. We measure the agreement of our alignments
with the reference alignments provided in the RIPC
set. As suggested in [22], we compute the percentage
of the residues aligned identically to the reference
alignment(Is) relative to the reference alignment’s
length (Lref ).

As shown in Figure 2, while all the methods
have mean agreements equal 60 percent or lower, the
mean agreement of STSA alignments is 71%. As for
the median, all the methods except FATCAT (63% )
have median agreements less than 60%, while STSA

alignments have a median agreement of 67% .

Some the alignments in the RIPC set are sequen-
tial. In these cases, most of the sequential align-
ment methods return a high agreement with the ref-
erence alignment. Thus, in few cases the sequential
alignment of STSA gives a higher agreement than
the non-sequential alignment. If we were to take
the STSA alignment that gives a higher agreement
with the reference alignment, then STSA alignments
would have a mean and median agreement of 77%
and 83% , respectively (STSABest in Figure 2).

As Mayr et al. [22] noted, there are seven chal-

bhttp://bioinfo3d.cs.tau.ac.il/c alpha match/
chttp://biunit.naist.jp/matras/
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Fig. 2. Comparison of the alignments of 8 methods with the reference alignments from the RIPC set. Box-and-whisker plots
for the distribution of agreements of the alignments produced by different methods as compared to the true reference alignments.
The dark dot indicates the mean, the horizontal line inside the boxes indicates the median, and the box indicates the range
between the lower and the upper quartiles. Results for all the other methods (except SARF) are taken from [22].

lenging protein pairs which reveal how repetition,
extensive indels, and circular permutation result in
low agreement with the reference alignments. We
found two protein pairs particularly problematic to
align for all the sequential methods and sometimes
the non-sequential ones, except STSA. First, for
alignment of L-2-Haloacid dehalogenase (SCOP id:
d1qq5a , 245 residues) with CheY protein (d3chy ,
128 residues), all the methods (except SARF re-
turned 33%) returned zero agreement with the ref-
erence alignment while STSA returned 100 percent
agreement. The second problematic pair was of the
alignment of NK-lysin (d1nkl , 78 residues) with
(Pro)phytepsin (d1qdma1, 77 residues) which has a
circular permutation. For the second pair, all the
methods (except CA returned 41%, and SARF re-
turned 92% ) returned zero agreement with the ref-
erence alignment while STSA returned 99 percent
agreement. In this pair the N-terminal region of do-
main d1nkl has to be aligned with the C-terminal
region of domain d1qdma1 to produce an alignment
that matches the reference alignment (see Figure 3).
By design, sequential alignment methods cannot pro-
duce such an alignment, and therefore fail to capture
the true alignment. Among the non-sequential meth-
ods, the agreement of STSA alignments with the ref-
erence alignments are higher than the agreement of
either CA and SARF.

As shown in Figure 3, all the last five methods

(DALI, MATRAS, SHEBA, FATCAT, and LGA)
have their alignment paths along the diagonal and do
not agree with with the reference alignment (shown
as circles). The CA method reports a non-sequential
alignment that partially agrees with the reference
alignment but it misses 59% of the reference align-
ment pairs. Both SARF and STSA alignments have
excellent agreement with the reference alignment,
92%, 99%, respectively.

3.2. Measuring Sensitivity and

Specificity using CATH

Gerstein and Levitt [31] emphasized the importance
of assessing the quality and significance of structural
alignment methods using an objective approach.
They used the SCOP database [32] as a gold stan-
dard to assess the sensitivity of the structural align-
ment program against a set of 2, 107 pairs that have
the same SCOP superfamily. In a more recent work,
Kolodny et al. [28] presented a comprehensive com-
parison of six protein structural alignment methods.
They used the CATH classification [23] as a gold
standard to compare the rate of true and false pos-
itives of the methods. Moreover, they showed that
the geometric match measures like SASk can bet-
ter assess the quality of the structural alignment
methods. We adopt a similar approach to assess
the significance of our approach by comparing the
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Fig. 3. Comparison of the agreement with the reference alignment of STSA alignment and 6 other alignment methods. Residue
positions of d1qdma and d1nkl are plotted on the x-axis and y-axis, respectively. Note: The reference alignment pairs are shown
in circles. The CA, SARF, and STSA plots overlap with the reference alignment. For this pair, we used the alignment’s server
of the corresponding method to get the alignment, except for DALI and SHEBA which we ran in-house.

true and false positive rates of STSA alignments to
those of other three methods: DALI, STRUCTAL,
and FAST. Since the other methods report only se-
quential alignments, for STSA we also used sequen-
tial alignments.

3.2.1. The CATH Singleton Dataset

CATH [23] is a hierarchical classification of protein
domain clusters. The CATH database clusters struc-
tures using automatic and manual methods. The
latest version (3.1.0; as for Jan’07) of the CATH
database contains more than 93885 domains (63453
chains, from 30028 proteins) classified into 4 Classes,
40 Architectures, 1084 Topologies, and 2091 Homol-
ogous Superfamilies. The class level is determined
according to the overall secondary structure content.
The architecture level describes the shape of the do-
main structure. The topology (fold family) level
groups protein domains depending on both the over-
all shape and connectivity of the secondary struc-
tures. Protein domains from the same homologous
superfamily are thought to share a common ancestor
and have high sequence identity or structure similar-
ity.

We define protein domains that belong to ho-
mologous superfamilies which have only one mem-
ber as singletons. There are 1141 singleton protein
domains which belong to 648 different topologies in

CATH. Since singleton domains are unique in their
homologous subfamily, the structurally closest do-
mains to the singleton domains are the domains in
their neighboring H-levels in the same topology. We
selected a set of 21 different topologies such that each
topology has a singleton subfamily and at least ten
other superfamilies. There are only 21 such topolo-
gies in CATH, and one domain for each homologous
superfamily within a topology is randomly chosen as
a representative. So, we have 21 singleton domains
and 210 (10×21) domains selected from the different
sibling superfamilies. Our final dataset thus has 4410
alignment pairs (21 × 210). The set of pairs which
have the same CATH classification are labeled as
positive examples, and as negative examples if they
disagree. We have 210 positive pairs and 4200 nega-
tive pairs in our dataset.

3.2.2. Alignment Results

We ran all the methods on the 4410 structure pairs.
The methods report the number of residues in the
alignment, the rmsd, and the native alignment score:
STRUCTAL reports a p-value for the alignment,
FAST reports a normalized score, and DALI reports
a z-score. For STSA, we score the alignments us-
ing the geometric matching score SAS3. We sort the
alignments by the methods’ native score and calcu-
late the true positives (TP), i.e., pairs with same
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CATH classification, and the false positives (FP),
i.e., pairs with a different CATH classification in the
top scoring pairs. Moreover, we compare the quality
of the alignments of different methods by comparing
the average SAS matching score for the true positives.

Figure 4(a) shows the Receiver Operating Char-
acteristic (ROC) curves for all the methods. The
ROC graph plots the true positive rate (sensitivity),
versus the false positive rate (1-specificity). Recall
that the true positive rate is defined as TP

TP+FN , and

the false positive rate is defined as FP
TN+FP , where

TP and TN are the number of true positives and
negatives, whereas FP and FN are the number of
false positives and negatives. All the alignments were
sorted by their native score (when applicable), or by
the geometric score SAS3.

Table 1. Comparison of the average alignment length.

TP DALI STRUCTAL FAST STSA

0.2 100.29/3.06 83.60/2.04 82.52/3.18 101.8 /3.1
3.05/3.03 2.44/3.49 3.85/5.66 3.05/2.94

0.4 85.40/3.21 71.67/2.09 70.90/3.16 86.43/3.05
3.76/5.15 2.92/5.68 4.46/8.87 3.53/4.72

0.6 75.77/3.36 65.97/2.20 63.90/3.22 76.66/3.03
4.43/7.72 3.33/7.66 5.04/12.34 3.95/6.73

0.8 69.49/3.56 64.33/2.49 57.60/3.51 68.48/2.95
5.12/10.61 3.87/9.35 6.09/18.37 4.31/9.19

1.0 63.03/3.76 62.09 /2.84 51.75/3.55 61.49/2.88
5.97/15.02 4.57/11.86 6.86/25.62 4.68/12.39

The results are reported as follows: for each sensitivity value,
the top row shows the average Nmat/rmsd, and the bottom
row shows SAS3/SAS1, where the averages are calculated over
the true positive alignments. The values in bold show the best

SAS3 and SAS1 scores.

Having the best ROC curve does not imply the
best alignments. [28] showed that the best methods,
with respect to the ROC curves, do not necessarily
have the best average geometric match score for the
true positives pairs. Our results confirm this obser-
vation. Figure 4(b) shows the average SAS3 measure
of the true positives as we vary the number of top
k scoring pairs. Clearly, STSA has the best aver-
age SAS score for the true positives. This can be
explained by the fact that we use the SAS measure
in our alignment algorithm. STRUCTAL comes sec-
ond in the quality of the average SAS measure. Even
though FAST was able to classify as many true pos-
itives as DALI and STSA, it still has the worst aver-
age SAS measure, indicating that it produces shorter
alignments with higher rmsd. These results suggest
is that if the goal is to simply discriminate between

the classes, a method can score better than another
method that produces better alignments in terms of
both length and rmsd. However, since our goal is
to assess the geometric quality of the alignments, we
can clearly see that STSA outperforms the other ap-
proaches. Figure 4(c) shows the ROC curve of all
the methods after sorting the alignments based on
the geometric match score, SAS3; STSA has the best
ROC curve.

In fact, if we use different geometric scoring mea-
sures like SAS2 and SAS1, we find that STSA contin-
ues to give good alignments. Figures 5(a) and 5(c)
show the average SAS2 and SAS1 scores, respectively,
versus the true positive rates, and Figures 5(b) and
5(d) show the corresponding ROC curves. We find
that for SAS2, STSA is still the best. For SAS1,
which emphasizes lower rmsd more than length, we
find that STRUCTAL is the best method, but is fol-
lowed closely by STSA.

Table 1 summarizes these results in tabular form.
It shows the average length and rmsd as well as the
average SAS3 and SAS1 scores, for the true positive
alignments for different sensitivities. At all sensitivi-
ties, the average STSA alignment length is longer
than other methods. This gain in the alignment
length comes at little or no cost in terms of the av-
erage rmsd. Compared to DALI and FAST, STSA
is always superior in its alignment quality. Its SAS3

score is much better (lower) than the other methods.
On the other hand, if one prefers shorter, more ac-
curate alignments, then STRUCTAL has the lowest
SAS1 scores, followed by STSA. If fact, by changing
the parameters of STSA, we can explicitly bias, it
to favor such shorter alignments if those are of more
interest.

3.2.3. Running times

Table 2 shows the total running time for the align-
ment methods on all the 4410 pairs in the singleton
dataset. FAST is extremely fast but its alignments’
quality is not so good. STSA is slightly slower than
STRUCTAL, but is faster than DALI.

Table 2. Comparison of the running times on the
CATH Dataset.

Method DALI STRUCTAL FAST STSA

Time (s) 4932s 3179s 224s 3893s
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Fig. 4. Receiver Operating Characteristic (ROC) curves for the structural alignment methods measured over the 4410 pairs.
(a) The alignments are sorting based on the native score or on the geometric match measure SAS, we tallied the number of true
positives and false positives using CATH as a gold standard. (b) The average SAS3 scores versus the true positive rate. (c) For

all the methods, the alignments are sorted using SAS3 scores and we plot the ROC curve showing the number of true and false
positives.

3.3. Analysis of STSA

There are some parameters that affect the quality of
the resulting alignment in STSA, namely the length
of the smallest runs to consider r, and the thresh-
old distance, δ which is used to populate the scoring
matrix, and the number of initial seeds. The opti-
mal values for r = 3 and δ = 5.5 were found em-
pirically such that they give the best ROC curve on
the CATH data set. Here we investigate the effect of
seed pruning on the sensitivity of STSA alignments,
as well as the quality of the alignments. Figure 6
shows how the average SAS score changes when us-
ing different number of initial seeds for the two seed
pruning heuristics. The first pruning approach sorts
and selects the top k initial seeds based their length
(in decreasing order), whereas the second approach
uses the DALI rigid similarity scores [12]. Figure 6(a)
shows that considering only the top k = 100 seeds,

the average SAS scores for the true positives are al-
most as good as using all the seeds. Moreover, as seen
in Figure 6(b), using the more sophisticated DALI
rigid similarity score to sort the seeds performs the
same as using the much simpler and cheaper length-
based approach. As for the running time, pruning
the seeds and using only the top 100 resulted in a
drastic reduction in the running time. As reported
in Table 2 STSA took 3893s when using the top 100
seeds, whereas it took 9511s seconds when using all
the seeds.

3.4. Two non-sequential alignments

To demonstrate the quality of STSA in finding non-
sequential alignments, we present the alignment on
a pair of structures reported in SARF2 [13]. Figure
7 shows a non-sequential alignment between Leghe-
moglobin (2LH3:A) and Cytochrome P450 BM-3
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Fig. 5. Effect of different geometric matching scores, SASk, for k = 2 and k = 1. (a) The average SAS2 for the true positive
alignments. (b) ROC curve using SAS2 score. (c) Average SAS1 for true positives, and (d) ROC using SAS1 score for sorting
alignments.

(2HPD:A). STSA and SARF2 has some common
aligned segments, but STSA yielded an alignment
of length 114 and rmsd = 3.37Å, whereas SARF2
yielded an alignment with length 108 and rmsd =
3.05Å. The SAS3 score of STSA is 2.27, which is
better than SARF2’s score of 3.84. On this example
both SCALI and FAST failed to return an alignment.
Also, as expected, this is a hard alignment for se-
quential alignment methods: STRUCTAL aligned 56
residues with rmsd = 2.27, DALI aligned 87 residues
with rmsd = 4.8, and CE aligned 91 residues with
rmsd = 4.05.

We took a second non-topological alignment pair
from SCALI [16]. Figure 8 shows the non-topological
alignment between 1FSF:A, and 1IG0:A. Our align-
ment had some common aligned segments with both
SCALI and SARF2, but it returns a longer align-
ment. On the geometric SAS3 measure STSA scored
1.27, SARF2 2.51 and SCALI 4.8. Among the se-
quential methods STRUCTAL was able to return a

fairly good alignment for this pair, with a SAS3 score
of 1.6.

4. DISCUSSION

We presented STSA, an efficient algorithm for pair-
wise structural alignment. The STSA algorithm effi-
ciently constructs an alignment from the superposed
structures based on the spatial relationship between
the residues. The algorithm assembles the alignment
from closely superposed fragments, thus allowing for
non-sequential alignments to be discovered.

Our approach follows a guided iterative search
that starts from initial alignment seeds. We start
the search from different initial seeds to explore dif-
ferent regions in the transformation search space.

On the challenging-to-align RIPC set [22],
STSA alignments have higher agreement with the
reference alignments than other methods: CE, DALI,
FATCAT, MATRAS, CA, SHEBA, and SARF. The
results on the RIPC set suggest that the STSA ap-
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Fig. 6. Studying the effect of pruning on STSA. The average SAS score for the true positives as we consider different number
of seeds is shown: (a) using length, (b) using DALI rigid score.

(a) (b) (c)

Fig. 7. A non-sequential alignment between (a) Leghemoglobin (2LH3:A, 153 residues) and (b) Cytochrome P450 BM-3 (2HPD:A, 471
residues). (c) STSA alignment: Leghemoglobin in black and Cytochrome in grey. The Nmat/rmsd scores were 117/3.37Å for STSA, and
108/3.05Å for SARF2. For sequential methods, the scores were 56/2.27Å for STRUCTAL, 87/4.8Å for DALI and 91/4.05Å for CE.

proach is effective in finding non-sequential align-
ments, where the purely sequential (and in some
cases non-sequential) approaches yield low agree-
ment with the reference alignment.

Overall results on classifying the CATH single-
ton dataset show that STSA has high sensitivity
for high specificity values. Moreover, the quality of
STSA alignments, as judged by the SAS3 geomet-
ric scores (longer alignments and lower rmsd), are
better than the alignments of other methods: DALI,
FAST, and STRUCTAL.

5. CONCLUSION & FUTURE WORK

Our experimental results on the RIPC set and the
CATH dataset demonstrate that the STSA ap-
proach is efficient and competitive with state-of-the-

art methods. Our next step is to extend our ap-
proach to address the multiple structure alignment
problem. Moreover, we plan to add a functionality
to handle flexible and reverse alignments.
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