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ABSTRACT
With the ubiquity of large-scale graph data in a variety of
application domains, querying them effectively is a chal-
lenge. In particular, reachability queries are becoming in-
creasingly important, especially for containment, subsump-
tion, and connectivity checks. Whereas many methods have
been proposed for static graph reachability, many real-world
graphs are constantly evolving, which calls for dynamic in-
dexing. In this paper, we present a fully dynamic reachabil-
ity index over dynamic graphs. Our method, called DAG-
GER, is a light-weight index based on interval labeling, that
scales to million node graphs and beyond. Our extensive
experimental evaluation on real-world and synthetic graphs
confirms its effectiveness over baseline methods.

1. INTRODUCTION
Graph-based representation of data has become predomi-

nant with the emergence of large-scale interlinked networks,
such as social networks, biological networks, the World Wide
Web and semantic RDF (Resource Description Framework)
graphs. For instance, Facebook has 750 million users with
and average of 130 friends per user. This implies that the
Facebook social graph has 750 million nodes, with approxi-
mately 49 billion edges. Similarly, RDF graphs with over a
billion triples are quite common these days.

Most of the above real world networks undergo update
operations. These updates include addition and deletion
of edges or nodes. In social networks such as Twitter and
Facebook, it is not surprising to see a dynamically changing
graph structure as new connections emerge or existing ones
disappear. Web graph undergoes frequent updates with new
links between pages. Wikipedia is a representative example
wherein links are added as new content pages are generated,
and deleted as corrections are made to the content pages.

The scale of these datasets has renewed interest in graph
indexing and querying algorithms. Answering reachability
queries in graphs is one such area. Given a directed graph
G = (V,E), where V is the set of vertices and E is the set
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of directed edges, a reachability query asks if there exists
a path p from a source node u to a target node v in the
directed graph G. If such a path exists, we say that u can
reach v (or v is reachable from u), and denote it as u  v.
If u cannot reach v, we denote it as u 6 v. The reachability

query itself is denoted as u
?
 v. Traditional applications

for reachability assumed that the graph was static.
The new emerging applications such as social network

analysis, semantic networks, and so on, however, call for
reachability queries on dynamic graphs. For example, social
networks rely extensively on updates in order to recommend
new connections to existing users (e.g., via the ‘People You
May Know’ feature in Facebook). Within dynamic RDF
graphs, reachability queries help determine the relationships
among pairs of entities.

Both the scale and the dynamic nature of these graphs
call for highly scalable indexing schemes that can accommo-
date graph update operations like node/edge insertion and
deletion. Recomputing the entire index structure for every
update is obviously computationally prohibitive. Moreover,
for online systems that receive a steady volume of queries,
recomputing the index would result in system down-time
during index updation. As a result, a reachability index
that can accommodate dynamic updates to the underlying
graph structure is desired. Despite this need, the dynamic
reachability problem has received scant attention. This is
primarily due to the complex nature of the problem – a
single edge addition or deletion can potentially affect the
reachability of all pairs of nodes in the graph. Moreover,
most of the static indexes cannot be directly generalized to
the dynamic case. This is because these indexes trade-off the
computationally intensive preprocessing/index construction
stage to minimize the index size and querying time. For
dynamic graphs, the efficiency of the update operations is
another aspect which needs to be optimized. However, the
costly index construction typically precludes fast updates.
It is interesting to note that a simple approach consisting of
depth-first search (DFS) can handle graph updates in O(1)
time and queries in O(n + m) time1, where m is the num-
ber of edges. Any dynamic index will be effective only if it
can amortize the update costs over very many reachability
queries.

Let us consider the example graph in Figure 1(a). It
is worth noting at the outset that the nodes A, B and
C have identical reachability because they form a strongly
connected component (SCC). Coalescing such components
(shown within dashed ovals) into a single node yields a di-
rected acyclic graph (DAG) called the condensation graph,
as depicted in Figure 1(b). Letters are used for the initial
graph labels and numbers for the SCC nodes (except for sin-

1For sparse graphs m = O(n) so that query time is O(n) for
most large real-world graphs.
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Figure 1: Sample input graph and its DAG

gle node SCCs, which remain as letters). For instance, the
SCC {A,B,C} is represented as node 1, {D,E, F,G} as 2,
and {N,O, P, S, T} as 3. In the static setting, all reachability
queries can be answered over the DAG. However for dynamic
graphs, maintaining the DAG structure imposes additional
overhead. First consider inter-component edges. For exam-
ple, the deletion of the edge (H,L), affects the reachability
of nodes R, 1, 2, and H . Adding the edge (C, J) only im-
pacts the reachability of node 1, which now can reach nodes
J , and K. On the other hand, adding the edge (N,B) cre-
ates a new SCC composed of 1, H , I , L and 3. Therefore
the corresponding DAG has to be updated by merging these
nodes into a new SCC labeled 4 (not shown). Now consider,
an intra-component edge; deleting (D,G) splits SCC 2 into
two components (D,E, F ) and G. Furthermore, this update
causes the nodes D, E and F to lose their reachability to
J and K. These examples clearly show that local changes
to the graph can have widespread impact in terms of the
reachability.

In this paper, we propose a scalable, light-weight reach-
ability index for dynamic graphs called DAGGER (an ana-
gram of the bold letters in Dynamic Graph REAchability,
with an extra ‘G’), which has linear (in the order of the
graph) index size and index construction time, and reason-
ably fast query and update times. Some updates can be
handled in constant time, however, updates can take linear
time in the worst case. In particular, we make the following
contributions:

• DAGGER uses dynamic interval labels based on multiple
random traversals of the SCC DAG.

• DAGGER supports common update operations, namely
node and edge insertions and deletions. Updates made
to the input graph are mapped onto updates on the cor-
responding DAG over the SCC nodes. Additions (dele-
tions) that do not merge (split) SCCs are accommodated
in constant time. For updates that merge or split SCCs,
the DAG is appropriately updated.

• Whereas many of the previous approaches have been tested
on relatively small graphs (with up to 400k nodes), we per-
form a comprehensive set of experiments over graphs with
millions of nodes and edges. To our knowledge, this is also
the first work that experimentally evaluates updates for
all four operations. We explicitly study the tradeoff be-
tween indexing and searching in the presence of dynamic
updates.

Our experimental evaluation confirms that DAGGER is a
scalable, light-weight, and dynamic reachability index that
outperforms existing approaches, especially as the ratio of
queries to updates increases.

2. RELATED WORK
Many algorithms have been proposed for answering reach-

ability queries on static graphs. They can be broadly catego-
rized into two main groups – interval labeling [1, 20, 21, 12,
4], and 2HOP labeling [6, 17, 23, 5, 10]. The interval labeling
approaches use either the min-post labeling [1], or pre-post
labeling [20, 4, 12], on a spanning subtree of the DAG of
the original graph. Pre-post labeling assigns Lu = [su, eu]
to each node u where su and eu are the pre-order and post-
order ranks of node u in a DFS traversal of the DAG, starting
from the root(s), with the rank being incremented each time
we enter a node or back-track from a node. In contrast, in
a min-post labeling, eu is the post-order rank of u, and su
is the minimum rank of any node under u.

In 2HOP indexing [6, 18, 17, 23, 5, 10] each node deter-
mines a set of intermediate nodes it can reach, and a set of
intermediate nodes which can reach it. The query between
u and v returns success if the intersection of the succes-
sor set of u and predecessor set of v is not empty. Hybrid
approaches that combine 2HOP and interval labeling also
exist [10].

Dynamic Indexing Methods: While the above techniques
focus on reachability in static graphs, not much attention
has been paid to practical algorithms for the dynamic case.

The interval label based Optimal Tree Cover (Opt-TC) [1],
while primarily a static index, was also one of the first works
to address incremental maintenance of the index. Opt-TC
first creates interval labels for a spanning tree of the DAG.
However, for a non-tree edge (i.e., an edge that is not part
of the spanning tree), say between u and v, u inherits all
the intervals associated with node v. Testing reachability
is equivalent to deciding whether the interval of the source
node subsumes the interval of the target node. Since se-
lecting the optimal tree cover requires pre-computing the
transitive closure, this method is computationally infeasible
for large graphs. Certain operations such as addition and
deletion of non-tree edges involve updating the intervals of
all the predecessors. Due to the significant overheads asso-
ciated with incremental maintenance of the optimal cover,
Opt-TC is practically infeasible for large graphs.

In [3], the authors propose a technique for incremental
maintenance of the 2-HOP labeling in the presence of graph
updates – namely, addition and deletion of nodes and edges.
The delete operation in a typical 2-HOP labeling is expen-
sive, since it requires the updation of the successor and pre-
decessor labels of the deleted node/edge. To overcome this
drawback, the authors propose alternate 2-HOP labelings
(node separable 2-HOP labeling) that rely on heuristics based
on cut vertex and minimum graph bisection. On the down
side, the cover constructed using these heuristics has much
larger index size as compared to the static case.

For reachability in static graphs, HOPI [17] builds a 2-
HOP cover on partitions of the original graph that can fit in
memory; these are then merged by adding label entries for
links between partitions. Subsequent work [18] by the same
authors extends HOPI to allow incremental maintenance of
the HOPI index. Like [3], the delete operation is the most
compute intensive for HOPI index as well.

Within the theory community, several works have focused
on the theoretical aspects of reachability in the presence of
updates to the graph [16, 11, 14, 8]. Note that most of these
algorithms maintain the entire transitive closure in memory
and relies on a fast matrix multiplication procedure for the
update operation. It is important to note that these meth-
ods are designed for dynamic transitive closure, and as such
are not suitable for reachability queries in very large graphs,
due to their quadratic space requirements. Recently, several
of these theoretical methods for dynamic transitive closure
were experimentally analyzed in [15]. However, scalability



remains an issue as they require quadratic space.

3. THE DAGGER APPROACH
Static graphs are easier to index due to the fact that index

construction is performed only once, and therefore there is
tolerance for super-linear construction complexity. In a dy-
namic setting, where queries and graph updates are inter-
mixed, a small change in the graph structure might end up
altering the labels of many nodes. For example, removal of
a bridge edge or an articulation node may alter the reacha-
bility status of O(n2) pairs. Given that upper bound, each
operation in a dynamic index should be performed in sub-
linear time with respect to the graph order/size, otherwise
one can naively reconstruct a linear-time index after each
operation instead of using the dynamic index.

DAGGER is an interval labeling based reachability index
for dynamic graphs. Like other interval labeling methods it
works on the DAG structure of the input graph, and thus in
the dynamic case, it has to handle update operations on the
strongly connected components of the graph. DAGGER is
thus also a method to actively maintain the corresponding
DAG. DAGGER assigns multiple (randomized) interval la-
bels to every DAG node. It supports the four basic update
operations on the input graph, which are insertion and dele-
tion of an edge, and insertion and deletion of a node along
with its incident (incoming/outgoing) edges.
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Figure 2: DAGGER graph: i) Initial input graph Gi =
(V i, Ei) is shown on the plane (solid black edges). The
SCC components (V d) are shown as double-circled nodes.
Components consisting of single nodes are shown on the
plane, whereas larger components are shown above the
plane. DAG edges Ed are not shown for clarity. Contain-
ment edges (Ec) are shown as black dashed arrows. ii)
Insertion of the (dotted gray) edge (N,B) in Gi, merges
five SCCs, namely {1, H, I, L, 3}, with 3 as the new rep-
resentative. The thick gray dashed edges are the new
containment edges.

3.1 DAGGER Graph
DAGGER maintains a consolidated, layered graph struc-

ture to represent the input graph, as well as the DAG struc-
ture, and the containment relationships between nodes and
components. Formally, the DAGGER graph is given as
G = (V,E), where V = V i∪V d∪V e, and E = Ei∪Ed∪Ec,
where these node/edge sets are defined as follows:

• Input Graph (Gi): The input graph is denoted as Gi =
(V i, Ei), with the node set V i and edge set Ei. Any
update operation is first applied to Gi which later impacts
the other constituents of G.

• DAG (Gd): Due to the split/merge operations on the
SCCs resulting from graph updates, SCCs are of two types:
current or expired. An expired SCC is one that has been

subsumed (merged) into another SCC at some point. The

condensation graph of the input graph is a DAG Gd =
(V d, Ed), where each node in V d represents a current SCC
of the updated input graph, and Ed consists of edges be-
tween SCCs implied by the updated input graph. That is,
Ed = {(s, t)|s, t ∈ V d, and there exists an edge (u, v) ∈
Ei such that s = S(u) and t = S(v)}, where S(u) denotes
the current SCC corresponding to the input node u ∈ V i.
Note that DAGGER also keeps track of the number of
such edges between SCCs, i.e., there might be different
pairs of input edges (ui, vi), with S(ui) = s and S(vi) = t.
DAGGER stores this multiplicity information on the edge
itself. Also size(s) denotes the number of nodes compris-
ing the SCC s. Note that the set V e refers to the expired
SCCs, whereas V d constitutes the current DAG nodes af-
ter any update operation. We refer to the current set of
nodes/edges in Gd as the DAG nodes/edges.

• Containment edges (Ec): These refer to the subsump-
tion relationships between input nodes and SCCs, or be-
tween SCCs. Thus for a node u ∈ V i, the containment
edge (u, t) implies that node u belongs to the SCC t,
whereas for a node s ∈ V e, the containment edge (s, t)
implies that all nodes in the expired SCC s are contained
in SCC t (which may be expired or current). Contain-
ment edges constitute a union-find data structure where
the leaf nodes (with no children/subsuming nodes) rep-

resent the set of current SCCs, i.e., the DAG nodes V d.
The current SCC S(u) for any node u ∈ V i can thus be
found by tracing a path from u to a leaf component node,
via containment edges.

Figure 2 shows the DAGGER graph corresponding to the
example graph in Figure 1. The input graph Gi is shown on
the bottom plane, whereas the SCC nodes are placed higher.
The input edges Ei are shown as solid lines, whereas the in-
put nodes V i are single- or double-circled, and labeled with
letters. The initial set of containment edges are shown as
black dashed arrows (ignore the gray thick dashed arrows for
now). The initial set of DAG nodes, the current SCCs, are
shown double circled. A SCC node containing a single input
node, e.g., R, is shown double-circled on the bottom plane,
whereas a SCC node with size > 1 is labeled with a number,
and shown above the plane, e.g., SCC 2 represents nodes D,
E, F and G, which is also shown via the containment edges
from those nodes to 2. The current set of DAG nodes is
thus V d = {1, 2, 3, R,H, I, J,K,L,M}. It is important to
note that this is precisely how DAGGER avoids duplicating
the DAG structure, i.e., whereas we have used V i and V d

to denote the input and DAG nodes, for clarity. In our im-
plementation, the fact whether a node is an input node, or
a SCC node is conveniently represented using appropriate
node labels. This is important, since real world graph are
large and sparse, and DAGGER can thus avoid duplicating
large parts of the graph which are DAG-like (e.g., in the
extreme case, if the input graph is a DAG, then Gi and Gd

would be identical, and thus DAGGER can cut down the
space by half). Note that Figure 2 does not show the DAG
edges Ed to avoid clutter; these edges would be precisely
those shown in Figure 1(b). Finally, Figure 2 also shows
what happens due to an update operation, namely the addi-
tion of the (dotted gray) edge (N,B). This causes SCC 1 to
be merged into SCC 3 (as described later), along with nodes
H, I, L. These changes are reflected via the dashed, thick
gray containment edges. After this update, the set of cur-
rent SCCs is V d = {2, 3, R, J,K,M}, and the set of expired
ones is V e = {1} (note that we do not include the single
node SCCs in V e as another space saving optimization).



Throughout the paper, we will use the letters u and v to
refer to nodes in V i (the input nodes), and s and t to refer
to nodes in V d (the DAG nodes).

3.2 Interval Labeling
DAGGER maintains the DAG structure corresponding to

the input graph updates. It thus maintains labels only for
the SCC nodes. A labeler L : V d → {Li = [bi, ei]}ki=1, with
bi, ei ∈ N, is a function that assigns a k-dimensional interval
to every SCC node. We refer to the label of node s as Ls,
while Li

s is the ith dimension of the label. We refer to the
beginning of the interval Li

s as bis and the ending as eis.
DAGGER is a light-weight reachability index that uses

relaxed interval labeling, which makes it suitable for index-
ing dynamic graphs. The only invariant it maintains is that
if a node s reaches t, Ls has to subsume Lt. Equivalently,
if Li

s does not subsume Li
t for any i, s definitely does not

reach t. After each update on the input graph, DAGGER
updates labels based on the changes to G.

Property 1. No False Negative: If s t then Lt ⊂ Ls.
Equivalently, if Lt 6⊂ Ls then s 6 t.

DAGGER uses relaxed interval labeling as follows: As-
sume we know the labels of each child t of node s. The
tightest interval, Li

s = [bis, e
i
s] (for each dimension i ∈ [1, k]]),

that we can assign to s would be to start from the minimum
of bit (i.e., bis = mint{b

i
t}), and to end at the maximum of

eit +1 (i.e., eis = mint{e
i
t +1}), over all children t. However,

we do not use the tightest possible intervals. This is because
we want flexibility in assigning labels due to split/merge op-
eration on the SCCs. For instance, when a SCC s is split
into multiple components due to an edge deletion, the inter-
val of s has to be shared between the new components which
might not be possible if we use very tight intervals. Instead,
our scheme maintains a gap of at least size(s) in Ls.

Querying in DAGGER exploits the property 1. Given
query u  v, we lookup their components s = S(u) and
t = S(v). If Ls does not subsume Lt, we conclude that
s 6 t. Otherwise, the search continues from the children of
s recursively until we find a path to t, or the search can be
pruned earlier.

3.3 Supported Operations
DAGGER supports the following update operations that

constitute a fully dynamic setting for directed graphs.

• InsertEdge(u,v): Adding an edge between two nodes that
are in the same SCC does not change the reachability of
any pairs of nodes. Similarly if s = S(u) and t = S(v),
and there exist a DAG edge (s, t), it will have no effect on
the reachability. On the other hand, if (s, t) does not exist,
then all the descendants of t will become reachable from
the all the ancestors of s. In DAGGER’s interval labeling,
this can be accommodated by enlarging the intervals of
the ancestors of s so that they contain the interval of t.
The worst case occurs when t also reaches s, in which case
at least two components have to be merged, which alters
the DAG structure and the corresponding labeling.

• DeleteEdge(u,v) If u and v are in different components
s and t, respectively, and there are at least two edges
between s and t, the removal of (u, v) has no effect on
the DAG structure and labeling. If (u, v) is the only edge
between s and t, the DAG edge (s, t) has to be removed,
and the index has to be updated. Lastly, if the nodes
are in the same component, the edge removal might split
the components into many smaller components which can
lead to a costly update operation on the labels. This is

especially true for large real world graphs that usually
contain giant strongly connected components.

• InsertNode(u,Eu): We support node addition, along with
its set of outgoing and incoming edges. DAGGER first
adds the node, and then handles the edges via a series of
edge insertions.

• DeleteNode(u): When we delete a node we also have to
delete all incoming and outgoing edges, which are handled
as a series of edge deletions. However, in this case, it
is much more likely that a component splits and some
components become disconnected.

The biggest challenge for an efficient reachability index
on a dynamic graph is maintaining the strongly connected
components efficiently, especially given the fact that almost
all of the existing methods are designed to work on DAGs.
Below, we describe the details of DAGGER’s interval label-
ing (Section 4), and we show how these interval labels are
maintained over the DAG in response to the above graph
update operations (Section 5).

4. DAGGER CONSTRUCTION

4.1 Initial Graph Construction
Given an input graph Gi, DAGGER uses Tarjan’s algo-

rithm [19] to find the strongly connected components. For
each SCC that has more than one node, we create a SCC
node s in V d, and we connect the constituent input nodes
to s via containment edges in Ec. If a node u in Gi is
itself a component, we do not create a SCC node for it.
The black colored (solid/dashed) nodes/edges in Figure 2
show the initial DAGGER graph for our example graph in
Figure 1. In this graph, the SCCs 1, 2 and 3 are created
during the construction. We also compute the DAG edges
Ed = {(1, H), (1, I), (2, H), (2, J)}, which are not shown in
Figure 2 for readability purposes. As an space-saving op-
timization, we do not add DAG edges between SCC nodes
comprising single input nodes. As noted previously, single
node SCCs are not added to V d, which helps reduce the
space by at most a factor of two, with the limit achieved
when Gi is already a DAG.

[0, 19] R [0,19]

[0, 12] 1 [0,18] [0, 18] 2 [0,14]

[0, 8] H [0,10] [0, 9] I [0,15] [0, 14] J [0,7]

[0, 13] K [0,6] [0, 7] L [0,9]

[0, 5] 3 [0,5] [5, 6] M [7,8]

Figure 3: Two valid initial labelings

4.2 Initial Label Assignment
We use a modified min-post labeling scheme to label the

initial SCC nodes. DAGGER performs multiple (k of them)
randomized traversals on the DAG Gd, to assign multiple
intervals to the nodes, following the basic approach outlined
in GRAIL index [22]. For each traversal, labeling starts from
the root nodes of the DAG, and a label of a node is assigned



after all of its children are labeled, i.e., we use post-order
traversals. During the recursive traversal DAGGER keeps
a counter ctr, which is incremented by the size of the SCC
node s when exiting the node s. Figure 3 shows an example
interval labeling of the DAG Gd, using k = 2 (i.e., with two
interval labels per node). Each node has the first label on its
left, and second label on its right. In the first traversal, the
nodes are visited in left to right order whereas the order is
reversed in the second traversal (ordering is non-randomized
just for illustration). The first traversal (i = 1) arrives as
node 3 for the first time via the path (R, 1,H, L, 3) and
thus assigns the interval [0, 5] to L1

3 since the SCC size of
3, size(3), is 5. Then it backtracks to L and visits its next
child M , assigning it the interval [5, 6]. Note that b1M = 5,
since that is the value of ctr when M is visited, and e1M =
5 + 1 = 6, since size(M) = 1. After labeling the nodes
L and H , the traversal visits node I , whose child 3 has
already visited. In this case, I gets an interval that starts
from the minimum bit of all its children t, thus the interval
is L1

I = [0, 9], since ctr = 8 upon entry and size(I) = 1.
The second traversal visits and labels the nodes in the order
(R, 2, J,K, 3,H, L,M, 1, I), which leads to the second set of
intervals shown in Figure 3.

DAGGER makes k such random traversals to form k in-
tervals for each node, encapsulated as Ls = L1

s, L
2
s, · · · , L

d
s

for each DAG node s. Note that having multiple traversals
helps avoid false positives. For instance, looking at only the
first interval L1

2 = [0, 18] subsumes L1
1 = [0, 12] although

SCC node 2 does not reach 1. However, looking at the sec-
ond interval, L2

1 = [0, 18] subsumes L2
2 = [0, 14]. Thus, with

both intervals considered simultaneously, neither the hyper-
rectangle L1 nor L2 subsume each other. It is worth noting
that DAGGER’s labeling leaves enough gap in the label of
each node so that when a component node is split, its in-
terval can be shared among the new nodes. Details of how
labels are updated will be given later.

4.3 Component Lookup
Containment edges (Ec) and current/expired SCC nodes

(V d ∪ V e) comprise a union-find [7] data structure within
DAGGER. Such a union-find structure is more efficient than
directly maintaining a lookup table for a node x and its SCC
S(x), especially for merging components. For instance, if
we are merge k SCCs, each of which represents b nodes (on
average), via union-find we can merge them in O(k) time,
whereas it would take O(bk) time via a lookup table.

Finding the SCC node S(u) that represents input node u
is straightforward. The process starts from u and follows
the containment edges as long as it can. The node that does
not have a containment edge is the corresponding SCC node.
We apply two optimizations to provide faster lookup perfor-
mance. First, when we are merging several components we
always attach other components to the largest component.
Secondly, whenever we lookup a node u, we update all the
containment edges of the component nodes on the path from
u to S(u). This is known as path compression [7]. These
two optimizations provide O(α(n)) amortized lookup time
where α(n) is the inverse Ackermann function. Ackermann
function is such a quickly-growing function that its inverse
is smaller than 5 for any practical value of n. Therefore
component lookup is essentially constant time.

5. DAGGER: DYNAMIC MAINTENANCE
For each of the update operations on the input graph, we

first show how we update the DAGGER graph G. Once the
graph is updated, we explain how to update the labels for
the DAG nodes.

5.1 Edge Insertion

5.1.1 SCC Maintenance
Given an edge e = (u, v) to be inserted in Gi, we first

locate their corresponding components s = S(u) and t =
S(v), and check whether they are equal. If u and v are
in the same component, no further action has to be taken.
Otherwise, we check whether the insertion of e merges some
of the existing components.

Remark 1. An edge insertion merges at least two SCC
nodes if and only if s is already reachable from t, i.e., if
t s.

Proof: If there is already a path from t to s, insertion
of e = (s, t) completes the cycle creating a new component
which contains all the nodes en route from t to s (note: there
may be multiple such cycles).

We can thus check if we need to merge some components

via the reachability query t
?
 s. For example, consider the

insertion of the dotted gray edge (N,B) to Gi in Figure 2.
The corresponding SCC nodes are S(N) = 3 and S(B) = 1.

We query 1
?
 3, which returns a positive answer. Thus, all

the nodes involved in paths that start from 1 and end at 3
will be the members of the new component.

In general, there are two cases to consider when inserting
an edge. The first case is that t 6 s, and (s, t) 6∈ Ed. In
this case, the only change in the DAGGER graph G is the
addition of (s, t) into Ed. If (s, t) ∈ Ed no change is required
at all. The second case is when t s, creating at least one
cycle. To find all the nodes en route from t to s, DAGGER
performs a recursive search starting from t. The algorithm
adds a node w to the result list if any of its children lead to
a path to s. In other words if w 6 s, w should not be in the
list. Here too, we take advantage of DAGGER labels, since
if Lt 6⊂ Ls, then w 6 s. In that case we do not recurse into
w. While finding the nodes en route from 1 to 3 in Figure 3,
the search starts from 1 and proceeds with H and L but it
does recurse from M since L3 6⊂ LM . Even if there was a
big subgraph under M , the pruning would prevent us from
visiting those nodes unnecessarily. On the other hand, since
L also has an edge to 3, L is included in the result list. This,
in turn, implies that H reaches 3, but we continue the search
by visiting the next child I to find other possible paths to
3. Finally, the algorithm returns the list (3, L,H, I, 1).

While we are finding the list of the nodes to be merged,
we also keep track of the largest SCC, since the SCC with
the largest size is chosen as the new representative. In our
case, SSC 3, with size(3) = 5 is the largest, so all the other
nodes are added under SCC 3. This is shown with thick/gray
dashed edges in Figure 2. Also note that after this opera-
tion, the nodes (L,H, I, 1) are no longer current, and will be
added to the expired SCC nodes V e (although, as an opti-
mization only the non-single-node component, namely SCC
1, is added to V e, and L,H, I revert to being simple input
nodes). Further note that we create a new component node
only when all the merged components are input nodes. For
the final step, DAGGER scans the nodes of the list and up-
dates the DAG edges Ed. The complexity of this operation
is O(m′) where m′ is the total number of edges among the
nodes to be merged.

5.1.2 Label Maintenance
We now discuss how the interval labels are assigned and

propagated due to possible component merge due to the edge
insertion.

Insertion of DAG Edge: If the interval of s, Ls, already
subsumes the interval of t, Lt, no labels should be updated.
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Figure 4: Merge Operation on the Index

In fact, this edge insertion eliminates some false positives
which in turn improves the quality of the index. Otherwise,
Ls = [bs, es] is enlarged to cover Lt with bs = min(bs, bt)
and es = max(es, et + 1). The enlargement is propagated
up recursively within the DAG to ensure that each parent
contains the intervals of its children.

Merging of Components: After updating the DAGGER
graph, we need to assign a label to the representative node
for the merged component.

Remark 2. The SCC maintenance algorithm returns a
list l of components to be merged, as a result of the insertion
of edge (s, t). The the first node of l is s whereas the last
node is t. Every node in l is reachable from t by definition,
therefore Lt already subsumes the intervals of all the other
nodes of l.

We assign the label of the last node of l to the new rep-
resentative node due to remark 2. For example after the in-
sertion of (N,B), the list of component nodes to be merged
is l = (3, L,H, I, 1), and 3 is chosen as the representative
node. In Figure 4(b), we show the labels after the merge
operation. Node 3, which is the new representative, copies
the interval of 1 which is [0, 18].

After the merge operation, some parents of the represen-
tative node c might no longer subsume Li

c. In our example,
K can reach 3, but the previous value of LK , [0, 6] in Fig-
ure 4(a), does not contain the new value of L3, thus its label
LK is enlarged to [0, 19] in Figure 4(b). Thereafter, LJ is
enlarged to [0, 20] to cover LK , followed by enlarging L2 to
[0, 21] and LR to [0, 22]. Essentially, we first recursively up-
date the ancestors whose start value is larger than bic. Next,
we update the end values of the ancestors, which is differ-
ent because end values have to be set to a larger value than
its children. Thus, if there exists more than two paths to a
node p, eip and the end values of the ancestors of p might
need to be updated more than once. For instance, if we had
enlarged L2 to [0, 19] before enlarging LK , we would have
to enlarge it and its ancestors labels once more because en-
larging LK also requires the enlargement of L2. To avoid
this before we update eip, we should have updated the end
values of all the children of p. We implement this by using a
priority queue which is based on the previous values of the
end values of the nodes. Since a node has a larger end value
than its descendants, it is guaranteed that before we update
p we will have had updated the children.

Computational Complexity: In the worst case, edge
insertion is composed of a reachability query and update of
the labels of the ancestors of the source node. Therefore
the computational complexity is O(km′) where m′ is the

number of edges in the existing DAG, |Ed|. However the

propagation usually stops after updating a small number of
ancestors. If the source already contains the target node and
the new edge does not merge SCC nodes, the update time
is constant.
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Figure 5: Deletion of (gray dotted) edge (L, P ) from
Gi. First, node L becomes a component by itself, and
we remove the containment link (L, 3). Then H does the
same. The call from B finds a path to the target node
P via C, I,O, T, S therefore these nodes remain under 3
along with P . Note that we do not touch A and N since
they will continue to remain under 3. Also the contain-
ment edges (B, 1) and (C, 1) are removed. Containment
edges (B, 3) and (C, 3) are added when we lookup for their
component, due to path compression within the union-
find structure. However (A, 1) is remains unchanged. To
reduce clutter, the DAG edges Ed are not shown.

5.2 Edge Deletion

5.2.1 SCC Maintenance
Nodes of Gi have to be examined to detect the conse-

quences of edge deletions on the DAGGER graph G. Dele-
tion of e = (u, v) may cause a split of an existing component
only if u and v are in the same component. If they are in
different components s and t, we just check whether the re-
moval of e also removes the (s, t) edge at the DAG level. If
that is the case we remove the (s, t) edge and update the
labels.

If both u and v are members of the same component s,
one naive way to find the emerging components is to per-
form Tarjan’s Algorithm on the nodes within SCC s. This
algorithm would work well if the sizes of the strongly con-
nected components are relatively small. The complexity of
the method is O(m′) where m′ is the number of edges inside
the component s. However in real-world graphs, it is not
uncommon to observe giant strongly connected components
with size O(n). Furthermore, the nodes inside this com-
ponent are usually highly connected and removal of edges
are less likely to split the component. Even if it breaks
up, the expectation is that there will still be a relatively
large strongly connected component remaining. Therefore
our goal is to devise an algorithm which can extract the
new components without traversing all nodes, especially the
ones that are going to stay within the large component.

Remark 3. When we delete the edge e = (u, v) from the
component s, we know that there still exists at least one path
from v to u. If we can still reach from u to v, it means that
they are still in the same component and the other members
of s are also remain unchanged.

Our algorithm is based on the fact that node v reaches
every other node in s. We want to find the new components
without visiting the nodes that are going to stay in the same
component as v after the split. We first start a traversal
from the node u. From remark 3, if we find a path to v, the



algorithm terminates without changing the component s.
However if there is no such path, there must be at least one
new component which contains u. We create new SCC nodes
for these new components. To find the the new components
that are reachable from s, we use Tarjan’s algorithm with
the following modifications: i) we only traverse the nodes in
s, ii) if we find that the node reaches the target node v, we
can immediately return without visiting other children, and
iii) if a new component is found, we push all of the parents
of the nodes of this new component to a queue. This same
approach is applied for each node in the queue. The reason
we add those parent nodes to the queue is that they may
become a part of another component which does not reach
v. However we do not add the parents of a node w if w  v,
because it implies that all the ancestors of w can reach v via
w which makes them remain in the same component with
v, which is s (note that v  w using a similar argument as
remark 3).

In a nutshell, components are extracted in a bottom-up
manner for all nodes w unless we are sure that w can reach v.
The main benefit of this algorithm as opposed to the naive
approach is in the pruning. It may find out the components
without traversing all the members of s. Finally, we create a
new node in V c for each component if it is not a single node
component, and we add the new node to the result list.

As an illustration of the algorithm, we delete the edge
(L, P ) in Figure 5 from the final graph we obtained in Fig-
ure 2. Since they are in the same component, we call the
extract component algorithm from node L. We skip the
child M as it is not a member of 3. Since L has no other
child, the function returns after putting its parent H into
the queue. Similarly the call from H returns after inserting
its parent B into the queue. When we run the recursive
method from B, the function will recurse into the nodes
C, I,O, T, S and P . As soon as it finds P , it will backtrack
to B marking each of the visited nodes. If a node is marked,
we know for sure that it is in the same component as the
target node. Furthermore, we do not put their parents into
the queue. For this reason, the algorithm does not touch
the nodes A and N in our example. That is also why A
still has a containment edge to node 1. Finally, the result-
ing list contains the new components L and H . The DAG
after deletion of (L,P ) is shown in Figure 6(a), whereas the
complete DAGGER graph is shown in Figure 5

If we delete (N,B) as a second example, we first extract
the components from N , which finds a new component com-
prised of (N,T,O, S, P ). Since it is not a single node com-
ponent we create a new SCC node 4 to represent them. We
add parents of these nodes which are member of SCC 3 into
the queue as potential new components. These are I and B.
When we recursively call the extract component method we
find that I is a single node component, as it has only one
child which is already visited. Finally, the routine stops at
B since it is the target node. B and its ancestors (which
are A and C) are left in SCC 3 without processing. The
algorithm returns the list (4, I, 3). See Figure 6(b) for the
final DAG after deletion of (N,B).

5.2.2 Label Maintenance
Removal of a DAG Edge: If an edge (s, t) is removed
from the DAG, we do not have to update the interval labels.
This is because the interval of s will still contain the interval
of t, which only introduces some false positives without in-
validating the index. However, to avoid some of those false
positives the label of s can be shrunk if the interval of t is at
the beginning or at the end of Ls. Furthermore, the same
change should be applied to parents of s recursively as long
as it is possible to shrink the interval of the parent node.
We use the simple strategy in this paper, namely, we do not
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Figure 6: Split Operations on the Index

update the labels when an edge is removed from Ed.

Splitting of Components: Upon the deletion of the edge
(u, v) from the component s, if the component breaks up,
the component extraction algorithm (in Section 5.2.1), re-
turns a list (called clist) of new components. These nodes
constitute a directed acyclic graph which has a single root s,
and a single leaf t (i.e., the component that contains u). We
perform random traversals (as we do for initial assignments)
that visit only the nodes of clist. The algorithm starts as-
signing intervals from bis and uses the size of new components
in computing end values. Consequently, since all paths in
clist lead to node t, Li

t gets assigned [bis, b
i
s + size(t)] unless

it has an outgoing edge to other components which have a
larger end value. Therefore, we keep a counter ctr which
provides the value of the post-order value of a node. We
also maintain the largest end value end of the children. The
counter values are incremented by size of the component
node. The final interval for a node u ends at the larger of
the values of ctr and end + 1. There is a slight possibility
that the interval of a node becomes larger than the former
interval of s. In that case the label has to be propagated up.

In Figure 6, we show two edge deletions that cause split
operations. When (L,P ) is deleted, H and L are separated
from 3 (see also Figure 5). A post-order traversal would
assign [0, 1], [0, 2] and [0, 11] to L, H and 3, respectively.
However due to edge (L,M) we enlarge LL to [0, 9], LM to
[0, 10] and finally L3 to [0, 11]. Since none of the new labels
exceed the old interval of 3, we do not need to propagate
them further. Next we delete the edge (N,B), which results
in the separation of 4 and I from 3. Note that after the
split, size(3) is 3 and size(4) is 5. A post-order traversal
would assign [0, 5], [0, 6] and [0, 9] to the nodes 4, I and 3
respectively. However due to edge (3,H) we keep [0, 11] for
node 3.

Computational Complexity: The cost of deletion is
constant if source and target nodes are in different compo-

nents. Otherwise the cost is O(m′ − m
′′

+ n
′′

) where m′

is the edge size of the component before split and m
′′

and

n
′′

are the edge and node sizes of the component where the
source node resides after the split. In fact, this is efficient es-
pecially when components are tightly connected internally,
which is usually the case in real graphs, such as web graphs
and social networks.

5.3 Node Insertion and Deletion
When a node u is inserted with incoming edge list li and

outgoing edge list lo, we first add u to Gi with its outgoing
edges. Since we haven’t processed any of its incoming edges
yet, u cannot be a member of a larger strongly connected



component. Therefore u is a SCC node with component
size 1. [bu, eu] is assigned to Lu where bu = min

w∈lo
(bS(w)) and

eu = max
w∈lo

(eS(w)) + 1, where S(w) is the component id for

node w ∈ lo. If it has no outgoing edges bu is set to the
largest existing end value and eu is set to bu +1. After that
the incoming edges li are inserted one by one via the edge
insertion algorithm. Thus the computational complexity of
node insertion is O(k|lo| + |li|Cei) where Cei is the edge
insertion time.

The deletion of nodes can also be defined in terms of edge
deletions. When we are deleting node u, we first delete all of
its outgoing edges one by one via the edge deletion algorithm
in Section 5.2. Once all its outgoing edges are deleted, it
becomes an SCC node with size 1. All the incoming edges
of u now become inter-component edges whose removal does
not change the labels of other SCC nodes. Thus we do not
invoke the edge deletion method for these. Lastly, we remove
the node u from Gi. Thus, the cost of node deletion is
O(|lo|Ced) where |lo| is the outdegree of the node and Ced is
the cost of single edge deletion.

5.4 Batch Update Operations
DAGGER is especially useful for graphs that undergoes

several reachability queries between each atomic updates.
The reason is that DAGGER is specifically designed for fine-
grained update operations and thus the index can always
reflect the underlying graph consistently. However in some
scenarios graphs can receive update operations in batches.
For example, an online social network service may want to
report to its database after accumulating updates for certain
period of timeframes instead of having round trips to the
database at every single graph update. The obvious solution
to handle a batch of K updates is subsequently processing
them. This may become quite forbidding for large values of
K as the runtime of an update operation can be linear on
the graph size in the worst case. In this section, we discuss
on how we can handle a batch of K updates better than
independently processing K single updates.

To begin with it is worth noting that reconstructing the in-
dex from scratch is the best solution if the size of the update
graph is in the order of the size of original graph. Because
DAGGER index construction is a lightweight operation and
could definitely be faster and healthier than incorparating
the atomic graph updates into the index one by one. For rel-
atively smaller batches, we can apply the following pruning
and reordering techniques. For the following discussion, we
assume update set U is composed of K update operation,
each of which we categorize in four classes. We notate an
update on edge e as e+(or e−) if it is an insertion (or dele-
tion). Similarly we use the subscripts ey and e	 to indicate
if the edge is an inter-component or intra-component edge
respectively. Therefore we have four disjoint sets of edges
composing U =

{

e1, . . . , eK |ei ∈ U+
	 ∪ U−

y
∪ U−

	 ∪ U+
y

}

.

• Pruning: Find pairs of complementing update operations
(e.g., insertion and deletion of a specific edge e) and re-
move them from the update list.

• Preprocessing: The condensation of the update graph can
be found as in DAGGER construction. That would reduce
the number of insertion operations in the update list.

• Batching: We can take advantage of batching if we group
edges by type and process them in the following order.

• U+
	 : These edges can be added into graph with no

changes to the index, as they do not change the reach-
ability of the graph.

• U−

y
: We can also skip the inter-component edge re-

movals just by updating the graph and not modifying
the index as we allow false positives.

• U+
y
: The real gain of batching happens in this type

of updates. Normally insertion of an inter-component
edge may cause enlargement of a label which should be
propagated up in DAG Gd. Therefore k such updates
have complexityO(k|Gd|). However this can be reduced

to O(k + |Gd|) if all k edges are added first into Gi at
once and propagating labels up in the DAG in one pass.

• U−

	 : A similar approach does not work for these kind
of updates since remark 3 does not hold when we delete
multiple edges from a SCC at a time.

6. EXPERIMENTS
In this section, we evaluate the effectiveness of DAGGER

on various real and synthetic datasets. We compare DAG-
GER with the baseline Depth-First Search (DFS). The other
methods are not included in our comparison because of the
following issues with them: i) Optimal-Tree Cover [1]: Al-
though it mentions how to update the index for some opera-
tions, it does not support all operations. Furthermore, it as-
sumes the graph is always acyclic. ii) Incremental-2HOP [3]:
The existing implementation do not support all update op-
erations. It supports edge insertions and node deletions.
iii) [15] provides an experimental analysis and implementa-
tions of the dynamic transitive closure [16, 14, 13, 11, 8]
approaches. However, none of them are scalable as they
require quadratic space.

In these experiments, we attempt to index very large dy-
namic graphs on a system with a quad-core Intel i5-2520M
2.50Ghz processor, with 4GB memory. To the best of our
knowledge, the largest dynamic graphs previously used for
reachability queries had 400K nodes [3]. Furthermore, that
study only applied node deletions. In that sense, our study is
unique in that it scales to million node graphs, and includes
a comprehensive evaluation over an intermixed sequence of
update operations, i.e., our evaluation includes all four up-
date operations – edge/node insertion/deletion.

6.1 Experimental Setup
To effectively and realistically evaluate the cost of index

maintenance, we intersperse reachability queries with the
graph update operations. We then compare DAGGER with
DFS to find out under which conditions DAGGER’s fast
querying amortizes the maintenance cost of the index. Note
that DFS has no update cost, but pays a penalty in terms
of longer query times. Thus, in a scenario that receives
queries very rarely (e.g., 1 query per hundreds of updates),
it is obvious that maintaining an index would not pay off.
Thus, in our experiments we vary the ratio of queries to up-
date operations, and measure the total time which includes
the query and update times for both DFS and DAGGER.
For each dataset, we report the average time for the update
operations and queries, as well as the total time taken for q
queries per update (QpU), where q ranges from one to eight.
As we shall see, DAGGER typically outperforms DFS after
just 2 queries per update, with the gap increasing as this
ratio goes up. This makes it an effective index for dynamic
real-world graph querying.

6.2 Datasets
As opposed to the static setting, evaluation of dynamic

indexing requires a valid sequence of update operations, as
well as the queries, along with an initial graph. We used
both real and synthetic graph datasets in our experiments,
as shown in Table 1. The row marked “Initial” shows the



Graph Node Edge DAG Largest
Dataset Size Size Size SCC

FrenchWiki
Initial 999,447 3,452,667 899,343 97,465
Final 999,499 3,452,953 899,360 97,502

PatentCitation
Initial 605,617 1,000,002 605,617 1
Final 705,617 1,205,190 705,617 1

ER1M
Initial 1,000,000 1,500,123 659,892 340,109
Final 1,000,170 1,500,631 659,647 340,505

BA1M
Initial 1,000,000 2,000,823 478,219 521,782
Final 1,000,182 2,001,313 478,240 521,930

Table 1: Properties of dynamic datasets: Node size
refers to |V i|, edge size to |Ei|, and DAG to |V d|; Largest
SCC refers the component size, i.e., number of nodes in
the largest SCC.

properties of the input graphs, whereas the row marked “Fi-
nal” shows the same properties after the completion of all
the update operations.

Real Graph Evolution: For these datasets we were able
to compile the complete evolution of a graph at the edge
level. We have two such datasets:

• FrenchWiki: Wikimedia Foundation dumps the snapshots
of Wikipedia in certain intervals (see dumps.wikimedia.org).
These dumps contain all the textual content with full re-
vision/edit history. We discarded the textual content and
recovered the evolution of the complete French language
Wikipedia graph from its birth by comparing the consec-
utive versions of each page. If a new wiki-link is added in
a version of a wiki-page, we consider it as an insertion of
an edge with the timestamp of that version of the wiki-
page. Similarly, if an existing wiki-link disappears in a
version of a wiki-page, we consider it as an edge deletion.
We took a snapshot of the graph and indexed it when it
had 1 million nodes, and we then applied the next 1000
update operations to the indexed graph.

• PatentCitation: This graph includes all citations within
patents granted in the US between 1975 and 1999 (see
snap.stanford.edu/data/cit-Patents.html). Since the
timestamps of the patents are also available, so we can
simulate the growth of the data. Note that the only up-
date in this data is node additions with a set of outgoing
edges. Therefore it is always an acyclic graph. We in-
dexed a snapshot of the graph when it had around 600K
nodes, and we then applied the following 100,000 node
additions to the initial graph as update operations.

Synthetic Graph Evolution: For these datasets, we
first generated three different random graphs. We then gen-
erated a synthetic update sequence of 1,000 operations. Our
random graphs are:

• ER1M: We generated a directed graph of 1 million nodes,
and 1.5 million edges using the Erdos-Renyi (ER) [9] ran-
dom graph model. Each edge is selected by choosing a
source and a target node, both uniformly at random, and
directing the edge from the source to the target.

• BA1M: The Barabasi-Albert (BA) preferential attachment
model [2] is a generative model which retains some real-
world graph properties such as power-law degree distribu-
tions. The average degree d is a parameter of the model.
Starting from 2d initial nodes, at each time step a new
node is added to the graph, with some outgoing edges
to the existing nodes. The number of outgoing edges is
chosen randomly in the range [1,2d]. Further, the end
point for each edge is “preferentially” selected with prob-
ability proportional to the degree of the existing node. In
other words, when node w is being inserted, it will be
connected to node x via the edge (w, x) with probabil-
ity degree(x)/2m where m is the current edge size of the

graph. To obtain possibly cyclic graphs with BA model,
we reversed the new edges with probability 0.5. Therefore,
the generative BA process can create cycles. We gener-
ated a graph with 1 million nodes using this directed BA
model (with d = 2).

For each of the synthetic graphs, we randomly generated
update sequences using a preferential attachment model. In
the generation of the update sequence, we first select the
operation type with predefined ratios (for instance, we used
60% insert edge, 15% delete edge, 20% insert node, 5% delete
node, which can be considered as representing a insertion fo-
cused graph growth scenario, with more weight on adding
edges). Since we also report the average time for each oper-
ation, the exact ratios of different operations does not effect
our conclusions. The sequence of update operations is gener-
ated as follows: i) Insert Edge: Select source node uniformly
at random and target node via preferential attachment. ii)
Delete Edge: Select an edge from the existing edges uni-
formly at random. iii) Insert Node: Randomly determine
the indegree and outdegree of the node, then select the other
ends for these edges via preferential attachment. iv) Delete
Node: Select a node uniformly at random and delete it with
its incident edges.

In our experiments, we measure the average update times
(i.e., edge insertion time (EI), node insertion time (NI), edge
deletion time (ED) and node deletion time (ND)) during
the lifetime of a dynamic reachability index. We used three
versions of DAGGER– DG0, DG1 and DG2 correspond to
DAGGER with no intervals (k = 0), 1 interval (k = 1),
and 2 intervals (k = 2) per node, respectively. Note that
DG0 maintains only the DAG graph without using any in-
terval labeling and answers queries by performing a search
on the DAG graph. In contrast, the basic DFS performs the
query directly on the input graph, since it obviously does
not maintain the DAG.

(a) Real Graphs

Data FrenchWiki Citation
Method Q EI ED NI ND Q NI
DFS 410 - - - - 0.19 -
DG0 221 60 253 0.06 191 0.31 0.06
DG1 148 48 267 0.02 189 0.10 0.06
DG2 128 62 279 0.02 192 0.08 0.06

(b) Synthetic Graphs

Data ER1M BA1M
Q EI ED NI ND Q EI ED NI ND

DFS 311 - - - - 448 - - - -
DG0 119 212 775 0.01 538 75 172 2032 0.03 2726
DG1 46 203 832 0.13 548 39 148 2138 0.13 2769
DG2 44 319 871 0.10 562 38 218 2202 0.07 2804

Table 2: Average Operation Times (in ms) on Real and
Synthetic Data. Q refers to query time, EI and ED to
edge insertion and deletion, and NI and ND to node
insertion and deletion.

6.3 Results
In Figure 7, we plot the total time taken to perform all

the operations (updates and queries) for DFS and the DAG-
GER variants DG0, DG1, and DG2. The total time (in sec)
is plotted against the number of reachability queries per up-
date operation. DAGGER has the advantage of fast query-
ing at the cost of index maintenance, whereas DFS has no
update cost. These plots make it clear that DG1 amortizes
the maintenance costs as long as there are 2-4 queries per
update operation, which is quite reasonable for an online

dumps.wikimedia.org
snap.stanford.edu/data/cit-Patents.html
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Figure 7: Total time comparison on dynamic datasets

system. The average update and query times on each of
the graph datasets are shown in Tables 2(a) and 2(b). We
discuss dataset specific results below.

FrenchWiki: In Figure 7(a), we see that DG0 performs
better DFS in total time starting with 4 queries per update.
In other words, the efficient dynamic DAG/SCC mainte-
nance in DAGGER is enough to outperform the baseline
DFS method. On the other hand, the interval labeling and
maintenance in DAGGER offers even more significant bene-
fits. We can observe that DAGGER with interval labeling is
better than DFS after just 2 queries per update. However,
it is interesting to note that there is no big difference in the
performance of DG1 and DG2. That is, using two interval
labels does not improve the total time. In Table 2(a) we can
see that whereas the average query time is indeed better for
DG2, unfortunately it incurs more overhead for the update
operations due to the extra cost of maintaining one more
interval, in particular for edge insertion/deletion.

PatentCitation: In this dataset the only update opera-
tion is node insertion with outgoing edges. From Table 2(a)
we observe that the cost of node insertions are very close for
all versions of DAGGER due to the fact that there is no DAG
maintenance (e.g., input graph is always a DAG) and no la-
bel propagation. Therefore, the plot in Figure 7(b) reflects
mainly the query time of the methods. DG0 has worse query
times than DFS, even though it performs the same search as
DFS, which can be attributed to the overhead of the DAG-
GER graph. However, dynamic interval labeling provides a
significant improvement on querying performance, with two
intervals (DG2) providing better query times than a single
interval label per node (DG1).

ER1M: Table 1 shows that this graph has a large con-
nected component one-third the size of the input graph; al-
most all the remaining nodes are single node components.
Table 2(b) shows the break down in terms of average oper-
ation times. We observe that DFS querying is three times
slower than even DG0! Further, dynamic interval labeling
helps, but the small query performance gain obtained by uti-
lizing two intervals per node instead of single interval does
not pay off the label maintenance cost. In particular, edge
insertion with DG2 is significantly slower than DG1, be-
cause when the interval of the huge component is enlarged,
this change has to be propagated up for all the incoming
edges of the huge component, and there can be many such
incoming edges. However, the cost of edge insertion does
not increase when moving from DG0 to DG1, because in-
terval labels also provide pruning when updating the DAG.
The plot in Figure 7(c) shows that DG1 is the best method
overall, and all DAGGER variants are preferable to DFS, if
there are at least 2 queries per update.

BA1M: The results are similar to those for ER1M (see
Table 2(b)). The main difference is that BA1M has a much
larger SCC, which reduces the size of the DAG significantly.
Hence, there is a greater performance difference between
DFS and DAGGER methods as seen in Figure 7(e). DG1
outperforms DFS starting with 2 queries per update.

In summary, over all the real and synthetic datasets, we

observe that typically DG1 gives the best overall perfor-
mance, whereas even DG0 (i.e., just maintaining the strongly
connected components without labeling) results in a signifi-
cant improvement over DFS. As expected, DAGGER amor-
tizes the index maintenance cost against query times, and
thus the more the queries received, the more the benefit. It
is also interesting to note that a single interval label provides
the best performance, and going to two labels does not con-
fer any effective advantage. There are two reasons for this:
i) when the DAG corresponding to the input graph is very
sparse (or tree-like), a single interval is sufficient to provide
fast querying, since it captures most of the topology, and ii)
dynamically updating labels makes the labels less random,
since our current label propagation algorithm is determin-
istic, and of course there is extra cost associated with label
propagation.

7. REFERENCES
[1] R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient

management of transitive relationships in large data and
knowledge bases. SIGMOD Rec., 18(2):253–262, 1989.

[2] A. L. Barabási and R. Albert. Emergence of scaling in
random networks. Science, 286(5439):509–512, 1999.

[3] R. Bramandia, B. Choi, and W. K. Ng. Incremental
maintenance of 2-hop labeling of large graphs. IEEE
Transactions on Knowledge and Data Engineering,
22:682–698, 2010.

[4] Y. Chen and Y. Chen. An efficient algorithm for answering
graph reachability queries. In ICDE, 2008.

[5] J. Cheng, J. X. Yu, X. Lin, H. Wang, and P. S. Yu. Fast
computing reachability labelings for large graphs with high
compression rate. In EBDT, 2008.

[6] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick.
Reachability and distance queries via 2-hop labels. SIAM
Journal of Computing, 32(5):1335–1355, 2003.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Chapter 21: Data structures for disjoint sets. In
Introduction to Algorithms, pages 498 – 524. MIT Press
and McGraw-Hill, 2001.

[8] C. Demetrescu and G. Italiano. Fully Dynamic Transitive
Closure: Breaking through the O(n2) Barrier. In FOCS,
2000.
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