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Abstract Frequent pattern mining (FPM) is an important data mining paradigm to
extract informative patterns like itemsets, sequences, trees, and graphs. However, no
practical framework for integrating the FPM tasks has been attempted. In this paper,
we describe the design and implementation of the Data Mining Template Library
(DMTL) for FPM. DMTL utilizes a generic data mining approach, where all aspects
of mining are controlled via a set of properties. It uses a novel pattern property
hierarchy to define and mine different pattern types. This property hierarchy can be
thought of as a systematic characterization of the pattern space, i.e., a meta-pattern
specification that allows the analyst to specify new pattern types, by extending this
hierarchy. Furthermore, in DMTL all aspects of mining are controlled by a set of
different mining properties. For example, the kind of mining approach to use, the
kind of data types and formats to mine over, the kind of back-end storage manager
to use, are all specified as a list of properties. This provides tremendous flexibility to
customize the toolkit for various applications. Flexibility of the toolkit is exemplified
by the ease with which support for a new pattern can be added. Experiments on syn-
thetic and public dataset are conducted to demonstrate the scalability provided by the
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persistent back-end in the library. DMTL been publicly released as open-source
software (http://dmtl.sourceforge.net/), and has been downloaded by numerous
researchers from all over the world.

Keywords Frequent pattern mining · Itemset mining · Sequence mining · Tree
mining · Graph mining · Generic programming

1 Introduction

Frequent pattern mining (FPM) is an important data mining paradigm that helps to
discover patterns that conceptually represent relations among discrete entities (or
items). Depending on the complexity of these relations, different types of patterns arise.
The most common type of patterns are sets, where the relation is the co-occurrence of
items. A well-known example of a set pattern is a market-basket, the set of items that
are bought together by a customer, say at a supermarket. Next, there are sequence pat-
terns, where we require an ordering (temporal or positional) between items. Examples
include time-series data in financial markets, genome sequence data in bioinformatics,
etc. Data mining researchers also work with tree and graph patterns. In tree patterns
the item relationship takes a hierarchical form, and in graph patterns the relationship
is mostly arbitrary. Mining web log data, XML, or semi-structured data are examples
of tree mining, and mining chemical compounds for drug discovery, or web commu-
nities in a web graph, are examples of graph mining. It is thus clear that different
applications require the ability to define and mine different types of patterns; some
may even require the ability to define custom pattern types (Horváth et al. 2006).
All of these scenarios require efficient and flexible FPM algorithms and supporting
data/index structures, which can be reused in a variety of domains.

It is worth noting that there exist open source data mining suites such as Weka
(Witten and Frank 1999), which span commonly used data mining methods like asso-
ciation rules, clustering, classification, and regression. For the specific case of itemset
mining, there also exist repositories of separate methods, such as Frequent Item-
set Mining Implementations (FIMI) (Goethals and Zaki 2003). However, no unified
framework for various FPM tasks currently exists.

The Data Mining Template Library (DMTL) is the first such effort in realizing a
unified framework for mining various pattern types. DMTL is implemented in C++,
which was chosen due to its support for generic programming. These features include
template classes and functions, partial specialization, and so on. The most appealing
part of C++ template features is that the binding is resolved at compile time, hence no
runtime overhead is incurred. In contrast, while an object-oriented approach provides
re-usability through inheritance, sometimes it suffers from runtime inefficiency, due
to virtual table lookup for dynamic binding. In addition, most data mining libraries
do not provide support for persistence. As a result they are restricted by the size of
available main memory. For instance, Weka (Witten and Frank 1999) does not provide
any mechanism to store intermediate results so that it can scale to much larger datasets.
However, there has been some recent work to address this limitation (Zou et al. 2006).
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The major contributions of our work are as follows:

• DMTL adopts the generic software development approach using C++ templates,
inspired by the state-of-the-art generic libraries such as the C++ Standard Template
Library (STL) (Musser et al. 2001) and Boost Graph Library (Siek et al. 2002),
and hence provides widespread usability without compromising on efficiency.

• DMTL offers algorithms for different pattern mining tasks in a unified platform.
Currently the library has implementations for mining four key patterns—itemsets,
sequences, trees, and graphs.

• DMTL offers flexible interfaces for each of the algorithms, including each of its
sub-tasks so that it is very simple for end users to use it as a library component in
their software development.

• DMTL is extensible; new patterns can be mined with minimal effort from the end
user. Users need to define some template parameters to ensure that the library
selects the proper mining algorithm to mine that pattern successfully. Some addi-
tional specialized code may be required for efficiency reasons.

• In DMTL all aspects of mining are controlled by properties. Pattern-properties
and mining-properties are used in DMTL to specify the following aspects of the
mining process: (a) pattern to be mined, (b) input data source and format, (c) data
structure to be used in the mining algorithm, (d) storage management, and (e)
mining algorithm/approach.

• Support for multiple back-ends, which enables the library to scale to much larger
datasets. The current implementation includes a file-based back-end that provides
transparent persistency for mining out-of-core datasets.

The DMTL is available as open-source software from the world-wide Sourceforge
repository (http://dmtl.sourceforge.net/). It has already been downloaded by numer-
ous researchers and practitioners from all over the world.1 Below, we describe the
main elements of the design and implementation of DMTL. We explicitly show via
an example, how the DMTL can be easily extended to mine custom defined patterns.
For instance, we extend DMTL to mine multiset patterns. Finally, we perform exten-
sive experimental studies to demonstrate the scalability of DMTL for mining various
pattern types, and for mining very large, out-of-core datasets.

2 Related work

Frequent structure mining refers to an important class of exploratory mining tasks,
namely those dealing with extracting patterns in massive databases representing com-
plex interactions between entities. It encompasses mining techniques like itemsets
(Agrawal et al. 1996), sequences (Agrawal and Srikant 1995), trees (Zaki 2002), and
graphs (Inokuchi et al. 2003; Kuramochi and Karypis 2004). As one increases the
complexity of the structures to be discovered, one extracts more informative patterns.
Here we briefly review the existing methods for FPM.

1 As of Nov 2007, DMTL has been downloaded by around 3,000 researchers from the Sourceforge site (it
is averaging about 2,000 hits and 100 downloads a month).
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Itemset mining The itemset mining problem is to discover frequently co-occurring sets
of items (or attributes). Since its introduction by Agrawal et al. (1993), over the past
decade many interesting algorithms have been proposed for mining frequent itemsets
(Agrawal et al. 1996; Zaki et al. 1997; Savasere et al. 1995; Brin et al. 1997; Han et al.
2000a; Zaki and Gouda 2003). It continues to be an active area of research. Methods
for mining maximal (those that have no frequent superset) and closed patterns (those
that have no superset with the same frequency) have appeared in (Pasquier et al. 1999;
Zaki and Hsiao 2002; Zaki and Hsiao 2005; Wang et al. 2003; Burdick et al. 2001a).
Recent advances are described in the comparative study on Frequent Itemset Mining
Implementations (FIMI) by Goethals and Zaki (2003).
Sequence mining Sequence mining helps discover frequent sequential patterns across
time or positions in a given data set. Within data mining, the problem of mining sequen-
tial patterns was introduced by Agrawal and Srikant (1995). Many other approaches
have followed since then (Srikant and Agrawal 1996; Mannila et al. 1995; Mannila
and Toivonen 1996; Oates et al. 1997; Zaki 2001; Ayres et al. 2002; Pei et al. 2001).
Methods that consider constraints like maximum/minimum gaps, sliding windows,
regular expressions, and taxonomies have also been proposed (Srikant and Agrawal
1996; Zaki 2000b; Garofalakis et al. 1999). Methods for mining closed sequences
appear in Wang and Han (2004), Balcazar and Casas-Garriga (2005).
Tree mining Several algorithms for tree mining have been proposed recently, starting
with the earlier work in Wang and Liu (1998), Asai et al. (2002), and Zaki (2002).
The new methods mine different kinds of tree patterns, such as ordered/unordered
embedded trees (Zaki 2005b; Wang et al. 2004; Termier et al. 2002; Termier et al.
2004; Zaki 2005a) or induced trees (Chi et al. 2003; Shasha et al. 2004; Xiao et al.
2003; Nijssen and Kok 2003; Asai et al. 2003; Chi et al. 2004a). Methods for mining
closed and maximal tree patterns appear in Chi et al. (2004b).
Graph mining Given a database of graph objects, the goal of graph mining is to find all
the commonly occurring sub-graph patterns. Some of the early work in graph mining
include Cook and Holder (1994), Yoshida and Motoda (1995), and Dehaspe et al.
(1998). Many recent methods have been proposed which improve the efficiency of
mining, these include Inokuchi et al. (2000), Kramer et al. (2001), Kuramochi and
Karypis (2001), Yan and Han (2002a), Huan et al. (2003a), and Nijssen and Kok
(2004). Closed graph mining methods have also been proposed (Yan and Han 2003).

As reviewed above, there have been many stand-alone algorithms to mine differ-
ent types of patterns. On closer examination, certain common themes and common
algorithmic paradigms permeate all of the existing methods. The goal of the DMTL
is to abstract these common elements into generic primitives both in terms of the data
structures used and in terms of the algorithms. In addition, DMTL explicitly handles
the issue of persistency, i.e., the ability to mine out-of-core datasets. An initial version
of DMTL was described in Zaki et al. (2004), however that design was not based on the
property-based framework we present here. In a recent paper on DMTL (Hasan et al.
2005), we focused on the software design; neither did we emphasize the data mining
aspects, nor did we present any experiments results. This paper describes the novel
property-based DMTL framework, it shows how DMTL can be extended to mine new
pattern types, and it presents a comprehensive experimental evaluation demonstrating
DMTL’s scalability to large datasets.
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We would like to point out that the work by the authors in Mannila and Toivonen
(1997), is similar in concept to that of ours. In Mannila and Toivonen (1997), the
authors provide an abstract theoretical analysis for the problem of traversing the partial
order in a levelwise fashion. In the pattern space, they mainly focus on the itemset
and sequence patterns and their variations. The authors also discuss bounds on the
number of evaluations of the “interestingness criterion” in terms of the size of the
border. Our work lends an empirical grounding for their theoretical work. Moreover,
our framework supports both levelwise and depthwise traversal techniques. We also
explore more complex patterns such as trees and graphs.

3 Preliminaries

The problem of mining frequent patterns can be stated as follows: LetN = {x1, x2, . . . ,

xnv } be a set of nv distinct nodes or vertices. A pair of nodes (xi, xj ) is called an edge.
Let L = {l1, l2, . . . , lnl

}, be a set of nl distinct labels. Let Ln: N → L, be a node
labeling function that maps a node to its label Ln(xi) = li , and let Le: N × N → L
be an edge labeling function, that maps an edge to its label Le(xi, xj ) = lk .

It is intuitive to represent a pattern P as a graph (PV , PE), with labeled vertex
set PV ⊆ N and labeled edge set PE = {(xi, xj ) | xi, xj ∈ PV }. The number of
nodes in a pattern P is called its size. A pattern of size k is called a k-pattern, and the
class of frequent k-patterns is referred to as Fk . In some applications P is comprised
of undirected edges, i.e., the edges define a symmetric relation: (xi, xj ) ≡ (xj , xi),
while in other applications P is comprised of directed edges, i.e., the edges define
an anti-symmetric relation: (xi, xj ) �≡ (xj , xi). A path in P is a set of distinct nodes
{xi0 , xi1 , . . . , xin}, such that (xij , xij+1) is an edge in PE for all j = 0, . . . , n − 1. xi0

is the start node and xin is the end node. The number of edges gives the length of the
path. If xi and xj are connected by a path of exactly length n we denote it as xi <n xj .
Thus the edge (xi, xj ) can also be written as xi <1 xj .

Given two patterns P = (PV , PE) and Q = (QV ,QE), let f : PV → QV be an
injective function. We say that P is a sub-pattern of Q (or Q is a super-pattern of P ),
denoted P �Q if and only if (iff) for all xi, xj ∈ PV :

(i) Nodes labels are preserved by f , i.e., Ln(xi) = Ln(f (xi)).
(ii) Edge labels are preserved by f , i.e., Le(xi, xj ) = Le(f (xi), f (xj )).

(iii) (xi, xj ) ∈ PE �⇒ (f (xi), f (xj )) ∈ QE , i.e., PE ⊆ QE .

If P � Q we also say that P is contained in Q or Q contains P . Note that with the
exception of itemsets, we are generally interested only in connected sub-patterns,
where we require that there exists a path between xi and xj for all xi, xj ∈ PV . Fur-
thermore, in some data mining applications, we desire embedded sub-patterns; P is
called an embedded sub-pattern of Q iff:

(i) Nodes labels are preserved by f , i.e., Ln(xi) = Ln(f (xi)).
(ii) (xi, xj ) ∈ PE �⇒ f (xi) <l f (xj ) in QE , where l ≥ 1. In other words, an

edges (xi, xj ) exists in P if f (xi) is connected to f (xj ) by a path in Q. Note
that if l = 1, then f (xi) <1 f (xj ) �⇒ (f (xi), f (xj )) ∈ QE . In this case
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PE ⊆ QE , and if we require that edge labels be preserved, then P becomes a
regular sub-pattern of Q.

A database D is just a collection (a multi-set) of patterns. A database pattern is
also called an object or a record. Let R = {t1, t2, . . . , tnr }, be a set of nr distinct
transaction identifiers (tid). An object has a unique identifier, given by the function
R(di) = tj , where di ∈ D and tj ∈ R. The number of objects in D is given as |D|.

The absolute support of a pattern P in a database D is defined as the number of
objects in D that contain P , given as πa(P,D) = |{P�d | d ∈ D}|. The (relative)
support of P is given as π(P,D) = πa(P,D)

|D| . A pattern is frequent if its support is more

than some user-specified minimum threshold πmin. A frequent pattern is maximal if
it is not a sub-pattern of any other frequent pattern. A frequent pattern is closed if it
has no super-pattern with the same support. The frequent pattern mining problem is to
enumerate all the patterns that satisfy the user-specified πmin frequency requirement
(and any other user-specified conditions).

3.1 FPM instances

Some common types of patterns include itemsets, sequences, trees, and graphs, as
shown in Fig. 1. Every pattern can be modeled as a graph; the nodes (xi) are shown
under each circle and the node labels (Ln(xi)) are shown inside the circle, whereas
edge labels have been omitted.

In an itemset no two nodes have the same label. Let V = {x1, x2, . . . , xk} be a node
set such that Ln(xi) �= Ln(xj ) for all xi, xj ∈ V , and without loss of generality, we
may assume that Ln(xi) < Ln(xi+1) for all 1 ≤ i ≤ k − 1. There are several possible
graph representations for itemset patterns: (i) vertex-only: An itemset pattern P is just
a set of vertices, i.e., PV = V and PE = ∅, this is shown in Fig. 1, (ii) linear: in another
formulation the itemset is defined as PV = V , and PE = {(xi, xi+1)|xi, xi+1 ∈ PV },
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Fig. 1 FPM instances
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(iii) clique: A third alternative is to represent itemset P as a clique, i.e., PV = V and
PE = {(xi, xj ) | i < j and xi, xj ∈ PV }. All edges in itemsets are undirected.

A simple sequence pattern P is easily modeled as a set of directed edges PE =
{(xi, xi+1)|(xi, xi+1) is ordered, and xi, xi+1 ∈ PV }. Moreover, for sequences, the
node labeling function Ln need not be injective, i.e., two nodes can have the same label.
The sequential patterns defined by Agrawal and Srikant (1995) are ordered lists of item-
sets. We can model a sequential pattern P as being made up of a sequence of n itemsets
P i , i = 1, . . . n, using the linear representation, with directed edges from one itemset
to the next. For example, Fig. 1 shows the sequential pattern A → {A,B} → C. Note
that using the vertex-only formulation for the itemsets in a sequential pattern would be
problematic, since it would result in a disconnected pattern. In summary, a sequential
pattern P has a vertex set made up of n disjoint subsets PV = ⋃n

i=1 P i
V , and the

edge set PE contains all the edges within P i (consecutive and undirected), and it also
contains a directed edge for every pair of consecutive itemsets, i.e., from the last node
of P i to the first node of P i+1.

A tree pattern P consists of the vertex set PV = {r, x1, x2, . . .}, where r is a special
node called root. A tree pattern must satisfy the following properties, namely i) the
root has no parent, i.e., (xi, r) �∈ PE for any xi ∈ PV , ii) the edges are directed, i.e., if
(xi, xj ) ∈ PE , then (xj , xi) �∈ PE , iii) a node has only one parent, i.e., if (xi, xj ) ∈ PE ,
then (xk, xj ) �∈ PE for any xk �= xi , iv) the tree is connected, i.e., for all xi ∈ PV ,
there exists a path from the root r to xi . Furthermore for ordered trees the order of
a nodes’ children matters. This means that there is an ordering of edges in PE , such
that (xi, xj ) comes before (xi, xk) in PE only if xj is before xk in the ordering of
xi’s children. Embedded trees can be defined by following the definition of embedded
patterns introduced earlier.

Finally, by definition a general pattern can be modeled as a graph, along with any
special constraints that typically arise in graph mining (e.g., connected graphs, or
induced subgraphs). It is also possible to model other patterns such as directed acyclic
graphs (DAGs) or free trees (undirected acyclic graphs). DMTL currently implements
direct support for the mining of (i) itemsets, (ii) regular or embedded simple sequences,
(iii) regular/embedded, rooted trees with ordered/unordered edges, and (iv) undirected
graphs with no self loops or multiple edges. As we shall describe below, the toolkit
can be extended to incorporate mining of other user defined patterns as well.

3.2 Database format

In a typical FPM task, the database is in a horizontal format, i.e. a set of transactions,
where each transaction is an object of the pattern type being mined (Agrawal et al.
1996). Recently, vertical database formats have been proposed for mining itemsets,
sequences, and trees (Zaki 2000a, 2001, 2002). The vertical format is an attractive
alternative since it enables fast computation of support by avoiding repeated database
accesses. It does so by associating an entity called Vertical attribute table (VAT) with
each pattern. For an itemset, the VAT is the list of tids in which it is contained; VATs
for sequences and trees are more complex and are described later. Currently a vertical
scheme does not exist for graphs; the introduction of a new and efficient VAT scheme
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for graphs is one of the contributions of this paper. DMTL introduces two modes of
persistence: (i) the collection of frequent patterns itself may be too large to fit in main
memory, and hence persistent containers are provided to hold them, and (ii) persistent
storage and access to VATs. Both these modes of persistence are entirely transparent
to the user.

4 DMTL design and implementation

4.1 Design motivation

While implementing mining algorithms for different patterns, we noticed that they
exhibit considerable similarity, which suggested developing a common framework
for implementing them. Figure 2 outlines a generic pattern mining algorithm (pseudo-
code) that applies to all commonly explored patterns in the literature. The algorithm
can be broken down into key sub-tasks, which include candidate generation, isomor-
phism checking, and support counting. By implementing generic algorithms for these
sub-tasks, we retain the abstraction shown in this pseudo-code. The overall idea of
the algorithm is as follows: the mining process searches incrementally in the pattern
space by iteratively applying these sub-tasks in each iteration to enumerate patterns of
size one, two, and so on. Each iteration discovers frequent patterns extended by one
more item (or edge) than in the previous step, until no further frequent patterns exist
in the database.

The sub-tasks of a generic mining algorithm can be developed using generic meth-
ods (expressed using C++ function templates). For example, the candidate generation
method generates candidate patterns of generic type T , by combining two parent pat-
terns of type T . The algorithm strictly requires that both the input arguments, together
with the output argument, are of the same type T (e.g., we cannot join a set pattern
with a tree pattern to produce a tree candidate pattern). The isomorphism checking
method takes as input a pattern P of type T and produces a boolean value to indicate
whether P is generated from a branch of the candidate generation tree where its canon-
ical code is minimum. A minimum canonical code is a unique signature of a pattern,
thus it guarantees that each candidate is enumerated only once. The support counting

Fig. 2 Generic frequent pattern
mining algorithm
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method takes as input a pattern of type T , counts its frequency in the entire data-
base (via sub-pattern, i.e., subgraph isomorphism, checking). Typically, the support
of entire sets of candidates are determined in one database access.

In all the above three generic methods, the type T models a pattern concept. It has
the following requirements: (i) T defines an object that relates some elements. (ii) T

must adhere to a structure that is defined by a collection of relational properties. (iii) T

defines a comparison (≤) operator. (iv) Associated with type T there exists a pattern
iterator, which is used to iterate through the elements of the pattern. All commonly
known patterns in data mining, like set, sequence, tree, or graph are refinements of
a pattern concept. The entire pattern mining process can be represented in terms of
abstract objects and operations, that can be captured easily using the C++ template
mechanism.

Figure 3 shows the key architectural components of DMTL. The components are
partitioned into two main segments—the front end and the back end. The front end
manages the core mining process while the back end provides the necessary stor-
age support. The dotted rectangular block in the front end corresponds to the generic
pattern mining algorithm shown in Fig. 2 and the three generic subtasks (candidate
generation, isomorphism checking, and support counting) are represented by solid
boxes inside it. The arrows in this figure show the data/control flow among different
components. For instance, the down arrows among the tasks in the dotted rectangle
indicate the order in which they were called and the loop back arrow (count support

STRUCTURE

      STORAGE
     MANAGER

CANDIDATE
GENERATION

FILE

DATABASE

PATTERN
DATASET

ISOMORPHISM
CHECKING

PSTL
WITH BUFFER

MEMORY

FREQUENT
PATTERNS

COUNT
SUPPORT

PARSER

FRONT END

BACK END

PATTERN

Fig. 3 High-level architecture diagram of the Data Mining Template Library. The boxes denote different
functional units and the arrows connecting different boxes shows the data flow
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to candidate generation) illustrates the recursive enumerative nature of a generic
frequent pattern mining algorithm. The count support task delegates its responsibility
to the back-end which manages the storage and can return the support of candidate
patterns by efficient back-end operations (intersecting the VAT of the parent patterns).
The separation between the front-end and the back-end, as shown in this figure, is
explicitly retained in the implementation, which makes DMTL flexible, extensible,
and also widely usable. Since the enumeration based algorithm can generate a large
number of frequent patterns, efficient data structures are required such that the desired
patterns and their corresponding VATs can be accessed efficiently from the container
where they are stored. These data structures are implemented in the back-end, whose
implementation is hidden to the front-end. The VAT for a pattern is accessed from
the back-end via the Pattern Structure module. Note that direct access to VATs is not
allowed (for modularity and abstraction). Instead pattern identifiers are passed to the
back-end, which in turn computes the VAT for a candidate pattern and returns the
support value to the front-end. The candidate pattern, if found frequent, is saved in
the back-end along with its VAT. The Database Parser initiates the mining process by
reading all frequent patterns of length one from the input source which could either
be a database, a flat-file or another process generating the data. The Database Parser
generates two objects for each level-one pattern—pattern object and the VAT object
and stores those in the back-end storage manager.

4.2 The front-end mining engine

The front-end consists of the core mining engine which implements the enumerative
mining process.

4.3 Data types

The key data structure in DMTL is the pattern, along with its associated VAT. The
reader can more or less consider that the pattern is associated with the front-end and
the VAT is associated with the back-end. This is because majority of the operations on
the pattern structure are performed in the front-end, while the VAT is operated upon
primarily in the back-end.

4.3.1 Expressing patterns as properties

Any pattern is conceptualized as a group of elements that can be represented as ver-
tices of a graph. The relationship between the elements is captured by the presence
of edges between the vertices. For instance, a set is a specialized graph which has no
edges between its vertices. Whereas graphs provide an effective pattern abstraction,
using a general purpose graph mining implementation to mine simpler patterns (item-
sets, sequences or trees) is inefficient. The concept of pattern property provides an
effective solution to this dilemma. With this idea of expressing patterns in terms of
primitive properties, we can ensure that a generic algorithm can pick the most appro-
priate sub-tasks. In Sect. 4.3.3, we explain the use of these pattern properties to ensure
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a generic algorithm that does not compromise efficiency via the use of appropriate
pattern-specific specializations. Below we explain the different pattern properties that
we used.

The pattern properties constrain the graph to form the desired pattern. We analyzed
the pattern space and found that the following properties are sufficient to describe the
most common patterns, but nevertheless, additional properties can be added to DMTL
seamlessly. The properties are themselves categorized depending on the elements
(nodes, edges, etc.) of a graph on which the constraints are imposed.

1. Edge properties: The edge set PE is defined as PE ⊆ PV × PV , where PV is
the set of vertices in the pattern. Under edge relation category we consider the
following properties:

• no-edge means that elements in the patterns are not connected with any edge.
• directed means that elements in the patterns are connected with directed

(asymmetric) edges.
• undirected means that elements in the patterns are connected with undirected

(symmetric) edges.
• cyclic means that at least one vertex is reflexive on the edge relation in the

transitive closure of the pattern; otherwise, the pattern possesses the acyclic
property.

2. Vertex properties: Here we consider only one property, ordered, which imposes
an ordering on the neighbors of a vertex, or else the pattern is said to be unordered.
Ordering is usually relevant for only tree patterns.

3. Degree-related properties: These relate to the degree constraints placed on the
nodes of the pattern.

• indegree_lte_one constrains all vertices of a graph to have indegree ≤ 1.
• outdegree_lte_one constrains all vertices of a graph to have outdegree ≤ 1.

4. Label properties: Here the unique_label property requires the labeling function
to be one-to-one (injective). Each vertex thus maps to a unique label (a common
example of such a pattern is an itemset).

Figure 4 shows the relationship among the different pattern types, based on the
pattern properties, which define a concept lattice over the property space and pattern
types. Each node of the lattice defines a formal concept (Ganter and Wille 1999),
which consists of an intent and extent pair. The extent spells out the maximal set of
pattern types that share the properties noted in the intent. Likewise, the intent con-
sists of the maximal set of properties that apply to the patterns in the extent. The
lattice of pattern property concepts is shown in Fig. 4 using minimal labeling (Ganter
and Wille 1999). For each node, its extent is made up of all nodes reachable below
it, and its intent is made up of all nodes reachable above it. For example, the min-
imal concept ({Indegree <= 1}, {Unordered Tree}) represents the full
concept ({Directed, Acyclic, Indegree<= 1},{Sequence, Ordered
Tree, Unordered Tree}).

Concept refinement is the process of obtaining a sub-concept from a concept.
Adding one or more properties in the intent removes patterns from the extent that do
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All Properties

Graph

No Edge

MultiSet

Undirected Edge

Undirected Graph

Acyclic

Acyclic Graph

Directed Edge

Directed Graph

Unique Label

Itemset

Free Tree DAG

Null Property

Null Pattern

Degree <= 2

Chain

Indegree <= 1

Unordered Tree

Ordered Children

Ordered Tree

Outdegree <= 1

Sequence

Fig. 4 Pattern property concept lattice and pattern types. Each node shows a pattern property and the spe-
cific pattern type defined. Each node inherits all the properties from nodes above it. Free Trees and DAGs
do not define any new properties; Free Tree is an undirected, and DAG is a directed, acyclic graph

not conform to that property. For example, we can refine the ({Indegree ≤ 1},
{Unordered Tree}) concept by adding another property Outdegree <= 1,
to yield the concept ({Directed, Acyclic, Indegree <= 1, Outde-
gree <= 1}, {Sequence}).

In our generic library implementation, we employ the formal concept hierarchy
to develop mining algorithms that can handle different types of patterns. Any algo-
rithm that works for patterns in a concept automatically works for the patterns in a
sub-concept (i.e., those nodes below it). The list of pattern properties in a concept is
passed as a template argument, which partially matches and automatically invokes the
correct algorithm for the patterns belonging to the concept. There are two possible
cases: (i) An efficient implementation exists for the current concept, in which case, the
properties will match that implementation, or (ii) An implementation of that concept
does not exist, in which case, the template will match some super-concept which has
an implementation. For example, assume we want to mine DAG patterns, but no spe-
cific implementation exists for mining DAGs. In this case, DMTL will automatically
use the implementation for general graph mining (assuming that DMTL also does not
have specific implementations for acyclic or directed graphs).
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template<
class pattern_props,
class canonical_code,
class graph_model>

class pattern {
public:

typedef vector<V_TYPE> VERTICES;
typedef typename VERTICES::const_iterator CONST_VIT;

bool add_vertex(const V_TYPE& v);
bool add_edge(const V_TYPE& src, const V_TYPE& dest,

const E_TYPE& e_lbl);
CONST_VIT get_neighbors(const V_TYPE& v);
CONST_VIT get_rmost_path();

};

1
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5

6
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15

Fig. 5 Pattern class interface

4.3.2 Pattern container implementation

As mentioned earlier, in DMTL, vertices and edges are the basic structural building
blocks of every pattern. The most basic interface for a pattern should thus provide meth-
ods for adding labeled vertices and edges between vertices. Figure 5 shows the C++
class interface of the pattern concept. It consists of the most basic operations required
to construct a complex pattern. It also shows the template arguments that we used to
construct the pattern concept. The first argument pattern_props lists the pattern
properties that define a specific pattern. The second argument canonical_code
maintains a pattern signature and is used for isomorphism checking. It is also
used to implement the comparison (≤) operator for the pattern. The last argument
graph_model is the underlying data structure used for storing the pattern structure.
A typical example of such a data structure is an adjacency list. This design decision
to parameterize the pattern data structure aims at decoupling the pattern storage from
the pattern concept, such that an adjacency list based storage could be substituted by
a sparse adjacency matrix structure. From the above interface, a sequence such as
A → B can be constructed by invoking the add_vertex(A) method followed by the
add_vertex(B) and add_edge(A, B, e) methods (e is some label).

As seen in Fig. 4, the specific patterns are instantiations of the abstract pattern
concept. We identify each such concept by a set of properties (or constraints) that
define the pattern. For instance, a directed acyclic graph (as the name suggests) has
{acyclic,directed} as its property set. The notion of having a set of prop-
erties to represent a concept is crucial for the implementation of our library. Even
though conceptually the properties are considered to be a set, for implementation
we treat them as an ordered list of properties. This ordering of properties is neces-
sary for the compiler to match a specialized pattern to an appropriate super-pattern,
if any algorithmic implementation is not available for that specialized pattern. This
leads to the pattern hierarchy tree in Fig. 6. Note that in Fig. 4, a node can have
multiple parents whereas in Fig. 6 each pattern has a single parent. Multiple par-
ents for a pattern would lead to an ambiguity when a super-pattern functionality has

123



V. Chaoji et al.

Fig. 6 Pattern hierarchy

to be invoked. Using the pattern hierarchy tree, the ordering of the properties for a
pattern is automatically enforced. They are ordered along the path from the root to a
pattern node. In a nutshell, Fig. 4 represents the conceptual relationships among the
patterns, whereas Fig. 6 represents the practical implementation in terms of an (unam-
biguous) hierarchy. We had the following goals while implementing the hierarchy of
patterns:

1. Abstract out the common aspects between the pattern types and the algorithms.
2. Allow new patterns to be added to the hierarchy by introducing new properties.
3. Propagate absence of a lower-level concept implementation to a higher-level con-

cept implementation.

The last objective above is an outcome of using partial specialization (via function
template overloading). The presence of a single parent in the hierarchy tree enables
finding the right pattern to which control should be dispatched. Our library provides
implementations for what we call the four core patterns—sets, sequences, trees, and
undirected graphs. Apart from being the most popular patterns, the core patterns can
informally be considered to mark complexity classes in frequent pattern mining. Sets
are at the simpler end of the spectrum with sequences and trees (in that order) before
graphs at the other extreme.
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4.3.3 Pattern properties implementation

In order to identify the appropriate pattern we use the set of pattern properties as
template parameters. This set of pattern properties is encapsulated in a class prop-
list, which is an ordered list of properties. Since it is simply a holder of types, the
class itself is not complicated and is given below.

1 template<
2 class prop,
3 class next_property=null_prop>
4 class proplist{
5 public:
6 typedef prop FIRST;
7 typedef next_property SECOND;
8 };

The class null_prop is used as a delimiter in the type-list. It should be noted
that such a type list is a static accumulator, i.e., it relies on the template compile-time
mechanism and hence incurs no run-time overhead. A type-list gives us the flexibility
to append properties to it, making the design generic and extensible. In addition to its
utility as a type list, the proplist possesses the nice feature of facilitating upward
propagation of properties. Pattern properties also play an important role in introduc-
ing pattern mining for a new pattern. These aspects are discussed in further detail in
Sect. 6.

4.3.4 Mining properties

Section 4.3.3 focused on one aspect of enabling genericity; usingproplist to define
patterns. The generic behavior of pattern mining algorithms that DMTL advocates is
not restricted to the types of patterns it mines. This generic behavior extends to the
different ways in which algorithms perform the sub-tasks in Fig.2. The choices are
captured using the mining properties; the user can choose a collection of such min-
ing properties to select the kind of mining algorithm to run. In this way, our generic
software implements a family of algorithms and gives the user the freedom to choose
one that best suites the application at hand. The mining properties are independent
of the pattern properties. Analysis of existing FPM algorithms reveals the following
mining properties (as with pattern properties, new mining properties can be incorpo-
rated):

1. Join-type: This category influences the candidate generation phase, in which
potential frequent patterns are generated. During candidate generation, the algo-
rithm typically constructs a new pattern by joining two parent patterns. The nature
of this join is a property itself. A suitably correct algorithm has to be provided for
the chosen property:

• Fk × F1: Here a (k + 1)-length pattern is constructed by joining a k-length
pattern with a pattern of size one (i.e., a single element).
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• Fk × Fk: Here a (k +1)-length pattern is constructed by joining two k-length
patterns. This join is usually more efficient since it generates fewer infrequent
candidates.

2. Support-counting: This category specifies how the support of a candidate pattern
is determined. Two common approaches are:

• horizontal: This indicates that the support for a candidate pattern is determined
by counting its occurrences in the database, testing for the sub-pattern rela-
tionship against each database object. This method usually involves significant
I/O overhead for large databases.

• vertical: In this approach, support for a pattern is determined by defining an
appropriate join (or intersection) operation over the vertical attribute tables of
the two parent patterns.

3. Transitivity: This property controls the inclusion of either induced or embedded
occurrences of a pattern in its support counting step. One might think that this
property should belong to the set of pattern properties (Sect. 4.3.1), however,
a pattern itself is unaware of its occurrences in the database, since it can have
both induced and embedded occurrences within a database object. The distinction
between an induced and and embedded occurrence of a pattern within database
objects is entirely up to the support counting phase of the algorithm. As a result,
this property is included under mining properties.

• induced: When transitivity is not considered, only regular sub-pattern occur-
rences are counted.

• embedded: For embedded patterns, transitive closures on the edge relation
are included in the support counting. The transitivity leads to discovery of
embedded occurrences (see Sect. 3) of the pattern.

4.4 The back-end storage manager

As mentioned earlier, the enumerative pattern mining algorithm generates new pat-
terns and the associated VATs dynamically. While mining large datasets, it is most
likely that the newly generated patterns will not fit in the main-memory (especially,
for low minimum support values). Most mining algorithms do not provide explicit
means of memory management nor is the issue addressed within the algorithm. The
DMTL back-end manages the storage of patterns and their VATs; it allows constant
time access to a pattern and its corresponding VAT through a pattern-key (which is
a hash-value computed on the pattern). The back-end is also the facilitator for the
front-end to determine the support of a candidate pattern.

We designed DMTL back-end to be similar to that of an STL allocator. Each
allocator implements a different memory management strategy. Moreover, each allo-
cator provides the same interface, thus hiding the details from the user. We currently
implement three allocator classes—the mining algorithm can choose any of them,
by using the allocator name as a template argument in the Count Support mod-
ule. A new allocator can be introduced without affecting the remaining modules of
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the system since the mining algorithms are independent of the allocator. In Fig. 3,
Storage Manager is the functional block that represents a generic allocator. The
three allocators implemented in DMTL are shown as specializations of the Storage
Manager.

Out of the currently implemented allocators, pure memory-based one is naturally
the most time efficient, as long as the data structures fit in memory. As expected, it
does not scale to larger datasets. The persistent allocator (PSTL) (Gschwind 2001)
is based on memory-mapped files, but does not scale very well. This lack of flexible
libraries for persistent object storage prompted us to develop our own storage manager
based on flat-files. The custom disk-based allocator, that uses a memory cache and a
disk file, provides scalability to very large datasets. Thus, DMTL provides an elegant
solution when a memory-based back-end fails due to enormous growth of the number
of patterns generated.

4.4.1 Vertical attribute tables

To provide native database support for objects in the vertical format, DMTL adopts a
fine grained data model, where records are stored as a Vertical attribute table (VAT).
Given a database of objects, where each object is characterized by a set of properties
or attributes, a VAT is essentially the collection of objects that share the same values
for the attributes. For example, for a relational table, cars, with the two attributes,
color and brand, a VAT for the property color=red stores all the transaction
identifiers of cars whose color is red. The main advantage of VATs is that they allow
for optimizations of query intensive applications like data mining where only a subset
of the attributes need to be processed during each query; vertical representations have
proved to be useful in several pattern mining tasks (Zaki 2000a, 2001, 2002).

In DMTL there is specialized VAT per pattern-type. Depending on the pattern type
being mined the vat-type class may be different, and the VAT intersection shall vary
as well:

• Itemset: For an itemset the VAT is simply a vector <tid>, where each tid may
be stored as an int. VAT intersection is simply the intersection of the two vectors,
consisting of all the common tids (Zaki 2000a).

• Sequence: The VAT for a sequence is defined as: vector <pair<tid, vec-
tor <time»>. For each item, the VAT records the tid where the item occurs,
as well as a vector of associated time-stamps. The intersection operation has to
compare for matching tids, and in addition requires comparison of the timestamps
when doing sequence joins. For instance, when computing the VAT intersection
for a sequence A → B from the VATs for items A and B, one needs to match the
tid and ensure that the timestamp of A in that tid is less than that of B (see Zaki
2001 for details of vertical sequence joins).

• Tree: Define triple to be (tid, scope, match-label), then the VAT
for a tree pattern is defined as: vector<triple>. The tid identifies a tree
in the input database; scope is an interval [l,u] which denotes the range of
depth-first-search (DFS) vertex ids which lie under the last node of the tree, and
match-label is a list of DFS positions at which the last tree node occurs.
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Intersection of tree VATs is an involved operation, comprising in-scope and out-
scope tests (refer to Zaki 2002 for more details on vertical tree mining).

• Graph: DMTL implements a novel VAT representation for graphs. The VAT for a
graph is defined as a vector<edge_vat> where an edge_vat is defined as
vector<pair<tid, vids> >, wherevids is avector <pair<int,
int>>. A graph may be viewed as a collection of edges; following this approach
an edge_vat is in essence the VAT for an edge of a graph. It stores the tid of the
graph in which the edge is present, and a collection of pair of vertex ids—each pair
denoting an occurrence of the edge in the graph. In Sect. 5, we show an example
of how DMTL mines graph patterns using the graphs VATs.

DMTL provides support for creating VATs during the mining process, i.e., during
algorithm execution, as well as support for updating VATs (e.g., add and delete oper-
ations). Finally DMTL uses indexes for a collection of VATs for efficient retrieval
based on a given attribute-value, or a given pattern.

4.4.2 Generic memory management via allocators

Memory management is an integral part of any pattern mining task. Since pattern
mining datasets are typically large, efficient memory allocation becomes crucial to
achieve a superior performance. Sometimes a dataset does not even fit in main mem-
ory, so parts of it need to be staged into the memory from the disk for the algo-
rithm to continue. Since back-end access is tightly embedded in the mining algo-
rithm, it is very difficult for the user to modify the back-end to obtain scalability or
persistence.

DMTL implements a generic memory manager, by adopting the allocator concept
of STL. Every data structure gets its memory from the allocator that is passed to it as
a template parameter. The generic allocator concepts provide the freedom to choose a
memory manager. Such a framework is very helpful in situations where heterogeneous
data sources (DBMS, flat file, shared memory, etc.) are used for data management.
Furthermore, it allows users to allocate memory in such a way that facilitates the
deployment of mining-aware caching mechanisms. Such mechanisms combine the
knowledge of access patterns to devise cache replacement strategies that improve
spatial locality. It has been recently demonstrated in Ghoting et al. (2005) that a cus-
tomized cache mechanism can dramatically enhance performance. Currently, DMTL
implements three allocation mechanisms: purely memory-based, memory-map-based
(mmap) persistent allocator and finally a file-based allocator with a memory buffer
that provides scalability for a process that would otherwise exceed the virtual memory
size (on a 32 bit machine, 232 is the virtual address space size). Work to integrate
relational and object-relational databases is in progress.

4.5 Generic algorithms

The core FPM algorithm shown in Fig. 2 was introduced in Sect.4.1. Even though
we do not enforce a pattern to conform to this precise formulation of the mining
process, most FPM algorithms (including the ones in our library) conform closely
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to this outline. The pseudo-code in Fig. 2 is implemented in the freq_pat_mine
method.

1 template<
2 class PATTERN,
3 class MINE_PROPS,
4 class SM_TYPE>
5 void freq_pat_mine(const pat_fam<PATTERN>& Fk,
6 pat_fam<PATTERN>& freq_pats,
7 int& min_sup,
8 count_support<MINE_PROPS, SM_TYPE >& cs)

The first parameter to this method, pat_fam, is a collection of patterns that belong
to the same prefix-based equivalence class. The second parameter, freq_pats is
used to collect the final set of frequent patterns. The rest are related to the support
counting and are passed to the back-end routines. Note that in the above example
PATTERN is a concept, thus the algorithm automatically chooses the most efficient
implementation to mine it by matching pattern properties along the pattern hierarchy.

4.5.1 Candidate generation

Pattern types differ in the way they generate candidates. The number of candidates gen-
erated or the operation involved (adding a node or adding an edge) differ for one pattern
type versus another. Despite these differences there are fundamental similarities. Each
pattern has a set of locations (called extension points) where an extension operation,
such as add edge or add node, leads to a new candidate pattern. Thefreq_pat_mine
method calls the join method to generate new candidates by joining two frequent
patterns. The interface for the join method is as shown below:

1 template<
2 class PAT_PROPS,
3 class MINE_PROPS,
4 class SM_TYPE>
5 pattern<PAT_PROPS, MINE_PROPS, SM_TYPE>** join(
6 const pattern<PAT_PROPS, MINE_PROPS, SM_TYPE>*

pat_i,
7 const pattern<PAT_PROPS, MINE_PROPS, SM_TYPE>*

pat_j)

This method takes two pattern pointers and outputs an array of pattern pointers.
An array is chosen, as sometimes more than one pattern can be created from the join
operation. For example, if a pattern A is the set {a, b, c} and another pattern B is the set
{a, b, d} and their VAT (list of transactions they occur in) are {1, 4, 10} and {1, 10, 12},
respectively, a join (set union operation) produces one pattern {a, b, c, d}, and the cor-
responding intersection of VATs (set intersection operation) produces {1, 10}, which
is the VAT of the new pattern. However, the join method shown here materializes the
pattern join only; the associated VAT intersection is done in the back-end.
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4.5.2 Isomorphism checking

For itemsets and sequences we can circumvent generating isomorphic patterns by
intelligent candidate generation (Agrawal et al. 1996; Zaki 2001). Essentially, we
exploit the lexicographic ordering on the labels to avoid generating redundant pat-
terns. Isomorphism checking can also be avoided for ordered trees by an appro-
priate candidate generation scheme (Zaki 2002). However, unordered trees (Nijssen
and Kok 2003), free trees (Chi et al. 2003) and graphs (Yan and Han 2002a; Huan
et al. 2003a) require isomorphism testing. The isomorphism checker is provided by
the check_isomorphism method and it is templatized on the pattern properties.
Our library provides specialized isomorphism routines for various patterns—general
graphs and unordered trees, to name a few.

1 template<
2 class PAT_PROPS,
3 class MINE_PROPS,
4 class SM_TYPE>
5 bool check_isomorphism (
6 pattern<PAT_PROPS, MINE_PROPS, SM_TYPE>*

cand_pat)

4.5.3 Support counting

The support counting functionality is supported by the Count Support module in
Fig. 3. Since support counting needs to query the back-end, this module acts as a
liaison between the front-end and the back-end. The interface for the count method
is given below:

1 template<class PATTERN>
2 void count(PATTERN* p1, PATTERN* p2, int min_sup)

A join of patterns in the front-end triggers an associated VAT intersection in the
back-end. We provide different back-end implementations, all storing the same VAT,
but which may be in different formats. For example, the VAT stored in persistent
STL (Gschwind 2001) is necessarily different than that stored in the memory-based
back-end. Nevertheless, the VAT intersection algorithm is the same. Inspired by STL’s
design, we used iterator concepts to decouple the algorithm from the actual data struc-
ture. To reiterate, the design of DMTL consists primarily of three challenging compo-
nents: pattern structure, pattern algorithms, and back-end storage facility. More details
of the generic design of DMTL are available in Hasan et al. (2005).

5 Graph mining: a novel vertical approach

The VAT-based mining approach followed by DMTL is based on the vertical
database representations previously proposed in Zaki (2000a) for itemset mining, in
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Zaki (2001) for sequence mining and in Zaki (2002, 2005a) for tree mining. However,
a vertical representation for graph mining has previously not been described.

In this section we discuss the VAT structure for graphs, and show how it captures
each occurrence of a graph in the dataset. VAT intersection operation for graphs is
defined thereafter. A graph VAT for a graph g is defined to be a collection (vector) of
edge_vats (as mentioned in Sect. 4.4.1), corresponding to each edge in the graph.
The VAT distinctly identifies each occurrence of g in any graph gd , where gd denotes
a graph from the dataset D. This is essentially the subgraph isomorphism problem: we
wish to determine if a graph in the database gd ∈ D contains a subgraph gs isomorphic
to the given graph g. Subgraph isomorphism is a known NP-complete problem, and
the method we have proposed solves it by utilizing the additional information (the
graph VAT) associated with each graph. The basic idea is to avoid computing the full
isomorphism each time a candidate pattern is extended; instead we solve the problem
in an incremental fashion. Suppose g were an extension of gk (by adding another edge
to gk); then (i) g can be present in only those gd ∈ D which contain a subgraph iso-
morphic to gk , and thus (ii) efficiently storing occurrences of gk in D shall circumvent
the need to perform the costly subgraph isomorphism for g from scratch. Our VAT
scheme for graphs is built upon these ideas.

A distinct vertex id (vid) is assigned to each vertex in a graph gd ∈ D; the vid is
local to gd and the same label may be mapped to different vids across various graphs
in the dataset. The tid member of edge_vat identifies a distinct gd in D which
contains the edge e, and vids maintains a pair of vertex ids for each occurrence of e

in gd . Thus the edge_vat is made up of a pair: the graph id (tid), and a collection of
edges, which are given as pairs of vertex ids (edge labels can easily be added, but we
omit the details here). The graph VAT is a collection of edge_vats of all the edges
that are on the rightmost path (Yan and Han 2002a) of the graph. Since, the candi-
date generation step in graph mining algorithm generates patterns only by a rightmost
extension, it suffices to store the graph VAT for the rightmost path.

Figure 7 shows a sample dataset D of two graphs. The nodes are represented by
their labels (A, B or C) and each node’s vid is indicated beside it in parenthesis. For
ease of demonstration, we have ignored edge labels (all edges have the same dummy
label) in this example. Dealing with labeled edges is however a simple extension of
the methodology described in the example, and is implemented in DMTL. The edge
(A − B) occurs twice in both G0 and G1. Hence its VAT has two entries, one for
each graph. The first record in the VAT for (A − B), namely (0, [(0, 1), (0, 3)]), in
its edge_vat corresponds to (A − B)’s occurrence in G0: vertex ids 0 and 1, and
between 0 and 3. Moving to higher level graphs such as g1 in Fig. 8, the VAT now
comprises two edge_vats, for the two edges (A − B) and (B − C). (A − B)’s
edge_vat, for g1, in Fig. 8, lists its occurrences as part of g1, and hence those occur-
rences are a subset of those shown in Fig. 7. In G0 the edge between vertex ids 0 and 3
constitutes an A−B edge, but it does not appear as supporting g1, since g1 represents
the linear chain (A − B − C) and (0, 3) cannot be extended to support g1. Thus the
pair (0, 3) is not contained in g1’s edge_vat.

We now give details of the intersection operation for two graph VATs. There exist
two types of intersections, corresponding to the two kinds of extensions:
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Fig. 7 Sample graph database & level-1 VATs

• Forward intersection: This corresponds to extending a graph g by adding a new
vertex, along with a new edge. For example, in Fig. 8, g1 is constructed by the
forward extension of the graph g = (A − B) with the edge e = B − C. The
intersection operation first checks for a matching tid, and then checks if for an
edge (vi, vj ) along the rightmost path (Yan and Han 2002a) in the edge_vat of
graph g, there exists an edge (vk, vl) in theedge_vat of edge e, such that vj = vk

and vl does not already exist in g. In the given example of g1, the edge (0, 1) for
graph g = (A − B), and (1, 2) for edge e = B − C satisfy these conditions, and
thus become entries in the edge_vat of g1.

• Backward intersection: Backward intersection leads to a cycle in the graph and
corresponds the addition of a new edge between vertices already in the graph.
For example, g3 in Fig. 8 is formed by the backward extension of g1 with edge
A − C. Here the intersection operation first checks for a matching tid, and then
checks if for an edge (vi, vj ) along the rightmost path, in the edge_vat a graph
g, there exists an edge (vk, vl) in the edge_vat of edge e, such that vj = vk ,
and that vl already exists in g. For g3, we find that for the edge (1, 2) in graph
g = g1 = (A−B −C), we have an edge (2, 0) in the edge_vat for e = A−C,
which satisfies the above conditions, and yields the VAT entry shown for g3.

The candidate generation step and the isomorphism checking for graph mining
in DMTL follow the same principle suggested by gSpan(Yan and Han 2002a). The
main difference is in the support counting via VAT intersections, which we outlined
above.
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Fig. 8 Graph VAT intersection
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Space analysis of graph VAT: Let us assume that a pattern P has k edges on its right-
most path and that the pattern occurs in t objects from the database D. Object oi has
ei embeddings of the pattern, where i = {1, . . . , t} and ei ≥ 1. To analyze the size
of the VAT let us break down each component of the VAT. Since the rightmost path
of P has k edges, the size of the vector of edge_vat is k. And as the pattern
occurs in t objects in the database, the vector corresponding to each edge_vat
will have t pairs of <tid, vids>. For e1 embeddings in object o1, the size of the
vector corresponding to the vids structure will contain e1 <int, int> pairs. So
the total size of the VAT is of the order of O(kt

∑t
i=1 ei). The VAT for a graph pattern

is quite space intensive, prompting algorithms to pay keen attention on rapid pruning
during pattern enumeration.

6 Incorporating new patterns

In order to mine a pattern of type T in our framework, the pattern has to define certain
data structures and operations specific to that pattern. The following is a list of such
structures and patterns:

1. Data structure that can capture occurrences of the pattern in a database object of
type T. We call it the VAT for the pattern.

2. Ability to generate the next level of candidate patterns, given patterns from a
previous level.

3. Mechanism to perform isomorphism checking on a pattern.
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4. Counting the number of occurrences of the pattern within a dataset of such patterns.
5. Comparison operators such ‘greater than,’ ‘less than’ and ‘not equal’ that can order

the patterns. Sometimes it is hard to define the ‘less than’ (and ‘greater than’) oper-
ators for complex patterns. As a result defining these operators is optional. On
the other hand, defining the ‘not equal’ operator is mandatory. The ‘not equal’
operator, which is true only if the patterns are not isomorphic, can be performed by
assigning a unique signature for each instance of a pattern. We call this signature
the canonical code for the pattern.

6. Utility functions for parsing datasets containing instances of T and for serializing
and de-serializing an instance of T.

Specialized patterns can invoke functionality provided by a parent pattern.
Representing patterns as property-based concepts allows users to represent such a
sub/super-pattern relationship. Hence adding a new pattern involves adding new prop-
erties to the framework or defining a new subset of properties from the existing ones.
Subsequently, one may need to redefine (or specialize) functions for this new pattern.
In most cases, only a few key functions need to be redefined or specialized, and this
effectively allows us to mine a new pattern with minimal effort.

Let us walk through an example to see how a completely new pattern can be mined.
Note that the current implementation consists of the four key patterns—sets, sequences,
trees, and graphs. We describe now how to mine all frequent multisets, given an input
dataset containing multisets. A multiset is a special type of set wherein each item is
associated with a number indicating the number of times the item is repeated in the
set. Such a pattern can be useful in market-basket analysis if the quantities of items
bought by a customer are to be taken into account. An itemset is a special case of
the multiset where the quantity is 1 for each item. Figure 9a shows a sample multiset
dataset and Fig. 10 outlines the operations and data structures that have to be redefined
for mining multisets.
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typedef proplist<no_edges> MSET;
typedef vector<int> ITEMSET_VAT;
typedef vector<pair<int, int> > MSET_VAT;

/* Generates multiset candidates */
template<

class PAT,
class MINE_PROPS,
class SM_TYPE>

void candidates(const pat_fam<MSET>& Fk, ....);

MSET_VAT* intersection(pattern<MSET>* cand_pat);
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Fig. 10 Adding a new pattern

6.1 Mining multiset patterns

Since multiset is a generalization of an itemset the candidate generation method for
multisets is quite similar to that for itemsets. For example, for itemset mining, ABC
and ABD result in ABCD as the new candidate pattern, where AB is the common
prefix for both the patterns. Similarly, new candidate multisetABBCD, can be generated
from frequent multisets ABBC and ABBD. The main change in candidate generation
is that we allow multiple occurrences of items in the set. Thus AA and AB can join
to produce AAB, and so on. Note also that we keep the items in the multiset sorted
(lexicographically). For example, all occurrences of A come before those of B, and so
on.

The main difference for multiset mining compared to itemset mining is really in the
the VAT structure (see Figs. 9 and 10) and the associated VAT intersections. Figure 9a
shows the vertical VAT representation for each length one pattern (item). The VATs
consist of a list of a pair of integers. The first integer is the transaction id and the second
integer is the number of remaining occurrences of the item in the multiset transaction.
For example, A occurs twice in transaction 1, therefore there is one remaining occur-
rence, resulting in the first entry in the VAT, namely (1, 1). In contrast, an itemset VAT
only records the transaction id.

In the intersection of two multiset VATs (Fig. 9b) we traverse their VATs trying to
match the transaction id. This is common for both itemsets and multisets. The resulting
VAT for itemsets is simply the intersection of the tid-list of the initial VATs. In addi-
tion, the multiset VAT intersection needs to update the remaining occurrences field.
For self-join (e.g., intersecting the VATs of C and C), the remaining occurrences gets
reduced by one. For other intersections (e.g., intersection the VATs for C and W), the
remaining occurrence field of the candidate VAT takes the value of the second VAT. In
other words, we always record the remaining occurrences of the last item in a pattern.

Incorporating multisets into the DMTL framework was accomplished in only a few
hours, highlighting the extensibility of our approach. Multisets were a case of building
a mining algorithm for a more general pattern given a specialized pattern. Likewise,
given a generalized algorithm we can build a specialized algorithm. For example, given
a graph mining algorithm, we can easily build an algorithm for mining cliques, since a
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clique is a constrained graph. As a result, the process of mining cliques resembles that
of mining graphs. While the candidate generation step for graphs generates multiple
candidates, the candidate generation step for cliques needs to generate only fully
connected graphs. This is much simpler than generating all possible candidates. The
isomorphism checking and support counting for cliques does not change from regular
graphs since cliques are specialized graphs. Note that the task of mining cliques is
similar to the task of mining multisets, since like multisets, cliques can have repeated
labels. Also, while cliques are fully connected, and multisets are fully disconnected,
the mining approach is remarkably similar in the two cases; cliques just differ in the
isomorphism-checking step. This example further illustrates the inherent extensibility
of the DMTL framework. In general, to add a new pattern type, the user will need to
provide implementations for all three stages of mining, namely candidate generation,
isomorphism checking and support counting. However, based on our experience, we
expect that relatively little effort will be required to add the remaining patterns from
the pattern hierarchy shown in Fig. 6.

6.2 Mining closed and maximal patterns

Even though the current version of DMTL addresses the frequent mining problem, it
can be easily modified to accommodate more complex mining tasks such as closed
and maximal mining.

The algorithm for frequent pattern mining in Fig. 2 can be modified to capture the
maximal patterns. The modified version is presented in Fig. 11. In the algorithm, if
any frequent candidate pattern is found (line 6) then the current pattern, denoted by
c.parent , cannot be maximal. This satisfies the first condition for maximality of a
pattern (line 9). The second condition determines if a super-pattern exists in the cur-
rentM that subsumes c.parent (line 10). When both these conditions are satisfied the
pattern is added to the maximal set (line 11). The rest of the algorithm is quite similar
to that of Fig. 2. We modified the graph mining code to build a maximal graph mining
implementation. The subset/superset checking can be performed in two stages. In the
first stage, the graphs are treated as multi-sets and subsumption checking is done for
each pair of multi-sets. If multi-set MSA for a graph A is not a subset of multi-set MSB

of another graph B, then A cannot be a subgraph of B. A large number of candidate
subgraphs are eliminated in this first stage. Note that this approach is much cheaper
as compared to a subgraph isomorphism check between A and B. In formal notation,
MSA � MSB ⇒ A � B, but MSA � MSB � A � B. As a result, subgraph isomor-
phism check has to be performed for the multi-sets that satisfy the subset condition.
This is the second stage of the subset/superset checking. The subgraph isomorphism
checking was implemented using the algorithm proposed in Ullmann (1976).

Similar modifications to the basic algorithm in Fig. 2 can be performed to
accomplish closed pattern mining. Of course, we have to admit that the high level
algorithm in Fig. 11 does not capture the optimizations that are implemented by spe-
cific algorithms to achieve superior performance. At the same time, we claim that most
of the optimizations are performed either in the candidate generation or the support
counting stages. And those can be incorporated into the framework based on the degree
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Fig. 11 Generic maximal
pattern mining algorithm

of optimizations one desires to obtain. For instance, MAFIA (Burdick et al. 2001b)
uses a vertical bitmap representation and performs efficient pruning by exploiting the
relationship between different components of the HUT (Head Union Tail) of a given
pattern. DMTL provides the same vertical representation which can be modified to
include the bitmap optimization. Similarly, the support counting stage can be modified
to include the pruning achieved in MAFIA. CloseGraph (Yan and Han 2003) is built
around the gSpan algorithm with additional pruning of the search space. Since the
graph miner in DMTL is also built along the lines of gSpan, a small set of changes
can provide an implementation for CloseGraph.

A large number of variations have been proposed at different stages of the pattern
mining tasks. Some of these enhancements target efficient storage of underlying data
structures (Ayres et al. 2002), while others try to prune the search space effectively
(Roberto J Bayardo 1998; Zaki et al. 1997). Naturally, the existing framework does
not provide all these enhancements, but it is flexible enough to allow users to custom-
ize the library fairly easily. Since the basic data structures and algorithms are cleanly
abstracted, a newer (and more efficient) implementation can be substituted as long
as it adheres to the interface. Furthermore, existing components (candidate genera-
tion, support counting, etc.) can be broken down if desired by a specialized algorithm.
Finally, we would like to emphasize that the framework was designed to provide a
jump-start for users who would like to customize existing algorithms to their specific
needs.

6.3 Handling different database formats

Although we have described the entire paper in the context of the vertical mining
approach, the DMTL framework is flexible enough to incorporate horizontal mining
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as well. In fact, previous versions of DMTL provided both vertical and horizon-
tal mining approaches. The horizontal mining was removed while restructuring the
framework, in the interest of focusing on just one of the approaches. DMTL can also be
extended to handle the projected database approaches (Pei et al. 2001; Han et al. 2000b;
Yan and Han 2002a). Even though the projected database approach might seem quite
different from the VAT based approach, they are essentially similar. The prefix projec-
tion operation in the pattern growth approach essentially constructs a data structure
similar to the VAT for the pattern. A more thorough comparison between levelwise and
pattern-growth methods (for sequence mining) is presented in Antunes and Oliveira
(2004).

7 Experiments and results

We showed above that a new pattern can be incorporated into the DMTL framework
with minimal effort. In addition to this flexibility, the ability to handle substantially
very large datasets is another key aspect of the framework. In the past, efforts have
primarily focused on the scalability and speedup of specific itemset mining algorithms
(Buehrer et al. 2006). Even though the primary focus of our work has been the ability
to mine a broad range of patterns, we cannot ignore the fact that scalability is important
for any real world use of the framework. In this section, we conduct experiments to
test the scalability of the system.

As noted before, DMTL provides a file-system based storage mechanism. In this
approach, a restricted size main-memory buffer is allocated. As the algorithm pro-
gresses, the memory buffer is used to store intermediate patterns. When the memory
buffer space is exhausted patterns are shipped to secondary storage. This ensures
that frequently used patterns are kept in the memory buffer, reducing page swapping.
Moreover, tailored cache replacement mechanisms can be deployed for the file-based
implementation. Such flexibility allows us to utilize the knowledge of the access pat-
terns of the mining algorithms in designing the cache replacement algorithm. As such,
the file-based back-end scales to much larger dataset sizes (e.g., 60 GB) at a small addi-
tional cost. The patterns are serialized to the file when they need to be evicted from
the cache and de-serialized when they need to be fetched into the memory buffer. The
time to serialize and de-serialize depends on the complexity of the pattern structure.

We now empirically show the scalability and performance of the DMTL algorithms.
All experiments noted below were performed on a Dual 2.7 Ghz PowerPC Apple G5,
with 4 GB of main memory, and 400 GB of disk space. We used gcc 4.0 with -O3 opti-
mization2 to compile our code. Unless otherwise stated, all experiments are conducted
in 32-bit mode.

7.1 Flexibility of file-based back-end

In this first set of experiments, we highlight the generic aspect of the file-based
back-end. The same back-end implementation can be used with a wide range of

2 We noted that using gcc 3.3 results in 1.5–2.0 times the speedup when compared to gcc 4.0. In spite of
this fact, we chose to use gcc 4.0 due to issues with 64-bit compilation on Mac OS X with gcc 3.3.
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Fig. 12 Scalability results for itemset and sequence patterns

patterns. At the same time, we emphasize the need for a file-based back-end by show-
ing that even a moderately sized dataset can exhaust the physical memory limits of
a regular desktop computer. The datasets in this section range from medium to large
in terms of their sizes. In the following experiments, parameters such as dataset size,
minimum support, and buffer size are altered to bring out different aspects of the
framework. We used the IBM synthetic database generator (Agrawal et al. 1996) for
itemset and sequence mining, the tree generator from Zaki (2002) for tree mining and
the graph generator by Kuramochi and Karypis (2001).

First, we mine induced sequence patterns on datasets of varying sizes and compare
the performance of a memory-based implementation with a file-based back-end imple-
mentation. The buffer size for the file-based back-end is set to 500 MB and the physical
memory for the memory based implementation is also restricted to 500 MB.3 For both
settings, the minimum support is set to 1%. Figure 12a shows that the in-memory
implementation cannot execute beyond a dataset size of 500 K transactions, which is
when the process reaches the virtual memory limit of 4 GB. On the other hand, the
file-based implementation scales linearly to larger dataset sizes. A similar experiment
was conducted on an itemset dataset with minimum support set to 0.01%. The results
are shown in Fig. 12b. Since itemsets have a smaller VAT structure as compared to
sequence VATs, the memory based implementation scales to larger dataset sizes.

3 Physical memory can be restricted on Mac OS X using the nvram command.
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Figure 12c compares the execution time for induced sequence mining with vary-
ing support on the dataset with 500 K transactions. For this execution, the file-based
buffer size is set to 500 MB, whereas for the memory-based implementation the mem-
ory is restricted to 1 GB. This setting gives the memory based implementation some
advantage over the file based approach. For an absolute support of 3500, the execution
times for both the back-ends are the same. As the support is reduced, the memory
based implementation starts to thrash, resulting in higher execution time. The thrash-
ing behavior can be observed by measuring the page-outs (e.g., using the sc_usage
utility in Mac OS X). While the memory based approach crashes as the absolute sup-
port goes below 3000, the file-based back-end continues to execute for much lower
supports. On the other hand, as we increase the support the execution time for the
memory-based approach becomes lower than the file-based approach. This can be
explained by the fact that all the patterns fit into memory as the support is increased.
Moreover, the memory based approach has 1 GB of physical memory whereas the
buffer for the file-based approach is restricted to 500 MB. Results for itemsets can be
seen in Fig. 12d.

Figure 13a shows the effect of changing the buffer size for file-based back-end.
This result confirms to our intuition that as the buffer size increases the execution
time decreases. The plots in this figure depend on two factors—the size of the dataset
and the replacement strategy used. For larger datasets, the effect is more pronounced,
that is, increasing the buffer size reduces the execution time considerably. In our

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 1000  2000  3000  4000  5000  6000  7000

T
ot

al
 T

im
e 

(s
ec

)

Minimum Support (DB size on disk =92MB)

Sequence Mining- Minsup VS Time (500k DB)

Buffer size=500M
Buffer size = 600M
Buffer size = 750M
Buffer size = 850M

Sequence Mining - Varying buffer size

 0

 50000

 100000

 150000

 200000

 250000

0.05M 1M 5M 10M

T
ot

al
 T

im
e(

se
c)

Database Size (#transactions)

Tree Mining - DB Size vs Time (0.01% minsup)

Restricted memory = 256MB
File based (mem buffer= 256MB)

Tree Mining- Varying DB size

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

100K75K50K25K

T
ot

al
 T

im
e(

se
c)

Database Size (#transactions), Buffer size=500MB

Graph Mining- DB Size VS Time (1% Minsup)

Memory based
File based

Graph Mining- Varying DB size

 0

 200

 400

 600

 800

 1000

 1200

 1400

1M 5M 10M 20M

T
ot

al
 T

im
e(

se
c)

Database Size (#transactions)

Itemset Mining - Support vs Time (DB - 50000k transactions)
DB size on disk - 1.9GB

File-based
Memory-based

Multiset Mining- Varying DB size

(a) (b)

(d)(c)

Fig. 13 Scalability results for different patterns
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implementation of the file-based back-end, we use the least recently used (LRU)
replacement strategy. For algorithms that traverse the pattern lattice in a depth-first
fashion, the LRU strategy proves to be a good one. The depth-first strategy encoun-
ters smaller patterns first when it traverses a branch of the lattice. From the object
lattice, we know that smaller patterns have larger VAT structures. A LRU strategy
results in these large VATs being evicted from memory. This allows a larger number
of newer patterns to fit in memory since these patterns are much smaller than the
evicted pattern. On the contrary, a most recently used (MRU) strategy, would remark-
ably degrade the performance. Note that the above observations regarding the eviction
strategy are applicable only to a depth first mining algorithm and some other strategy
might be more successful for alternate methods. Results for more complex patterns
such as trees, graphs, and multisets are given in Fig. 13(b), (c), and (d), respectively.
In all of these, the advantage of the file-based back-end is clearly seen, especially for
larger database sizes.

7.2 Scalability for larger datasets

This section focuses on DMTL’s performance while dealing with large itemset
datasets (described in Table 1). Even though the results are shown only for item-
set mining, they act as an indicator of the framework’s scalability for other pattern
types, since all the patterns share the same back-end implementation.

The webdocs dataset is the largest dataset in the FIMI repository (Goethals and
Zaki 2003) and the D60 dataset is generated from a synthetic dataset generator with
parameters shown in Table 1. Figure 14a shows the execution time versus varying sup-
port for both file-based and restricted memory approach, using the webdocs dataset.
The file-based approach performs better than restricting memory when the support is
lowered to 7.5%. The reason for this performance can be explained by observing the
process page-ins in Fig. 14b. Page-ins count the cumulative number of memory pages
that are swapped in during the course of execution of the process. The page-ins for the
restricted memory approach clearly indicate that the system is thrashing. This in turn
explains the difference in the execution time. Similar conclusion can be drawn from
Fig. 14c and d, which show the virtual memory usage as the execution progresses.
The (restricted) memory-based approach relies on the virtual memory system in order
to allocate (virtual) memory and hence the process can consume virtual memory as
high as 4 GB on a 32-bit machine. Along the way, the virtual memory system swaps
pages in order to allocate memory for the active page. In the file-based approach,
the process takes control of ensuring that memory is available for new patterns as
execution continues. As a result, the moment the physical memory reaches the set
(buffer size) limit, which is also the virtual memory at that time, the VAT is shipped

Table 1 Dataset characteristics

Dataset Size # Trans # Items Avg. Len.

Webdocs 1.48 GB 1,692,082 5,267,656 117
D60 60.5 GB 250,000,000 100,000 40
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Fig. 14 Dataset webdocs, 32-bit execution, min_sup = 7.5%

to the disk, pulling down both the physical and virtual memory. This can be seen from
Fig. 14c, wherein, the maximum virtual memory consumed does not go much beyond
the memory buffer size. The maximum virtual memory does reach around 350 MB
even though the memory buffer size is set to 256 MB. This difference is attributed to
the size of static blocks and the call stack of the process that we do not account for
during execution.

Figure 15 shows the results for the D60 dataset. A memory-based implementation
for this dataset does not run for supports lower than 1%. Figure 15c and d show the
virtual memory consumption and page-ins, respectively. Another aspect of the pro-
cess state is shown in Fig. 15b in the form of number of context switches. The context
switches for the memory based implementation in Fig. 15b indicate that the scheduler
needs to be invoked frequently in order for the process to proceed, which is related to
the page-ins in Fig. 15d. In order to bring out the difference between the two methods,
only the first 1000 s of the execution are shown. For more complex patterns, as long as
the process does not hit the 4 GB barrier the restricted memory approach performs bet-
ter than the file-based approach beyond which the restricted memory implementation
crashes.

7.3 Scalability in 64-bit mode

With the popularity of 64-bit machines, many traditional mining tasks can now be
performed due to the much larger virtual memory limit. In the previous section, the
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Fig. 15 Dataset D60, 32-bit execution, min_sup = 0.5%

results on 32-bit showed that the memory-based implementation would often crash
due to the (comparatively) limited 4 GB virtual memory.

In order to enable the memory-based implementation to run past the 4 GB virtual
memory barrier, we compared the performance of both the back-end implementations
in 64-bit mode. In 64-bit mode, the virtual space is of the order of 16 terabytes because
of which neither the memory-based nor the file-based implementation crashes. But due
to the limited physical memory the restricted memory implementation starts to thrash
resulting in better execution times in favor of the file-based approach. The results for
64-bit execution are shown in Fig. 16. The restricted memory implementation took
about twice as long to execute as compared to the file-based implementation. Again,
the page-ins and virtual memory plots explain the thrashing effect; for example the
number of page-ins for the memory-based version continues to increase linearly as
time progresses.

Our experiments show that the back-end is scalable to much larger dataset sizes
as compared to the memory-based implementation. We can improve the performance
further by integrating smarter caching mechanisms and by exploring alternative seri-
alization techniques.

7.4 Comparison with stand-alone implementations

In this section we compare the DMTL file based implementation with non-generic
implementation of the corresponding pattern mining tasks. Even though we compare
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Fig. 16 Dataset D60, 64-bit execution, min_sup = 0.5%

the run time of the DMTL and stand-alone pattern mining algorithms, competing with
specialized mining algorithms was not the primary goal of our work. We would like
to reiterate that the key focus of our work is to provide an extensible and scalable
framework for a wide range of pattern mining tasks. The results in Fig. 17, as we dis-
cuss below, corroborate this design principle. For itemset, sequence and tree mining
we used Eclat (Zaki 2000a), SPADE (Zaki 2001) and SLEUTH (Zaki 2005a). These
algorithms are generally comparable with other existing algorithms and moreover we
have ready access to the source code for these algorithms. Access to source code
in turn allows us to better evaluate the algorithms by running them under different
environments. The same luxury was not available in the case of graph mining, as
none of the implementations (Yan and Han 2002b; Huan et al. 2003b; Kuramochi and
Karypis 2004) provide the source code. As a result, graph mining was evaluated under
a different set of conditions as compared to rest of the experiments.

For all the experiments, other than graph mining, the physical memory was restricted
to 256 MB for the non-generic versions of the algorithm. Similarly, the buffer size for
file based DMTL was restricted to 256 MB. Figure 17a shows the run time of DMTL
itemset miner versus Eclat for different database sizes. Eclat is very promising for
smaller dataset sizes, when the entire dataset fits in main memory. For such datasets,
Eclat is around 4–5 times faster as compared to DMTL. For larger datasets Eclat ran out
of memory, whereas DMTL continues to run with the help of the file based backend.
Figure 17b shows comparison with the FP-growth (Han et al. 2000b). The experi-
ments for FP-growth were performed on a machine with 1.6 GHz processor and 512
MB RAM running Linux, since the source code was not available for the algorithm.
As with Eclat, FP-growth also fails to run beyond a certain point (5M transactions). On
the other hand, DMTL easily scale to a database an order of magnitude larger (50M
transactions).

Results comparing SPADE with the DMTL implementation of sequence mining
is shown in Fig. 17c, where we mine induced patterns on datasets of varying sizes.
SPADE is much faster faster as long as the algorithm can run in-memory, which hap-
pens for dataset sizes 100 K and smaller. This difference can be seen in the inset in
Fig. 17c. The plot for SPADE almost overlaps with the x-axis. Once again, DMTL
scales to datasets that are an order of magnitude larger than those that can be mined

123



An integrated, generic approach to pattern mining: data mining template library

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

10000K5000K1000K50K

T
ot

al
 T

im
e(

se
c)

Database Size (#transactions)

Itemset Mining - DB Size vs. Time (minsup 0.01%)

Eclat (restricted memory = 256M)
DMTL - file based (buffer size = 256MB)

Comparison with Eclat

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

100K 5M 10M 20M 50M

T
ot

al
 T

im
e(

se
c)

Database Size (#transactions)

Itemset Mining - DB Size vs. Time (minsup 0.01%)

FP-growth (restricted memory = 256M)
DMTL - file based (buffer size = 256MB)

 100

 250

 500

1M 5M 10M

Comparison with FP-growth

 0

 5000

 10000

 15000

 20000

 25000

10K 100K 500K 1000K

T
ot

al
 T

im
e(

se
c)

Database Size (#transactions)

Sequence Mining - DB Size vs. Time (minsup 1%)

SPADE (restricted memory = 256M)
DMTL - file based (buffer size = 256MB)

 0
 10

 50

 90

10K 50K

Comparison with SPADE

 0

 10000

 20000

 30000

 40000

 50000

50K 1000K 5000K 10000K

T
ot

al
 T

im
e(

se
c)

Database Size (#transactions)

Tree Mining - DB Size vs. Time (minsup 0.01%)

SLEUTH (restricted memory = 256M)
DMTL - file based (buffer size = 256MB)

 0
 10

 50

 80

50K 500K 1000K

Comparison with SLEUTH

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

100K75K50K25K

T
ot

al
 T

im
e(

se
c)

Database Size (#transactions)

Graph Mining - DB Size vs. Time (minsup 1%)
gSpan (restricted memory = 210M)

DMTL - file based (buffer size = 210MB)

Comparison with gSpan

(a)

(c)

(e)

(d)

(b)

Fig. 17 DMTL comparison with stand-alone (non-generic) mining algorithms for varying database sizes

with SPADE. Figure 17d shows the results on tree mining. For tree mining, on the
datasets shown, SLEUTH is much faster than DMTL. We mine embedded and ordered
patterns from the tree datasets. The difference in performance between SLEUTH and
our file-based implementation becomes larger with increasing number of writes to
the file. The current version of the file-based implementation is not optimized and
we believe that this performance gap will be reduced as we optimize the file-based
implementation. Finally, Fig. 17e shows the results of gSpan versus DMTL. For sets,
sequences, and trees, DMTL has a relatively good performance compared to stand-
alone implementations, and it even outperforms them as we increase the database
size. However, for graph mining, when we compare with gSpan, we find that DMTL
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is several orders of magnitude slower. This can be attributed to the fact that gSpan is
highly optimized. The gSpan implementation provided by the authors restricts the size
of the graphs thus allowing them to perform highly efficient bit-operations. DMTL
on the other hand is entirely general purpose, placing no restrictions on the graph
sizes, and thus does not leverage such optimizations. gSpan also achieves significant
pruning due some other optimizations that are not incorporated in our vertical mining
approach (Yan and Han 2002b). Furthermore, DMTL has not really been optimized
fully; graph mining seems a good place to start doing that, given the large difference in
the performance of the stand-alone algorithm and DMTL. It is worth emphasizing that
none of the common graph mining algorithms are available as source code; DMTL
provides the only open-source graph mining algorithm (with one exception, Nijssen
and Kok 2004).

8 Future work

The current design of DMTL has substantial scope for improvement. There are two
different aspects of improvements: data mining aspects and generic design aspects. In
data mining, one improvement is to provide more FPM implementations. We would
like to add generic mining algorithms for maximal and closed pattern mining. From the
back-end perspective, improvements are already in progress, i.e., to design interfaces
so that DMTL can work with a relational/object relational database. From a generic
design perspective, the improvement is not so simple. In fact, the DMTL design has
been challenging because of lack of support for certain generic programming features
in C++. For example, our implementation of static lists to manage the pattern proper-
ties is the best what we can get from current state of support from the language. But,
the property-list based mechanism enforces a strict ordering of the properties in order
for the compiler to select the appropriate specialization. As the language evolves in
future, we will improve DMTL. Finally, performance evaluation and improvement of
the DMTL framework remain ongoing aims.
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