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Abstract

A lot of current research in DNA computing has been directed towards solving difficult
combinatorial search problems. However, for DNA computing to be applicable on a wider
range of problems, support for basic computational operations such as logic operations like
AND, OR and NOT and arithmetic operations like addition and subtractionis necessary.
Unlike search problems, which can be solved by generating all possible combinations and
extracting the correct output, these operations mandate that only a unique output be gener-
ated by specific inputs. The question of suitability of DNA for such simple operations has
so far largely been unaddressed. In this paper we describe a novel method for using DNA
molecules to solve the basic arithmetic and logic operations. We also show that multiple
rounds of operations can be performed in a single test tube, utilizing the output of an opera-
tion as an input for the next. Furthermore, the operations can be performed in a linear series
or a series-parallel fashion and operators can be mixed to form any operation sequence.

1 Introduction

In recent work, Adleman [1] and Lipton [8] presented the ideaof solving difficult combinatorial search
problems using DNA molecules. These studies showed that DNAcomputing may have an advantage over
electronic computers for such problem domains due to the massive parallelism inherent in DNA reactions.
However, for DNA computing to be applicable on a wider range of problems, support for simple compu-
tational operations is necessary [5, 12, 14]. Boolean operators such as AND, OR and NOT, and arithmetic
operators such as addition and subtraction are the fundamental operations of an electronic computer. In
contrast to search problems, which can be solved by generating all possible combinations and extracting
the correct output, these operations mandate that only a unique output be generated by specific inputs. Al-
though DNA computers might not improve on current silicon technology for these operations, as Adleman
[2] has pointed out, “they can contribute to our understanding of the nature of computation.” There has
been some work in simulating boolean circuits and performing additions and matrix multiplications with
DNA. Ogihara and Ray [9] have shown how DNA computers can simulate Boolean circuits with a small
overhead. Oliver [10] has shown how DNA based methods can be used to calculate the product of Boolean
matrices or matrices containing positive, real numbers. Guarnieri et al. [6] have proposed a clever way to
add two binary numbers. The novelty of their approach is the introduction of a place holder for the carry
position while performing additions.1 As they themselves point out, a limitation of their approachis that1In contrast to boolean operators, ADD can generate two output bits (e.g. 1+1 = 10). In this case that bit position is assigned a
value of zero (0) and the one (1) is carried over. The carried over bit is added to the next bit position and the value of that position
adjusted accordingly. The operation is repeated as many times as there is a carry over.



the output strand of one operation cannot serve as the input strand for another round of addition. This has
been a constraining factor so far in performing a sequence ofoperations in a single vessel. In this paper we
show that this limitation can be overcome (in DNA), allowinga number of basic series and series-parallel
bit operation sequences in solution.

The rest of the paper is organized as follows. We present our bit encoding scheme, and our approach to
performing a single bit operation in solution in section 2. We extend this framework to handle aseriesor a
linear sequence of mixed operations in section 3. We then show how to combine multiple series to perform
series-paralleloperations in section 4. Finally we conclude in section 5, with a discussion on the advantages
and limitations of our approach, as well as directions for future work.

2 Bit Encoding and Single Operations

Table 1 B. The truth table encoding using dinucleotide "bits"

AND

(Interpretation of the Duplex for the Output)

Level 3Level 2Level 1
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In an electronic computer an operator is succinctly represented by a truth table, a table of all possible
combinations of the input bit values and their corresponding output values, as shown in table 1 A. Our
approach is to encode these truth tables in DNA using a three-level scheme. An operation is represented in
terms of DNA hybridization. For each binary operation, the two bit strings are represented with two different
DNA single strands. The first string is called the “input” andthe second the “operand” strand. Each bit is
represented with a dinucleotide unit, and a bit string with asequence of dinucleotides. The natural DNA
bases Adenine (A), Thymine (T), Uracil (U) and a non-naturalbase 7-deaza-adenine (P) (shown in figure 1)
are used for constructing the dinucleotides. A non-naturalbase is needed in order to realize all possible
input and operand bit values in DNA; a base which can pair withthe specificity of A and yet is chemically
distinct. 7-deaza-adenine2 base-pairs selectively with U and T just like A which makes itideal for our
application. The input DNA strand is constructed with dinucleotides 5’-AU representing bit 1, and 5’-UA,
the bit 0, where 5’ and 3’ denote directionality of the DNA strand. The operand strand is constructed with22-aminopurine and 2-aminoadenine could potentially be used too.



dinucleotides 3’-TA and 3’-PT, representing bit 0, and the dinucleotides 3’-AT and 3’-TP, representing bit
1. The table 1 B shows how these dinucleotides can base-pair to allow for all possible combinations of
the input strand and the operand strand. Since, as we will show later in the paper, the operand strands do
not have to be sequenced to obtain the final result, but instead carry an output strand, we do not have to
chemically distinguish between A and P at any stage. DNA strands carrying TA (similarly AT) might have
a different output appended to it than the DNA strand carrying TP (similarly PT) depending upon the result
of the calculation. If the input strand is constructed in the5’ to 3’ direction the operand strand is constructed
in the 3’ to 5’ direction and vice versa. The input strand is constructed using only A and U (level 1), while
the operand strand with A, T, and P (level 2). This keeps the input distinct from the operand, yet retains
the same base-pairing structure and allows all possible combinations of the input and operand bits (see
table 1). As a result of an operation the input strand hybridizes with its complementary operand strand to
form a double stranded DNA complex. This output is interpreted according to the truth table (level 3) of the
operator applied. Table 1 B shows our encoding scheme along with the truth tables for different boolean and
arithmetic operations such as NAND, AND, XOR and ADD (addition). The truth table encoding can easily
be extended to a number of other operators.

Figure 1: Chemical structure of the bases used; Adenine (A),Thyamine (T), Uracil (U), 7-deaza-adenine (P),
Guanine (G), Cytidine (C), iso-Guanine (M) and iso-Cytidine (N). Also shown are some example base-pairs,
and a dinucleotide “bit” unit.

The NAND operator is auniversalboolean operator, which means that any boolean operation can be
represented in terms of a sequence of NAND operators. Our first example shows the execution, in DNA,
of the operator NAND on the two binary strings 1001 and 0101, as depicted in table 2. The input bit string
1001, is represented as the DNA sequence 5’-AUUAUAAU. All 16possible DNA sequences are used to
represent the operand 0101, since there are two alternativedinucleotides for each bit in the level 2 encoding.
However, only one of the operand strands carries a DNA sequence complementary to the sequence of the
input strand. This strand (3’-TAATPTTP) is thus the only onethat can hybridize with the input strand to



yield a unique output duplex. The output, when decoded usingthe truth table for NAND, yields the correct
answer of 1110. In fact, the same output can be interpreted differently if decoded using a different operator’s
truth table. For instance, if we were to perform the operation (1001 XOR 0101) instead of (1001 NAND
0101), the input and all of the operand strands would still bethe same, and would yield the same output
duplex. However, interpreting this output duplex according to the truth table for XOR ( see table 1 B)
would generate a different but correct answer of 1100. This shows that single operations can be performed
efficiently with DNA using the proposed approach.

3’-TATPPTAT 3’-TATPPTTP
3’-TATPTAAT 3’-TATPTATP
3’-TAATPTAT 3’-TAATPTTP
3’-TAATTAAT 3’-TAATTATP
3’-PTTPPTAT 3’-PTTPPTTP
3’-PTTPTAAT 3’-PTTPTATP
3’-PTATPTAT 3’-PTATPTTP
3’-PTATTAAT 3’-PTATTATP

Input Strand Operand Strands Unique Output

3’-TAATPTTP
5’-AUUAUAAU5’-AUUAUAAU

1 0 0 1 0 1 0 1 1 1 1 0

Table 2 Example of a NAND operation

3 Mixed Operation Series

In order to extend this framework to handle aseriesoperation, i.e. a linear sequence of operations, we have
to address two main issues: 1) how can the output of one operation, a double strand, be used as the input
for the next operation, and 2) how to ensure that the operations take place only in the desired order. As
shown in the first example from table 2,each input strand can bind with only one of the operand strands
producing a duplex representing the unique output. As a solution to the first problem we attach,a priori, the
corresponding output value to each of the operand strands inthe form of a single stranded DNA. The DNA
sequence of the output is constructed using the level 1 encoding from table 1 B. Thus, each operand strand
carries a covalently linked output strand which does not interfere with its operation of hybridizing with the
input strand, but instead results in a duplex with a sticky-end upon one such complexation. This sticky-end
can then act as the input strand for the next operation. Not only does this allow a series operation involving
a single operator, but also mixed operators, since the output strand attached to the operand is dependent only
on a particular operator.

To solve the second problem, we use a unique DNA sequence tag on each strand. This tag is just a
length 4 DNA segment comprised of four bases, the natural bases Guanine(G) and Cytidine (C) along with
the non-natural bases iso-Guanine (M) and iso-Cytidine (N), shown in figure 1. This allows for a maximum
of 256 unique tags, which gives us the option of performing 256 consecutive operations. This number can
be increased by simply using a longer tag sequence. Each input strand is linked with a unique tag, while
the operand strand next in order in the sequence, is linked with the complementary tag. The input can thus
only hybridize with the next operand. A unique tag for the next step is also linked to the output strand,
since it serves as the input for the next operation. The tags also prevent the formation of unproductive
duplexes. For example, since each of the strands is made up ofan operand and an output, they may become



self-complementary. The tags prevent this from happening.Using this approach, we generate unique DNA
sequences as inputs and obtain a unique final output resulting from the desired sequence of operations.

-CGNM-AUUAAUUA-CCGG3’-TATPPTTP

-CGNM-AUAUAUUA-CCGG3’-PTATPTTP

-CGNM-AUUAAUAU-CCGG3’-PTTPTATP

3’-TATPPTAT-CGNM-AUUAAUAU-CCGG

3’-TATPTAAT-CGNM-AUUAAUAU-CCGG 3’-TATPTATP-CGNM-AUUAAUUA-CCGG

3’-TAATPTAT-CGNM-AUAUAUAU-CCGG 3’-TAATPTTP-CGNM-AUAUAUUA-CCGG

3’-TAATTAAT-CGNM-AUAUAUAU-CCGG 3’-TAATTATP-CGNM-AUAUAUUA-CCGG

3’-PTTPPTAT-CGNM-AUUAAUAU-CCGG 3’-PTTPPTTP-CGNM-AUUAAUUA-CCGG

3’-PTTPTAAT-CGNM-AUUAAUAU-CCGG

3’-PTATPTAT-CGNM-AUAUAUAU-CCGG

3’-PTATTAAT-CGNM-AUAUAUAU-CCGG 3’-PTATTATP-CGNM-AUAUAUUA-CCGG

5’-AUUAUAAU-GCMN
3’-TAATPTTP-CGNM-AUAUAUUA-CCGG

(1 0 0 1)Input Strand
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B

3’-TAATPTTPCGNM-----AUAUAUUACCGG  3’-TATATATPGCGC----AUUAUAUAUA(NNNN)

5’-AUUAUAAUGCMN  5’-TATATAATGGCC-----AUAUAUAUCGCG

+

A

Input Strand Second Operand Strand 

First Operand Strand Third Operand Strand 

C

Final Output

Figure 2: Example of a series operation. A) The first operation : (1001 NAND 0101); B) The whole series :
(((1001 NAND 0101) XOR 0001) ADD 0001); C) A template of the structure generated (The arrows denote
directionality, the unfilled boxes the input and operands, the black box the output, and the pattern-filled
boxes the tags).

In figure 2, we present an example of how three different operators – NAND, XOR and ADD – can be
performed in succession on DNA. The example solves the series operation sequence (((1001 NAND 0101)
XOR 0001) ADD 0001). The first two bit strings are the same as those used in our first example from table 2.
The input strand (5’-AUUAUAAU-GCMN) has the bit string 5’-AUUAUAAU (1001) linked with the tag 5’-
GCMN. Figure 2 A shows the 16 possible representations of theoperand strand (0101) that could possibly
bind with the input (similar to our first example). Only one strand hybridizes with the input, namely the
strand 3’-TAATPTTP-CGNM-AUAUAUUA-CCGG, where 3’-TAATPTTP is the bit string 0101, 3’-CGNM
is the complement of the tag 5’-GCMN, 3’-AUAUAUUA is the attached output (1110) of the operation and
3’-CCGG is the tag for the next operation. The result of the first operation is thus a duplex with a single
stranded overhang (3’-AUAUAUUA-CCGG), which is ideally suited to serve as the input strand for the next
operation – XOR 0001.



Our second operand strand, representing 0001, also has 16 possible representations (not shown). Only
5’-TATATAATGGCC-AUAUAUAUCGCG (see figure 2 B) hybridizes with the output of the previous op-
eration, producing a duplex with the overhang 5’-AUAUAUAUCGCG as the output (1111) of the current
operation. Out of the 16 possible third operand strand (0001) DNA sequences, for ADD 0001, only 3’-
TATATATPGCGCAUUAUAUAUA(NNNN)3 hybridizes with the output of the previous round of opera-
tions. 5’-(NNNN)3 is a special tag signifying that the sequence of operations has completed and is used for
extracting the result. The unique result of our operation 3’-AUUAUAUAUA, when decoded using the truth
table, is 10000, which is the correct result of our operationsequence. This examples shows that our scheme
generates a unique output from a series operation in solution.

4 Series-Parallel Operations

In order to emulate the more complex boolean circuits as in anelectronic computer, support forseries-
parallel operation sequences is desirable. A series-parallel operation sequence merges two or more series
operation sequences. In figure 3 we show how the above architecture can be extended to handle a series-
parallel operation sequence in a single test tube. The output of the series operation (from the previous exam-
ple, figure 2 B), a duplex with an overhang is used as both the input and the operand complex, performing
the operationI NAND O, whereI =O = (((1001 NAND 0101) XOR 0001) ADD 0001). However, instead
of the typical operand strand which has an output attached toit, the operand complex for the series-parallel
operation has two attached outputs – the output of the series-parallel operation followed by the output of the
series operation sequence, shown in figure 3 A). The final stepis a copy-operation – AND 11111 (which
simply replicates the output). The result of this operationsequence is a three-arm junction [15, 17] with the
correct output (01111) as the overhang, ideally suited for performing more operations.

5 Discussion and Conclusion

Only a theoretical model is presented in this paper. However, it is based on well-established techniques of
biological chemistry. To practically carry out the operations in a test tube, we can attach the input strand
5’-AUUAUAAUGCMN to a magnetic bead, and add all the operand strands for the different operations to
be performed, to the solution. The solution can then be heat-denatured, annealed and ligated.3 All strands
with the magnetic bead attached can be filtered off, and the output strand end-sequenced to produce the
result.

For ann bit long string (2n length DNA strand), with tag lengthm, our technique must satisfy some
constraints. The length of an input/operand strand ism + 2n. Since the mismatch tolerance of a duplex
increases with its length, at present duplexes only about 20base-pairs long can distinguish single-base mis-
matches [16], introducing the constraintm + 2n � 20 on our system. Furthermore, form operations, we
need at leastm �2n distinct DNA strands in the solution. For nanomolar quantities of each, thermodynamical
limitations would put the upper bound at approximately1014 different strands. The first constraint, though,
clearly subsumes the second. The total length of the output complex,2n � m, might also be limited by
various factors that affect the reliability, such as the hybridization conditions, nearest-neighbor interactions
(sequence context), and the efficiency of both the successive ligations and the result extraction process. We
use two-fold (internal and end) mismatch discrimination system to prevent formation of unwanted (mis-
matched) duplexes/complexes. Each internal mismatch is atleast two base long since we use dinucleotides3Ligation can be performed either enzymatically, using DNA ligase enzyme, or chemically using Letsinger’s method [7]. The
DNA strands will have to be properly end-modified for either of the cases. The modifications should not affect their hybridizing
properties.
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AND 11111

(((1001 NAND 0101) XOR 0001) ADD 0001)

(((1001 NAND 0101) XOR 0001) ADD 0001)

NAND

Copy-Operation Strand

1 1 1 1 1

5’-ATTPTPTPTPNNCG--MCGMMCGMUAAUAUAUAU(NNNN)
3

3

0 1 1 1 1

Input Complex

Operand Complex

Series Output

1 0 0 0 0’

0 1 1 1 1

Series Output

Series-Parallel
Output

0 1 1 1 1

Final Output

Figure 3: Example of a series-parallel combination operation (Input NAND operand);Input: (((1001
NAND 0101) XOR 0001) ADD 0001) = 10000 (same as in figure 2);Operand: same asInput; Interme-
diate Result: 10000 NAND 10000 = 01111;Copy-operation: 01111 AND 11111 = 01111 (Final Output).
A) The sequence of the input complex, operand complex, and the copy-operation strands; B) The three-arm
junction generated as a result of the series-parallel operation. (Inset) A template of the three-arm junction
structure.



as single ”bits”. Thus the stability of the perfectly matched duplex is much higher than that of a mismatched
duplex. Moreover, ligases are very sensitive to end mis-matches. Only perfectly matched duplexes are lig-
ated by the enzyme. This gives us a very good mismatch protection at the ends of each duplex. To improve
the reliability, the end-tag can be used for PCR amplification of the output. The PCR amplified output can
be sequenced to also verify the operations performed. Finally, the number of series-parallel operations may
be limited due to the steric constraints (branching-out) that three-arm junctions introduce.

There are42n different sequences possible for a2n length DNA strand, if random encodings are used.
An advantage of using our fixed encoding scheme is that we needto synthesize only2n DNA sequences per
operation4, which is a very small subset of42n. The increase in demand of DNA strands is also linear in
the number of operations rather than exponential (m � 2n instead of2m � 2n). Furthermore, since all possible
representations of the operands, for each of the operations, are added to the solution in the beginning, all
possible outputs are produced in the solution. We can then simply add a given input to the solution, which
will bind to its complementary sequence, and then extract the unique output. The same solution can then
be reused with different inputs, for sequential extractionof the corresponding outputs. Thus the vessel
serves as a black-box (representing some function to be performed), which takes in different input values
to produce the corresponding outputs, without having to perform the operation again. Moreover, the fact
that all the intermediate results are present in the final output, prevents the loss of any information about the
computation, and can be used for implementing reversible logic gates [3].

There are some other advantages to our approach. The use of dinucleotides as single bit units lets us
represent information at a much higher bit density than any previous methodology, and brings it very close
to the theoretical limit of a bit per base.5 Our methodology also makes possible a succinct representation
of basic computational operators. The use of different bases for encoding the bits and the operation order
permits series as well as series-parallel operation sequences in one test tube, producing a unique result, and
simplifies the extraction process. The unique tags help keepthe operation sequence in order. They also avoid
the fan-outproblem where a randomized sequence of molecules can produce an exponentially increasing
number of product strands with the progression of the operation sequence. We use2n molecules for each
step, which interact with2n molecules from the previous step to generate the same numberof molecules for
the next step.

Generation of DNA molecules carrying sticky-ends as the output of each operation, in the reaction
vessel, is another nice feature of our scheme. This output iswell suited to serve as the input for the next
operation which enables us to accomplish the generic input/output semantics of an electronic computer.
This is an important first step in solving problems using DNA computing where the DNA molecules have
to go through multiple rounds of computation. Moreover, in most of the prior approaches where DNA
was used for computing, the encoding was application specific and based on the particular application in
mind. One of the most important advantages of our proposed mechanism is that it makes both encoding
and computation more general (uniform) and application independent. As our examples show, almost any
basic computational operation can be carried out on our “DNAcomputer”. The addition of a memory is an
important issue and we plan to incorporate that into our model. See [13] for a solution to this problem. They
propose astickerbased model which has a random access memory.

In conclusion, we present a new approach for computing with DNA. The ability to perform complex bit
operations in solution might help us learn more about the nature of computation and lead to the development
of better DNA based computers, capable of solving a wide range of complex problems.4All the strands can be synthesized in a single combinatorialsynthesis cycle using techniques of photolithography and nucleic
acid chemistry [4, 11].5Although, in principle mono-nucleotides can be used as single bits, there may be some complications to using such strands for
performing different operations. For example, a long sequence of a mono-nucleotide can form unwanted triplexes.
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