Available online at www.sciencedirect.com

. . DATA &
ScienceDirect KNOWLEDGE
P, ENGINEERING
ELSEVIER Data & Knowledge Engineering 60 (2007) 51-70

www.elsevier.com/locate/datak

CLicks: An effective algorithm for mining subspace clusters
in categorical datasets ™

Mohammed J. Zaki ®*, Markus Peters °, Ira Assent °, Thomas Seidl ®

& Department of Computer Science, Rensselaer Polytechnic Institute, Lally 307, 110 8th St., Troy, NY 12180-3590, United States
® R WTH-Aachen, Germany

Available online 3 March 2006

Abstract

We present a novel algorithm called CLicks, that finds clusters in categorical datasets based on a search for k-partite
maximal cliques. Unlike previous methods, CLicks mines subspace clusters. It uses a selective vertical method to guarantee
complete search. CLicks outperforms previous approaches by over an order of magnitude and scales better than any of the
existing method for high-dimensional datasets. These results are demonstrated in a comprehensive performance study on
real and synthetic datasets.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Clustering; Categorical data; k-Partite graph; Maximal cliques

1. Introduction

Clustering is one of the central data mining problems; it aims to find “naturally’” occurring groups of points
in a given dataset. Clustering of numeric (or real-valued) data has been widely studied, but categorical (or dis-
crete-valued, symbolic) data has received relatively less attention. There are several challenges in clustering
categorical attributes: (i) No Natural Order: The lack of an inherent natural order on the individual domains,
renders a large number of traditional similarity measures ineffective. (i1) High Dimensionality: Practical exam-
ples suggest that categorical data can have many attributes, requiring methods that scale well with dimension-
ality. (iii) Subspace Clusters: Many categorical datasets, especially sparse ones, do not exhibit clusters over the
full set of attributes, thus requiring subspace clustering methods.

In this paper, we present CLicks,' a novel algorithm for mining categorical (subspace) clusters. Our main
contributions are: (1) We present a novel formalization of categorical clusters. We summarize the dataset as a

* This work was supported in part by NSF Career Award I11S-0092978, DOE Career award DE-FG02-02ER25538, and NSF grants
EIA-0103708 and EMT-0432098.
* Corresponding author. Tel.: +1 518 276 6340; fax: +1 518 276 4033.
E-mail addresses: zaki@cs.rpi.edu (M.J. Zaki), peters@informatik.rwth-aachen.de (M. Peters), assent@informatik.rwth-aachen.de
(1. Assent), seidl@informatik.rwth-aachen.de (T. Seidl).
' CLicks is an anagram of the bold letters in Subspace CLusterIng of Categorical data via maximal K-partite cliques.

0169-023X/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.datak.2006.01.005

mailto:zaki@cs.rpi.edu
mailto:peters@informatik.rwth-aachen.de
mailto:assent@informatik.rwth-aachen.de
mailto:seidl@informatik.rwth-aachen.de

52 M.J. Zaki et al. | Data & Knowledge Engineering 60 (2007) 51-70

k-partite graph, and mine maximal k-partite cliques, which after post-processing correspond to the clusters.
The k-partite maximal clique mining method is interesting in its own right. (2) CLICKS uses a selective vertical
expansion approach to guarantee complete search; no valid cluster is missed. It also merges overlapping cli-
ques to report more meaningful clusters. (3) Cricks addresses the main shortcomings of existing methods.
Unlike many previous categorical clustering algorithms, Cricks can mine subspace clusters. Furthermore, it
imposes no domain constraints and is scalable to high dimensions. (4) CLicks outperforms existing approaches
by over an order of magnitude, especially for high-dimensional datasets. These results are demonstrated in a
comprehensive performance study on real and synthetic datasets.

2. Preliminaries

Let A4;,...,4, be a set of categorical attributes and Dy, ..., D, a set of domains, where D; = {v;,,...,v;,} is
the domain for attribute 4;, and D; N\ D; = () for i # j. A dataset is a subset of the Cartesian product of the
attribute domains, given as 2 C D; X --- x D,. The number n of attributes is also referred to as the dimension-
ality of the dataset. An elementr = (r.4y,...,r.A,) € Dis called a record, where r.A; € D; refers to the value for
attribute A4; in r. Each record also has a unique record id (rid), given as r.id.

Let S; g D;, a subset of values for attribute A,~,.. A k-subspace is defined as the cross-product

S 81 x -+ x S, of some subset of k attributes 4;,,.. . Bach §; is called a projection of S on attribute
I k— n, then the n-subspace is also called a full—space leen any two subspaces X = X x --- X X,
and Y=Y, x---xY,, wesay that X is contained within Y, denoted as X C Y, iff m < n and Vi € [1 m] there

exists a unique j € [1,n], such that X; C Y. Given any collection % of subspaces, M € . is a maximal subspace
iff there does not exist M’ € &, such that McM.

Let S =8 x --- x S; be a k-subspace, with k < n. A record r = (r.4y,...,r.4,) € Z belongs to S, denoted
re S, iff rd, €8, for all j € [1,k]. The support of S in dataset & is deﬁned as the number of records in the
dataset that belong to it; it is given as a(S) = |{r € Z : r € S}|. S is called a frequent subspace if o(S) > ™",
where ¢™" is some user-defined minimum support threshold.

Under attribute independence, the expected support [20] of S in Z is given as E[a(S)] = || - Hf | “;"‘ Addi-

tional a-priori information about the expected dataset distribution can also be integrated at this point by mod-
ifying the definition for E[a(S)].

Let o € R*. Define a density indicator function 6,(S) as follows: §,(S) = 1 iff 6(S) = «- E[6(S)], otherwise

04(S) =0. S is called a dense subspace iff §,(S) = 1, that is, if its expected support exceeds its actual support

by a user-defined factor o.

Two sets of projections S; and S, are called strongly connected iff Vv, € S; and Vv, € S;, the 2-subspace
{v,} X {vp} is dense. S =8 x --- x §; is called a strongly connected subspace iff S; is strongly connected to
S;forall 1 <i<j<k

Definition 1 (Categorical Cluster). Let & be a categorical dataset and o € R". The k-subspace
C = (Cy x---x Cy) is a (subspace) cluster over attributes 4,,,...,4;, iff it is a maximal, dense, and strongly
connected subspace in &. The projection C; is also called the cluster projection of C on attribute 4;.. If kK <n,
then C is called a subspace cluster or a k-cluster, otherwise C is called a full-space cluster.

Our cluster definition requires the k-subspace C be dense, i.¢., it should enclose more points than expected
under attribute independence. Also only maximal clusters are mined to reduce the amount of redundant infor-
mation. Ideally one would like to discover only maximal, dense subspaces as clusters. However notice that
density is not downward closed (i.e., for a dense subspace Y there may exist a subspace X C Y, such that X
is not dense), which makes it difficult to prune the search space. However, we believe that dense subspaces
are more informative than say purely frequent ones. To make the search for dense spaces tractable, our cluster
definition uses the notion of strong connectedness, which is downward closed. This enables new candidate sub-
spaces to be extended from existing (strongly connected) ones, leading to more efficient search.

Example 2. Consider the sample dataset & given in Fig. 1 with a total of three categorical attributes A, 45, A3
and six displayed records. Here Dy = {ay,a»,a3}, D> = {b1,b5,b3}, D3 = {c1,¢o,¢c3}. Let o = 2.5. Assuming that
attributes and their values are independent the expected support for any pair of values, i.c., the 2-subspace

M.J. Zaki et al. | Data & Knowledge Engineering 60 (2007) 51-70 53

ID A Ay Aj

1 aq b] C1
a9 bg (&)
as by c3
a9 bl C1

ag bg C3

(= N N N \V)

as bz C3

Fig. 1. Sample categorical dataset.

{v;} x {v;} from different attributes A4; and A;, is Elo({v;} x {v;})]=1/3x1/3x6 =0.67. Thus any pair of
values that occurs at least 2 times (i.e., o({v;} x {v;}) = 2) will be dense (since 2/0.67 = 2.98 > «). Thus for
o = 2.5 there is only one full-space cluster in this dataset ({a,} X {b3} X {c3}); there is an additional subspace
cluster: ({b} x {c1}).

On the other hand, if we use o = 1.5, then any pair of values that occurs once will be considered dense. Thus
for o = 1.5, there are 3 full-space clusters in this dataset: ({aj,a>} X {b1} X {c1}), ({az, a3} X {b3} X {c3}), and
({ar} X {b3} X {cs,c3}). There are two additional subspace clusters: ({a»} X {b1,b3}), and ({a»} X {c1, ¢z, ¢3}).
Note that {3} X {c¢,} is not a subspace cluster because is not maximal (it is included in {a,} X {b3} X {¢2,¢3}).
Note also that an interesting property of our approach is that the clusters found for higher o will always be
contained in a lower o, which can allow the user to produce a cluster hierarchy.

2.1. The Cricks approach

Cricks models a categorical dataset as a k-partite graph where the vertex set (attribute values) is partitioned
into k disjoint sets (one per attribute) and edges exist only between vertices in different partitions, indicating
dense relationships. In essence, the adjacency matrix of the k-partite graph serves as a compressed represen-
tation of the data, and can fit into main memory for even very large datasets. CLicks then maps the categorical
clustering problem to the problem of enumerating maximal k-partite cliques in the k-partite graph.

Definition 3 (k-Partite Graph and Clique). Let & be a categorical dataset over attributes Ay,..., A4, and
V =L ,D;. The undirected graph I'y = (V, E) where (v;,v;) € E <= 0,({v;} x {v;}) = 1 is called the k-partite
graph of 2. A subset C C V'is a k-partite clique in I' 5 iff every pair of vertices v; € C N D;and v; € C N D; (with
i # j) are connected by an edge in I'y. If there is no C’ D C such that C’ is a k-partite clique in I'5, Cis called a
maximal k-partite cliqgue. A clique C is dense if 5,(C) =1 in .

Lemma 4. Given a categorical dataset 9 and a k-subspace C = Cy x --- x Cy with C; C D;; over attributes
Aiy ... A, Cis a k-cluster in & if and only if C is a maximal, dense k-partite clique in I'q.

Proof. By Definition 3, for dataset & and k-partite graph I'y = (V,E), (v, 05) € E <= ,({v;} x {v;}) = 1.
Thus C is a clique iff C is strongly connected. Finally both definitions require 6,(C) =1 and that C be
maximal. [

Example 5. Consider the example dataset & shown in Fig. 1; let « = 2.5. From Example 2 we know that each
pair of values that occurs at least 2 times is dense in &, and thus there is an edge between such vertices in I'y.
The corresponding k-partite graph of & is shown in Fig. 2, using bold edges. It clearly has two clusters, one

54 M.J. Zaki et al. | Data & Knowledge Engineering 60 (2007) 51-70

Fig. 2. k-Partite graph of 9.

full-space and one sub-space. If o = 1.5, then some other (thin) edges will be added to the graph. Mining this
new graph will produce the larger set of clusters mentioned in Example 2. It should be clear that clusters mined
at o = 2.5 are contained in those at o = 1.5, since a lower o only adds edges to I'y.

3. Related work

Many full-space clustering algorithms have been proposed in the past; we refer the reader to any good book
on data mining [1]. We focus here only on the relevant research in subspace mining and categorical clustering.

Note that our k-partite model is different from the notion of bi-clusters [2], which uses a bi-partite model for
9, where one vertex set U denotes the set of record identifiers, and the other set V' = [J._, D;, the set of all attri-
bute values. We can then add an edge between u € U and v € V iff v appears in record u. One could claim that a
cluster is equivalent to a maximal bipartite clique (X, Y) with X C U and Y C V. However, this bi-partite
model can never mine a bipartite clique of the form (X, {ay,a»,b1,c1}), corresponding to the cluster
({a,ar} x {b1} x {c1}) from Example 2, since no record u € U can be connected to both a; and a, (they never
co-occur). If we consider such edges, then the bi-partite model becomes essentially the same as our k-partite
model.

3.1. Subspace clustering

Since CLIQUE [3]introduced the problem, many subspace clustering techniques have been proposed [4-8].
Also relevant is the problem of detecting bi-clusters from numeric data, especially in bioinformatics applica-
tions [9]. Let R denote the set of record identifiers, and A4 the set of attributes. A bi-cluster is a pair (U, V), with
U C R, V C A, such that the mean square error for values in the submatrix specified by rows in U and columns
in V' is below some threshold.

None of these methods are designed for categorical datasets, they work only for numeric data. Adapting
them to mine categorical data introduces several problems that are not easily overcome. Methods like CLI-
QUE [3], MAFIA [4], and SCHISM [5] that discretize the numeric data, rely on the dense regions to be
ordered (or contiguous), whereas no such order exists for categorical data. Methods such as DOC [6], PRO-
CLUS [7], ORCLUS [7], bi-clustering [9] require numerical computations (e.g., mean, median, variance), and
are thus inherently not well suited for categorical datasets. Methods based on DBSCAN [10], such as RIS [8]
would have problems for the verification of the core object property in different subspaces.

3.2. Categorical clustering

Recently, a number of studies have focused on categorical clustering. With the exception of CACTUS [20],
which itself mines only a limited class of subspace clusters, none of the previous methods can mine subspace
clusters. Previous works on categorical data have focused more narrowly on binary or transactional data
[11,12], on a framework to compress high-dimensional categorical datasets [13], and using hypergraph parti-
tioning to cluster itemsets [14].

M.J. Zaki et al. | Data & Knowledge Engineering 60 (2007) 51-70 55

Note that approaches that cluster only binary/transactional data are not able to directly handle the kinds of
clusters we propose here. For example, consider Fig. 1. If we create an item for each attribute-value pair (e.g.,
Ay = ay, Ay = a», etc.), then a transactional clustering method can be employed. However these methods will
typically not mine a cluster like ({a, a2} X {b1} X {¢}) as shown in Example 2. The reason is that by definition
a, and a, never co-occur in any transaction, so unless some appropriate notion of similarity between values of
the same attribute is defined, these values will not be part of the same cluster.

k-Modes [15] is an extension to the k-means numeric clustering algorithm. Whereas it shares the scaling
properties of k-means, it also inherits k-means’ disadvantages, such as dependence on the seed clusters, and
the inability to automatically detect the number of clusters.

COOLCAT [16] is based on the idea of entropy reduction within the generated clusters. It first bootstraps
initial clusters using a sample of maximally dissimilar points and then adds the remaining points. To mitigate
the high dependency on the selection order, periodic re-clustering of selected points is proposed. Another
entropy based method was proposed in [17]. Starting from a seed clustering, they use genetic algorithms to
heuristically improve the purity of the generated clusters. The quality of the resulting clusters depends on
a-priori knowledge of the “importance” of the individual attributes toward the “natural” clustering. LIMBO
[18]1s a recent information theoretic clustering based on an information-bottleneck framework. Like the other
methods it cannot find subspaces.

STIRR [19] uses a non-linear dynamical systems approach to categorical clustering. It encodes the dataset
into a weighted graph (each attribute value corresponds to a weighted vertex), and iteratively propagates these
weights; this intuitively corresponds to a similarity measure based on co-occurrence of values in the dataset.
Upon convergence to the fix points, or the so-called basins, the final weights can be used to partition the data
points, yielding the final clusters. The main weakness of STIRR is that the separation of attribute values by
their weights is non-intuitive and the post-processing required to extract the actual clusters from the basin
weights is non-trivial. The combination and local modification operations are also left to the user to find. Fur-
ther, the mined clusters were shown to be incomplete in cases of overlapping cluster projections [20].

ROCK [21]is based on the number of /inks between two records; links capture the number of other records
that the two are both sufficiently similar to. ROCK heuristically optimizes a cluster quality function with
respect to (w.r.t.) the number of links in an agglomerative hierarchical fashion. The base algorithm is cubic
in the dataset size making it unsuitable for large problems.

CACTUS [20] mines categorical clusters utilizing a summary information of the dataset. The cluster defini-
tion is essentially the same as in Definition 1. It first computes cluster projections onto the individual attributes.
To reduce the complexity of this step, the authors assume the existence of a distinguishing number (i), the min-
imum size of an attribute-value set (the so-called distinguishing set) that uniquely occur within only one cluster.
CACTUS computes distinguishing sets on each attribute and then extends them to find cluster candidates over
multiple attributes. These candidates have to be validated against the original dataset. The extension step,
though described in the paper, was not implemented by the authors, but our augmented implementation showed
a severe performance impact over the cactus baseline version (see Section 5.2). The authors proposed to apply
the MDL pruning approach used in [3] for subspace clustering, but it was also never implemented. Note that
whereas CLIcks uses the cluster definition proposed in CACTUS, the encoding of the dataset as a k-partite
graph and the clusters as k-partite cliques is entirely novel, and we believe, more natural (e.g., we do not have
to impose the distinguishing set constraint). It is interesting to note that the proposed CACTUS extension in
[20], discovers subspace clusters only in the ordered subspaces (A4, 45), (A1, A>, 43),...,(A4,-..,A,), whereas,
CLicks mines subspace clusters over any subset of attributes. Thus CLicks overcomes the three main problems
with CACTUS, namely (1) “unnatural” distinguishing set assumption, (2) no extension step after cluster pro-
jections are found, and (3) mining of a restricted class of subspace clusters.

4. The Cricks algorithm

Given a dataset & and a user-specified threshold o € R", we are interested in mining all full-space and sub-
space clusters (i.e., all maximal, dense, and strongly connected subspaces) in Z.

As we noted earlier, density is not downward closed, and thus cannot be used directly to prune the search
for valid subspaces. Instead we will use the strongly-connected property to mine %, the set of all maximal

56 M.J. Zaki et al. | Data & Knowledge Engineering 60 (2007) 51-70

k-partite cliques in I';. We then follow-up with a validation step, that verifies whether 6,(C) = 1 for all cliques
C € &. This two-step approach is very efficient, but it is not complete, since it is possible that some maximal
clique C € Z is not dense, whereas its subset C' C C might be dense. To guarantee completeness CLICKS uses
as another step the selective vertical expansion technique to enumerate subspaces of a non-dense maximal cli-
que. Our experiments show that most of the final clusters can be found using only the first two steps, but if
completeness is desired, all clusters will be guaranteed to be found for an additional cost. It should be noted
that even with selective vertical expansion CLICKS is faster than previous categorical clustering methods. Note
that CLicks can mine maximal k-partite cliques for any 1 < k < n; if k = n, the discovered cliques are clusters
over the full set of dimensions, and if k£ < n then the discovered cliques are subspace clusters. We also note that
Curicks is flexible enough to mine only (maximal) frequent clusters if so desired (a minor change in the pre-
processing step accomplishes this).
The basic CLicks approach consists of the three principal stages, shown in Fig. 3, as follows:

e Pre-processing: We create the k-partite graph from the input database . We also rank the attributes for
efficiency reasons.

e Clique detection: We enumerate all the maximal k-partite cliques in the graph I'y.

e Post-processing: We verify the support of the candidate cliques within the original dataset to form the final
clusters. If completeness is desired we perform selective sub-clique expansion of non-dense maximal cliques
to find the true maximal, dense cliques. Moreover, the final clusters are optionally merged if they have sig-
nificant overlap.

4.1. Pre-processing

In the pre-processing step we take as an input the categorical dataset & and the threshold «. In one scan of
the dataset we collect the support of every attribute value, and also the support of every pair of attribute val-
ues. These support values are used to compute all the dense attribute value pairs; for each such pair {v,} x {v;}
we add the edge (v,,vp) to I'y, creating the full k-partite graph I'y. Further, we rank the set of all attribute
values using the notion of connectivity, defined below. This ranking is used later for efficient clique
enumeration.

Given I'; and V =J_,D;={vi,...,v,}, the neighbors of an attribute value v; are defined as
N(v)) = {vg € V:(v;,0r) € E}. Note also that, by definition, if v;, v, € D; then v, € N(v;), since values of the same
attribute never co-occur. However, for the clique enumeration step, we have to consider all values of an attri-
bute to be implicitly connected.

The connectivity of vertex v; € D; is defined as

_ [N()U{Di\v} if [N(v;)| >0
n(v;) = {0 otherwise

Cricks(Dataset D, «, o©)
AttributeValueRanking: R = U, D;
Clique C =0
CliqueCollection £ = ()

PreProcess(D,a,I'p, R)
DetectMaxCliques(I'p, L, R, C')
PostProcess(D, L, o, °)
return £

Fig. 3. The Cuicks algorithm.

M.J. Zaki et al. | Data & Knowledge Engineering 60 (2007) 51-70 57

Intuitively, connectivity corresponds to the neighbors (N(v;)) plus the remaining values of the attribute in ques-
tion (D;\v;). However, if a given value does not co-occur with values of other attributes it cannot be part of a
k-partite clique; its connectivity should be zero. The connectivity of a clique C is given as follows:
n(C) = ,,ecn(v)), Le., the connectivity common to all vertices in C.

The total order on all attribute values, given by the set # = {v;,, ..., v;, }, such that [n(v;)| = [n(v;,,)| for all
J € li1,im_1), is called an attribute-value ranking of V. Given a seed clique, Cricks adds a new vertex to the cli-
que based on the next highest ranked value. This can significantly speed-up the search for maximal cliques.

4.2. Enumerating k-partite maximal cliques

The clique detection phase is based on a backtracking search, that at each step, adds only those vertices to a
clique that are in the connectivity set of the clique. If more than one such vertex exists, the attribute value
ranking is used to break the tie. CLICKS uses a recursive algorithm that at each stage tries to expand the current
clique to ensure maximality. It is similar in spirit to the Bron—Kerbosch (BK) algorithm [22], but whereas BK
enumerates regular cliques, Cricks is designed for k-partite cliques. The pseudo-code for the clique detection
phase is shown in Fig. 4.

Initially DetectMaxCliques is called with the empty clique C and the full, ranked attribute value set #
as a list of possible vertices to be used for an extension. In general, Z represents the set of vertices that can be
used to extend the current clique C. Upon return, the clique collection . contains all maximal k-partite cli-
ques in the dataset.

Note that foreach statements process attribute value rankings in descending order. The predicate &(C)
evaluates to true iff (i) we want to mine subspace clusters, or (ii) we want to mine full space clusters and C
contains at least one attribute value for every attribute of the dataset. Otherwise ®(C) is false. The set #” con-
tains all elements of # that have their deleted flag set. Similarly, #” is the subset of Z that contains all elements
that have their processed flag set.

DetectMaxCliques starts by checking if the current clique C is maximal (lines 1-2). If # = () then there
are no more elements to extend C, thus C is potentially maximal. If in addition 5(C) = () then C is a maximal
clique, since an empty connectivity set means there are no additional vertices connected to all vertices in C.
The only test that remains to be done is whether full/sub-space cliques are desired. For subspace clusters
@(C) is always true, whereas for full-space clusters @(C) is true only if C contains at least one value from each
attribute. Thus, C is added to the set of maximal cliques . iff @(C) is true (line 2), and the search is continued
at the previous level (line 3).

If % # () then C can potentially be extended with vertices in #. The outer loop (line 5) attempts to add a
value v to C in an effort to create a yet larger clique C’ (line 6). Note also that at any given point in time £

DetectMaxCliques(Graph I'p, CliqueList £,
AttributeValueRanking R, Clique C)

1. if (R =0) then

2. if (n(C) =0 and ®(C)) then L=LUC

3. return

4. RP=RF =9

5. foreach v in R — RP — R do

6. C'=Cu{v}, R =0

7. RP =RP U {v}

8. foreach v' in R — RP do

9. if (v € n(v)) then R' =R’ U {v'}

10. if (v is first value in R) then R = R’

11. if (P(R'UC")) then

12. DetectMaxCliques(I'p, £, R, (")

Fig. 4. The CLicks clique detection.

58 M.J. Zaki et al. | Data & Knowledge Engineering 60 (2007) 51-70

contains only those attribute values that are connected to C. Hence, adding v € # to C will yield another cli-
que C'. We mark v as deleted (#° = #° U {v}), indicating that it was already considered in the clique con-
struction (line 7).

To maintain the condition that all attribute values in 2 are connected to C, a #' matching C’ needs to be
constructed before the recursive call. The inner foreach loop (line 8) scans all attribute values that were pos-
sible extensions to C and selects only those (line 9) that are in the connectivity set of v that was added to C in
line 6. For the first vertex in %, we maintain a list of nodes already considered in #” (line 10).

Finally, the algorithm recurses on the newly created clique C’ with its matching attribute value ranking %'
If only full-dimensional clusters are to be detected we can prune part of the search space at this point; we can
stop the recursion if the new clique C’ cannot be extended to cover at least one value from all attributes, i.e.,
we recurse only if @(#' U C') is true (lines 11-12).

Both #” and %" are also used for pruning. Consider two possible extensions v, and v, of a clique C. If an
extension by v; was attempted before, the set of possible extensions to v, (#') does not need to contain v,. If a
clique containing both v; and v, exists, it was discovered when C was extended by v;, because in that case v,
and v, form a dense 2-subspace and, hence, v, was part of the #' accompanying v;. The set #” prunes these
cases by recording every value that has already been used to extend C. Similarly, if v, was already part of the
' accompanying vy, it need not be considered as an extension to C. This latter case is guarded against by the
processed attribute values %°.

Example 6. Consider the k-partite graph encoding I' in Fig. 2. An attribute value ranking of V'is as follows:
ax(7), b1(6), c1(6), b3(6), c3(5), ai(4), cx(4), as(4), by(0), where the connectivity cardinalities |5(v)| are given in
parentheses. Fig. 5 shows a run of DetectMaxCliques on this example. Vertices depicted without circles
denote search paths that were pruned due to #°, whereas bold squares indicate that a maximal clique was
found. By following the edges up to the root we can construct the corresponding cliques. The %’ sets can be
read from the figure by computing the union of all children of a node. For example, #' for clique {a»,b,} (in
the leftmost path) is {cy,bs,a;}. This example shows all five full and subspace maximal cliques. For example
{ar,by1,c1,a1} 1s a full space clique, whereas {a»,b;,b3} is a subspace clique.

4.3. Post-processing

Once the set of all the maximal k-partite (or n-partite) cliques % have been mined, the post-processing
phase involves a single scan of the dataset to count, for each candidate clique C € ., the number of transac-
tions in the dataset that support it. If §,(C) =1, i.e., the support of C is at least a times its expected support,
then Cis a valid clique, and CLicks outputs it as a cluster. However, there are two challenges that remain: (1) a

maximal clique may fail the density test, whereas one of its sub-cliques may be dense. To guarantee complete-
ness, CLicks allows an optional selective vertical expansion approach to explore the sub-cliques induced by a

@ bl el b3 c3 al 2 a3 (b2)

G e b3 (3) a1 (2) (a3)

G B O IORNONOICROIC)

Fig. 5. Clique finding.

M.J. Zaki et al. | Data & Knowledge Engineering 60 (2007) 51-70 59

non-dense maximal clique; we give more details of this step in the next section. (2) There may be many over-
lapping cliques in .. In this case, it is desirable to merge those cliques that have significant overlap into large
cliques; we give details of this step below.

Note that overlapping cliques are mainly a result of the strict notion of strong connectedness for a cluster.
For instance, consider a clique C = C| x --- x Cy, and consider a vertex v,, such that v, is dense w.r.t. all sub-
spaces except for one, say C; = {vy,...,v;}. Assume that v, is dense w.r.t. all vertices in C; except for v,. In
this case v,, cannot belong to the maximal clique C, but it may belong to another maximal clique C’ that has a
high degree of overlapping subspaces with C. If we detect such a case, it would be preferable to merge such
cliques into a single cluster.

The enhanced post-processing step in CLICKs implements a novel method for merging a set of discovered
maximal cliques based on their common coverage, i.e., the number of records that are common to that set
of cliques. Let % be the set of maximal cliques mined from I',. For every clique C' € £ let i denote its unique
clique id. We define the term cset to denote any set of clique ids. Let 4 denote the database of csets obtained by
replacing each record r € & with its cset, the set of clique ids that the record belongs to, given as cset(r) =
{i:r € C'}. We can then mine the cset database % to obtain all the maximal frequent csets, denoted as %,
that are above a minimum frequency threshold ¢*, i.e., those csets that are co-supported by a minimum num-
ber of records. Note that % 4 can be efficiently mined using any maximal itemset mining method (such as Gen-
Max [23]). For example, consider Fig. 1. Let C' = {ay) x {b3} and C® = {b3} x {c3} be the only maximal
cliques in I'y. Then the cset database % is given as: € = {{}, {1}, {1,2},{},{1,2},{2},...}. Mining € with
minimum support ¢% = 2 yields the maximal cset {1,2} suggesting that cliques C' and C? should be merged
into one clique: {a,} X {b3} X {c3}.

Every cset X € Z 4 is a potential set of cliques that can be merged. However % may itself have overlap-
ping maximal csets, and of various sizes. Clearly we need a ranking of csets so that merging can be done in a
systematic manner. A good ranking measure is the coverage, i.e., the number of records in &, that belong to
the clique obtained after merging all cliques ids in a given cset. Unfortunately, computing the coverage for
each X € 7 4 can be very expensive, since it would require multiple scans of the original database . Instead,
we introduce an approximate measure of coverage, called coverage weight, that does not need to access the
original database &; it uses the clique support already computed from & in the validation step, and cset sup-
port computed while mining % 4. Intuitively, the coverage weight is an approximation of the inclusion/exclu-
sion computation for the supporting records. More formally, given any X € ¢, where X = {1,...,m} is a set
of clique ids (corresponding to cliques {C',...,C"}) that frequently occur together, its coverage weight is
defined as w(X) = (31 ,64(C")) — (m — 1) x 04(X), where o4 (X) denotes X’s support within %. For merging
decisions, all csets in % are sorted in decreasing order of their coverage weight.

Fig. 6 shows the pseudo-code for the post-processing phase, including the merging steps. After validating
the set of mined maximal cliques ., by counting their support and computing their density (line 1), we call
selective vertical expansion if needed (line 2). This is followed by transforming the dataset & into the cset data-
base %, which is mined at minimum support ¢* to obtain all maximal frequent csets 7 4, using GenMax [23]
(line 3). This set is sorted in decreasing order of coverage weight to obtain a total order (denoted by the rela-
tionship >,) on all maximal csets (line 4).

We then process each set X € % in order of >, (line 6); X is added to #” (line 7) the set of processed csets,
that give the clique ids of cliques to be merged in the end. Since no clique can be merged twice, all clique ids
that occur in X have to be removed from the not-yet-processed csets Y >, X (lines 8-9).

Finally, we create the final set of merged clusters .# by iterating through each cset Z € #” (line 12), and
merging the cliques accordingly (line 13). Before merging, we make a copy of . in %’ (line 10), so that we
can merge cliques identified by Z by looking at .#’ (line 13), whereas % contains only the final set of cliques.
If a merged clique M (line 14) is potentially dense we add it to the final set of clusters (line 15).

4.4. Selective vertical expansion
As noted earlier, all maximal cliques % are reported by the clique detection phase, but some might be

pruned out in the post-processing if they are non-dense; let #” C % denote all such pruned cliques. Sub-cli-
ques of a pruned clique, however, might have required density. In such cases, to guarantee completeness

60 M.J. Zaki et al. | Data & Knowledge Engineering 60 (2007) 51-70

PostProcess(D, L, a, o°)
Scan D and check density of each C € L
Perform Selective Vertical Expansion if required
Fe = Maximal Frequent Csets in C (using o©)
Sort Fe by decreasing coverage weight (>,)
Fr=
for all X € F¢, such that X # () do

FP=Fru{Xx}

for all Y € F¢, such that Y >, X do

Y =Y \X //remove cliques to be merged

L' = L /] Save the original cliques
. L=0
. for all Z = (z1,22,...,2m) € F¥ do
13. M =, C*, where C* € L'
14. if (M) > E[w(M)] then
15. L=LU{M}

S I ol e

— = = O

Fig. 6. CLicks post-processing.

CLicks uses the selective vertical expansion approach to consider all sub-cliques for each C € #”, and reports
all the remaining maximal, dense cliques.

For any vertex v in the k-partite graph I'y of a dataset &, define its ridset to be the set of all record ids where
v oceurs, given as A(v) = {r.id :r = (r.4i,...,r.4,) € 2, and r.4; = v}. Conceptually the ridset is a “vertical”
encoding of the input dataset . Thus the name selective “vertical” expansion. The supporting ridset for any
clique C = C; x -+ x Cy, can then be defined as A(C) = (¢, y4(Ci), where A(C;) = U, ¢, A(v;). For example,
from the dataset ¢ in Fig. 1, we have A(an) = {2,3,4,5}. For C={aj,a} x{b1} X {c1,¢2}, we have
MC) = (May) U Man)) N Aby) U (Aer) U Mer)) =1{1,2,3,4,5) N {1,4} N {1,2,4} = {1,4}. Note that the cardi-
nality of the ridset gives the support for the corresponding clique. For example, 64 ({a,}) = |A(az)| = 4 and
Ug({al,az} X {b]} X {Cl,C2}) =2.

The selective vertical expansion step uses the ridset information to explore all sub-cliques for each C € #*.
Starting from the ridsets for the single values in C, we build larger sub-cliques using a series of union and inter-
section operations on the corresponding ridsets. The search stops when we have found all maximal dense sub-
cliques contained within C. For each such sub-clique, if it is not contained within an already found maximal
dense clique in .\ .#”, we output it as a true maximal, dense clique. As we shall see in our experiments (see
Section 5.5), selective vertical expansion restores completeness for an extra, but reasonable cost.

Besides selective expansion, at least two other approaches for complete search can be explored: (1) count
the support of each candidate clique in the dataset as it is being extended, or (2) use the ridsets to compute
support figures incrementally during the clique mining phase (we call this the full vertical expansion approach).
Clearly, option (1) is too expensive due to its numerous passes over the dataset.

For full expansion to be successful, the support information needs to be leveraged for pruning the search
space depicted in Fig. 5 to offset the additional computation. Hence, the supporting ridsets need to be com-
puted every time a clique is extended, and an appropriate pruning criterion has to be defined based on A(C) for
the current clique C. Care must be taken not to cut potentially successful branches. Specifically, a branch can-
not be pruned as soon as the support falls below o times the expected support. The reason is that neither den-
sity, nor clique support is monotonic along the search path. For example, in the graph in Fig. 2 and the
associated dataset in Fig. 1, the clique C' = {a», ¢3, b3} has support 2 (A(C’) = {3,5}). However, when extend-
ing the clique to the final clique C = C’' U {a3} = {a», ¢3, b3, a3} the support increases to 3 (A(C) = {3,5,6}). The
only observation that can be used for pruning is that there always exists a way of extending a clique candidate
to a maximal clique such that the support along the way stays above zero. We have implemented the full
expansion approach, but we found it to be too slow (by over an order of magnitude) to be competitive with
selective expansion.

M.J. Zaki et al. | Data & Knowledge Engineering 60 (2007) 51-70 61
4.5. CLicks complexity

Here we briefly look at the CPU and I/O complexity of CLicks. In terms of I/O cost the base-line method
makes only two full scans of database &, once in the pre-processing step to build I'(2) and once in post-pro-
cessing to validate the maximal cliques ¥ against 2. For even large datasets I'(2) is expected to fit in mem-
ory, so the clique mining step incurs no I/O. While performing the second scan, we can also create the cset
database % required for the merging step. Mining % requires one scan of ¢, and the GenMax [23] uses efficient
counting techniques to reduce further I/O. Finally, if the optional selective expansion step is called, then we
have to make one scan of & to create the ridsets for each value. Of course, performing intersections and unions
of ridsets to compute support of sub-cliques may incur additional I/O cost which is hard to characterize. Thus
the Cricks algorithm typically needs at least two (three for completeness) scans of the database & and one
scan of €.

The CPU cost of CLicks is mainly contributed by the clique mining steps and the merging and selective
expansion steps. Given n attributes with m values each, I'(2) can have at most (nm) vertices. In the worst case
there can be O(n’m?) edges, but such a dense graph is highly unlikely. O(nm) edges is more realistic, since the
k-partite summary graph is expected to be sparse. Mining all maximal cliques is clearly an exponential time
algorithm in the worst case, since there can be an exponential number of cliques |.#|. Typically all maximal
cliques can be found in time O(nm|.#|). For selective expansion, in the worst-case, each clique X € % might be
non-dense, and we have to enumerate all of its sub-cliques. If the longest clique has / vertices in it, this step can
take O(2'|.#|) time. Finally, the merging step is a function of the number of maximal csets, the number of
records in & and the number of maximal cliques, giving a complexity of O(n x | Z| x |F ¢|).

4.6. Parameter selection

As described above, CLicks output depends on two main parameters: o, the density threshold, and ¢%, the
clique merging threshold. Here we give guidance on how to select these parameter values.

First, the cluster merging threshold ¢“ is not too hard to set. If ¢ =1.0 (or 100%) no cliques will be
merged, and all (overlapping) mined clusters will be reported. Starting with a high value, the user can system-
atically reduce ¢€ so that they get a desired number of clusters. This selection process is similar to selecting ,
the number of clusters, in k-means clustering, or selecting at what level to stop a hierarchical clustering
algorithm.

Setting the density threshold « is more involved, since it depends on the data distribution. One of the fea-
tures of the k-partite graph I' is that the graph obtained for a high value of « is always a sub-graph of the one
obtained for a lower value of «. This means that the clusters mined at higher o are contained in those clusters
mined at a lower «. On the other hand, there is no data independent criteria for setting .. One approach that is
likely to work is to examine the density of the k-partite graph by trying several values of o, ranging from small
to large. If the graph is too dense, o should be increased, since in the worst case, the whole graph may become
a complete k-partite graph containing a single cluster, which is not very informative. On the other hand, if the
graph is too sparse, then again the clusters found will not be very interesting; in this case o should be
decreased. Meaningful clusters will be found for « values that yield a medium range of graph density.

5. Experimental study

This section presents a comparative study of Cricks vs. CACTUS [20] and other methods like ROCK [21]
and STIRR [19]. All testing was done on a hyper-threaded Intel Xeon 2.8 GHz with 2GB of RAM, running
the 2.4.22 SMP Linux kernel. All datasets were stored on an NFS mounted network drive on the same local
100MBit network. The code for CACTUS was obtained from its authors.

All synthetic datasets used in our experiments were created using the generation method proposed in [19].
The generator creates a user specified number of records that are uniformly distributed over the entire data
space. It allows for specification of the number of attributes and the domain size on each attribute. The gen-
erator then injects a user specified number of additional records in designated cluster regions, thus increasing
the support of these regions above their expected support.

62 M.J. Zaki et al. | Data & Knowledge Engineering 60 (2007) 51-70

In the performance studies below we use three attributes with domain size of 100 (unless specified other-
wise), and we embed two clusters, located on the attribute values [0,9] and [10, 19] for every attribute. Each
cluster was created by adding an additional 5% of the original number of records in this subspace region.
In all performance tests, k = 3 (distinguishing number) and « =3 were chosen for CACTUS as suggested
by Ganti et al. CLicks was also configured to use o = 3. We will show that compared to previous methods,
CLicks is orders of magnitude faster and/or delivers more intuitive and better clustering results.

5.1. Cricks vs. ROCK

We first compare Cricks with ROCK [21]. ROCK does not lend itself well to a direct comparison with
Cricks. Whereas CLicks uses about 90% of its execution time for building in-memory representations of
the attribute connectivities, the ROCK data format assumes that the similarities between data points are
given. Despite this seeming advantage, the test series depicted in Fig. 7 shows that Cricks still outperforms
ROCK by orders of magnitude. Note that these are very small datasets with a maximum of 5500 tuples, thus
it appears that the practical application of ROCK is limited to datasets of well below 10,000 records whereas
CLicks scales into the million record range. Since ROCK is too slow, we only compare Cricks with STIRR
and CACTUS below.

5.2. CACTUS extension

The available CACTUS implementation stops at the stage where it finds the potential cluster projections
but does not extend these to produce the final (full- or sub-space) clusters. Note that the reported performance
in [20] focuses only on I/O cost, and does not account for CPU cost of extension and validation, since they
were mainly interested in showing the effectiveness of the small data summaries, even for very large datasets.
To study the impact of these additional steps, we augmented the CACTUS implementation with the cluster
extension and validation steps.

Fig. 8 shows the running time of CACTUS with and without the additional steps, on datasets with up to
500,000 tuples. We see that CACTUS with extensions is about 3 times slower than the base-line version, and
the gap is increasing. This impact is largely due to the excessive number of projections that CACTUS gener-
ates. In the remaining performance studies only the base-line CACTUS version is used, since the version with
extensions is too slow to be run on larger datasets.

5.3. Cricks vs. CACTUS and STIRR: cluster quality

To evaluate the quality of the clusters, three basic scenarios were tested on synthetic datasets, with o = 3,
and with post-processing turned off, in order to verify the actual reported cliques before merging. The datasets,
as shown in Fig. 9, contained 105,000 records in scenarios one and two. In Scenario 3, 110,000 records were
used, reflecting additional 5000 records in the third cluster. In all scenarios, attributes have 100 values, but

Time vs. Tuples
256

ROCK —&—
- CLICKS 8-

Time (sec.)

025 |)
0.0625 fi5. -
0.015625

1 15 2 25 3 35 4 45 5 55
of Tuples (in 1.000)

Fig. 7. Cuicks vs. ROCK.

M.J. Zaki et al. | Data & Knowledge Engineering 60 (2007) 51-70 63

Time vs. Tuples

14 T T - -
CACTUS (no extension) —&—
12 CACTUS (with extension) @~ __-4
~ 10} e
© L
g 6 -
2 ,//././—'/l
O L L L L L L L
1 15 2 25 3 35 4 45 5
Tuples (in 100.000)
Fig. 8. Performance impact of extensions.
A1 Az A1 Az A1 Az As
0
\
\
\
\
\
\
9 I \\
\
\
\
!
\
\
19 =
]
Attribute Scenario 1 Scenario 2 Scenario 3

Value

Fig. 9. Cluster quality comparison.

clusters are embedded only on the ranges drawn. For example, Scenario 1 has two attributes with two well
separated clusters, one on attribute values [0-9] and another on [10-19] on 4, and 4,; there are no clusters
on attribute values [20-99] even though there are points in the dataset, chosen uniformly at random, in that
range.

Scenario 1. Used a dataset with clear separation of the two clusters on ranges [0-9] and [10-19]. CLicks
detected both the clusters on the appropriate attribute values. The CACTUS implementation reported 240
cluster projections per attribute. These represented all subsets of size 3 of {0,...,9} and {10,...,19}. They are
part of the cluster projection but do not satisfy the maximality condition. Our CACTUS extension connected
all subsets of {0,...,9} on the first attribute with the corresponding subsets on the second attribute. Similarly,
all subsets of {10,...,19} were connected on both attributes, yielding 115,200 clusters (reflecting the lack of
maximality of the projections). The STIRR algorithm reported weights of about 0.15 for the attribute values
[0,19] on both attributes, while the weights of the attribute values in [20,99] were computed to be about 0.08.
According to the interpretation in [19] this corresponds to a single cluster on [0,19]% [0, 19], confirming the
lack of separation found in [20].

Scenario 2. Used a dataset with a slight overlap between two clusters on one of the two attributes. CLICKS
detected three initial cliques, two of which represented the original clusters and an additional clique on
[7,9]1%[0,19]. Note that the third clique is correct according to Definition 1. However, the merge step in
the post-processing step could optionally merge this third clique with one of the two primary cliques. CAC-
TUS, on the other hand, reported 480 cluster projections, which were subsets of the three clusters that Cricks
reported. STIRR reported different weights for attribute values (i) outside the clusters, (ii) inside one cluster,

64 M.J. Zaki et al. | Data & Knowledge Engineering 60 (2007) 51-70

and (iii) inside both clusters. A non-trivial post-processing step external to STIRR could perhaps separate the
attribute values based on these weights.

Scenario 3. Used a dataset with two clearly separated clusters and a third cluster that fully overlaps with the
first cluster on attribute A, and with the second cluster on attributes 4, and 43. CLicks reported two initial
cliques on [0,19]x [10,19]x[10, 19] and [0,9] % [0,9] x [0, 9], respectively. These cliques were also the final clus-
ters generated by Cricks. This behavior is correct w.r.t. the cluster Definition 1, as [10,19]x [10,19]x[10, 19]is
not maximal. CACTUS reported non-maximal subsets that yield about 312 million possible combinations.
Verification of their correctness was not possible on our current machine due to the complexity of the exten-
sion operation. As in Scenario 1, STIRR reported weights of about 0.15 where a single cluster is present, 0.21
where clusters overlap, and 0.08 on all other attribute values. Again, it is not obvious how to extract actual
clusters from these weights.

These results confirm that CLicks is superior to both CACTUS and STIRR in detecting even the simplest of
clusters!

5.4. Cricks vs. CACTUS: performance

Three tests on synthetic datasets were performed to compare the performance of Cricks and CACTUS
w.r.t. number of records, number of attributes, and domain size, as shown in Fig. 10.

5.4.1. Dataset size

Synthetic datasets with 10 attributes, and 100 values per attribute were used, while the total number of
records was varied from one to five million. Both methods scale linearly over the number of records in the
dataset, but Cricks outperforms CACTUS (base-line) by an average of 20%. If we take CACTUS with exten-
sions into account (see Fig. 8) CLicks is at least 3-4 times faster.

5.4.2. Dimensionality

Curicks is especially scalable with regards to higher dimensional data. On a dataset with 1 million records
and 100 attribute values per dimension, Cricks outperforms CACTUS (base-line) by a factor 2-3 (and thus
CACTUS (extension) by at least a factor of 6-9), when varying the number of attributes from 10 to 50,
and the gap is increasing.

5.4.3. Domain size

Datasets with one million records and four attributes were used to measure the performance w.r.t. domain
size. The number of attribute values per attribute were varied from 50 to 500. Both methods perform equally
well for less than 400 attribute values per domain. At this point, the runtime of CACTUS dramatically
increases, most likely due to memory shortage. For large domains, Cricks is thus over an order of magnitude
faster than CACTUS.

Time vs. Tuples Time vs. Attributes Time vs. Domain Size
30 11
CACTUS (no extension) —=— 400 CACTUS (no extension) —=— 10 CACTUS (no extension)

o5 CLICKS —-g="" | 350 CLICKS & 9 CLICKS /-
. 300 8
g 20 & g 250 g7
T N < 200 26
2 ’ 2 gs
=T S & £ 150 £ 4

,,,,,,,, 100 g
St 50 11 o e L
0 0 o=
1 15 2 25 3 35 4 45 5 0 5 10 15 20 25 30 35 40 45 50 50 100 150 200 250 300 350 400 450 500
Tuples (Millions) # Attributes Domain size per Attribute

Fig. 10. Cricks vs. CACTUS (no extensions).

M.J. Zaki et al. | Data & Knowledge Engineering 60 (2007) 51-70 65

The STIRR [19] algorithm, as implemented by Ganti et al. was also benchmarked. STIRR outputs the non-
principal basins, i.e., weighted vertices, that identify the cluster projection on each attribute. As in the case of
CACTUS, no clusters are actually output. However, it seems clear that the final cluster extraction step in
STIRR would cost at least as much as the extension step in CACTUS.

5.5. Selective vertical expansion

CLicks uses an optional selective vertical expansion method to mine the complete set of maximal, dense
cliques. Clearly, this method cannot be faster than the baseline CLICKS version, as it adds additional post-pro-
cessing. The question is whether the overhead is acceptable.

In Fig. 11 we plot the final number of reported clusters (after merging of overlapping clusters) in the selec-
tive vertical expansion and the base-line non-vertical case. We also plot the number of sub-cliques of non-
dense cliques that are both maximal and dense, which we call “recovered cliques”. Obviously, the number
of recovered cliques are given before any merging is applied.

We ran CLicks on synthetic datasets with 120,000 records, 4 attributes, and domain sizes varying from 100
to 180 values. Three fixed clusters (10,000 records each) were injected on attribute values [0,4], [3,7], and [5,9].
In all runs we used o = 1.6, and ¢ = 0.005 (threshold for merging cliques).

The first trend that can be observed in Fig. 11 is that there is little difference between the number of final
clusters reported, after the merging step, for the complete selective expansion and the base-line CLicks method.
Only for large domain size (180) is there some difference. We also observe that whereas more clusters are
recovered for sparser datasets (i.e., for larger domain sizes), a large fraction of those are merged into a larger
cluster in post-processing. These results confirm that we get a good approximation of almost all clusters even
without the selective vertical expansion.

In Fig. 12 we compare the selective vertical with baseline CLicks in terms of running time for several vary-
ing parameters, namely number of records, dimensionality, and domain size. The figure shows that w.r.t. num-
ber of records, the baseline version starts about two times faster than the selective expansion method, but as

Recovery Rates (minsup 0.5%)

g 60
% 50
>
o 40
S 30
£ %
=] — x
= [, ¥ " ¥ e * X
100 110 120 130 140 150 160 170 180
Domain Size
Reported Clusters (non-vertical) —a—
Reported Clusters (vertical) &
Recovered Clusters -
Fig. 11. Cluster recovery rates.
Time vs. Tuples Time vs. Attributes Time vs. Domain Size
1 12
g CLICKS (selective vertical) ' 0 CLICKS (selective vertical) —m— 60 CLICKS (selective vertical)
s CLICKS (non-vertical) & 100 CLICKS (non-vertical) -&- 50 CLICKS (non-vertical)
57 S 80 ‘S 40
g o 3 3
g g g
E 3 = 40 iF 20
S e 20 10
(1) e o 0 L o lnnnnmm——— a
1 15 2 25 3 35 4 45 5 55 6 0O 5 10 15 20 25 30 35 40 45 50 0 50 100 150 200 250
Tuples (X 100.000) # Attributes Domain size per Attribute

Fig. 12. Selective vertical mining.

66 M.J. Zaki et al. | Data & Knowledge Engineering 60 (2007) 51-70

the number of tuples increase six-fold, the gap increases to about 5 times (a factor of 2 increase). This overhead
is mainly due to the building of ridsets in selective expansion step. The figure also shows that the selective ver-
tical approach is quite resilient w.r.t. number of dimensions and domain size.

Overall, the selective vertical mining technique proves to be an efficient supplement to Cricks. For scenarios
where completeness of the clustering results is desired, it can find the erroneously pruned clusters at an accept-
able cost (that is much lower than in full vertical mining; results not shown due to lack of space). The added
overhead of selective mining is at most linear (in the number of records) w.r.t. the base-line, making it a com-
putationally viable option even for large datasets. Most importantly, even with vertical mining enabled CLICKS
is faster than other (incomplete!) methods on many datasets.

5.6. Post-processing performance

The Cricks post-processing allows for merging “almost dense” cliques based on a user defined similarity
threshold. Instead of looking at the merging behavior for synthetic datasets, the effectiveness and performance
of the merging step were evaluated on the bibliographic dataset used in [20], which has 38,685 bibliographic
records, with four attributes (1st author, 2nd author, publication venue, year). Because of the low number of
attributes and the high density of the dataset, CrLicks was configured to use an « value of 75 yielding 258 initial
cluster candidates.

Fig. 13 shows that when ¢% is increased from 0.1% to 30%, the number of final clusters also increases. This
is intuitive, since the lower the merging threshold ¢* the more the clusters that are merged, resulting in fewer
reported clusters. We also found that the merging time (results not shown) is not affected by the chosen ¢*
value: on a moderately sized dataset such as the bibliographic dataset used for this experiment, only about
2% of the total execution time is spent validating and merging clusters.

5.7. Real datasets

Having established the superiority of CLicks over previous methods like ROCK, STIRR and CACTUS in
terms of time and/or quality, we now apply CLICKS on two real datasets.

5.7.1. Mushroom dataset

Part of the UCI Machine Learning Repository (http://www.ics.uci.edu/mlearn), it contains 8124 records
and 22 categorical attributes. Each record describes one Mushroom specimen in terms of 22 physical proper-
ties (e.g., color, odor, and shape) and contains a label designating the specimen as either poisonous (3916
records) or edible (4208 records).

CLicks was configured to run with a low « value of 0.4 as the dataset is very sparse. Not surprisingly, many
of the candidate clusters were overlapping. By assigning each record to the first cluster that contains it, the
confusion matrices shown in Figs. 14 and 15 were generated for full dimensional and subspace clustering,
respectively. The two rows represent the two original classes, poisonous (P) and edible (E), while the columns
represent the clusters that CLicks generated. Each cell records the percentage of points that belong to that cell

of Clusters vs. minsup
300

250 MmE—= " P—
=

200 |

150 | o

100 |

of Final Clusters

50 § Before Post Processing —=—
0 After Post Processing &

0 005 01 015 02 025 03
minsup

Fig. 13. Post-processing results.

http://www.ics.uci.edu/mlearn

M.J. Zaki et al. | Data & Knowledge Engineering 60 (2007) 51-70 67

None | Cy | Ch Cs Cy | Cs
Pl 51 |0.0]21.3 0.0 0.0 | 3.5
3.8 1241 0.0 0.8 6.3 | 0.0
Ce | Cr | Cs Cy Cy | Cpa
P| 00 |00] 0.0 0.0 0.0 | 24
95 |06] 1.6 1.8 17.9 1 0.0

C'12 013 014 Others
P| 0.0 |00]16.0 0.0
2.4 06 | 0.0 4.0

Fig. 14. Mushroom: confusion matrix (full space).

None Cl CQ Cg C4 05 C6
P| 00 [00]21.3| 0.0 |00 /|351]0.0
00 |24 00| 08 6300195

C? CS CQ Cl() Cll C12 013
P| 0.0 [00]00]00]|24]00]00
E| 06 | 16| 1.8 |17.9]0.0 | 24 | 06

Cuu | Ci5| Cig | Ci7 | Cis | Cho
P| 160 |04 26 | 03 |01 17
E| 00 [00) 00|02)|76]0.0

Fig. 15. Mushroom: confusion matrix (subspace).

(e.g., in Fig. 14, 21.3% of all points belong to cluster C, and have the label ‘P’). Note, that the class attribute
was not used in the clustering.

Full-dimensional clustering initially yielded 256 candidate clusters which were then reduced to 213 clusters
using a ¢* value of 0.5% for the post-processing step. Out of the 213 total clusters, 14 of them account for
87.1% of all points; these clusters with highest support values are shown explicitly (C, to Cy4) in Fig. 14, while
the other smaller clusters are grouped under the column Others. Note that these smaller clusters account for
only 4% of all points, and thus one can safely discard these clusters to yield 14 useful full-dimensional clusters
which show perfect purity w.r.t. the class label. About 9% of the records could not be grouped (column None)
in any cluster.

For the subspace case CLicks produced 596 initial clusters (including full-space clusters). This number was
reduced to 553 by merging with a ¢” setting of 5%. As in the full dimensional case, a large number of clusters
overlapped. By assigning each record to the first cluster that contains it, Fig. 15 was obtained. All points can
be covered by only 19 clusters, of which C;—C,4 are full-dimensional (same as before), and there are five new
subspace clusters C;s—Cjq9. The subspace clusters clearly improved the result w.r.t. the unclustered records,
since all records are now covered by some cluster (the None column has 0% of points, as opposed to 8.9%

68 M.J. Zaki et al. | Data & Knowledge Engineering 60 (2007) 51-70

None Ol CQ 03 04 05 06 07 Og
R|1.9% | 0.0% | 0.2% | 0.0% | 36.5% | 0.0% | 0.0% | 0.0% | 0.0%
D |0.6% | 44% | 0.5% | 0.7% | 3.2% | 4.4% | 45.6% | 1.8% | 0.2%

Fig. 16. Confusion matrix votes (full Space).

None | C} Cy Cs Cy Cs Cs Cr Cs
R |05% [0.0%] 02% | 0.0% | 36.5% | 0.0% | 0.0% | 0.0% | 0.0%
D|04% | 44% | 0.5% | 0.7% | 3.2% | 4.4% | 45.6% | 1.8% | 0.2%
Co | Cio | Ciu | Ci2
R |0.5% | 0.5% | 0.2% | 0.2%
D | 0.2% | 0.0% | 0.0% | 0.0%

Fig. 17. Confusion matrix votes (subspace).

in the full dimensional case). Cluster C;; and C;g show minor impurities (<1%) w.r.t. the class label. By using
all 553 clusters a perfectly pure clustering is obtained. However, this level of granularity will be inappropriate
for most applications.

5.7.2. Congressional votes dataset

Also part of the UCI repository, it contains 435 records indicating the votes of Congressmen in 16 different
polls in 1984. Each record is labeled as Republican (168 records) or Democratic (267 records). The individual
attributes are Boolean valued (yes or no vote). The dataset is relatively sparse; an o value of 0.1 was used.

Fig. 16 shows the results for a full dimensional clustering with CLicks. The rows indicate the two original
classes (Republican or Democrat). For full dimensional clustering, the post-processing step proved to be espe-
cially useful, as it reduced the original 51 candidate clusters down to 13 at a 6% level of 5%. Of these, 8 final
clusters contained almost 98% of all records. Only 2.5% of the voting behaviors could not be clustered using
this approach.

With subspace clustering, of the 68 candidates, 38 were obtained after merging. The rate of unclustered
records was reduced to about 1% while increasing the number of relevant clusters to 12 (Fig. 17). Interestingly,
as in the case of mushroom, the subspace clustering preserves all full dimensional clusters and adds four new
subspace clusters that capture previously unclustered voting behavior. This intuitively models the fact that
there are strong Democratic and Republican positions but that some Congressmen may not be in line with
the party’s overall policy on individual issues. Thus the algorithm can capture “non-standard” voting
behaviors.

6. Conclusions and future work

CLicks uses a novel formulation of categorical subspace clusters, based on the notion of mining cliques in a
k-partite graph. It implements an efficient algorithm to mine k-partite maximal cliques, which correspond to
the clusters. Using a novel vertical encoding we can guarantee the completeness of the results at a reasonable
additional cost without sacrificing scalability. CLicks imposes no domain constraint, is scalable to high dimen-
sions, mines subspace and full-dimensional clusters, and outperforms existing approaches by over an order of

M.J. Zaki et al. | Data & Knowledge Engineering 60 (2007) 51-70 69

magnitude. In the future, the k-partite model will serve as a foundation for applying other graph based meth-
ods to data mining problems on categorical datasets.

Acknowledgment

We would like to thank Venkatesh Ganti for providing the source code for CACTUS and STIRR, and Eui-
Hong “Sam” Han for the ROCK implementation. We would also like to thank Xiuhong “Cheryl” Hu, who
worked on an early implementation of CLicks.

References

[1]J. Han, M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers, San Francisco, CA, 2001.
[2] S.C. Madeira, A.L. Oliveira, Biclustering algorithms for biological data analysis: a survey, IEEE/ACM Transactions on
Computational Biology and Bioinformatics 1 (1) (2004) 24-45.
[3] R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan, Automatic subspace clustering of high dimensional data for data mining
applications, in: SIGMOD Conf., 1997.
[4] H. Nagesh, S. Goil, A. Choudhary, Adaptive grids for clustering massive data sets, in: SIAM Data Mining Conf., 2002.
[5] K. Sequeira, M. Zaki, SCHISM: a new approach for interesting subspace mining, in: IEEE Int’l Conf. on Data Mining,
2004.
[6] C.M. Procopiuc, M. Jones, P.K. Aggarwal, T.M. Murali, A Monte Carlo algorithm for fast projective clustering, in: SIGMOD Conf.,
2002.
[7] C.C. Aggarwal, P.S. Yu, Finding generalized projected clusters in high dimensional spaces, in: SIGMOD Conf., 2000.
[8] K. Kailing, H. Kriegel, P. Kroeger, S. Wanka, Ranking interesting subspaces for clustering high dimensional data, in: PKDD Conf.,
2003.
[9] Y. Cheng, G. Chruch, Biclustering of expression data, in: ISMB Conf., 2000.
[10] M. Ester, H. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, in:
SIGKDD Conf., 1996.
[11] C. Ordonez, Clustering binary data streams with k-means, in: SIGMOD DMKD Workshop, 2003.
[12] K. Wang, C. Xu, B. Liu, Clustering transactions using large items, in: CIKM Conf., 1999.
[13] M. Koyutiirk, A. Grama, Proximus: a framework for analyzing very high-dimensional discrete attributed datasets, in: SIGKDD
Conf., 2003.
[14] E. Han, G. Karypis, V. Kumar, B. Mobasher, Clustering based on association rule hypergraphs, in: SIGMOD DMKD Workshop,
1997.
[15] Z. Huang, A fast clustering algorithm to cluster very large categorical data sets in data mining, in: SIGMOD DMKD Workshop,
1997.
[16] D. Barbara, Y. Li, J. Couto, Coolcat: an entropy-based algorithm for categorical clustering, in: CIKM Conf., 2002.
[17] D. Cristofor, D. Simovici, An information-theoretical approach to clustering categorical databases using genetic algorithms, in:
SIAM Workshop on clustering high dimensional data, 2002.
[18] P. Andritsos, P. Tsaparas, R.J. Miller, K.C. Sevcik, LIMBO: scalable clustering of categorical data, in: 9th Int’l Conf. on Extending
DataBase Technology, 2004.
[19] D. Gibson, J. Kleinberg, P. Raghavan, Clustering categorical data: an approach based on dynamical systems, in: VLDB Conf.,
1998.
[20] V. Ganti, J. Gehrke, R. Ramakrishnan, CACTUS: clustering categorical data using summaries, in: SIGKDD Conf., 1999.
[21] S. Guha, R. Rastogi, K. Shim, Rock: a robust clustering algorithm for categorical attributes, in: ICDE Conf., 1999.
[22] H. Johnston, Cliques of a graph—variations on the Bron—Kerbosch algorithm, International Journal of Computer and Information
Sciences 5 (3) (1976) 209-238.
[23] K. Gouda, M.J. Zaki, Efficiently mining maximal frequent itemsets, in: [CDM Conf., 2001.

Mohammed J. Zaki is an Associate Professor of Computer Science at RPI. He received his Ph.D. degree in
computer science from the University of Rochester in 1998. His research interests focus on developing novel data
mining techniques for bioinformatics, and other applications. He has published over 100 papers on data mining
and co-edited 11 books. He is currently an associate editor for IEEE Transactions on Knowledge and Data
Engineering, action editor for Data Mining and Knowledge Discovery, and on the editorial board of Int’l Journal
of Data Warehousing and Mining, Int’l Journal of Data Mining and Bioinformatics, Scientific Programming and
the ACM SIGMOD Digital Symposium Collection. He received the NSF Career Award in 2001 and the DOE
Career Award in 2002. He also received a recognition of service award from ACM in 2003, and a certificate of
appreciation from IEEE in 2005.

70 M.J. Zaki et al. | Data & Knowledge Engineering 60 (2007) 51-70

Markus Peters is a consultant for Deloitte & Touche’s Business Intelligence service line, Germany. He specializes
in the design and implementation of enterprise-scale BI applications with a focus on reporting and multi-
dimensional analysis. Markus received a MS degree in Information Technology from Rensselaer Polytechnic
Institute and MS degrees in Computer Science and Business from RWTH Aachen, Germany in 2004.

Ira Assent is currently a research associate at RWTH Aachen. She received her Dipl.-Inform. from RWTH. Her
research interests lie in the area of efficient similarity search in large multimedia databases.

Thomas Seidl is a full professor for computer science and head of the data management and data exploration
group at RWTH Aachen University, Germany. His research interests include data mining and data management
in multimedia and spatio-temporal databases for applications from computational biology, medical imaging,
mechanical engineering, computer graphics, etc. with a focus on content, shape or structure of complex objects in
large databases. His research in the field of relational indexing aims at exploiting the robustness and high
performance of relational database systems for complex indexing tasks. Having received his MS in 1992 from the
Technische Universitat Munchen, Seidl received his Ph.D. in 1997 and his venia legendi in 2001 from the
University of Munich, Germany.

	Clicks: An effective algorithm for mining subspace clusters in categorical datasets
	Introduction
	Preliminaries
	The Clicks approach

	Related work
	Subspace clustering
	Categorical clustering

	The Clicks algorithm
	Pre-processing
	Enumerating k-partite maximal cliques
	Post-processing
	Selective vertical expansion
	Clicks complexity
	Parameter selection

	Experimental study
	Clicks vs. ROCK
	CACTUS extension
	Clicks vs. CACTUS and STIRR: cluster quality
	Clicks vs. CACTUS: performance
	Dataset size
	Dimensionality
	Domain size

	Selective vertical expansion
	Post-processing performance
	Real datasets
	Mushroom dataset
	Congressional votes dataset

	Conclusions and future work
	Acknowledgment
	References

