
Indexing and Data Access Methods for Database Mining

Ganesh Ramesh
�
, William A. Maniatty

�
Mohammed J. Zaki

�
Dept. of Computer Science Computer Science Dept.

University at Albany Rensselaer Polytechnic Institute
Albany, NY 12222 Troy, NY 12180

http://www.cs.albany.edu/(� ganesh, � maniatty) http://www.cs.rpi.edu/ � zaki�
ganesh,maniatty � @cs.albany.edu zaki@cs.rpi.edu

Abstract

Most of today’s techniques for data mining and associa-
tion rule mining (ARM) in particular, can be aptly termed
“flat file mining”, since the database is typically trans-
formed to a flat file that is input to the mining software.
Previous research in the integration of ARM with databases
looked largely at exploiting language (SQL) as a tool for
implementing mining algorithms. In this paper we ex-
plore an alternative approach, using various data access
methods and systems programming techniques to study
the efficiency of mining data.

We present a systematic comparison of the performance
of horizontal ���
	���������� and vertical ������������� ARM ap-
proaches utilizing flat-file and a range of indexed database
approaches. Measurements of run time as a function of
database and minimum support threshold are analyzed.
Experimental profiling measures of the frequency and cost
of various operations are discussed. This analysis moti-
vated both the use of adaptive ARM techniques and the
development of a simple yet novel linked block struc-
ture to support efficient transaction pruning. We also ex-
plore techniques for determining what kinds of data ben-
efit from pruning, and when pruning is likely to help.
Keywords: Indexing, Data Access, Performance Analy-
sis, Association Rules

1 Introduction

Even after almost a decade of data mining, most of today’s
techniques can be more appropriately termed as “file min-
ing”, since typically, little interaction occurs between the
mining engine and the database. Techniques are needed to
bridge this gap. The ultimate goal would be to support ad
hoc data mining queries, focusing on increasing program-
mer productivity for mining applications [10]. Previous
research in integrating mining and databases has mainly

�
This work was in part supported by a research assistantship provided

by the Department of Computer Science at the University at Albany.�
This work was supported in part by a startup grant from the Depart-

ment of Computer Science at the University at Albany.�
This work was supported in part by NSF CAREER Award

IIS "!#!#$#%#$�&(' , and NSF Next Generation Software Program grant
EIA "!*)�!#+�&(!#' .

looked at the language support. DMQL [6] is a min-
ing query language designed to support the wide spec-
trum of common mining tasks. It consists of specifica-
tions of four main primitives, which include the subset of
data relevant to the mining query, the type of task to be
performed, the background knowledge, and constraints or
“interestingness” measures. MSQL [11] is an extension
of SQL to generate and selectively retrieve sets of rules
from a large database. Data and rules are treated uni-
formly, allowing various optimizations to be performed;
one could manipulate generated rules or one could per-
form selective, query-based rule generation. The MINE
RULE SQL operator [15] extends the semantics of asso-
ciation rules, allowing more generalized queries to be per-
formed. Query flocks [20] uses a generate-and-test model
of data mining; it extends the Apriori [1] technique of as-
sociation mining to solve more general mining queries.
In [2], a tight-coupling of association mining with the
database was studied. It uses user-defined functions to
push parts of the computation inside the database sys-
tem. A comprehensive study of several architectural al-
ternatives for database and mining integration were stud-
ied in [19], in the context of association mining; these al-
ternatives include: 1) loose-coupling through a SQL cur-
sor, 2) encapsulating the mining algorithm in a stored-
procedure, 3) caching the data on a file-system on-the-
fly and then mining it, 4) using user-defined functions
for mining, and 5) SQL implementations. They studied
four approaches using SQL-92 and another six in SQL-
OR (SQL with object-relational extensions). They con-
cluded experimentally that Cache-Mine approach, which
is an enhanced version of the flat-file Apriori method, is
clearly superior, while SQL-OR approaches come within
a factor of two. The SQL-92 approaches were not com-
petitive with the alternatives.

In this paper, we study the other, almost neglected,
axis in mining and database system integration, i.e., effi-
cient indexing and data access support to realize efficient
query execution. We consider association rule mining
(ARM) as a concrete example to illustrate our techniques
and for analysis. Although making informed design deci-
sions is difficult due to complex trade-offs between data
organization, choice of algorithm, and data access meth-
ods, it is somewhat surprising that little to no performance

analysis has been done for ARM methods. One such work
by Dunkel and Soparkar [5] studied the performance and
I/O cost of the traditional row-wise (or horizontal) im-
plementation of Apriori versus a column-wise (or verti-
cal) implementation. They found via simulations that the
column-wise approach significantly reduces the number
of disk accesses.

Association Rule Mining and related terminology are
described as follows. Let � be a set of items, and �
a database of transactions, where each transaction has a
unique identifier (tid) and contains a set of items called an
itemset. An itemset with � items is called a � -itemset. The
support of an itemset � , denoted � ��� � , is the number of
transactions in which that itemset occurs as a subset. Sub-
sets of an itemset, of length � are called � -subsets. An
itemset is frequent or large if its support is more than a
user-specified minimum support value (min sup). ��� is
the set of frequent � -itemsets. A frequent itemset is max-
imal if it is not a subset of any other frequent itemset.

An association rule is an expression � 	�
 ����� , where
� and � are itemsets. The rule’s support � is the joint
probability of a transaction containing both � and � , and
is given as ����� ��� � � . The confidence � of the rule is
the conditional probability that a transaction contains � ,
given that it contains � , and is given as ����� ��� � ����� � � � .
A rule is frequent if its support is greater than min sup,
and strong if its confidence is more than a user-specified
minimum confidence (min conf).

To explore the impact of algorithm selection and data
layout, we compared and contrasted Apriori [1], a bot-
tom up breadth first counting based approach on horizon-
tal data layouts and Eclat [21], a depth first intersection
based approach on vertical data layouts. For Apriori we
measure the impact of pruning approaches [17].

We conjectured that Apriori is more efficient than Eclat
in finding large itemsets in the early passes, when the
itemset cardinality is small, but inefficient in later passes
of the algorithm, when the frequent itemsets have high
length but decrease in number. But Eclat on the other
hand, has better performance during these passes as it uses
tidlist intersections, and the tidlists shrink with increase in
the size of itemsets. This motivated a study of an adaptive
hybrid strategy which switches to Eclat in higher passes
of the algorithm. Since it is typical to mine the same
data many times we created the vertical format file off-
line. However, the conversion of candidate itemsets in the
Apriori phase to a list of prefix-based equivalence classes
in the Eclat phase, imposes an unavoidable overhead in
the hybrid strategy. Hybrid strategies were also studied
in [19] and [9]. While the former strategy only involved
data representations, the latter also involved a change in
search strategy (DFS as opposed to BFS). To avoid pre-
mature switching, our hybrid approach uses a heuristic
which switches from Apriori to Eclat when successive it-
erations of Apriori , experiences a decrease in the number
of candidates.

2 Data Access Methods and Middle-
ware Design

Consider the impact of the interaction between data layout
and our indexing strategy. Horizontal formats group data
by transaction, storing the tid and the itemset as a length
delimited vector. Vertical formats group data by itemsets,
storing the itemset id and the tidlist. Typically tidlists tend
to be longer than itemsets. To explore the trade-off be-
tween the level of granularity and indexing overhead, we
use the following design space taxonomy:

� coarse-grained index on the tid or the itemset
id as the key treating the corresponding itemset or
tidlist as a variable length data field.

� fine-grained index ordered pairs using � � ���� ��! #" �
for horizontal formats and � ��! $"%�$ *�!&(')��� ���� for ver-
tical formats. This level of granularity does not use
the data fields associated with the index.

� hybrid granularity fragment tidlists and/or item-
sets into blocks when writing to disk and reassem-
ble while reading into memory. This can be useful
if a coarse-grained approach would be desirable but
the storage mechanism cannot handle large variable
length data items.

In practice hybrid granularity mechanisms would most
likely be needed in vertical format approaches due to long
tidlists that tend to be encountered.

Consider our long term goal of supporting ad hoc queries
which drives the middleware layer’s design. We used the
data access patterns exhibited by Apriori and Eclat as rep-
resentative templates of access patterns expected in ad hoc
queries (since the queries are likely to invoke the algo-
rithms based on these methods). This structural similarity
(with regards to data access) to Apriori and Eclat allowed
us to precisely define the interface functionality. Another
important constraint for large data management in gen-
eral [8], and specifically for general purpose ad hoc min-
ing query tools is that the interface must maximize inde-
pendence between the algorithm and the underlying data
organization, while minimizing the amount of efficiency
sacrificed. Our selection criteria motivated a design to
support efficient access that is transparent with respect
to data organization. The interface supporting this ac-
cess incorporates various high level data access methods
as a middleware layer. The high level data access meth-
ods used in mining horizontal and vertical data formats
are given in Table 1.

2.1 Low Level Data Access Methods and A
Linked Block Structure

Various indexed data organizations support the function-
ality for the middleware as described in Section 2, two of
which were studied. First, we used *,+ trees with differ-
ent levels of granularity to store the data. Secondly, the
nature of data access in Apriori , motivated us to develop

Data Format Operations Needed
Any Open Database

Close Database
Populate Database

Horizontal Get Next Transaction
Reset cursor to start of transaction stream

Delete item (if pruning enabled)
Delete transaction (if pruning enabled)

Vertical Get transaction ids associated with itemset
insert itemset and associated tidlist

Table 1: Data access requirements according to data format in Association Rule Mining

a less sophisticated but more optimized structure that per-
mitted all the functionality required by Apriori , includ-
ing deletions, and yet whose overhead was not too much
from the raw flat file format. This structure was motivated
by a minimalist approach of extending flat files to permit
deletion of items/transactions. Even though we used this
specialized indexing scheme that was applicable only for
Apriori , it provides a baseline for comparing the indexed
data organizations that support pruning in Apriori .

Consider a pruning version of Apriori [17] that re-
peatedly traverses the data one transaction at a time. Each
time a transaction is visited, the counts of the relevant
candidates are updated and then part or the entire trans-
action are pruned. In addition to the horizontal database
operations described in Section 2, any new data organiza-
tion must provide functionality to store data in that format.
The most common operations performed during pruning
in Apriori are, reading of transactions and deletion. Using
* + trees [4, 12, 13] permits

� ���*� disk and memory oper-
ations for reads (same as a flat file), however the deletion
overhead is

� �����	��
� � for a tree with � elements and
" keys per index node due to index maintenance. How-
ever, since Apriori always positions the data cursor at the
transaction where the pruning is going to occur, it is possi-
ble to avoid the index traversal, in fact a linked list struc-
ture (reminiscent of the leaf node structure in * + trees)
could reduce the delete overhead to

� ����� without increas-
ing the reading overhead. Reading a transaction consists
of fetching the next block on demand if needed, and doing
a pointer offset calculation into the block. For efficiency,
transactions are scanned in using a zero copy read that re-
turns a pointer into the memory used to cache the block.
Double buffering is used when the block is completely
scanned, so that both the previously read block (if it ex-
ists) and the current block are cached to support merging.
This Linked Block Structure will henceforth be referred to
as BFS (stands for Block File structure) layout. For more
details see [18].

3 Empirical Study

Our use of indexing packages was motivated by a desire to
be able to integrate mining techniques more tightly with
existing DBMS systems. In keeping with our require-
ments for efficient indexed and sequential access we se-

lected two freely available *,+ -tree packages, supporting
* + -tree style access,the generalized indexed search tree
(GiST) [7] and Sleepycat’s Berkeley DB [16].

The algorithms were benchmarked using a popular set
of synthetic databases for many ARM implementations.
We used the synthetic benchmark data generation approach
described in [1]. Let ' denote the number of transactions,�

the average transaction size, & the size of a maximal po-
tentially frequent itemset, � the number of maximal po-
tentially frequent itemsets, and � the number of items. In
all our experiments, we use � �������	� and � �������	� .
Experiments are conducted with different values of ' ,

�

and & .
For real databases, we selected three examples from

the UCI database repository [3]: CHESS, MUSHROOM
and CONNECT, for our experiments. We used our own
procedures for database format conversion to allow run-
ning the respective algorithms on the databases.

The experiments used a 500MHz dual Intel Celeron
processor machine with 256MB of ECC RAM and 1GB
of swap space running FreeBSD 4.2. The disk controller
uses UDMA 33 technology. and the drive is a single IBM
Deskstar 34GXP 20.5 GB drive with 7200 RPM rotation
speed and 9.0 msec mean access time.

The objectives of the experiment were categorized as
follows: (i) observe the effect of data organization on ex-
ecution time, (ii) explore the storage efficiency/overhead
for various data organizations and (iii) study the effect of
data organization on where the methods spend their time.

We explored these issues across the range of algo-
rithms and data access methods presented in Table 2. For
example, Apriori with flat-files is labeled APR, while Apri-
ori with BFS is labeled APR-BFS, and so on. As com-
pile time binding of data access methods was used, the
BFS layout described in Section 2.1 could not be used for
Eclat and Hybrid approaches, as long tidlists would need
to span blocks (which is currently not supported by the
BFS layout). The systematic testing of each algorithm
and its available data access methods allowed us to ex-
plore a range of interactions and isolate the impact of the
data access method on the algorithms’ performance.

3.1 Effect of Data Organization on Run Time

Run time is sensitive to the algorithm used, the data lay-
out, minimum support value and the file access methods.

Algorithm Flat File Fine Grain GiST Coarse Grain GiST BFS Sleepycat
Apriori APR APR-FG APR-CG APR-BFS APR-DB
Eclat ECL ECL-FG ECL-CG ECL-DB

Hybrid HYB-FG HYB-CG HYB-DB

Table 2: Notational Conventions for ARM Algorithms/Data Access Method Combinations Used

Figure 1 presents execution times for the synthetic and
real databases described in Section 3, measuring both sen-
sitivity to support and scalability with database size. Due
to space constraints, we present only a subset of all the
plots and refer the reader to [18] for a more comprehen-
sive version of the same.

We sought to measure how run times of indexing and
BFS methods without pruning compared against flat file
run times. The APR flat file algorithms tended to slightly
outperform the BFS algorithms, the speedup of flat files
over BFS fell within the range ��� � ��� APR-BFS Run Time

APR Run Time

�
��� � , with the largest speedup in the T5I4D100K database,
and the smallest speedup in the T20I6D100K database.
Most databases and supports experiencing a speedups in
the range of 1.0 and 1.3.

The pruning variants of Apriori use either BFS or in-
dexing, in order to trade off the extra processing of prun-
ing in an attempt to reduce scanning in later passes. The
overhead of pruning was frequently higher. The minimal-
ist design of the BFS layer came close to matching flat file
performance, only occasionally outperforming flat files
(as seen in the T20I6D100K timings in Figure 1(d), for
min sup ��� �	�
 � �	� �	� , both methods required 13 passes).
BFS with pruning tended to outperform BFS without prun-
ing, although there were some exceptions, e.g. the timings
in Figure 1(a) and (g), due to BFS’s support for physical
deletion. The use of an indexing tool that does not support
physical deletion (GiST) does not lead to a performance
improvement due to reduced scanning load in later passes
over the dataset and hence may reflect the better perfor-
mance of non-pruning indexed methods over their pruning
counterparts.

For flat files, coarse grained indexing and BFS ap-
proaches, Eclat versions performed well and were scal-
able relative to Apriori versions, as seen in Figure 1. Both
Apriori and Eclat use the indexed structures differently,
only Eclat uses insertion, only pruning variants of Apriori
use deletion, while other approaches use only retrieval.
We expected Apriori to perform well in the early passes,
and that later passes would benefit from Eclat ’s depth first
approach. We employed a hybrid approach as described in
section 1 to utilize the best cases of both methods. How-
ever, our hybrid approach was consistently outperformed
by Eclat , in fact we discovered that forcing the switch to
Eclat at the beginning (after second pass) worked best.
Other horizontal mining algorithms may have different
performance characteristics for the hybrid approach and
may switch at different passes than Apriori .

Fine grained structures reflect the layout used in sup-
porting highly normalized data representations in relational
database systems. Fine grained approaches using GiST
were strongly outperformed by their coarse grained equiv-
alents. This implies that the overhead of the extra data,

indexing and the fragmentation and reassembly of trans-
actions/tidlists dominated the computation. The amount
of speedup gained by going to a coarse grained repre-
sentation appears to be a function of the mean itemset or
tidlist length. The largest speedup was � � � ECL-FG run time

ECL-CG run time
for the connect database. The Eclat speedup obtained by
going from coarse grained to fine grained representations
was sensitive to min sup. For example, the T5I4D100K
database had a monotonically decreasing speed up with
increase in min sup, with a speedup of ����
 for min sup �
�� ����� , and a speedup of ���� for min sup � �	� �	��� . The
conversion from horizontal to vertical format fine-grained
layout was a major factor contributing to the speedup of
coarse grained over fine grained Eclat . The competing
hybrid, and Apriori approaches in particular had much
smaller speedups of coarse grained over fine grained ap-
proaches, and were much less sensitive to min sup. The
pure Apriori approaches enjoyed speedups of about 5 for
most databases, with the largest speedup being for the
largest values of support; the hybrid approaches had a
larger speedup (as high as 11 for Mushroom).

Combined pruning and *,+ -tree style indexing was
more effective than the corresponding non-pruning vari-
ant for low values of min sup, since that promoted ag-
gressive pruning in early passes. The fine-grained indexed
pruning approaches with frequent itemsets longer than 3
tended to be relatively insensitive to min sup. Much of the
pruning occurs during iteration 4.

The cost of pruning in early passes requires that later
passes have sufficiently reduced volumes of data to scan to
offset the additional processing required. Figure 2 shows
the iteration-wise execution time split for APR, APR-CG
and APR-BFS with and without pruning. The cost of
pruning in the initial few iterations was a lot, due to active
pruning in the initial passes. As the iterations proceed, the
effect of reduction in database size plays a role in speed-
ing up the algorithms. To note, pruning on indexed data
layouts, speeds up the algorithm in later passes to make
it faster than flat file data layout. The timings confirm
the hypothesis that pruning can actually help in databases
where the algorithm runs into a fairly large number of it-
erations. Also, the physical deletion in BFS leads to more
effective pruning, as seen in the drastic reduction in run
time for later passes.

3.2 Effect of data organization on where the
methods spend their time

In order to study the effect of data organization on where
algorithms spend their time, profiling of CPU time was
done for the different algorithms and data formats using
the GNU profiling tool, gprof. Profiling statistics were
measured at the function level (which tends to be less in-

10

100

1000

0.003 0.004 0.005 0.006 0.007 0.008

T
im

e

Minimum Support

T20I6D100 - APRIORI

APR
APR-BFS
APR-FG
APR-CG
APR-DB

APR-BFS Prune
APR-CG Prune

(a) T20I6D100K Apriori Timings

1

10

100

1000

10000

0.003 0.004 0.005 0.006 0.007 0.008

T
im

e

Minimum Support

T20I6D100 - ECLAT

ECL
ECL-FG
ECL-CG
ECL-DB

(b) T20I6D100K Eclat Timings

10

100

1000

0.003 0.004 0.005 0.006 0.007 0.008

T
im

e

Minimum Support

T20I6D100 - HYBRID

HYB-FG
HYB-CG
HYB-DB

HYB-CG Prune

(c) T20I6D100K Hybrid Timings

1

10

100

1000

0 5 10 15 20 25 30 35

T
im

e

Number of Transactions (in 100K increments)

Scale Up for APRIORI T5I4, MinSup = 0.25%

APR
APR-BFS
APR-CG
APR-DB

APR-CG Prune

(d) Scaleup Apriori Timings

1

10

100

1000

0 5 10 15 20 25 30 35

T
im

e

Number of Transactions (in 100K increments)

Scale Up for ECLAT T5I4, MinSup = 0.25%

ECL
ECL-CG
ECL-DB

(e) Scaleup Eclat Timings

10

100

1000

0 5 10 15 20 25 30 35

T
im

e

Number of Transactions (in 100K increments)

Scale Up for HYBRID T5I4, MinSup = 0.25%

HYB-CG
HYB-DB

HYB-CG Prune

(f) Scaleup Hybrid Timings

0.1

1

10

100

0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96

T
im

e

Minimum Support

CHESS - APRIORI

APR
APR-BFS
APR-FG
APR-CG
APR-DB

APR-BFS Prune
APR-CG Prune

(g) Chess Apriori Timings

0.1

1

10

100

1000

10000

0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96

T
im

e

Minimum Support

CHESS - ECLAT

ECL
ECL-FG
ECL-CG
ECL-DB

(h) Chess Eclat Timings

0.1

1

10

100

0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96

T
im

e

Minimum Support

CHESS - HYBRID

HYB-CG
HYB-CG
HYB-DB

HYB-CG Prune

(i) Chess Hybrid Timings

1

10

100

1000

10000

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1 1.01

T
im

e

Minimum Support

CONNECT - APRIORI

APR
APR-BFS
APR-FG
APR-CG
APR-DB

APR-BFS Prune
APR-CG Prune

(j) Connect Apriori Timings

1

10

100

1000

10000

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1 1.01

T
im

e

Minimum Support

CONNECT - ECLAT

ECL
ECL-FG
ECL-CG
ECL-DB

(k) Connect Eclat Timings

10

100

1000

10000

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1 1.01

T
im

e

Minimum Support

CONNECT - HYBRID

HYB-FG
HYB-CG
HYB-DB

HYB-CG Prune

(l) Connect Hybrid Timings

1

10

100

0.32 0.34 0.36 0.38 0.4 0.42

T
im

e

Minimum Support

MUSHROOM - APRIORI

APR
APR-BFS
APR-FG
APR-CG
APR-DB

APR-BFS Prune
APR-CG Prune

(m) Mushroom Apriori Timings

1

10

100

1000

0.32 0.34 0.36 0.38 0.4 0.42

T
im

e

Minimum Support

MUSHROOM - ECLAT

ECL
ECL-FG
ECL-CG
ECL-DB

(n) Mushroom Eclat Timings

1

10

100

0.32 0.34 0.36 0.38 0.4 0.42

T
im

e

Minimum Support

MUSHROOM - HYBRID

HYB-FG
HYB-CG
HYB-DB

HYB-CG Prune

(o) Mushroom Hybrid Timings

Figure 1: Real and Synthetic Database Timings

11 22 33 44 55 66 77 88 99 10 11 12 13 14
00

00

00

11

10

100

Iterationwise Execution Time plot − Pruning vs Non− Pruning algorithms

APR− CG APR− CG Prune APR− BFS APR− BFS Prune Apr

Iteration Number (T20I6D100K Support 0.2%)

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

(a) Iteration-wise Execution time for Pruning and Non-Pruning al-
gorithms

Apr APR−
BFS

APR− FG APR− CG APR− DB APR−
BFS
Prune

APR− CG
Prune

Eclat ECL− CG ECL− DB HYB− CG HYB− DB HYB− CG
Prune

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Profiling Plots for ARM Algorithms with various Data Layouts

Counting Candidate Generation Data Access Functions Passes 1 and 2

Others Tidlist Intersection Apriori/Eclat Conversion

Algorithm/Data Layout

E
xe

cu
ti

o
n

 T
im

e
(%

)

(b) Profiles of Apriori According to Data Layout

Figure 2: Itemized Profiling and Performance Measures

trusive) with additional runs performed to obtain more de-
tailed profiles with line numbering information. To give
a basis of comparison, we aggregated timings based on
what sorts of jobs the functions did. We classified each
function as performing one of the following tasks: first
pass, second pass, candidate generation, counting, data
access method operations, and other operations.

Figure 2 shows the profiling plots for various algo-
rithms. The results are shown for a sample profile run on
T20I6D100k with a support threshold of �� � ��� . The ma-
jority of time for almost all data layouts is spent on func-
tions for support counting or candidate generation. The
overhead of fine grained data representation is reflected
in the fine grained Apriori , which spends almost half the
time in data access functions.

Our profiling measurements confirmed that counting
and candidate generation tend to dominate run time in
coarse grained horizontal data format algorithms. In con-
trast, Figure 2 shows that the fine grained *,+ -tree algo-
rithms’ run times were dominated by executing data ac-
cess methods.

When comparing fine grain and coarse grain meth-
ods, we expected the time spent during data access meth-
ods to decrease as the transactions and itemset tidlists are
grouped together. The time spent in data access methods
in APR-FG was ���	� ��� and this reduced to ��� ��� in APR-
CG and ��� � � in APR-DB.

Flat files and the linked block file structure appeared
to be the fastest data access methods. We expected that
BFS would be fast, as it uses a minimalist implementation,
designed to have low overhead. The measurements con-
firmed that the amount of time spent by a linked block file
structure in data access methods was low, approaching the
negligible time of the flat file version of Apriori (APR).
Hence the expected performance of APR-BFS was close
to APR. The low overhead of the cursor management in
APR-DB resulted in processor time utilization compara-
ble to APR-BFS.

4 Summary and Conclusion

We explored integrating KDD tools with database man-
agement systems with an eye toward improving the user’s
mining experience, eventually providing seamless systems
for DBMS and KDD [14]. Our integrated schemes avoid
file system imposed file size limitations and redundant
storage overhead. While others have explored high level
approaches to express mining operations using high level
query languages, we focus on systems software support
for mining and the impact of file structures on mining al-
gorithms and run time support issues, so that informed
design decisions can be made. This systematic investiga-
tion consisted of determining the individual and collec-
tive impact on storage and run time of the following or-
thogonal design elements: (i) horizontal and vertical par-
titioning based algorithms, Apriori and Eclat , (ii) tradi-
tional flat files, a novel BFS file which supports pruning,
and indexed structures. (iii) granularity of data access
(corresponding to level of normalization in a DBMS) and
(iv) the impact of pruning approaches on horizontal ARM
(Apriori) run time.

Flat file access tended to be faster than coarse grained
indexing, often getting a speedup of 5 or more above coarse
grained indexed methods for Apriori based methods. Our
efficient linked block file structure when used without prun-
ing had performance approaching that of flat file access
and showed that access methods supporting physical dele-
tion can get significant performance improvement in later
passes. Structures using logical deletion experience lesser
performance improvements. However, the overhead of
determining when to prune was sufficiently large that it
tended to offset (and often overwhelms) the benefit of re-
duced scanning in later passes. It should be noted that
logical deletion is preferred to physical deletion in cases
where it is desirable to roll back to the original data af-
ter mining. We would like to underscore that run time is
not the only concern. The fact is that almost 80-90% of
the time in KDD is spent in pre-/post-processing. Thus,
tight integration of mining with a database makes prac-

tical sense when one considers the entire KDD process.
Databases facilitate ad-hoc mining and post-mining anal-
ysis of results.

For vertical data formats, support for large data items
associated with the key, binary large objects (BLOBS),
appears to be critical. The BLOB support for native *,+ -
trees in Sleepycat Berkeley DB is more efficient than the
* + -tree emulation in GiST, which appears to have im-
plicit limitations on the size of data fields associated with
the keys. For Eclat , coarse grained implementations us-
ing Sleepycat Berkeley DB were able to come within a
factor of 5 of flat file performance. However, if the data
is highly normalized (e.g. in fine-grained layout), the per-
formance of these methods declines dramatically due to
transaction reassembly costs, with slowdowns as high as
600 for the chess database. We explored an adaptive ap-
proach to test the conjecture that Apriori tends to be more
efficient in the earlier passes than Eclat .

The hybrid method tended to be uniformly less effi-
cient than Eclat for the databases but often more efficient
than Apriori , as the overhead of candidate generation and
counting of Apriori proved more expensive than the inter-
section methods used in Eclat , even in early iterations

The creation of the middleware layer is an important
step in developing a flexible and unified software approach
to implementing mining tools. With such a layer, it is pos-
sible to interchange components allowing many variants
of a mining approach. Additionally, a well crafted mid-
dleware layer can facilitate experimentation and analysis
of various design trade-offs.

Several future directions present themselves from the
issues encountered during our analysis.

1. The memory requirements (for storing candidates,
for example) of various approaches, at times, ap-
proached or exceeded the memory capacity of the
machines. Exploring out of core approaches for
storing candidates might not only provide a means
for increasing our capacity to mine databases, but
also allow ARM users to mine at lower values of
min sup.

2. Using existing profiling technology to diagnose where
the software spends its time, provides a limited amount
of information. Profiling technology, however, should
permit aggregation of functions together for timing
statistics, and allow the measurement of wall clock
and idle time, as well. This opens up an explo-
ration of developing profilers for data mining mea-
surements.

3. For highly data dependent tools like KDD tools, it
makes sense to automate the collection of profil-
ing data and statistics to a form that is mineable.
This permits queries on the collected data to corre-
late performance across a range of inputs. Mining
of profiled data might provide feedback that allows
improvements in both the compiler and KDD tool
performance.

4. ARM is, but one task in KDD. It will be interest-
ing to see how various indexing techniques and data

access methods will help in performing other KDD
tasks.

5 Acknowledgements

The authors would like to thank the anonymous referees
for their valuable suggestions and feedback.

References

[1] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen,
and A. Inkeri Verkamo. Fast discovery of association
rules. In U. Fayyad and et al, editors, Advances in
Knowledge Discovery and Data Mining, pages 307–
328. AAAI Press, Menlo Park, CA, 1996.

[2] R. Agrawal and K. Shim. Developing tightly-
coupled data mining applications on a relational
database system. In 2nd Intl. Conf. on Knowledge
Discovery in Databases and Data Mining, August
1996.

[3] S. Bay. The UCI KDD Archive (kdd.ics.uci.edu).
University of California, Irvine. Department of In-
formation and Computer Science.

[4] D. Comer. The ubiquitous B-tree. ACM Computing
Surveys, 11(2):121–137, 1979.

[5] B. Dunkel and N. Soparkar. Data organization and
access for efficient data mining. In 15th IEEE Intl.
Conf. on Data Engineering, March 1999.

[6] J. Han, Y. Fu, W. Wang, K. Koperski, and O. Za-
iane. DMQL: A data mining query language for re-
lational databases. In 1st ACM SIGMOD Workshop
on Research Issues in Data Mining and Knowledge
Discovery, June 1996.

[7] J. Hellerstein, J. Naughton, and A. Pfeffer. Gener-
alized search trees for database systems. In Proc.
21st International Conference on Very Large Data
Bases, Zurich, September 1995. VLDB Endowment,
Morgan Kaufmann. Part of the SIGMOD Anthology
CDROM series.

[8] J. Hellerstein, M. Stonebraker, and R. Caccia. In-
dependent, open enterprise data integration. IEEE
Data Engineering Bulletin, 22(1):43–49, March
1999.

[9] Jochen Hipp, Ulrich Güntzer, and Gholamreza
Nakhaeizadeh. Mining association rules: Deriving a
superior algorithm by analysing today’s approaches.
In Proceedings of the 4th European Symposium on
Principles of Data Mining and Knowledge Discov-
ery (PKDD ’00), Lyon, France, September 13-16
2000.

[10] T. Imielinski and H. Mannila. A database perspec-
tive on knowledge discovery. Communications of
the ACM, 39(11), November 1996.

[11] T. Imielinski and A. Virmani. MSQL: A query lan-
guage for database mining. Data Mining and Knowl-
edge Discovery: An International Journal, 3:373–
408, 1999.

[12] J. Jannink. Implementing deletion in * + -trees.
ACM SIGMOD Record, 24(1):33–38, 1995.

[13] R. Maelbrancke and H. Olivie. Optimizing Jan Jan-
nink’s implementation of B+-tree deletion. SIG-
MOD Record, 24(3):5–7, 1995.

[14] W. A. Maniatty and M. J. Zaki. Systems support
for scalable data mining. SIGKDD Explorations,
2(2):56–65, January 2001.

[15] R. Meo, G. Psaila, and S. Ceri. A new SQL-like
operator for mining association rules. In 22nd Intl.
Conf. Very Large Databases, 1996.

[16] M. Olson, K. Bostic, and M. Seltzer. Berkeley DB.
In Proceedings of the 1999 Summer Usenix Techni-
cal Conference, Monterey, California, June 1999.

[17] J. S. Park, M.-S. Chen, and P. S. Yu. Using a hash-
based method with transaction trimming for min-
ing association rules. IEEE Transactions on Knowl-
edge and Data Engineering, 9(5):813–825, Septem-
ber/October 1997.

[18] G. Ramesh, W. A. Maniatty, and M. J. Zaki. Index-
ing and data access methods for database mining.
Technical Report 01-01, Dept. of Computer Science,
University at Albany, Albany, NY USA, June 2001.

[19] S. Sarawagi, S. Thomas, and R. Agrawal. Integrat-
ing association rule mining with databases: alterna-
tives and implications. In ACM SIGMOD Intl. Conf.
Management of Data, June 1998.

[20] D. Tsur, J.D. Ullman, S. Abitboul, C. Clifton,
R. Motwani, and S. Nestorov. Query flocks: A gen-
eralization of association rule mining. In ACM SIG-
MOD Intl. Conf. Management of Data, June 1998.

[21] M. J. Zaki. Scalable algorithms for association min-
ing. IEEE Transactions on Knowledge and Data En-
gineering, 12(3):372–390, May/June 2000.

