
14 1092-3063/99/$10.00 © 1999 IEEE IEEE Concurrency

Parallel and Distributed
Association Mining:
A Survey

statement: to find the set of all subsets of
items or attributes that frequently occur in
many database records or transactions, and
additionally, to extract rules on how a sub-
set of items influences the presence of
another subset.

The prototypical application of ARM is
market-basket analysis, where the items rep-
resent products, and the records represent
point-of-sales data at large grocery stores
or department stores. An example rule
might be, “90% of customers buying prod-
uct A also buy product B.” Other applica-
tion domains for ARM include customer
segmentation, catalog design, store layout,
and telecommunication alarm prediction.

Although ARM has a simple statement,
it is computationally and I/O intensive.
Because data is increasing in terms of both
the dimensions (number of items) and size
(number of transactions), one of the main
attributes needed in an ARM algorithm is
scalability: the ability to handle massive data
stores. Sequential algorithms cannot pro-
vide scalability, in terms of the data dimen-
sion, size, or runtime performance, for such
large databases. Therefore, we must rely on

high-performance parallel and distributed
computing. This article surveys the differ-
ent parallel and distributed ARM algo-
rithms that have been proposed on various
hardware platforms. Because of the aston-
ishing amount of research in this area, I pre-
sent the state of the art in ARM and identify
the current open problems.

Problem statement and
mining complexity

Association mining works as follows. Let
I be a set of items and D a database of trans-
actions, where each transaction has a unique
identifier (tid) and contains a set of items
called an itemset. An itemset with k items is
called a k-itemset. The support of an itemset
X, denoted σ(X), is the number of transac-
tions in which that itemset occurs as a sub-
set. A k-subset is a k-length subset of an
itemset. An itemset is frequent or large if its
support is more than a user-specified min-
imum support (min_sup) value. Fk is the set
of frequent k-itemsets. A frequent itemset is
maximal if it is not a subset of any other fre-
quent itemset.

The author surveys

the state of the art in

parallel and distributed

association-rule-mining

algorithms and uncovers

the field’s challenges

and open research

problems. This survey

can serve as a reference

for both researchers and

practitioners.

Data Mining

S
ince its inception, association rule mining has become one of the

core data-mining tasks and has attracted tremendous interest

among researchers and practitioners.1 ARM is undirected or

unsupervised data mining over variable-length data, and it pro-

duces clear, understandable results. It has an elegantly simple problem

Mohammed J. Zaki
Rensselaer Polytechnic Institute

October–December 1999 15

An association rule is
an expression A ⇒ B,
where A and B are
itemsets. The rule’s
support is the joint
probability of a trans-
action containing both
A and B, and is given as
σ(A ∪ B). The confi-
dence of the rule is the
conditional probability
that a transaction con-
tains B, given that it
contains A and is given
as σ(A ∪ B)/σ(A). A
rule is frequent if its
support is greater than
min_sup and strong if
its confidence is more
than a user-specified minimum confidence
(min_conf).

Data mining involves generating all
association rules in the database that have
a support greater than min_sup (the rules
are frequent) and that have a confidence
greater than min_conf (the rules are
strong). This task has two steps:

1. Find all frequent itemsets having
minimum support. The search space
for enumeration of all frequent item-
sets is 2m, which is exponential in m,
the number of items. However, if we
assume the transaction length has a
bound, we can show that ARM is
essentially linear in database size.

2. Generate strong rules having mini-
mum confidence, from the frequent
itemsets. We generate and test the
confidence of all rules of the form
X\Y ⇒ Y, where Y ⊂ X and X is fre-
quent. Because we must consider
each subset of X as the consequent,
the rule-generation step’s complex-
ity is O(r ⋅ 2l), where r is the number
of frequent itemsets, and l is the
longest frequent itemset.

Consider the example bookstore-sales
database shown in Figure 1. There are
five different items (names of authors the
bookstore carries), I = {A, C, D, T, W}.
The database comprises six customers
who bought books by these authors. Fig-
ure 1 shows all the frequent itemsets con-

tained in at least three customer transac-
tions (min_sup = 50%). The figure also
shows the set of all association rules with
min_conf = 100%.

Sequential ARM algorithms

All parallel ARM algorithms exam-
ined in this article are based on their
sequential counterparts. The design
space for the sequential methods is com-
posed of the following characteristics.

BOTTOM-UP VS. HYBRID SEARCH
The main observation in ARM is that

the subset relation ⊆ defines a partial
order (in fact, a lattice) on the set of item-
sets. The second observation is that the
subset relation ⊆ is monotonic with
respect to the frequency σ(α). In other
words, if β is a frequent itemset, then all
subsets α ≤ β are also frequent.

ARM algorithms differ in the manner
in with they search the itemset lattice
spanned by the subset relation. Most
approaches use a level-wise or bottom-up
search of the lattice to enumerate the fre-
quent itemsets. If long frequent itemsets
are expected, a pure top-down approach
might be preferred. Some have proposed
a hybrid search, which combines top-
down and bottom-up approaches.

COMPLETE VS. HEURISTIC
CANDIDATE GENERATION

ARM algorithms can differ in the way

they generate new candidates. A complete
search, the dominant approach, guaran-
tees that we can generate and test all fre-
quent subsets. Here, complete doesn’t
mean exhaustive; we can use pruning to
eliminate useless branches in the search
space. Heuristic generation sacrifices
completeness for the sake of speed. At
each step, it only examines a limited num-
ber of “good” branches. Random search
to locate the maximal frequent itemsets is
also possible. Methods that can be used
here include genetic algorithms and sim-
ulated annealing. Because of a strong
emphasis on completeness, ARM litera-
ture has not given much attention to the
last two methods.

ALL VS. MAXIMAL FREQUENT
ITEMSET ENUMERATION

ARM algorithms differ depending on
whether they generate all frequent sub-
sets or only the maximal ones. Identify-
ing the maximal itemsets is the core task,
because an additional database scan can
generate all other subsets. Nevertheless,
the majority of algorithms list all fre-
quent itemsets.

HORIZONTAL VS. VERTICAL DATA
LAYOUT

Most ARM algorithms assume a hori-
zontal database layout, which stores each
customer’s tid along with the items con-
tained in the transaction. Some methods
also use a vertical database layout, associ-

Sir Arthur D

Agatha Christie C
Jane Austen A

Mark Twain T
WodehouseP.G. W

C D T

A C D T W

A C D W

A C T W

C D W

A C T W

(a) (b)

1

2

3

4

5

6

Transaction Items

Database

Items

Conan Doyle

CDW, ACTW

A

C (5/5)W
T
D
A
A

C (4/4)
W (4/4)
CW (4/4)
C (4/4)
C (4/4)

W (4/4)
C (3/3)
W (3/3)
C (4/4)
C (3/3)
A (3/3)

AW
DW
TW

AT
AT

AC

TW
AT
TW

ACT
ATW
CTW

C (3/3)
CW (3/3)
AC (3/3)
W (3/3)
C (3/3)
A (3/3)

C

W, CW

A, D, T, AC, AW,

100% (6)

83% (5)

67% (4)

50% (3)

ItemsetsSupport

CTW,

CDW, ACTWMaximal frequent itemsets:

Frequent itemsets (min_sup = 50%)

AT, DW, TW, ACT, ATW,

Association rules (min_conf = 100%)

CD, CT, ACW

Figure 1. (a) Bookstore database; (b) frequent itemsets and strong rules.

16 IEEE Concurrency

ating with each item X its tidlist, which is
a list of all tids containing the item.

While reading the following algo-
rithm descriptions, refer to Figure 2,
which shows how each method works on
the example database from Figure 1.

Apriori
The Apriori algorithm by Rakesh

Agrawal and colleagues has emerged as
one of the best ARM algorithms.1 It
also serves as the base algorithm for
most parallel algorithms. Apriori uses
a complete, bottom-up search with a
horizontal layout and enumerates all
frequent itemsets. An iterative algo-

rithm, Apriori counts itemsets of a spe-
cific length in a given database pass.
The process starts by scanning all
transactions in the database and com-
puting the frequent items. Next, a set
of potentially frequent candidate 2-
itemsets is formed from the frequent
items. Another database scan obtains
their supports. The frequent 2-item-
sets are retained for the next pass, and
the process is repeated until all fre-
quent itemsets have been enumerated.
The algorithm has three main steps:

1. Generate candidates of length k from
the frequent (k – 1) length itemsets,

by a self-join on Fk–1. For example, for
F2 = {AC, AT, AW, CD, CT, CW,
DW, TW}, we get C3 = {ACT, ACW,
ATW, CDT, CDW, CTW}.

2. Prune any candidate that has at
least one infrequent subset. For
example, CDT will be pruned
because DT is not frequent.

3. Scan all transactions to obtain can-
didate supports. Apriori stores the
candidates in a hash tree for fast
support counting. In a hash tree,
itemsets are stored in the leaves;
internal nodes contain hash tables
(hashed by items) to direct the
search for a candidate.

A

T D

CW

Maximal cliques:
ACTW, CDW

Association graph

CD CWAC AWAT

CDW(3)ACT(3)

ACTW(3)

MaxClique

3ACTWA 4

C

D

W

T

6

4

5

4

AC

AD

AT

AW

CD

CT

CW

TW

DW

DT

4

3

4

4

5

3

2

4

2

3

ACW

ACT

ATW

CDW

CTW

3

3

3

4

3

Scan 2 Scan 4Scan 1 Scan 3

Apriori

DIC

AD AT
CD

AW
CT

CW
CT

ACDW
TW

3 7 2 6 8 7

Hash table (built in Scan 1)

DHP

ACT 2
ACW 2

CDW 1
CTW 2

ATW 2

1ACTWAC
AD
AT
AW
CD
CT
CW

TW
DW
DT

2

1

2

2

0

0
1

2

2

2

A 2
C
D

W
T

3
1

3
2

tid:1-3

ACT 2
ACW 2

A
C
D

W
T

3
3

2

AC
AD
AT
AW
CD
CT
CW

TW
DW
DT

1

3

2

1

2

2
2

2

2

2

ACD

ADW

CDT

DTW

ATW 2

1

1

2

1

2

2

CDW 1
CTW 2

ACTW 2

ACDT 1
1

ADTW 1
CDTW 1

ACDW
ACDTW 1

tid:4-6

A 4
C
D

W
T

6
4

5
4

AC
AD
AT
AW
CD
CT
CW

TW
DW
DT

4

3
4
4

5

3

2

4

2
3

ACW
ACT

ATW
CDW
CTW

3

3
3

4
3 3ACTW

Partition

Scan 2 (tid:1-6)

A 4
C
D

W
T

6
4

5
4

AC
AD
AT
AW
CD
CT
CW

TW
DW
DT

4

3
4
4

5

3

2

4

2
3

ACW
ACT

ATW
CDW
CTW

3

3
3

4
3 3ACTW

tid:1-3

A 2
C
D

W
T

3
1

3
2

tid:4-6

AC
AD
AT
AW
CD
CT
CW

TW
DW
DT

1

3

2

1

2

2
2

2

2

2
ACT 2
ACW 2

CDW 1
CTW 2

ACD

ADW

CDT

DTW

ATW 2

tid:1-3

0

0

0

0

1ACTW

Scan 1 Scan 2

tid:1-3

tid:4-6

Scan 2.5

Figure 2. Sequential ARM algorithms. Apriori requires four scans for the example database. DHP builds a hash table (size
= 6) during the first scan; we can immediately discard itemset AD because it cannot be frequent. In general, the hash
table might discard many other 2-itemsets. DIC is shown with two database partitions (D1: tid 1–3 and D2: tid 4–6). DIC
starts by counting the support of single items in D1, and generates new 2-itemsets before processing D2. While scanning
D2, it counts both the single items and the new 2-itemsets, which completes scan 1. DIC generates new 3-itemsets from
the 2-itemsets of D2, and then counts all current itemsets while scanning D1, and so on. In total, DIC requires 2.5 data-
base scans. Partition (with two parts, D1 and D2) gathers locally frequent itemsets in each part, merges them, and then
acquires their global support. MaxClique first builds an association graph from the frequent 2-itemsets and finds the
maximal cliques in the graph (ACTW, CDW). These are the two equivalence classes, which MaxClique processes using
hybrid search. Within a class, MaxClique keeps on extending an itemset until an infrequent itemset is found or no other
extension is possible. MaxClique requires only three intersections to determine the maximal frequent itemsets.

October–December 1999 17

Dynamic Hashing and Pruning
The DHP algorithm proposed by Jong

Soo Park and colleagues extends the Apri-
ori approach by using a hash table to pre-
compute approximate support of 2-item-
sets during the first iteration.2 The second
iteration need count only those candidates
falling in hash cells with minimum sup-
port. This hash-table technique can suc-
cessfully remove many candidate pairs that
would eventually have become infrequent.

Partition
Ashok Savasere and others proposed

the two-pass Partition algorithm,3 which
logically divides the horizontal database
into nonoverlapping partitions. Each par-
tition is read, and vertical tidlists (lists of
all tids where the item appears) are formed
for each item. Partition then generates all
locally frequent itemsets through tidlist
intersections. Locally frequent itemsets
from all partitions merge to form a global
candidate set. Partition then makes a sec-
ond pass through all the partitions and
obtains all candidates’ global counts
through tidlist intersections.

SEAR and Spear
Andreas Mueller’s Sequential Efficient

Association Rules algorithm is identical
to Apriori, except that SEAR stores can-
didates in a prefix tree instead of a hash
tree.4 In a prefix tree (also called a trie),
each edge is labeled by items; common
prefixes are represented by tree branches,
and the unique suffixes are stored at the
leaves. Also, SEAR uses a pass-bundling
optimization, where it generates candi-
dates for multiple passes if the candidates
will fit in memory.

The Spear algorithm is similar to
SEAR, but it uses the Partition tech-
nique; it is the non-tidlist version of Par-
tition. Spear uses the horizontal data for-
mat, but makes two scans: first it gathers
potentially frequent itemsets, then it
obtains their global support.

Mueller’s objectives were to evaluate
the intrinsic benefits of partitioning irre-
spective of the data format used. He con-
cluded that partitioning did not help,
because of high overhead of processing
multiple partitions and because of the
many locally frequent but globally infre-

quent itemsets found by partitioning.
SEAR was the winner, because it also
performed pass-bundling.

Dynamic Itemset Counting
The DIC algorithm proposed by

Sergey Brin and others is a generalization
of Apriori.5 The database is divided into p
equal-sized partitions so that each parti-
tion fits in memory. For partition 1, DIC
gathers the supports of single items. Items
found to be locally frequent (only in this
partition) generate candidate 2-itemsets.
Then DIC reads partition 2 and obtains
supports for all current candidates—that
is, the single items and the candidate
2-itemsets. This process repeats for the
remaining partitions. DIC starts counting
candidate k-itemsets while processing par-
tition k in the first database scan. After the
last partition p has been processed, the
processing wraps around to partition 1
again. A candidate’s global support is
known once the processing wraps around
the database and reaches the partition
where it was first generated.

DIC is effective in reducing the num-
ber of database scans if most partitions are
homogeneous (have similar frequent
itemset distributions). If data is not homo-
geneous, DIC might generate many false
positives (itemsets that are locally fre-
quent but not globally frequent) and scan
the database more than Apriori does. DIC
proposes a random partitioning technique
to reduce the data–partition skew.

Eclat, MaxEclat, Clique, and
MaxClique

A completely different design charac-
terizes the equivalence class-based algo-
rithms proposed by my colleagues and
me.6 The simplest is Eclat; the best is
MaxClique. These methods use a verti-
cal database format, complete search,
and a mix of bottom-up and hybrid
search, and they generate a mix of max-
imal and nonmaximal frequent itemsets.

The main advantage of using a verti-
cal format is that we can determine the
support of any k-itemset by simply inter-
secting the tidlists of the lexicographi-
cally first two (k – 1)-length subsets that
share a common prefix (the generating
itemsets). These methods break the large

search space into small, independent,
manageable chunks. These chunks can
be processed in memory through prefix-
or clique-based equivalence classes; the
clique-based approach produces much
smaller classes. Each class is independent
in that it has complete information for
generating all frequent itemsets that
share the same prefix.

Among the four algorithms proposed,
Eclat uses prefix-based classes and bot-
tom-up search, MaxEclat uses prefix-
based classes and hybrid search, Clique
uses clique-based classes and bottom-up
search, and MaxClique uses clique-based
classes and hybrid search. The best
approach was MaxClique, which out-
performed Apriori and Partition by more
than an order of magnitude and Eclat by
a factor of 2 or more.

Table 1 presents a summary of the
major differences among all the algo-
rithms reviewed thus far.

Parallel ARM algorithms

Researchers expect parallelism to relieve
current ARM methods from the sequen-
tial bottleneck, providing scalability to
massive data sets and improving response
time. Achieving good performance on
today’s multiprocessor systems is not triv-
ial. The main challenges include synchro-
nization and communication minimiza-
tion, workload balancing, finding good
data layout and data decomposition, and
disk I/O minimization (which is especially
important for ARM). The parallel design
space spans three main components: the
hardware platform, the type of parallelism,
and the load-balancing strategy

DISTRIBUTED VS. SHARED MEMORY
SYSTEMS

Two dominant approaches for using
multiple processors have emerged: dis-
tributed memory (where each processor
has a private memory) and shared mem-
ory (where all processors access common
memory). A shared-memory (SMP) ar-
chitecture has many desirable properties.
Each processor has direct and equal
access to all the system’s memory. Par-
allel programs are easy to implement on
such a system.

18 IEEE Concurrency

A different approach to multiprocess-
ing is to build a system from many units,
each containing a processor and memory.
In a distributed-memory (DMM) archi-
tecture, each processor has its own local
memory, which only that processor can
access directly. For a processor to access
data in the local memory of another
processor, message passing must send a
copy of the desired data elements from one
processor to the other. Although a shared-
memory architecture offers programming
simplicity, a common bus’s finite band-
width can limit scalability. A distributed-
memory, message-passing architecture
cures the scalability problem by eliminat-
ing the bus, but at the expense of pro-
gramming simplicity.

A third, very popular, paradigm com-
bines the best of the distributed- and
shared-memory approaches. Included in
this paradigm are hardware- or software-
distributed shared-memory systems.
These systems distribute the physical
memory among the nodes but provide a
shared global address space on each
processor. The hardware or software
ensures cache coherence; so locally
cached data always reflects any proces-
sor’s latest modification. Clusters of SMP
workstations (Clumps) are also part of
this mixed paradigm. Clumps necessitate
a hierarchical parallelism approach, with
SMP primitives used in a node and mes-
sage passing used among the SMP nodes.

The performance-optimization objec-
tives for distributed-memory machines

versus shared-memory systems depend
on the underlying architecture. In
DMMs, synchronization is implicit in
message passing, so the goal becomes
communication optimization. For SMPs,
synchronization stems from locks and
barriers, and the goal is to minimize these
points. Data decomposition is very
important for distributed memory, but
not for shared memory. While parallel
I/O comes free in DMMs, it can be prob-
lematic for SMP machines, which typi-
cally serialize I/O. The main challenge for
obtaining good performance on DMMs
is finding a good data decomposition
among the nodes and minimizing com-
munication.

For SMPs, the objective is to achieve
good data locality. This means we must
maximize access to local cache and avoid
or reduce false sharing. That is, we need
to minimize the Ping-Pong effect, where
multiple processors might be trying to
modify different variables that coinci-
dentally reside on the same cache line.
For today’s nonuniform memory access
(NUMA) hybrid and hierarchical ma-
chines (clusters of SMPs), the optimiza-
tion parameters draw from both the
DMM and SMP paradigms.

DATA VS. TASK PARALLELISM
Task and data parallelism are the two

main paradigms for exploiting algorithm
parallelism. For ARM, data parallelism
corresponds to the case where the data-
base is partitioned among P processors—

logically partitioned for SMPs, physi-
cally for DMMs. Each processor works
on its local partition of the database but
performs the same computation of
counting support for the global candi-
date itemsets. Task parallelism corre-
sponds to the case where the processors
perform different computations inde-
pendently, such as counting a disjoint set
of candidates, but have or need access to
the entire database. SMPs have access to
the entire data, but for DMMs, the
process of accessing the database can
involve selective replication or explicit
communication of the local portions.
Hybrid parallelism, which combines
both task and data parallelism, is also
possible and perhaps desirable for
exploiting all available parallelism in
ARM methods.

STATIC VS. DYNAMIC LOAD
BALANCING

Static load balancing initially parti-
tions work among the processors using
a heuristic cost function; no subsequent
data or computation movement is avail-
able to correct load imbalances resulting
from ARM algorithms’ dynamic nature.
Dynamic load balancing seeks to address
this by taking work from heavily loaded
processors and reassigning it to lightly
loaded ones. Computation movement
also entails data movement, because the
processor responsible for a computa-
tional task needs the data associated with
that task. Dynamic load balancing thus

Table 1. Algorithm characteristics. K denotes the size of the longest frequent itemset. C2 array optimization uses a
2D array to count candidate 2-itemsets rather than using hash trees or prefix trees.

NUMBER OF

ALGORITHM DATABASE LAYOUT DATA STRUCTURE SEARCH ENUMERATION OPTIMIZATIONS DATABASE SCANS

Apriori Horizontal Hash tree Bottom-up All C2 array K

DHP Horizontal Hash tree Bottom-up All C2 array and hash table K

Partition Vertical None Bottom-up All C2 array and partitioning 2

SEAR Horizontal Prefix tree Bottom-up All Pass-bundling K

Spear Horizontal Prefix tree Bottom-up All Partitioning 2

DIC Horizontal Prefix tree Bottom-up All Count multiple lengths ≤ K
per scan

Eclat Vertical None Bottom-up All C2 array and prefix ≥ 3
classes

MaxEclat Vertical None Hybrid Maximal and C2 array and prefix ≥ 3
nonmaximal classes

Clique Vertical None Bottom-up All C2 array and clique ≥ 3
classes

MaxClique Vertical None Hybrid Maximal and C2 array and clique ≥ 3
nonmaximal classes

October–December 1999 19

incurs additional costs for work and data
movement, and also for the mechanism
used to detect whether there is an imbal-
ance. However, dynamic load balancing
is essential if there is a large load imbal-
ance or if the load changes with time.

Dynamic load balancing is especially
important in multiuser environments
with transient loads and in heteroge-
neous platforms, which have different
processor and network speeds. These
kinds of environments include parallel
servers and heterogeneous clusters,
metaclusters, and superclusters (the so-
called grid platforms that are becoming
common today). All extant ARM algo-
rithms use only static load balancing that
is inherent in the initial partitioning of
the database among available nodes.
This is because they assume a dedicated,
homogeneous environment.

Figure 3 shows where each parallel
ARM method falls in the design space.
DMMs form the dominant platform,
and a mix of data- and task- parallel ap-
proaches have been explored. However,
all schemes use static load balancing (or
very limited dynamic load balancing).

The main design issues in DMMs are
minimizing communication and evenly
distributing data for good load balancing.
The distributed-memory ARM algo-
rithms that I now consider assume the
database is partitioned among all the
processors in equal-sized blocks residing
on each processor’s local disk.

SEAR- AND SPEAR-BASED
Andreas Mueller proposed some of the

first parallel ARM methods,4 built atop his
sequential methods, which were based on
Apriori and Partition. PEAR is the paral-
lel version of SEAR. In each iteration,
every processor generates a candidate pre-
fix tree from the global frequent itemsets
of the previous pass. Each processor has
the entire copy of the same candidate set.
Each node then gathers local supports, fol-
lowed by a sum reduction to obtain global
supports on each processor.

Partitioned Parallel Association Rules
is based on Spear. In fact, PPAR is the
parallelization suggested, but not imple-
mented, by Partition’s authors, with the
exception that PPAR uses the horizon-

tal data format. PPAR works as follows.
Each processor gathers the locally fre-
quent itemsets of all sizes in one pass
over their local database (which also may
be partitioned into local chunks). PPAR
broadcasts all potentially frequent item-
sets to other processors. Then each
processor gathers the counts of these
global candidates in the second local
pass. Finally, a broadcast obtains the
global frequent itemsets. Experiments
on a 16-node IBM SP2 DMM showed
that PEAR always outperformed PPAR.
This is because PEAR uses pass-
bundling, whereas PPAR might unnec-
essarily generate many candidates that
end up infrequent.

DHP-BASED
The PDM algorithm by Jong Soo Park

and his colleagues is based on DHP.2,7 In
PDM, each processor generates the local
supports of 1-itemsets and approximate
counts for the 2-itemsets with a hash
table. An all-to-all broadcast of local
counts obtains the global counts for 1-
itemsets. Because the 2-itemset hash table
can be very large, directly exchanging the
counts through an all-to-all broadcast can
be expensive. Park and his colleagues use
an optimized method that exchanges only
the cells that are guaranteed to be fre-
quent. However, this method requires
two rounds of communication. For the
second pass, PDM generates local candi-
dates using the global 2-itemset hash
table. Only the second pass uses hash
tables; subsequent passes generate candi-
dates directly from Fk–1 (as in Apriori) .

Candidates are generated in parallel.
Each processor generates its own local set,
which is exchanged through an all-to-all
broadcast to construct the global candidate
set. Next, PDM obtains the local counts for
all candidates and exchanges them among
all processors to determine the globally fre-
quent itemsets. The stage is now set for the
next iteration. PDM has several limitations.
First, it parallelizes the candidate genera-
tion at the cost of an all-to-all broadcast to
construct the entire candidate set. The
communication costs might render this
parallelization ineffective.

Park and his colleagues presented only
simulation results on an IBM-SP2-type
distributed-memory machine, so assess-
ing the practical impact of their optimiza-
tions is difficult.

APRIORI-BASED
Many parallel algorithms use Apriori

as the base method, because of its suc-
cess in the sequential setting.

Count, Data, and Candidate
Distribution

Rakesh Agrawal and John Shafer,8
from the group that developed Apriori,
have proposed three parallel algorithms.
Their target machine was a 32-node IBM
SP2 DMM.

The Count Distribution algorithm is a
simple parallelization of Apriori. All proces-
sors generate the entire candidate hash tree
from Fk–1. Each processor can thus inde-
pendently get partial supports of the can-
didates from its local database partition.
Next, the algorithm does a sum reduction

Data Task Data Task Data Task

Distributed memory

PEAR
PDM

NPA
FDM
FPM

CandDist
DataDist
PPAR

SPA
HPA
HPA-ELD
IDD
HD

Shared memory

CCPD PCCD ParEclat

ParCliqueCountDist
APM ParMaxEclat

ParMaxClique

Static Dynamic

Hierarchical

Figure 3. Parallel association-rule-mining (ARM) algorithms. The taxonomy
shows where each method fits in the design space, organized by load-
balancing strategy, architecture, and parallelism used. For example, Count
the word Distribution uses static balancing, distributed memory, and data
parallelism.

20 IEEE Concurrency

to obtain the global counts by exchanging
local counts with all other processors.
Rather than merging different hash trees,
the algorithm needs to communicate only
partial counts, because each processor has
a copy of the entire tree. Once the global
Fk has been determined, each processor
builds the entire candidate Ck+1 in parallel,
and repeats the process until all frequent
itemsets are found. Figure 4 shows an illus-
tration of count distribution. This algo-
rithm minimizes communication, because
only the counts are exchanged among the
processors. However, because the algo-
rithm replicates the entire hash tree on each
processor, it doesn’t use the aggregate sys-
tem memory effectively.

The Data Distribution algorithm uses
the total system memory by generating
disjoint candidate sets on each processor.
However, to generate the global support,
each processor must scan the entire data-
base (its local partition and all remote par-
titions) in all iterations. Hence, this algo-
rithm suffers from high communication
overhead and performs poorly when com-
pared to Count Distribution.

The Candidate Distribution algorithm
partitions the candidates during iteration
l, so that each processor can generate dis-
joint candidates independent of other
processors. The partitioning uses a heuris-
tic based on support, so that each proces-
sor gets an equal amount of work. At the
same time, the database is selectively repli-
cated so that a processor can generate
global counts independently. The choice
of the redistribution pass involves a trade-
off between decoupling processor depen-
dence as soon as possible and waiting until
sufficient load balance can be achieved. In
Agrawal and Shafer’s experiments, the
repartitioning was done in the fourth pass.
After that, the only dependence a proces-
sor had on other processors is for pruning
the candidates. Each processor asynchro-
nously broadcasts the locally frequent set
to other processors during each iteration.
If this pruning information arrives in time,
it is used; otherwise, it is saved for the next
iteration. Each processor must still scan
its local data once per iteration. Even
though it uses problem-specific informa-
tion, Candidate Distribution performs

worse than Count Distribution, because
it pays the cost of redistributing the data-
base while scanning the local database par-
tition repeatedly.

Non Partitioned, Simply Partitioned,
and Hash-Partitioned Apriori

Independently, Takahiko Shintani and
Masaru Kitsuregawa proposed four Apri-
ori-based parallel algorithms, which are
very similar to the three discussed above.9
Their target machine was a 64-node
Fujitsu AP1000DDV DMM.

Non Partitioned Apriori is essentially
the same as Count Distribution, except
that the sum reduction occurs on one mas-
ter processor. Simply Partitioned Apriori
is the same as Data Distribution.

Hash-Partitioned Apriori is similar to
Candidate Distribution. Each processor
generates candidates from the previous
level’s frequent set and applies a hash func-
tion to determine a home processor for
that candidate. If a processor is the home
for a candidate, it inserts the candidate in
the local hash tree; otherwise, it discards
the candidate. For counting, HPA, unlike

Exchange local candidate counts

Exchange local candidate counts

Exchange local candidate counts

P2P1P0
Count distribution

Count items

Get frequent items

Form candidate pairs

Get frequent pairs

Form candidate triples

Parallel counting

Parallel counting

Partitioned database

Parallel counting

Schedule equivalence classes

Exchange local tid-lists

Exchange final results

Selectively replicated database

Par(Max)Eclat, Par(Max)Clique
P2P1P0

Partitioned database

Figure 4. Count Distribution vs. Par(Max)Eclat and Par(Max)Clique. Count Distribution is iterative, like Apriori; in each
iteration, it generates potential candidates and gathers their local support in parallel, followed by a sum-reduction.
After the setup phase, Par(Max)Eclat/Clique asynchronously computes the frequent itemsets in parallel.

October–December 1999 21

Candidate Distribution, does not selec-
tively replicate the database; each proces-
sor generates a k-subset for every local
transaction, calculates the destination
processor, and communicates that subset
to the processor. The home processor is
responsible for incrementing the counts
using the local database and any messages
sent by other processors.

Shintani and Kitsuregawa also pro-
pose a variant of HPA called HPA-ELD
(HPA with extremely large itemsets
duplication). The motivation is that even
though we might partition candidates
equally among processors, some candi-
dates are more frequent than others.
Therefore, their home processors will
consequently be loaded, while others will
have a light load. HPA-ELD addresses
this by replicating the extremely fre-
quent itemsets on all processors and pro-
cessing them using the NPA scheme (a
limited form of dynamic load balancing).
Thus, no subsets are communicated for
these candidates. Local counts are ob-
tained, followed by a sum reduction for
their global support.

Shintani and Kitsuregawa experimen-
tally confirmed that HPA-ELD outper-
forms the other approaches. However,
they used SPA, HPA, and HPA-ELD
only for the second iteration, while they
performed the remaining passes using
non partitioned Apriori. This suggests
that the best approach is a hybrid one: use
HPA-ELD as long as candidates do not
fit in memory and then switch to non par-
titioned Apriori. This makes sense,
because non partitioned Apriori and
Count Distribution require the least
amount of communication.

Intelligent Data Distribution and
Hybrid Distribution

Eui-Hong Han and his colleagues
have proposed two ARM methods based
on Data Distribution.10 Their platform
is a 128-node Cray T3D DMM. They
observe that Data Distribution uses an
expensive all-to-all broadcast to send
local database portions to every other
processor. Furthermore, although Data
Distribution divides the candidates
equally among the processors, it fails to
divide the work done on each transac-

tion. That is, it still generates a subset of
the transaction and determines whether
the hash tree contains that subset.

In Intelligent Data Distribution, Han
and his colleagues use a linear-time, ring-
based, all-to-all broadcast for communi-
cation.10 Second, they switch to Count
Distribution once the candidates fit in
memory. Third, instead of a round-robin
candidate partitioning, they perform a sin-
gle-item, prefix-based partitioning. Before
processing a transaction, they make sure
that it contains the relevant prefixes. If not,
the transaction can be discarded. The
entire database is still communicated, but
a transaction might not be processed if it
does not contain relevant items.

The Hybrid Distribution combines
Count Distribution and Intelligent Data
Distribution. It partitions the P proces-
sors into G equal-sized groups, where
each group is considered a superproces-
sor. Count Distribution is used among
the G superprocessors, while the P/G
processors in a group use Intelligent Data
Distribution. The database is horizon-
tally partitioned among the G super-
processors, and the candidates are parti-
tioned among the P/G processors in a
group. Additionally, Hybrid Distribution
adjusts the number of groups dynamically
for each pass. The advantages of Hybrid
Distribution are that it reduces database
communication costs by 1/G and that it
tries to keep processors busy, especially
during later iterations. Han and his col-
leagues’ experiments showed that while
Hybrid Distribution has the same per-
formance as Count Distribution, it can
handle much larger databases.

Fast Distributed
David Cheung and his colleagues pro-

posed the Fast Distributed Mining (FDM)
algorithm for ARM.11 The main differ-
ence between parallel and distributed data
mining is the interconnection network
latency and bandwidth. In distributed
mining, we assume that the network is
much slower. Apart from this distinction,
the difference between the two is becom-
ing blurred. For a slow network, any vari-
ants of Data Distribution, which essen-
tially communicate the entire database in
each iteration, are not practical, given the

communication costs. Because Count Dis-
tribution has the lowest communication
cost, it is an ideal base method to build
upon in a distributed environment

FDM builds on Count Distribution,
and proposes new techniques to reduce
the number of candidates considered for
counting. In this way, it also minimizes
communication. FDM assumes that the
database is horizontally partitioned
among the distributed sites. Because any
globally frequent itemset must be locally
frequent at a site, the only candidates a
site has to consider are the ones gener-
ated from the ones both globally frequent
and locally frequent at that site (denoted
as GLi for site i). For example, out of all
frequent items F1 = {A, B, C, D, E}, let GL1

= {A, B, C} and GL2 = {C, D, E}. The first
site then considers only the candidates
CG1 = {AB, AC, BC} and CG2 = {CD, CE,
DE}. Instead of these six candidates,
Count Distribution would generate

candidates. FDM also suggests three opti-
mizations: local pruning, global pruning,
and count polling.

The FDM-LP algorithm uses local
pruning and count polling. Each site gen-
erates candidates using the GLi from all
sites and assigns a home site for each can-
didate. Then, each site computes the local
support for all candidates. Next comes the
local pruning step: remove any itemset X
that is not locally frequent at the current
site, because if X is globally frequent, then
it must occur at some other site.

The next step forms the count-polling
optimization. Each home site requests,
for all candidates assigned to it, local
counts from all other sites and computes
their global support. The home site then
broadcasts the global supports to all
other sites. At the end, each site has the
globally frequent set, and a new iteration
may begin. Recall that Count Distribu-
tion broadcasts the local counts of all
candidates to everyone else, whereas
FDM sends it to only one home site per
candidate. Thus, FDM requires far less
communication, and local pruning cuts it
down even more.

Another optimization that Cheung and

5
2 10

=

22 IEEE Concurrency

his colleagues suggest is global pruning.
Rather than sending only the global sup-
ports for the frequent itemsets, they also
send their local supports in each partition
at the end of iteration k – 1. For the next
iteration k, if X is a candidate, the local
supports of all its k – 1 subsets are avail-
able. We can place an upper bound on the
support of X at site i as

where s is the number of sites, and ubj(X)
is the minimum local support of any k – 1
subset of X at site j (the upper bound on
the local support of X at site j). If UB(X) <
min_sup, we can discard X from consider-
ation. Cheung and his colleagues evalu-
ated FDM on a cluster of six workstations
connected with a 10-Mbyte Ethernet
LAN. Their experiments, tested only for
local pruning with count polling, showed
a reduction of 75% to 90% in the candi-
date set size on each site, and a reduction
of 85% to 90% in the message size.

Fast Parallel Mining
David Cheung and Yongqiao Xiao re-

cently proposed a parallel version of FDM,
called Fast Parallel Mining.12 The problem
with FDM’s polling mechanism is that it
requires two rounds of messages in each
iteration: one for computing the global sup-
ports and one for broadcasting the frequent
itemsets. This two-round scheme can
degrade performance in a parallel setting.
FPM generates fewer candidates and
retains the local and global pruning steps.
But instead of count polling and subsequent
broadcast of frequent itemsets, it simply
broadcasts local supports to all processors.

The more interesting aspect of this
work is a metric Cheung and Xiao define
for data skewness (the distribution of
itemsets among the various partitions).
For an itemset X, let pX(i) denote the
probability that X occurs in partition i.
The entropy of X is given as

The entropy measures the distribution
of the local support counts of X among

all partitions. The skewness of an item-
set X is given as

S(X) = (Hmax – H(X))/ Hmax

where Hmax = log(n) for n partitions. S(X)
is 0 if X has equal support in all partitions,
and 1 if X occurs in only one partition. A
database’s total data skewness is the sum
of the skew of all itemsets weighted by
their supports. In practice, we need con-
sider only the frequent itemsets’ skew.
Cheung and Xiao’s experiments on a 32-
node IBM SP2 indicate that FPM can
outperform Count Distribution by a fac-
tor of 3 for data sets with a very high skew,
and by a factor of 1.5 for low-skew data.

SHARED-MEMORY MACHINES
The main design issues in shared-

memory systems concern minimization
and elimination of false sharing and
maintenance of good data locality. SMP
platforms have not received widespread
attention in parallel ARM literature.
However, with the advent of multi-
processor desktops and Clumps (for
example, nodes in an IBM SP2 can con-
sist of eight-way SMPs), SMP platforms
are becoming increasingly important.

Apriori-based
One of the first algorithms targeting

SMP machines was Common Candidate
Partitioned Database, which my col-
leagues and I proposed.13 As the name
suggests, CCPD uses a data-parallel
approach. The database is logically par-
titioned into equal-sized chunks, and all
the processors synchronously process a
global or common-candidate hash tree.

CCPD parallelizes candidate genera-
tion. Each processor generates a disjoint
candidate subset, leading to a good com-
putational division. To build the hash tree
in parallel, CCPD associates a lock with
each leaf node. When a processor wants
to insert a candidate into the tree, it starts
at the root, and successively hashes on the
items until it reaches a leaf. It then
acquires the lock and inserts the candi-
date. With this locking mechanism, each
processor can insert itemsets in different
parts of the hash tree in parallel. For sup-

port counting, each processor computes
frequency from its logical partition.

We also proposed additional opti-
mizations, such as short-circuited join
and hash-tree balancing. Short-circuited
join propagates bit markers up the hash
tree to avoid processing subtrees already
processed earlier. We used a new hash
function for hash-tree balancing, because
a simple mod (for two integers, a mod b
returns the remainder of a divided by b)
function can lead to skewed trees. A bal-
anced tree speeds up processing, because
it has a shorter height. We evaluated
CCPD’s performance on a 12-node SGI
Power Challenge. CCPD obtained rea-
sonable speedup, but the serial I/O was
detrimental to performance.

We also implemented the Parti-
tioned Candidate Common Database
algorithm, where the processors con-
struct disjoint candidate trees and scan
the entire database for candidate sup-
ports. However, the I/O overhead and
disk contention for PCCD was unac-
ceptable, resulting in slowdowns on
more than one processor.

In recent work, we proposed memory-
placement optimizations to speed up
CCPD. We showed that, because of the
nature of hashing, the candidate hash tree
has very poor data locality. Furthermore,
a common tree can lead to false sharing
in the support-counting phase. We pro-
posed mechanisms and policies to control
the hash tree’s memory layout based on
the access patterns in support counting.
Our schemes ensure that the nodes most
likely to be accessed in a sequence lie close
in physical memory as well. This leads to
good locality. We also proposed an effec-
tive privatization mechanism, where each
processor collects counts in a local array,
followed by a sum reduction for reducing
false sharing. Experiments on a 12-node
SGI Challenge showed improvements of
50% to 60% over the base case.

DIC-based
Cheung and colleagues have proposed

the Asynchronous Parallel Mining algo-
rithm, which is based on DIC.14 APM uses
FDM’s global-pruning technique to
decrease the size of candidate 2-itemsets.
This pruning is most effective when there

H X pX i pX i

i

n
() () log ()= − ()∑

UB X X ub Xi j
j j i

s
() . sup ()

,
= +

= ≠
∑
1

October–December 1999 23

is high data skew among the partitions.
However, DIC requires that the partitions
be homogeneous (as explained earlier).

APM addresses this problem by treat-
ing the first iteration separately. APM
logically divides the database into many
small, equal-sized virtual partitions. The
number of virtual partitions l is inde-
pendent of the number of processors p,
but usually l ≥ p. Let m be the number of
items. APM gathers the local counts of
the m items in each partition. This forms
an l × m data set, with l item support vec-
tors in an m-dimensional space. APM
groups these l vectors into k clusters,
maximizing intercluster distance and
minimizing intracluster distance. Thus,
the k clusters or partitions are as skewed
as possible, and they are used to gener-
ate a small set of candidate 2-itemsets.

APM now prepares to apply DIC in
parallel. The idea is to divide the data-
base into p homogeneous partitions. Each
processor independently applies DIC to
its local partition. However, there is a
shared prefix tree among all processors,
which is built asynchronously. APM
stops when all processors have processed
all candidates, whether generated by
themselves or others, and when no new
candidates are generated. To apply DIC
on its partitions, each processor must
divide its local partition into r subparti-
tions. Furthermore, DIC requires that
both the p interprocessor partitions and
the r intraprocessor partitions be as
homogeneous as possible. APM ensures
that the p partitions are homogeneous by
assigning the virtual partitions from each
of the k clusters of the first pass in a
round-robin manner among the p
processors. Thus, each processor gets an
equal mix of virtual partitions from sep-
arate clusters, resulting in homogeneous
processor partitions.

To get intraprocessor partition homo-
geneity, APM performs a secondary k-
clustering. That is, they group the r parti-
tions into k clusters, and again assign
elements from each of the k clusters to the
r partitions in a round-robin manner.
Experiments on a 12-node Sun Enterprise
4000 SMP indicate that APM outperforms
a Count Distribution/CCPD-type algo-
rithm by a factor of four to five. An inter-

esting trade-off in APM is that although
data skewness is good for global pruning,
it is detrimental to workload balance.

HIERARCHICAL SYSTEMS
A hierarchical system has both distrib-

uted- and shared-memory components—
for example, a cluster of SMP worksta-
tions. Hierarchical systems are becoming
increasingly popular today, especially with
the advent of multiprocessor desktops and
recent advances in high-speed networks.
These clusters provide scalability and
performance comparable to expensive
machines but at an attractive cost. In fact,
even the distributed-memory machines
such as IBM SP2 can have eight-way SMP
nodes. Another example is the SGI Ori-
gin NUMA hardware-distributed shared-
memory system. In a hierarchical system,
we have to optimize internode communi-
cation and data decomposition and opti-
mize intranode data locality and false shar-
ing for each SMP node.

Eclat-based
My colleagues and I have proposed

four algorithms—ParEclat, ParMaxEclat,
ParClique, and ParMaxClique—that tar-
get hierarchical systems.15 All four are
based on their sequential counterparts.6

In the discussion below, I refer to a p-
way SMP node as a host, and I assume
that there are n hosts, for a total of np
processors in the system. These methods
assume that the database is in the vertical
format and partitioned among the hosts
so that each host gets an entire tidlist for
a single item. The total length of local
tidlists is roughly equal on all hosts.

All four algorithms have a similar par-
allelization and differ only in search strat-
egy and equivalence class-decomposition
technique. Figure 3 contrasts these meth-
ods against the Count-Distribution algo-
rithm. Each of these four algorithms has
three main phases:

• the initialization phase, which performs
computation and data partitioning;

• the asynchronous phase, where each
processor independently generates
frequent itemsets; and

• the reduction phase, which aggre-
gates final results.

In the initialization phase, the master
host generates prefix or Clique-based
equivalence classes, using the frequent
2-itemsets. A greedy algorithm then
schedules these classes among all available
processors. Each class has a weight based
on its cardinality. The greedy scheduling
algorithm then sorts the classes by weight
and assigns the largest class to the proces-
sor with the least total weight, repeating
the process for each class in sorted order.
After parent class scheduling, tidlists are
selectively replicated on each host, so all
item tidlists that are part of an assigned
class on a processor are available on the
host’s local disk. Only the hosts take part
in this communication.

In the asynchronous phase, each proc-
essor has available the classes assigned to
it, and the tidlists for all items. Thus, each
processor can independently generate all
frequent itemsets from its classes. No
communication or synchronization is
required. Furthermore, all available sys-
tem memory is used; no in-memory hash
or prefix trees are needed. Only simple
intersection operations are required for
itemset enumeration.

The four algorithms differ depending
on the decomposition and search strategy
used. ParEclat and ParMaxEclat use pre-
fix-based classes, but they use bottom-up
and hybrid search, respectively. ParClique
and ParMaxClique use smaller clique-
based classes, with bottom-up and hybrid-
lattice search, respectively. We experi-
mented on a 32-processor Digital Alpha
cluster, with eight four-way SMP hosts,
connected by the fast Digital Memory-
Channel network. Comparisons with a
hierarchical implementation of Count
Distribution/CCPD showed orders-of-
magnitude improvements of ParMax-
Clique over Count Distribution.

SUMMARY OF PARALLEL
ALGORITHMS

Table 2 shows the essential differences
among the different methods reviewed ear-
lier and groups together related algo-
rithms. As you can see, there are only a
handful of distinct paradigms. The other
algorithms propose optimizations over
these basic cases. For example, PEAR,
PDM, NPA, FDM, FPM, and CCPD are

24 IEEE Concurrency

all similar to Count Distribution. Likewise,
SPA, IDD, and PCCD are similar to Data
Distribution, whereas HPA and HPA-
ELD are similar to Candidate Distribu-
tion. Hybrid Distribution combines Count
and Data Distribution techniques. Par-
Eclat, ParMaxEclat, ParClique, and Par-
MaxClique are all based on their sequen-
tial counterparts. Finally, APM is based on
the sequential DIC method, and PPAR is
based on Partition. Thus, these parallel
methods share the same complexity and
properties of the sequential algorithms on
which they are based (see Table 1).

Open problems

Despite recent advances in high-per-
formance ARM algorithms, several prob-
lems still need serious and immediate
attention.

HIGH DIMENSIONALITY
Current ARM methods can handle

only a few thousand dimensions or items.
The problem is as follows. The second
iteration, which counts the frequency of
all 2-itemsets, essentially has quadratic
complexity. The reason is, we must con-
sider all item pairs, and no pruning is
possible at this stage. In general, the
algorithms’ complexity might not be lin-
ear in the number of dimensions. We
need new parallel methods that scale
with the dimensions. Some possible

solutions include methods that enumer-
ate only maximal patterns, those that use
hash-based pruning to reduce the candi-
date itemsets (especially 2-itemsets)7 and
those that use global pruning.11

LARGE SIZE
Databases continue to increase in size.

Current methods can handle data in the
tens-of-gigabytes range. Current ARM
algorithms do not appear to be suitable for
the terabyte range. Even a single scan for
these databases is considered expensive.
Most algorithms are iterative and scan data
multiple times; hence, they are not really
scalable. Mining all frequent itemsets in a
single pass is an open problem. Another
factor limiting the scalability of most cur-
rent algorithms is the in-memory candi-
date hash tree or prefix tree. For large
databases, the candidates will certainly not
fit in aggregate system memory. This
means candidates must be written out to
disk and divided into partitions small
enough to be processed in memory—
entailing further data scans. For vertical-
format approaches, we must consider cases
where even a single tidlist doesn’t fit in
memory. Techniques from parallel-join
algorithms offer a possible solution.

DATA LOCATION
Today’s large-scale data sets are usually

logically and physically distributed. Orga-
nizations that are geographically distrib-

uted need a decentralized approach to
ARM. The issues concerning modern
organizations are not only the size of the
data to be mined, but also its distributed
nature. ARM data may be horizontally
partitioned (where different sites have dif-
ferent transactions) or vertically parti-
tioned (where different sites have differ-
ent items). Most current work concerns
only the horizontal-partitioning approach.

DATA SKEW
One of the problems adversely affect-

ing load balancing in ARM algorithms is
sensitivity to data skew. Most methods
partition the database horizontally in
equal-sized blocks. However, the number
of frequent itemsets generated from each
block can be heavily skewed. That is,
although one block might contribute
many frequent itemsets, the other might
have very few, implying that the proces-
sor responsible for the latter block will be
idle most of the time. Randomizing the
blocks is one solution, but it is not ade-
quate, given ARM’s dynamic and inter-
active nature. The user might specify dif-
ferent support levels, or the user might be
interested in only a particular set of items.

Another kind of data skew depends on
whether itemsets are frequent in many or
only a few blocks. We have seen that most
algorithms require low data skewness for
good load balancing. But a high skew is
needed to apply global pruning and cut
down the candidate set. Both of these
opposing needs must be reconciled, and
the effect of skewness on different algo-
rithms needs to be studied further.

DYNAMIC LOAD BALANCING
All extant algorithms use only a static

load-balancing scheme based on the ini-
tial data decomposition, and they assume
a homogeneous, dedicated environment.
This is far from reality. A typical parallel
database server has multiple users and
transient loads. This calls for an investi-
gation of dynamic load-balancing schemes
for ARM. Dynamic load balancing is also
crucial in a heterogeneous environment.
Such an environment might include meta-
clusters and superclusters, with machines
ranging from ordinary workstations to
supercomputers.

Table 2. Parallel-algorithm characteristics.

ALGORITHM CHARACTERISTICS

Count Distribution Apriori-based
PEAR Candidate prefix tree
PDM Hash table for 2-itemsets, parallel candidate generation
NPA Only master does sum reduction
FDM Local and global pruning, count polling
FPM Local and global pruning, skewness handling
CCPD Shared memory

Data Distribution Exchange full database per iteration
SPA Same as Data Distribution
IDD Ring-based broadcast, item-based candidate partitioning
PCCD Shared memory (logical database exchange)

Hybrid Distribution Combines Count and Data Distribution

Candidate Distribution Selectively replicated database, asynchronous
HPA No database replication, exchange itemsets
HPA-ELD Replicate frequent itemsets

ParEclat Eclat-based, asynchronous, hierarchical
ParMaxEclat MaxEclat-based, asynchronous, hierarchical
ParClique Clique-based, asynchronous, hierarchical
ParMaxClique MaxClique-based, asynchronous, hierarchical
APM DIC-based, shared memory, asynchronous

PPAR Partition-based, horizontal database

October–December 1999 25

RULE DISCOVERY
The main focus of the current parallel

methods has been frequent itemset dis-
covery. The rule-generation phase has
received almost no attention. The reason
was the assumption that there were only
a few frequent itemsets, which led re-
searchers to believe rule generation was
cheap. This assumption doesn’t hold for
massive data sets. We can extract literally
millions of frequent itemsets. The com-
plexity of the rule-generation step is 0(r ⋅
2l), where r is the number of frequent
itemsets and l is the longest frequent pat-
tern. This is not a trivial problem if r is
large, even if we assume l is bounded. Par-
allel methods are needed to efficiently
enumerate all strong rules.

PARALLEL DATABASE-MANAGEMENT
SYSTEMS AND FILE SYSTEMS

All the results reported, thus far, parti-
tion the database, mainly horizontally,
among the different processors by hand.
No one has studied using a parallel file sys-
tem for managing the partitioned data-
base, along with the accompanying strip-
ing and layout issues. Recently, we’ve
witnessed increasing emphasis on tight
database integration of ARM, but it has
been confined to sequential approaches.

GENERALIZATIONS OF ASSOCIATION
RULES

The ARM problem we have considered
in this article is in fact the binary-associa-
tion problem: an item is either present or
absent from a transaction. We can also
think about the general case where the
quantity of the items bought is also con-
sidered. This problem is called quantita-
tive-association mining. In general, we can
have items that take values from a contin-
uous domain (called numeric attributes)
or items that take a finite number of non-
numeric values (called categorical attri-
butes). Applying ARM to such data typi-
cally requires binning or discretizing the
continuous attributes into ranges. Then
we must form new items for each range of
the numeric attributes or for each value of
the categorical attributes.

Another extension of ARM is called
generalized-association mining. Here, the
items are at the leaf levels in a hierarchy

or taxonomy of items. The goal is to dis-
cover association rules involving concepts
at multiple (and mixed) levels, from the
primitive item level to the root of the hier-
archy. The computational complexity for
both these generalizations of binary asso-
ciations is significantly greater. Therefore,
parallel computing is crucial for obtaining
good performance.

ALTHOUGH I PLACED the problems
discussed above within the association
framework, they are equally relevant for
any practical parallel or distributed data-
mining system. Such systems are still in
their infancy, and a lot of exciting work
remains to be done in system design,
implementation, and deployment. I hope
that this article will serve as a reference
for the state of the art for both researchers
and practitioners interested in building
parallel and distributed ARM systems.

References
1. R. Agrawal et al., “Fast Discovery of Associ-

ation Rules,” Advances in Knowledge Dis-
covery and Data Mining, U. Fayyad et al.,
eds., AAAI Press, Menlo Park, Calif., 1996,
pp. 307–328.

2. J.S. Park, M. Chen, and P.S. Yu, “An Effec-
tive Hash Based Algorithm for Mining Asso-
ciation Rules,” Proc. ACM SIGMOD Conf.,
ACM Press, New York, 1995, pp. 175–186.

3. A. Savasere, E. Omiecinski, and S. Navathe,
“An Efficient Algorithm for Mining Associa-
tion Rules in Large Databases,” Proc. 21st Int’l
Conf. Very Large Databases., Morgan Kauf-
mann, San Francisco, 1995, pp. 432–444.

4. A. Mueller, Fast Sequential and Parallel
Algorithms for Association Rule Mining: A
Comparison, Tech. Report CS-TR-3515, Univ.
of Maryland, College Park, Md., 1995.

5. S. Brin et al., “Dynamic Itemset Counting
and Implication Rules for Market Basket
Data,” Proc. ACM SIGMOD Conf. Manage-
ment of Data, ACM Press, New York, 1997,
pp. 255–264.

6. M.J. Zaki et al., “New Algorithms for Fast
Discovery of Association Rules,” Proc. 3rd
Int’l Conf. Knowledge Discovery and Data
Mining, AAAI Press, Menlo Park, Calif.,
1997, pp. 283–286.

7. J.S. Park, M. Chen, and P.S. Yu, “Efficient
Parallel Data Mining for Association

Rules,” Proc. ACM Int’l Conf. Information
and Knowledge Management, ACM Press,
New York, 1995, pp. 31–36.

8. R. Agrawal and J. Shafer, “Parallel Mining
of Association Rules,” IEEE Trans. Knowl-
edge and Data Eng., Vol. 8, No. 6, Dec.
1996, pp. 962–969.

9. T. Shintani and M. Kitsuregawa, “Hash
Based Parallel Algorithms for Mining Asso-
ciation Rules,” Proc. 4th Int’l Conf. Paral-
lel and Distributed Information Systems,
IEEE Computer Soc. Press, Los Alamitos,
Calif., 1996, pp. 19–30.

10. E.H. Han, G. Karypis, and V. Kumar, “Scal-
able Parallel Data Mining for Association
Rules,” Proc. ACM Conf. Management of
Data, ACM Press, New York, 1997, pp.
277–288.

11. D. Cheung et al., “A Fast Distributed Algo-
rithm for Mining Association Rules,” Proc.
4th Int’l Conf. Parallel and Distributed
Information Systems, IEEE Computer Soc.
Press, Los Alamitos, Calif., 1996, pp. 31–42.

12. D. Cheung and Y. Xiao, “Effect of Data
Skewness in Parallel Mining of Association
Rules,” Proc. Pacific-Asia Conf. Knowledge
Discovery and Data Mining, Lecture Notes
in Computer Science, Vol. 1394, Springer-
Verlag, New York, 1998, pp. 48–60.

13. M.J. Zaki et al., “Parallel Data Mining for
Association Rules on Shared-Memory Multi-
Processors,” Proc. Supercomputing ’96,
IEEE Computer Soc. Press, Los Alamitos,
Calif., 1996.

14. D. Cheung, K. Hu, and S. Xia, “Asynchro-
nous Parallel Algorithm for Mining Asso-
ciation Rules on Shared-Memory Multi-
Processors,” Proc. 10th ACM Symp. Parallel
Algorithms and Architectures, ACM Press,
New York, 1998, pp. 279–288.

15. M.J. Zaki et al., “Parallel Algorithms for
Fast Discovery of Association Rules,” Data
Mining and Knowledge Discovery: An Int’l
J., Vol. 1, No. 4, Dec. 1997, pp. 343−373.

Mohammed J. Zaki is an assistant professor
of computer science at Rensselaer Polytech-
nic Institute. His research interests focus on
developing efficient, scalable, parallel, and
interactive algorithms for various data-mining
and knowledge-discovery tasks. He received
his BS in computer science from Angelo State
University, Texas. He received his MS and
PhD in computer science, both from the Uni-
versity of Rochester. Contact him at the
Computer Science Dept., Rensselaer Poly-
technic Inst., Troy, NY 12180; zaki@cs.rpi.
edu; www.cs.rpi.edu/~zaki.

