
Data Mining and Knowledge Discovery, 1, 343–373 (1997)
c© 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

Parallel Algorithms for Discovery of
Association Rules

MOHAMMED J. ZAKI zaki@cs.rochester.edu

SRINIVASAN PARTHASARATHY srini@cs.rochester.edu

MITSUNORI OGIHARA ogihara@cs.rochester.edu

Department of Computer Science, University of Rochester, Rochester, NY 14627

WEI LI weili@us.oracle.com

Oracle Corporation, 500 Oracle Parkway, M/S 4op9, Redwood Shores, CA 94065

Editors: Paul Stolorz and Ron Musick

Abstract. Discovery of association rules is an important data mining task. Several parallel and sequential
algorithms have been proposed in the literature to solve this problem. Almost all of these algorithms make
repeated passes over the database to determine the set of frequentitemsets(a subset of database items), thus
incurring high I/O overhead. In the parallel case, most algorithms perform a sum-reduction at the end of each pass
to construct the global counts, also incurring high synchronization cost.

In this paper we describe new parallel association mining algorithms. The algorithms use novel itemset clustering
techniques to approximate the set of potentially maximal frequent itemsets. Once this set has been identified, the
algorithms make use of efficient traversal techniques to generate the frequent itemsets contained in each cluster.
We propose two clustering schemes based on equivalence classes and maximal hypergraph cliques, and study two
lattice traversal techniques based on bottom-up and hybrid search. We use a vertical database layout to cluster
related transactions together. The database is also selectively replicated so that the portion of the database needed
for the computation of associations is local to each processor. After the initial set-up phase, the algorithms do
not need any further communication or synchronization. The algorithms minimize I/O overheads by scanning the
local database portion only twice. Once in the set-up phase, and once when processing the itemset clusters. Unlike
previous parallel approaches, the algorithms use simple intersection operations to compute frequent itemsets and
do not have to maintain or search complex hash structures.

Our experimental testbed is a 32-processor DEC Alpha cluster inter-connected by the Memory Channel network.
We present results on the performance of our algorithms on various databases, and compare it against a well known
parallel algorithm. The best new algorithm outperforms it by an order of magnitude.

Keywords: parallel data mining, association rules, maximal hypergraph cliques, lattice traversal

1. Introduction

With recent progress in automated data gathering, and the availability of cheap storage,
a lot of businesses have routinely started collecting massive amounts of data on various
facets of the organization. The eventual goal of this data gathering is to be able to use
this information to gain a competitive edge, by discovering previously unknown patterns
in the data, which can guide the decision making. Such high-level inference process may
provide a host of useful information on customer groups, buying patterns, stock trends,
etc. This process of automatic information inferencing is commonly known as Knowledge
Discovery and Data mining (KDD). We look at one of the central KDD tasks — mining for
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associations. Discovery of association rules is an important problem in database mining.
The prototypical application is the analysis of sales orbasketdata (Agrawal, et al., 1996).
Basket data consists of items bought by a customer along with the transaction identifier.
Besides the retail sales example, association rules have been shown to be useful in domains
such as decision support, telecommunications alarm diagnosis and prediction, university
enrollments, etc.

1.1. Problem Statement

The problem of mining associations over basket data was introduced in (Agrawal, Imielinski,
& Swami, 1993). It can be formally stated as: LetI = {i1, i2, · · · , im}be a set ofmdistinct
attributes, also calleditems. Each transactionT in the databaseD of transactions, has a
unique identifier, andcontainsa set of items, calleditemset, such thatT ⊆ I, i.e. each
transaction is of the form< TID, i1, i2, ..., ik >. An itemset withk items is called a
k-itemset. A subset of lengthk is called ak-subset. An itemset is said to have asupport
s if s% of the transactions inD contain the itemset. Anassociation ruleis an expression
A ⇒ B, where itemsetsA,B ⊂ I, andA ∩ B = ∅. Theconfidenceof the association
rule, given assupport(A ∪ B)/support(A), is simply the conditional probability that a
transaction containsB, given that it containsA. The data mining task for association rules
can be broken into two steps. The first step consists of finding allfrequentitemsets, i.e.,
itemsets that occur in the database with a certain user-specified frequency, calledminimum
support. The second step consists of forming conditional implication rules among the
frequent itemsets (Agrawal & Srikant, 1994). The second step is relatively straightforward.
Once the support of frequent itemsets is known, rules of the formX − Y ⇒ Y (where
Y ⊂ X), are generated for all frequent itemsetsX, provided the rules meet a desired
confidence. On the other hand the problem of identifying all frequent itemsets is hard.
Givenm items, there are potentially2m frequent itemsets, which form alattice of subsets
overI. However, only a small fraction of the whole lattice space is frequent. Discovering
the frequent itemsets requires a lot of computation power, memory and disk I/O, which can
only be provided by parallel computers. Efficient parallel methods are needed to discover
the relevant itemsets, and this is the focus of our paper.

1.2. Related Work

Sequential Algorithms Several algorithms for mining associations have been proposed
in the literature. TheApriori algorithm (Mannila, Toivonen, & Verkamo, 1994; Agrawal
& Srikant, 1994; Agrawal, et al., 1996) was shown to have superior performance to earlier
approaches (Agrawal, Imielinski, & Swami, 1993; Park, Chen, & Yu, 1995a; Holsheimer,
et al., 1995; Houtsma & Swami, 1995) and forms the core of almost all of the current
algorithms. Apriori uses thedownward closureproperty of itemset support to prune the
itemset lattice – the property that all subsets of a frequent itemset must themselves be
frequent. Thus only the frequentk-itemsets are used to constructcandidate(k + 1)-
itemsets. A pass over the database is made at each level to find the frequent itemsets among
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the candidates. For very large disk resident databases, these algorithms incur high I/O
overhead for scanning it in each iteration. ThePartition algorithm (Savasere, Omiecinski,
& Navathe, 1995) minimizes I/O by scanning the database only twice. It partitions the
database into small chunks which can be handled in memory. In the first pass it generates
the set of all potentially frequent itemsets (any itemset locally frequent in a partition), and
in the second pass their global support is obtained. Another way to minimize the I/O
overhead is to work with only a small random sample of the database (Toivonen, 1996;
Zaki, et al., 1997a). We recently proposed new algorithms (Zaki, et al., 1997b) which scan
the database only once, generating all frequent itemsets. These new algorithms were shown
to outperform previousApriori based approaches by more than an order of magnitude (Zaki,
et al., 1997b). The performance gains are obtained by using effective itemset clustering
and lattice traversal techniques. This paper presents efficient parallel implementations of
these new algorithms.

Parallel Algorithms There has been relatively less work in parallel mining of associa-
tions. Three different parallelizations ofApriori on a distributed-memory machine (IBM
SP2) were presented in (Agrawal & Shafer, 1996). TheCount Distributionalgorithm is
a straight-forward parallelization ofApriori. Each processor generates the partial sup-
port of all candidate itemsets from its local database partition. At the end of each it-
eration the global supports are generated by exchanging the partial supports among all
the processors. TheData Distribution algorithm partitions the candidates into disjoint
sets, which are assigned to different processors. However to generate the global sup-
port each processor must scan the entire database (its local partition, and all the remote
partitions) in all iterations. It thus suffers from huge communication overhead. TheCan-
didate Distributionalgorithm also partitions the candidates, but it selectively replicates
the database, so that each processor proceeds independently. The local database por-
tion is still scanned in every iteration.Count Distributionwas shown to have superior
performance among these three algorithms (Agrawal & Shafer, 1996). Other parallel al-
gorithms improving upon these ideas in terms of communication efficiency, or aggregate
memory utilization have also been proposed (Cheung, et al., 1996b; Cheung, et al., 1996a;
Han, Karypis, & Kumar, 1997). The PDM algorithm (Park, Chen, & Yu, 1995b) presents a
parallelization of the DHP algorithm (Park, Chen, & Yu, 1995a). However, PDM performs
worse thanCount Distribution(Agrawal & Shafer, 1996). In recent work we presented the
CCPD parallel algorithm for shared-memory machines (Zaki, et al., 1996). It is similar
in spirit to Count Distribution. The candidate itemsets are generated in parallel and are
stored in a hash structure which is shared among all the processors. Each processor then
scans its logical partition of the database and atomically updates the counts of candidates
in the shared hash tree. CCPD uses additional optimization such as candidate balancing,
hash-tree balancing and short-circuited subset counting to speed up performance (Zaki, et
al., 1996). We also presented a new parallel algorithmEclat (Zaki, Parthasarathy, & Li,
1997) on a DEC Alpha Cluster.Eclatuses the equivalence class itemset clustering scheme
along with a bottom-up lattice traversal. It was shown to outperformCount Distribution
by more than an order of magnitude. This paper will present parallelization results on new
clustering and traversal techniques.
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1.3. Contribution

The main limitation of all the current parallel algorithms (Park, Chen, & Yu, 1995b; Zaki,
et al., 1996; Agrawal & Shafer, 1996; Cheung, et al., 1996b; Cheung, et al., 1996a) is
that they make repeated passes over the disk-resident database partition, incurring high I/O
overhead. Furthermore, the schemes involve exchanging either the counts of candidates or
the remote database partitions during each iteration. This results in high communication and
synchronization overhead. The previous algorithms also use complicated hash structures
which entails additional overhead in maintaining and searching them, and typically suffer
from poor cache locality (Parthasarathy, Zaki, & Li, 1997).

Our work contrasts to these approaches in several ways. We present new parallel algo-
rithms for fast discovery of association rules based on our ideas in (Zaki, Parthasarathy,
& Li, 1997; Zaki, et al., 1997b). The new parallel algorithms are characterized in terms
of the clustering information used to group related itemsets, and in terms of the lattice
traversal schemes used to search for frequent itemsets. We propose two clustering schemes
based on equivalence classes and maximal uniform hypergraph cliques, and we utilize
two lattice traversal schemes, based on bottom-up and hybrid top-down/bottom-up search.
The algorithms also use a different database layout which clusters related transactions to-
gether, and the work is distributed among the processors in such a way that each processor
can compute the frequent itemsets independently, using simple intersection operations.
An interesting benefit of using simple intersections is that the algorithms we propose can
be implemented directly on general purpose database systems (Holsheimer, et al., 1995;
Houtsma & Swami, 1995). These techniques eliminate the need for synchronization after
the initial set-up phase, and enable us to scan the database only two times, drastically cut-
ting down the I/O overhead. Our experimental testbed is a 32-processor DEC Alpha SMP
cluster (8 hosts, 4 processors/host) inter-connected by the Memory Channel (Gillett, 1996)
network. The new parallel algorithms are also novel in that they utilize this machine config-
uration information, i.e., they assume a distributed-memory model across the 8 cluster hosts,
but assume a shared-memory model for the 4 processors on each host. We experimentally
show that our new algorithms outperform the well knownCount Distributionalgorithm.
We also present extensive performance results on their speedup, sizeup, communication
cost and memory usage.

The rest of the paper is organized as follows. We begin by providing more details on
the sequentialApriori algorithm. Section 3 describes some of the previousApriori based
parallel algorithms. We then present the main ideas behind our new algorithms – the itemset
and transaction clustering, and the lattice traversal techniques, in section 4. Section 5
describes the design and implementation of the new parallel algorithms. Our experimental
study is presented in section 6, and our conclusions in section 7.

2. SequentialApriori Algorithm

In this section we will briefly describe theApriori algorithm (Agrawal, et al., 1996), since
it forms the core of all parallel algorithms (Agrawal & Shafer, 1996; Cheung, et al., 1996b;
Cheung, et al., 1996a; Han, Karypis, & Kumar, 1997; Park, Chen, & Yu, 1995b; Zaki, et
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al., 1996).Apriori uses the downward closure property of itemset support that any subset
of a frequent itemset must also be frequent. Thus during each iteration of the algorithm
only the itemsets found to be frequent in the previous iteration are used to generate a
new candidate set. A pruning step eliminates any candidate at least one of whose subsets
is not frequent. The complete algorithm is shown in table 1. It has three main steps.
The candidates for thek-th pass are generated by joiningLk−1 with itself, which can be
expressed as:Ck = {X = A[1]A[2]...A[k − 1]B[k − 1]}, for all A,B ∈ Lk−1, with
A[1 : k − 2] = B[1 : k − 2], andA[k − 1] < B[k − 1], whereX[i] denotes thei-th item,
andX[i : j] denotes items at indexi throughj in itemsetX. For example, letL2 = {AB,
AC, AD, AE, BC, BD, BE, DE}. ThenC3 = {ABC, ABD, ABE, ACD, ACE, ADE, BCD,
BCE, BDE}.

Table 1.TheApriori Algorithm

1. L1 = {frequent 1-itemsets};
2. for (k = 2;Lk−1 6= ∅; k + +)

3. Ck = Set of New Candidates;

4. for all transactionst ∈ D
5. for all k-subsetss of t

6. if (s ∈ Ck) s.count+ +;

7. Lk = {c ∈ Ck|c.count ≥ minimum support};
8. Set of all frequent itemsets =

⋃
k
Lk;

Before inserting an itemset intoCk, Apriori tests whether all its(k − 1)-subsets are
frequent. Thispruningstep can eliminate a lot of unnecessary candidates. The candidates,
Ck, are stored in a hash tree to facilitate fast support counting. An internal node of the
hash tree at depthd contains a hash table whose cells point to nodes at depthd+ 1. All the
itemsets are stored in the leaves. The insertion procedure starts at the root, and hashing on
successive items, inserts a candidate in a leaf. For countingCk, for each transaction in the
database, allk-subsets of the transaction are generated in lexicographical order. Each subset
is searched in the hash tree, and the count of the candidate incremented if it matches the
subset. This is the most compute intensive step of the algorithm. The last step formsLk by
selecting itemsets meeting the minimum support criterion. For details on the performance
characteristics ofApriori we refer the reader to (Agrawal & Srikant, 1994).

3. Apriori-based Parallel Algorithms

In this section we will look at some previous parallel algorithms. These algorithms assume
that the database is partitioned among all the processors in equal-sized blocks, which reside
on the local disk of each processor.

TheCount Distributionalgorithm (Agrawal & Shafer, 1996) is a simple parallelization
of Apriori. All processors generate the entire candidate hash tree fromLk−1. Each pro-
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cessor can thus independently get partial supports of the candidates from its local database
partition. This is followed by a sum-reduction to obtain the global counts. Note that only
the partial counts need to be communicated, rather than merging different hash trees, since
each processor has a copy of the entire tree. Once the globalLk has been determined
each processor buildsCk+1 in parallel, and repeats the process until all frequent item-
sets are found. This simple algorithm minimizes communication since only the counts
are exchanged among the processors. However, since the entire hash tree is replicated on
each processor, it doesn’t utilize the aggregate memory efficiently. The implementation of
Count Distributionused for comparison in our experiments differs slightly from the above
description and is optimized for our testbed configuration. Only one copy of the hash tree
resides on each of the 8 hosts in our cluster. All the 4 processors on each host share this
hash tree. Each processor still has its own local database portion and uses a local array to
gather the local candidate support. The sum-reduction is accomplished in two steps. The
first step performs the reduction only among the local processors on each host. The second
step performs the reduction among the hosts. We also utilize some optimization techniques
such as hash-tree balancing and short-circuited subset counting (Zaki, et al., 1996) to further
improve the performance ofCount Distribution.

TheData Distributionalgorithm (Agrawal & Shafer, 1996) was designed to utilize the
total system memory by generating disjoint candidate sets on each processor. However to
generate the global support each processor must scan the entire database (its local partition,
and all the remote partitions) in all iterations. It thus suffers from high communication
overhead, and performs very poorly when compared toCount Distribution(Agrawal &
Shafer, 1996).

TheCandidate Distributionalgorithm (Agrawal & Shafer, 1996) uses a property of fre-
quent itemsets (Agrawal & Shafer, 1996; Zaki, et al., 1996) to partition the candidates
during iterationl, so that each processor can generate disjoint candidates independent of
other processors. At the same time the database is selectively replicated so that a processor
can generate global counts independently. The choice of the redistribution pass involves a
trade-off between decoupling processor dependence as soon as possible and waiting until
sufficient load balance can be achieved. In their experiments the repartitioning was done in
the fourth pass. After this the only dependence a processor has on other processors is for
pruning the candidates. Each processor asynchronously broadcasts the local frequent set
to other processors during each iteration. This pruning information is used if it arrives in
time, otherwise it is used in the next iteration. Note that each processor must still scan its
local data once per iteration. Even though it uses problem-specific information, it performs
worse thanCount Distribution(Agrawal & Shafer, 1996).Candidate Distributionpays the
cost of redistributing the database, and it then scans the local database partition repeatedly,
which will usually be larger than||D||/P .

4. Efficient Clustering and Traversal Techniques

In this section we present our techniques to cluster related frequent itemsets together using
equivalence classes and maximal uniform hypergraph cliques. We then describe the bottom-
up and hybrid itemset lattice traversal techniques. We also present a technique to cluster
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related transactions together by using the vertical database layout. This layout is able to
better exploit the proposed clustering and traversal schemes. It also facilitates fast itemset
support counting using simple intersections, rather than maintaining and searching complex
data structures.

4.1. Itemset Clustering

123 124 125 134 135 145 234 235 245 345

12345

1234 1235 1245 1345 2345

1 2 3 4 5

12 13 14 15 23 24 3525 34 45

Lattice of Subsets of {1,2,3,4,5}

Border of
Frequent Itemsets

1 2 3 4 3 4 5

35 4534

345

12 13 14 23 24 34

234123 134124

1234

Lattice of Subsets of {1,2,3,4}

Lattice of Subsets of {3,4,5}

Sublattices Induced by Maximal Itemsets

Figure 1. Lattice of Subsets and Maximal Itemset Induced Sub-lattices

We will motivate the need for itemset clustering by means of an example. Consider the
lattice of subsets of the set{1, 2, 3, 4, 5}, shown in figure 1 (the empty set has been omitted
in all figures). The frequent itemsets are shown with dashed circles and the twomaximal
frequent itemsets (a frequent itemset ismaximalif it is not a proper subset of any other
frequent itemset) are shown with the bold circles. Due to the downward closure property
of itemset support – the fact that all subsets of a frequent itemset must be frequent – the
frequent itemsets form aborder, such that all frequent itemsets lie below the border, while
all infrequent itemsets lie above it. The border of frequent itemsets is shown with a bold
line in figure 1. An optimal association mining algorithm will only enumerate and test
the frequent itemsets, i.e., the algorithm must efficiently determine the structure of the
border. This structure is precisely determined by the maximal frequent itemsets. The
border corresponds to the sub-lattices induced by the maximal frequent itemsets. These
sub-lattices are shown in figure 1.
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Given the knowledge of the maximal frequent itemsets we can design an efficient algo-
rithm that simply gathers their support and the support of all their subsets in just a single
database pass. In general we cannot precisely determine the maximal itemsets in the in-
termediate steps of the algorithm. However we can approximate this set. Our itemset
clustering techniques are designed to group items together so that we obtain supersets of
the maximal frequent itemsets – thepotential maximal frequent itemsets. Below we present
two schemes to generate the set of potential maximal itemsets based on equivalence classes
and maximal uniform hypergraph cliques. These two techniques represent a trade-off in
the precision of the potential maximal itemsets generated, and the computation cost. The
hypergraph clique approach gives more precise information at higher computation cost,
while the equivalence class approach sacrifices quality for a lower computation cost.

4.1.1. Equivalence Class Clustering

Let’s reconsider the candidate generation step ofApriori. Let L2 = {AB, AC, AD, AE,
BC, BD, BE, DE}. ThenC3 = { ABC, ABD, ABE, ACD, ACE, ADE, BCD, BCE, BDE}.
Assuming thatLk−1 is lexicographically sorted, we can partition the itemsets inLk−1 into
equivalence classesbased on their commonk−2 length prefixes, i.e., the equivalence class
a ∈ Lk−2, is given as:

Sa = [a] = {b[k − 1] ∈ L1 | a[1 : k − 2] = b[1 : k − 2]}

Candidatek-itemsets can simply be generated from itemsets within a class by joining all(|Si|
2

)
pairs, with the the class identifier as the prefix. For our exampleL2 above, we obtain

the equivalence classes:SA = [A] = {B, C, D, E}, SB = [B] = {C, D, E}, andSD = [D]
= {E}. We observe that itemsets produced by the equivalence class[A] , namely those in
the set{ABC, ABD, ABE, ACD, ACE, ADE}, are independent of those produced by the
class[B] (the set{BCD, BCE, BDE}). Any class with only 1 member can be eliminated
since no candidates can be generated from it. Thus we can discard the class[D] . This idea
of partitioningLk−1 into equivalence classes was independently proposed in (Agrawal &
Shafer, 1996; Zaki, et al., 1996). The equivalence partitioning was used in (Zaki, et al.,
1996) to parallelize the candidate generation step in CCPD. It was also used inCandidate
Distribution (Agrawal & Shafer, 1996) to partition the candidates into disjoint sets.

At any intermediate step of the algorithm when the set of frequent itemsets,Lk for
k ≥ 2, has been determined we can generate the set of potential maximal frequent itemsets
from Lk. Note that fork = 1 we end up with the entire item universe as the maximal
itemset. However, For anyk ≥ 2, we can extract more precise knowledge about the
association among the items. The larger the value ofk the more precise the clustering. For
example, figure 2 shows the equivalence classes obtained for the instance wherek = 2.
Each equivalence class is a potential maximal frequent itemset. For example, the class[1],
generates the maximal itemset 12345678.
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4.1.2. Maximal Uniform Hypergraph Clique Clustering

Let the set of itemsI denote the vertex set. Ahypergraph(Berge, 1989) onI is a family
H = {E1, E2, ..., En} of edges or subsets ofI, such thatEi 6= ∅, and∪ni=1Ei = I. A
simple hypergraphis a hypergraph such that,Ei ⊂ Ej ⇒ i = j. A simple graph is a
simple hypergraph each of whose edges has cardinality 2. The maximum edge cardinality
is called therank, r(H) = maxj |Ej |. If all edges have the same cardinality, thenH
is called auniform hypergraph. A simple uniform hypergraph of rankr is called ar-
uniformhypergraph. For a subsetX ⊂ I, thesub-hypergraphinduced byX is given as,
HX = {Ej ∩ X 6= ∅|1 ≤ j ≤ n}. A r-uniform complete hypergraphwith m vertices,
denoted asKr

m, consists of all ther-subsets ofI. A r-uniform complete sub-hypergraph is
called ar-uniform hypergraph clique. A hypergraph clique ismaximalif it is not contained
in any other clique. For hypergraphs of rank 2, this corresponds to the familiar concept of
maximal cliques in a graph.

Given the set of frequent itemsetsLk, it is possible to further refine the clustering process
producing a smaller set of potentially maximal frequent itemsets. The key observation
used is that given any frequentm-itemset, form > k, all its k-subsets must be frequent.
In graph-theoretic terms, if each item is a vertex in the hypergraph, and eachk-subset an
edge, then the frequentm-itemset must form ak-uniform hypergraph clique. Furthermore,
the set of maximal hypergraph cliques represents an approximation or upper-bound on the
set of maximal potential frequent itemsets. All the “true” maximal frequent itemsets are
contained in the vertex set of the maximal cliques, as stated formally in the lemma below.

Lemma 1 LetHLk be the k-uniform hypergraph with vertex setI, and edge setLk. Let
C be the set of maximal hypergraph cliques inH, i.e.,C = {Kk

m|m > k}, and letM be
the set of vertex sets of the cliques inC. Then for all maximal frequent itemsetsf , ∃t ∈M ,
such thatf ⊆ t.

An example of uniform hypergraph clique clustering is given in figure 2. The example is
for the case ofL2, and thus corresponds to an instance of the general clustering technique,
which reduces to the case of finding maximal cliques in regular graphs. The figure shows all
the equivalence classes, and the maximal cliques within them. It also shows the graph for
class 1, and the maximal cliques in it. It can be seen immediately the the clique clustering
is more accurate than equivalence class clustering. For example, while equivalence class
clustering produced the potential maximal frequent itemset 12345678, the hypergraph clique
clustering produces a more refined set{1235, 1258, 1278, 13456, 1568} for equivalence
class[1]. The maximal cliques are discovered using a dynamic programming algorithm.
For a class[x] , andy ∈[x] ,y is said tocoverthe subset of[x] , given bycov(y) = [y]∩[x]. For
each classC, we first identify itscovering set, given as{y ∈ C|cov(y) 6= ∅, andcov(y) 6⊆
cov(z), for anyz ∈ C, z < y}. We recursively generate the maximal cliques for elements
in the covering set for each class. Each maximal clique from the covering set is prefixed
with the class identifier (eliminating any duplicates) to obtain the maximal cliques for the
current class (see (Zaki, et al., 1997c) for details). For general graphs the maximal clique
decision problem is NP-Complete (Garey & Johnson, 1979). However, the equivalence
class graph is usually sparse and the maximal cliques can be enumerated efficiently. As
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Figure 2. Equivalence Class and Uniform Hypergraph Clique Clustering

the edge density increases the clique based approaches may suffer. Some of the factors
affecting the edge density include decreasing support and increasing transaction size. The
effect of these parameters was presented in (Zaki, et al., 1997b).

4.2. Lattice Traversal

The equivalence class and uniform hypergraph clique clustering schemes generate the set
of potential maximal frequent itemsets. Each such potential maximal itemset induces a
sub-lattice of the lattice of subsets of database itemsI. We now have to traverse each of
these sub-lattices to determine the “true” frequent itemsets. Our goal is to devise efficient
schemes to precisely determine the structure of the border of frequent itemsets. Different
ways of expanding the frequent itemset border in the lattice space are possible. Below we
present two schemes to traverse the sublattices. One is a purely bottom-up approach, while
the other is a hybrid top-down/bottom-up scheme.

14
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Figure 3. Bottom-up and Hybrid Lattice Traversal

4.2.1. Bottom-up Lattice Traversal

Consider the example shown in figure 3. It shows a particular instance of the clustering
schemes which usesL2 to generate the set of potential maximal itemsets. Let’s assume
that for equivalence class[1], there is only one potential maximal itemset, 123456, while
1235 and 13456 are “true” maximal frequent itemsets. The supports of 2-itemsets in this
class are also shown. Like figure 1, the dashed circles represent the frequent sets, the
bold circles the maximal such itemsets, and the boxes denote equivalence classes. The
potential maximal itemset 123456 forms a lattice over the elements of equivalence class
[1] = {12, 13, 14, 15, 16}. We need to traverse this lattice to determine the “true” frequent
itemsets.

A pure bottom-up lattice traversal proceeds in a breadth-first manner generating frequent
itemsets of lengthk, before generating itemsets of levelk + 1, i.e., at each intermediate
step we determine the border of frequentk-itemsets. For example, all pairs of elements
of [1] are joined to produce new equivalence classes of frequent 3-itemsets, namely[12]
= {3, 5} (producing the maximal itemset 1235),[13] = {4, 5, 6}, and[14] = {5, 6}. The
next step yields the frequent class,[134] = {5, 6} ( producing the maximal itemset 13456).
Most current algorithms use this approach. For example, the process of generatingCk from
Lk−1 used inApriori (Agrawal, et al., 1996), and related algorithms (Savasere, Omiecinski,
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& Navathe, 1995; Park, Chen, & Yu, 1995a), is a pure bottom-up exploration of the lattice
space. Since this is a bottom-up approach all the frequent subsets of the maximal frequent
itemsets are generated in intermediate steps of the traversal.

4.2.2. Hybrid Top-down/Bottom-up Search

The bottom-up approach doesn’t make full use of the clustering information. While it uses
the cluster to restrict the search space, it may generate spurious candidates in the intermediate
steps, since the fact that all subsets of an itemset are frequent doesn’t guarantee that the
itemset is frequent. For example, the itemsets 124 and 126 in figure 3 are infrequent, even
though 12, 14, and 16 are frequent. We can envision other traversal techniques which
quickly identify the set of true maximal frequent itemsets. Once this set is known we can
either choose to stop at this point if we are interested in only the maximal itemsets, or we
can gather the support of all their subsets as well (all subsets are known to be frequent
by definition). In this paper we will restrict our attention to only identifying the maximal
frequent subsets.

One possible approach is to perform a pure top-down traversal on each cluster or sublattice.
This scheme may be thought of as trying to determine the border of infrequent itemsets, by
starting at the top element of the lattice and working our way down. For example, consider
the potential maximal frequent itemset 123456 in figure 3. If it turns out to be frequent we
are done. But in this case it is not frequent, so we then have to check whether each of its
5-subsets is frequent. At any step, if ak-subset turns out to be frequent, we need not check
any of its subsets. This approach doesn’t work well in practice, since the clusters are only
an approximation of the maximal frequent itemsets, and a lot of infrequent supersets of the
“true” maximal frequent itemsets may be generated. In our example we would generate 10
infrequent itemsets – 123456, 12345, 12346, 12356, 12456, 1234, 1245, 1236, 1246, and
1256 – using the pure top-down scheme, instead of only two infrequent itemsets generated
in the pure bottom-up approach – 124, and 126. We therefore propose a hybrid top-down
and bottom-up approach that works well in practice.

The basic idea behind the hybrid approach is to quickly determine the “true” maximal
itemsets, by starting with a single element from a cluster of frequentk-itemsets, and ex-
tending this by one more itemset till we generate an infrequent itemset. This comprises
the top-down phase. In the bottom-up phase, the remaining elements are combined with
the elements in the first set to generate all the additional frequent itemsets. An important
consideration in the top-down phase is to determine which elements of the cluster should
be combined. In our approach we first sort the itemsets in the cluster in descending order
of their support. We start with the element with maximum support, and extend it with the
next element in the sorted order. This approach is based on the intuition that the larger the
support the more the likely is the itemset to be a part of a larger itemset. Figure 3 shows
an example of the hybrid scheme on a cluster of 2-itemsets. We sort the 2-itemsets in de-
creasing order of support, intersecting 16 and 15 to produce 156. This is extended to 1356
by joining 156 with 13, and then to 13456, and finally we find that 123456 is infrequent.
The only remaining element is 12. We simply join this with each of the other elements
producing the frequent itemset class[12], which generates the other maximal itemset 1235.
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The bottom-up and hybrid approaches are contrasted in figure 3, and the pseudo-code for
both schemes is shown in table 3.

4.3. Transaction Clustering: Database Layout

The KDD process consists of various steps (Fayyad, Piatetsky-Shapiro, & Smyth, 1996).
The initial step consists of creating the target dataset by focusing on certain attributes or via
data samples. The database creation may require removing unnecessary information and
supplying missing data, and transformation techniques for data reduction and projection.
The user must then determine the data mining task and choose a suitable algorithm, for
example, the discovery of association rules. The next step involves interpreting the dis-
covered associations, possibly looping back to any of the previous steps, to discover more
understandable patterns. An important consideration in the data preprocessing step is the
final representation or data layout of the dataset. Another issue is whether some preliminary
invariant information can be gleaned during this process. There are two possible layouts of
the target dataset for association mining – the horizontal and the vertical layout.

4.3.1. Horizontal Data Layout

This is the format standardly used in the literature (see e.g., (Agrawal & Srikant, 1994;
Mannila, Toivonen, & Verkamo, 1994; Agrawal, et al., 1996)). Here a dataset consists of
a list of transactions. Each transaction has a transaction identifier (TID) followed by a list
of items in that transaction. This format imposes some computation overhead during the
support counting step. In particular, for each transaction of average lengthl, during iteration
k, we have to generate and test whether all

(
l
k

)
k-subsets of the transaction are contained

in Ck. To perform fast subset checking the candidates are stored in a complex hash-tree
data structure. Searching for the relevant candidates thus adds additional computation
overhead. Furthermore, the horizontal layout forces us to scan the entire database or the
local partition once in each iteration. BothCountandCandidate Distributionmust pay the
extra overhead entailed by using the horizontal layout. Furthermore, the horizontal layout
seems suitable only for the bottom-up exploration of the frequent border. It appears to be
extremely complicated to implement the hybrid approach using the horizontal format. An
alternative approach is to store all the potential maximal itemsets and all their subsets in
a data structure with fast look-up, (e.g., hash-trees (Agrawal, et al., 1996)). We can then
gather their support in a single database scan. We plan to explore this in a later paper.

4.3.2. Vertical Data Layout

In the vertical (or inverted) layout (also called thedecomposed storage structure(Hol-
sheimer, et al., 1995)), a dataset consists of a list of items, with each item followed by
its tid-list — the list of all the transactions identifiers containing the item. An example of
successful use of this layout can be found in (Holsheimer, et al., 1995; Savasere, Omiecin-
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Figure 4. Horizontal and Vertical Database Layout

ski, & Navathe, 1995; Zaki, Parthasarathy, & Li, 1997; Zaki, et al., 1997b). The vertical
layout doesn’t suffer from any of the overheads described for the horizontal layout above
due to the following three reasons: First, if the tid-list is sorted in increasing order, then
the support of a candidatek-itemset can be computed by simply intersecting the tid-lists of
any two(k − 1)-subsets. No complicated data structures need to be maintained. We don’t
have to generate all thek-subsets of a transaction or perform the search operations on the
hash tree. Second, the tid-lists contain all relevant information about an itemset, and enable
us to avoid scanning the whole database to compute the support count of an itemset. This
layout can therefore take advantage of the principle of locality. All frequent itemsets from a
cluster of itemsets can be generated, before moving on to the next cluster. Third, the larger
the itemset, the shorter the tid-lists, which is practically always true. This results in faster
intersections. For example, consider figure 4, which contrasts the horizontal and the vertical
layout (for simplicity, we have shown the null elements, while in reality sparse storage is
used). The tid-list ofA, is given asT (A) = {1, 2, 4}, andT (B) = {2, 4}. Then the tid-list
ofAB is simply,T (AB) = {2, 4}. We can immediately determine the support by counting
the number of elements in the tid-list. If it meets the minimum support criterion, we insert
AB in L2. The intersections among the tid-lists can be performed faster by utilizing the
minimum support value. For example let’s assume that the minimum support is 100, and
we are intersecting two itemsets – AB with support 119 and AC with support 200. We can
stop the intersection the moment we have 20 mismatches in AB, since the support of ABC
is bounded above by 119. We use this optimization, calledshort-circuited intersection, for
fast joins.

The inverted layout, however, has a drawback. Examination of small itemsets tends to
be costlier than when the horizontal layout is employed. This is because tid-lists of small
itemsets provide little information about the association among items. In particular, no such
information is present in the tid-lists for 1-itemsets. For example, a database with 1,000,000
(1M) transactions, 1,000 frequent items, and an average of 10 items per transaction has tid-
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lists of average size 10,000. To find frequent 2-itemsets we have to intersect each pair of
items, which requires

(
1,000

2

)
· (2 · 10, 000) ≈ 109 operations. On the other hand, in the

horizontal format we simply need to form all pairs of the items appearing in a transaction
and increment their count, requiring only

(
10
2

)
· 1, 000, 000 = 4.5 · 107 operations.

There are a number of possible solutions to this problem:

1. To use a preprocessing step to gather the occurrence count of all 2-itemsets. Since
this information is invariant, it has to be performed once during the lifetime of the
database, and the cost can be amortized over the number of times the data is mined.
This information can also be incrementally updated as the database changes over time.

2. To store the counts of only those 2-itemsets with support greater than a user specified
lower bound, thus requiring less storage than the first approach.

3. To use a small sample that would fit in memory, and determine a superset of the frequent
2-itemsets,L2, by lowering the minimum support, and using simple intersections on the
sampled tid-lists. Sampling experiments (Toivonen, 1996; Zaki, et al., 1997a) indicate
that this is a feasible approach. Once the superset has been determined we can easily
verify the “true” frequent itemsets among them.

Our current implementation uses the pre-processing approach due to its simplicity. We plan
to implement the sampling approach in a later paper. The solutions represent different trade-
offs. The sampling approach generatesL2 on-the-fly with an extra database pass, while
the pre-processing approach requires extra storage. Form items, count storage requires
O(m2) disk space, which can be quite large for large values ofm. However, form = 1000,
used in our experiments this adds only a very small extra storage overhead. Using the
second approach can further reduce the storage requirements, but may require an extra scan
if the lower bound on support is changed. Note also that the database itself requires the
same amount of memory in both the horizontal and vertical formats (this is obvious from
figure 4).

5. New Parallel Algorithms: Design and Implementation

5.1. The DEC Memory Channel

Digital’s Memory Channel (MC) network (Gillett, 1996) provides applications with a global
address space using memory mapped regions. A region can be mapped into a process’
address space for transmit, receive, or both. Virtual addresses for transmit regions map
into physical addresses located in I/O space on the MC’s PCI adapter. Virtual addresses for
receive regions map into physical RAM. Writes into transmit regions are collected by the
source MC adapter, forwarded to destination MC adapters through a hub, and transferred
via DMA to receive regions with the same global identifier (see figure 5). Regions within a
node can be shared across different processors on that node. Writes originating on a given
node will be sent to receive regions on that same node only ifloop-backhas been enabled
for the region. We do not use the loop-back feature. We usewrite-doublinginstead, where

19



358 ZAKI, PARTHASARATHY, OGIHARA AND LI

Figure 5. Memory Channel space. The lined region is mapped for both transmit and receive on node 1 and for
receive on node 2. The gray region is mapped for receive on node 1 and for transmit on node 2.

each processor writes to its receive region and then to its transmit region, so that processes
on a host can see modification made by other processes on the same host. Though we pay
the cost of double writing, we reduce the amount of messages to the hub.

In our system unicast and multicast process-to-process writes have a latency of 5.2µs,
with per-link transfer bandwidths of 30 MB/s. MC peak aggregate bandwidth is also about
32 MB/s. Memory Channel guarantees write ordering and local cache coherence. Two
writes issued to the same transmit region (even on different nodes) will appear in the same
order in every receive region. When a write appears in a receive region it invalidates any
locally cached copies of its line.

5.2. Initial Database Partitioning

We assume that the database is in the vertical format, and that we have the support counts of
all 2-itemsets available locally on each host. We further assume that the database of tid-lists
is initially partitioned among all the hosts. This partitioning is done off-line, similar to
the assumption made inCount Distribution(Agrawal & Shafer, 1996). The tid-lists are
partitioned so that the total length of all tid-lists in the local portions on each host are roughly
equal. This is achieved using a greedy algorithm. The items are sorted on their support,
and the next item is assigned to the least loaded host. Note that the entire tid-list for an item
resides on a host. Figure 6 shows the original database, and the resultant initial partition on
two processors.

5.3. New Parallel Algorithms

We present four new parallel algorithms, depending on the clustering and lattice traversal
scheme used:
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Figure 6. Database Partitioning and Cluster Scheduling
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• Par-Eclat: uses equivalence class clustering and bottom-up lattice traversal.

• Par-MaxEclat: uses equivalence class clustering and hybrid traversal.

• Par-Clique: uses maximal uniform hypergraph clique clustering and bottom-up lattice
traversal.

• Par-MaxClique: uses maximal uniform hypergraph clique clustering and hybrid traver-
sal.

The algorithms using the bottom-up lattice traversal, namelyPar-Eclat andPar-Clique,
generate all frequent itemsets, while those using the hybrid traversal, namelyPar-MaxEclat
andPar-MaxClique, generate only the maximal frequent itemsets. As noted earlier, it is
trivial to modify the hybrid traversal algorithms to generate all frequent itemsets. But here
we are interested in examining the benefits of quickly identifying the maximal elements for
the hybrid scheme. Below we present the parallel design and implementation issues, which
are applicable to all four algorithms.

5.4. Parallel Design and Implementation

The new algorithms overcome the shortcomings of theCountandCandidate Distribution
algorithms. They utilize the aggregate memory of the system by partitioning the itemset
clusters into disjoint sets, which are assigned to different processors. The dependence
among the processors is decoupled right in the beginning so that the redistribution cost can
be amortized by the later iterations. Since each processor can proceed independently, there
is no costly synchronization at the end of each iteration. Furthermore the new algorithms
use the vertical database layout which clusters all relevant information in an itemset’s tid-
list. Each processor computes all the frequent itemsets from one cluster before proceeding
to the next. The local database partition is scanned only once. In contrastCandidate
Distribution must scan it once in each iteration. These algorithms don’t pay the extra
computation overhead of building or searching complex data structures, nor do they have to
generate all the subsets of each transaction. As the intersection is performed an itemset can
immediately be inserted inLk. Notice that the tid-lists also automatically prune irrelevant
transactions. As the itemset size increases, the size of the tid-list decreases, resulting in very
fast intersections. There are two distinct phases in the algorithms. The initialization phase,
responsible for communicating the tid-lists among the processors, and the asynchronous
phase, which generates frequent itemsets. The pseudo-code for the new algorithms is shown
in table 2.

5.4.1. Initialization Phase

The initialization step consists of three sub-steps. First, the support counts for 2-itemsets
from the preprocessing step are read, and the frequent ones are inserted intoL2. Second,
applying one of the two clustering schemes toL2 – the equivalence class or maximal
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Table 2.Pseudo-code for the New Parallel Algorithms

1. BeginParAssociation:

2. /* Initialization Phase*/

3. FormL2 from 2-itemset support counts

4. Generate Clusters fromL2 using:

5. Equivalence Classes or Uniform Hypergraph Cliques

6. Partition Clusters among the processorsP

7. Scan local database partition

8. Transmit relevant tid-lists to other processors

9. Receive tid-lists from other processors

10. /* Asynchronous Phase */

11. for each assigned Cluster,C2

12. Compute Frequent Itemsets: Bottom-Up(C2) or Hybrid(C2)

13. /* Final Reduction Phase*/

14. Aggregate Results and Output Associations

15. End ParAssociation

hypergraph clique clustering – the set of potential maximal frequent itemsets is generated.
These potential maximal clusters are then partitioned among all the processors so that a
suitable level of load-balancing can be achieved. Third, the database is repartitioned so that
each processor has on its local disk the tid-lists of all 1-itemsets in any cluster assigned to
it.
Cluster Scheduling We first partition theL2 into equivalence classes using the common
prefix as described above. If we are using equivalence class clustering then we already have
the potential maximal itemsets. However, if we are using the clique clustering, we generate
the maximal cliques within each class (see section 4). We next generate a schedule of the
equivalence classes on the different processors in a manner minimizing the load imbalance
and minimizing the inter-process communication. Note that it may be necessary to sacrifice
some amount of load balancing for a better communication efficiency. For this reason,
whole equivalence classes, including all the maximal cliques within them, are assigned to
the same processor. Load balancing is achieved by assigning a weighting factor to each
equivalence class based on the number of elements in the class. Since we have to consider
all pairs for the next iteration, we assign the weight

(
s
2

)
to a class withs elements. Once the

weights are assigned we generate a schedule using a greedy heuristic. We sort the classes
on the weights, and assign each class in turn to the least loaded processor, i.e., one having
the least total weight at that point. Ties are broken by selecting the processor with the
smaller identifier. These steps are done concurrently on all the processors since all of them
have access to the globalL2. Figure 6 shows an exampleL2, along with the equivalence
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classes, their weights, and the assignment of the classes on two processors. Notice how an
entire sublattice induced by a given class is assigned to a single processor. This leads to
better load balancing, even though the partitioning may introduce extra computation. For
example, if234 were not frequent, then1234 cannot be frequent either. But since these
belong to different equivalence classes assigned to different processors, this information
is not used. Although the size of a class gives a good indication of the amount of work,
better heuristics for generating the weights are possible. For example, if we could better
estimate the number of frequent itemsets that could be derived from an equivalence class we
could use this estimation as our weight. We believe that decoupling processor performance
right in the beginning holds promise, even though it may cause some load imbalance, since
the repartitioning cost can be amortized over later iterations. Deriving better heuristics for
scheduling the clusters, which minimize the load imbalance as well as communication, is
part of ongoing research.
Tid-list Communication Once the clusters have been partitioned among the processors
each processor has to exchange information with every other processor to read the non-local
tid-lists over the Memory Channel network. To minimize communication, and being aware
of the fact that in our configuration there is only one local disk per host (recall that our cluster
has 8 hosts, with 4 processors per host), only the hosts take part in the tid-list exchange.
Additional processes on each of the 8 hosts are spawned only in the asynchronous phase. To
accomplish the inter-process tid-list communication, each processor scans the item tid-lists
in its local database partition and writes it to a transmit region which is mapped for receive
on other processors. The other processors extract the tid-list from the receive region if
it belongs to any cluster assigned to them. For example, figure 6 shows the initial local
database on two hosts, and the final local database after the tid-list communication.

5.4.2. Asynchronous Phase

At the end of the initialization step, the relevant tid-lists are available locally on each host,
thus each processor can independently generate the frequent itemsets from its assigned
maximal clusters, eliminating the need for synchronization with other processors. Each
cluster is processed in its entirety before moving on to the next cluster. This step involves
scanning the local database partition only once. We thus benefit from huge I/O savings.
Since each cluster induces a sublattice, depending on the algorithm, we either use a bottom-
up traversal to generate all frequent itemsets, or we use the hybrid traversal to generate
only the maximal frequent itemsets. The pseudo-code of the two lattice traversal schemes
is shown in table 3.

Note that initially we only have the tid-lists for 1-itemsets stored locally on disk. Using
these, the tid-lists for the 2-itemset clusters are generated, and since these clusters are
generally small the resulting tid-lists can be kept in memory. In the bottom-up approach,
the tid-lists for 2-itemsets clusters are intersected to generate 3-itemsets. If the cardinality of
the resulting tid-list exceeds the minimum support, the new itemset is inserted inL3. Then
we split the resulting frequent 3-itemsets,L3 into equivalence classes based on common
prefixes of length 2. All pairs of 3-itemsets within an equivalence class are intersected to
determineL4, and so on till all frequent itemsets are found. OnceLk has been determined,
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Table 3.Pseudo-code for Bottom-up and Hybrid Traversal

1. Input: Ck = {I1, .., In}, equivalence

2. class or maximal clique

3. clustering of k-itemsets.

4. Output: Frequent itemsets∈ Ck

5. Bottom-Up(Ck):

6. for all Ii ∈ Ck do

7. Ck+1 = ∅;
8. for all Ij ∈ Ck, i < j do

9. N = (Ii ∩ Ij );
10. if N.sup≥ minsupthen

11. Ck+1 = Ck+1 ∪ {N};
12. end;

13. if Ck+1 6= ∅ then

14. Bottom-Up(Ck+1);

15. end;

1. Hybrid(C2):

2. /* Top-Down Phase */

3. N = I1; S1 = {I1};
4. for all Ii ∈ C2, i > 1 do

5. N = (N∩ Ii);
6. if N.sup≥ minsupthen

7. S1 = S1 ∪ {Ii};
8. elsebreak;

9. end;

10. S2 = C2 − S1;

11. /* Bottom-Up Phase */

12. for all Ii ∈ S2,do

13. C3 = {(Ii ∩Xj)|Xj ∈ S1};
14. S1 = S1 ∪ {Ii};
15. if C3 6= ∅ then Bottom-Up(C3);

16. end;

we can deleteLk−1. We thus need main memory space only for the itemsets inLk−1 within
one maximal cluster. For the top-down phase of the hybrid traversal only the maximal
element seen so far needs to be memory-resident, along with the itemsets not yet seen. The
new algorithms are therefore main memory space efficient. Experimental results on the
memory usage of these algorithms are presented in the next section.

Pruning Candidates Recall that bothCountandCandidate Distributionuse a pruning
step to eliminate unnecessary candidates. This step is essential in those algorithms to reduce
the size of the hash tree. Smaller trees lead to faster support counting, since each subset of
a transaction is tested against the tree. However, with the vertical database layout we found
the pruning step to be of little or no help. This can be attributed to several factors. First, there
is additional space and computation overhead in constructing and searching hash tables.
This is also likely to degrade locality. Second, there is extra overhead in generating all the
subsets of a candidate. Third, there is extra communication overhead in communicating
the frequent itemsets in each iteration, even though it may happen asynchronously. Fourth,
because the average size of tid-lists decreases as the itemsets size increases, intersections
can be performed very quickly with the short-circuit mechanism.

At the end of the asynchronous phase we accumulate all the results from each processor
and print them out.

25



364 ZAKI, PARTHASARATHY, OGIHARA AND LI

5.5. Salient Features of the New Algorithms

In this section we will recapitulate the salient features of our proposed algorithms, contrast-
ing them againstCountandCandidate Distribution. Our algorithms differ in the following
respect:

• Unlike Count Distribution, they utilize the aggregate memory of the parallel system by
partitioning the candidate itemsets among the processors using the itemset clustering
schemes.

• They decouple the processors right in the beginning by repartitioning the database, so
that each processor can compute the frequent itemsets independently. This eliminates
the need for communicating the frequent itemsets at the end of each iteration.

• They use the vertical database layout which clusters the transactions containing an
itemset into tid-lists. Using this layout enables our algorithms to scan the local database
partition only two times on each processor. The first scan for communicating the tid-
lists, and the second for obtaining the frequent itemsets. In contrast, bothCountand
Candidate Distributionscan the database multiple times – once during each iteration.

• To compute frequent itemsets, they performs simple intersections on two tid-lists.
There is no extra overhead associated with building and searching complex hash tree
data structures. Such complicated hash structures also suffer from poor cache locality
(Parthasarathy, Zaki, & Li, 1997). In our algorithms, all the available memory is utilized
to keep tid-lists in memory which results in good locality. As larger itemsets are gener-
ated the size of tid-lists decreases, resulting in very fast intersections. Short-circuiting
the join based on minimum support is also used to speed this step.

• Our algorithms avoid the overhead of generating all the subsets of a transaction and
checking them against the candidate hash tree during support counting.

6. Experimental Evaluation

Table 4.Database properties

Database T I D1 D1 Size D4 D4 Size

T10.I4.D2084K 10 4 2,084,000 91 MB 8,336,000 364MB
T15.I4.D1471K 15 4 1,471,000 93 MB 5,884,000 372MB
T20.I6.D1137K 20 6 1,137,000 92 MB 4,548,000 368MB

All the experiments were performed on a 32-processor (8 hosts, 4 processors/host) Digital
Alpha cluster inter-connected via the Memory Channel network (Gillett, 1996). In our
system unicast and multicast process-to-process writes have a latency of 5.2µs, with per-
link transfer bandwidths of 30MB/s. Each Alpha processor runs at 233MHz. There’s a
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total of 256MB of main memory per host (shared among the 4 processors on that host).
Each host also has a 2GB local disk attached to it, out of which less than 500MB was
available to us. All the partitioned databases reside on the local disks of each processor. We
used different synthetic databases, generated using the procedure described in (Agrawal &
Srikant, 1994). These have been used as benchmark databases for many association rules
algorithms (Agrawal & Srikant, 1994; Holsheimer, et al., 1995; Park, Chen, & Yu, 1995a;
Savasere, Omiecinski, & Navathe, 1995; Agrawal, et al., 1996). Table 4 shows the databases
used and their properties. The number of transactions is denoted asDr, wherer is the
replication factor. Forr = 1, all the databases are roughly 90MB in size. Except for
the sizeup experiments, all results shown are on databases with a replication factor of
r = 4 (≈360MB). We could not go beyond a replication factor of 6 (used in sizeup
experiments) since the repartitioned database would become too large to fit on disk. The
average transaction size is denoted as|T |, and the average maximal potentially frequent
itemset size as|I|. The number of maximal potentially frequent itemsets|L| = 2000, and
the number of itemsN = 1000. We refer the reader to (Agrawal & Srikant, 1994) for more
detail on the database generation. All the experiments were performed with a minimum
support value of 0.25%. For a fair comparison, all algorithms discover frequentk-itemsets
for k ≥ 3, using the supports for the 2-itemsets from the preprocessing step.

6.1. Performance Comparison
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Figure 7. Parallel Performance on T10.I4.D2048K

In this section we will compare the performance of our new algorithms withCount Distri-
bution (henceforth referred to asCD), which was shown to be superior to bothData and
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Figure 8. Parallel Performance on T15.I4.D1471K

Candidate Distribution(Agrawal & Shafer, 1996). In all the figures the different parallel
configurations are represented asHx.Py.Tz, whereH = x denotes the number of hosts,
P = y the number of processors per host, andT = H ·P = z, the total number of processors
used in the experiments. Figures 7, 8, and 9 show the total execution time for the different
databases and on different parallel configurations. The configurations have been arranged
in increasing order ofT . Configurations with the sameT are arranged in increasing order
ofH. The first column comparesPar-EclatwithCD, and the second column compares the
new algorithms, so that the differences among them are more apparent. It can be clearly
seen thatPar-Eclat out-performsCD for almost all configurations on all the databases,
with improvements as high as a factor of 5. If we look at the best new algorithm from
the second column, we see an improvement of about an order of magnitude. Even more
dramatic improvements are possible for lower minimum support (Zaki, Parthasarathy, & Li,
1997). An interesting trend in the figures is that the performance gap seems to decrease at
larger configurations, withCD actually performing better at H8.P4.T32 for T10.I4.D2084K
and T15.I4.D1471K. To see why consider figure 10 a, which shows the total number of
frequent itemsets of different sizes for the different databases. Also from figure 11, which
shows the initial database repartitioning and tid-list communication cost as a percentage of
the total execution time ofPar-Eclat, it becomes clear that there is not enough work for
these two databases, to sufficiently offset the communication cost, consequently more than
70% of the time is spent in the initialization phase. For T20.I6.D1137K, which has more
work, Par-Eclat is still about twice as fast asCD. The basic argument falls on the classic
computation versus communication trade-off in parallel computing. Whenever this ratio is
high we expectPar-Eclat to out-performCD. We also expect the relative improvements
of Par-Eclat overCD to be better for larger databases. Unfortunately due to disk space
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constraints we were not able to test the algorithms on larger databases. In all except the
H = 1 configurations, the local database partition is less than available memory. ForCD,
the entire database would be cached after the first scan. The performance ofCD is thus a
best case scenario for it since the results do not include the “real” hitCD would have taken
from multiple disk scans. As mentioned in section 5.5,Par-Eclatwas designed to scan the
database only once during frequent itemset computation.
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Figure 9. Parallel Performance on T20.I6.D1137K

The second column in figures 7, 8, and 9 shows the differences among the new algo-
rithms for different databases and parallel configurations. There are several parameters
affecting their performance. It can be seen that in generalPar-CliqueandPar-MaxClique,
perform better thanPar-EclatandPar-MaxEclat, respectively. This is because they use the
maximal hypergraph clique approach, which generates more precise clusters. On the other
axis, in generalPar-MaxClique, andPar-MaxEclat, out-performPar-CliqueandPar-Eclat,
respectively. This is because the hybrid lattice traversal scheme only generates maximal
frequent itemsets, saving on the number of intersections. The results are also dependent on
the number of frequent itemsets. The larger the number of frequent itemsets, the more the
opportunity for the hybrid approach to save on the joins. For example, consider figure 10 b,
which shows the total number of tid-list intersections performed for the four algorithms on
the three databases. For T20.I6.D1137K, which has the largest number of frequent itemsets
(see figure 10 a),Par-MaxCliquecuts down the number of intersections by more than 60%
overPar-Eclat. The reduction was about 20% forPar-MaxEclat, and 35% forPar-Clique.
These factors are responsible for the trends indicated above. The winner in terms of the
total execution time is clearlyPar-MaxClique, with improvements overPar-Eclatas high
as 40%.
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6.2. Memory Usage

Figure 12 shows the total memory usage of thePar-Eclatalgorithm as the computation of
frequent itemsets progresses. The mean memory usage for the tid-lists is less than 0.7MB
for all databases, even though the database itself is over 360MB. The figure only shows the
cases where the memory usage was more than twice the mean. The peaks in the graph are
usually due to the initial construction of all the 2-itemset tid-lists within each cluster. Since
the equivalence class clusters can be large, we observe a maximum usage of 35MB for
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Par-Eclat, which is still less than 10% of the database. For the other algorithms, we expect
these peaks to be lower, since the maximal clique clustering is more precise, resulting in
smaller clusters, and the hybrid traversal doesn’t need the entire cluster 2-itemsets initially.

6.3. Sensitivity Analysis

Speedup:Figures 13, 14, and 15 (first column) show the speedup on the different databases
and parallel configurations. Due to disk constraints we used a replication factor of 4, for
database sizes of approximately 360MB. The speedup numbers are not as impressive at
first glance. However, this is not surprising. For example, on the largest configuration
H8.P4.T32, there’s only about 11MB of data per processor. Combined with the fact that the
amount of computation is quite small (see figure 10 a), and that about 50% to 70% of the
time is spent in tid-list communication (see figure 11), we see a maximum speedup of about
5. Another reason is that the communication involves only the 8 hosts. Additional processes
on a host are only spawned after the initialization phase, which thus represents a partially-
parallel phase, limiting the speedups. If we take out the communication costs we see a
maximum speedup of 12 to 16. An interesting trend is the step-effect seen in the speedup
graphs. For the configurations which have the same number of total processors, the ones
with more hosts perform better. Also, for configurations with more total processors, with
P = 4, the configurations immediate preceding it, with only 1 processor per host, performs
better. In both the cases, the reason is that increasing the number of processors on a given
host, causes increased memory contention (bus traffic), and increased disk contention, as
each processor tries to access the database from the local disk at the same time.
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Figure 14.T15.I4.D1471K: Speedup and Sizeup(H4.P1.T4)

Sizeup: For the sizeup experiments we fixed the parallel configuration to H4.P1.T4, and
varied the database replication factor from 1 to 6, with the total database size ranging from
about 90MB to 540MB. Figures 13, 14, and 15 (second column) show the sizeup for the
four algorithms on the different databases. The figures indicate an almost linear sizeup.
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The slightly upward bend is due to the relative computation versus communication cost.
The larger the database the more the time spent in communication, while the intersection
cost doesn’t increase at the same pace. Moreover, the number of frequent itemsets remains
constant (since we use percentages for minimum support, as opposed to absolute counts)
for all replication factors.

7. Conclusions

In this paper we proposed new parallel algorithms for the discovery of association rules.
The algorithms use novel itemset clustering techniques to approximate the set of potentially
maximal frequent itemsets. Once this set has been identified, the algorithms make use of
efficient traversal techniques to generate the frequent itemsets contained in each cluster.
We propose two clustering schemes based on equivalence classes and maximal hypergraph
cliques, and study two lattice traversal techniques based on bottom-up and hybrid search.
We also use the vertical database layout to cluster related transactions together. The database
is also selectively replicated so that the portion of the database needed for the computation
of associations is local to each processor. After the initial set-up phase, the algorithms
do not need any further communication or synchronization. The algorithms minimize
I/O overheads by scanning the local database portion only two times. Once in the set-up
phase, and once when processing all the itemset clusters. The algorithms further use only
simple intersection operations to compute frequent itemsets and don’t have to maintain or
search complex hash structures. An added benefit of using simple intersections is that the
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algorithms we propose can be implemented directly on general purpose database systems
(Holsheimer, et al., 1995; Houtsma & Swami, 1995).

Using the above techniques we presented four new algorithms. ThePar-Eclat (equiva-
lence class, bottom-up search) andPar-Clique(maximal clique, bottom-up search) algo-
rithms, discover all frequent itemsets, while thePar-MaxEclat(equivalence class, hybrid
search) andPar-MaxClique(maximal clique, hybrid search) discover the maximal frequent
itemsets. We implemented the algorithms on a 32 processor DEC cluster interconnected
with the DEC Memory Channel network, and compared it against a well known parallel
algorithmCount Distribution(Agrawal & Shafer, 1996). Experimental results indicate that
a substantial performance improvement is obtained using our techniques.
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