
Theoretical Foundations of Association Rules

Mohammed J. Zaki∗ and Mitsunori Ogihara†

Computer Science Department, University of Rochester, Rochester NY 14627
{zaki,ogihara}@cs.rochester.edu

Abstract

In this paper we describe a formal framework for the problem of mining association rules. The theoretical founda-
tion is based on the field of formal concept analysis. A concept is composed of closed subsets of attributes (itemsets)
and objects (transactions). We show that all frequent itemsets are uniquely determined by the frequent concepts. We
further show how this lattice-theoretic framework can be used to find a small rule generating set, from which one can
infer all other association rules.

1 Introduction

Association rule discovery, a successful and important mining task, aims at uncovering all frequent patterns among sets
(or transactions) composed of data attributes. Most of the current work has focused on developing efficient algorithms
[2, 3, 4, 15, 19, 20, 23, 24, 25, 29]. On the other hand, there has been little work in formulating a theory of associations.
Such a theory can help in estimating the complexity of the mining task, and also in developing a unified framework
for common data mining problems.

This paper begins by presenting some complexity results based on the connection between frequent itemsets and
bipartite cliques. We then place association rule mining within the lattice-theoretic framework of formal concept
analysis introduced by Wille [28]. Given a binary relation,a conceptconsists of anextent(transactions) and anintent
(attributes), such that all objects in the extent share the attributes in the intent, and vice versa. We show that all frequent
itemsets are uniquely determined by the set offrequent concepts. We then tackle the problem of generating abase, a
minimal rule set, from which all the other association rulescan be inferred. The concept lattice framework can not only
aid in the development of efficient algorithms, but can also help in the visualization of discovered associations, and
can provide a unifying framework for reasoning about associations, and supervised (classification) and unsupervised
(clustering) concept learning [5, 6, 10].

The rest of the paper is organized as follows. We present the association rule problem statement in Section 2. A
graph-theoretic view of the problem is given in Section 3. Section 4 casts association mining as a search for frequent
concepts, and Section 5 looks at the problem of generating rule bases. We discuss related work in Section 6 and
conclude in Section 7.

2 Association Rules: Problem Formulation

The association mining task, introduced in [2], can be stated as follows: LetA be a set of items, andT a database
of transactions, where each transaction has a unique identifier (tid) and contains a set of items. A set of items is also
called anitemset. Thesupportof an itemsetX , denotedσ(X), is the number of transactions in which it occurs as
a subset. An itemset isfrequentif its support is more than a user-specifiedminimum support (minsup)value. An
association ruleis an expressionA → B, whereA andB are itemsets. The support of the rule is given asσ(A ∪ B),
and theconfidenceasσ(A ∪ B)/σ(A) (i.e., the conditional probability that a transaction containsB, given that it
containsA). The mining task consists of two steps [3]: 1) Find all frequent itemsets. This step computationally and
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I/O intensive. 2) Generate high confidence rules. This step is relatively straightforward; rules of the formX\Y → Y
(whereY ⊂ X), are generated for all frequent itemsetsX , provided the rules have at leastminimum confidence
(min conf). Figure 1a shows a bookstore database with six customers whobuy books by different authors. Figure 1b
shows all the frequent itemsets withmin sup = 50% (i.e., those occurring in at least 3 transactions), and the set of all
association rules withmin conf = 80%. ACTW andCDW are the maximal-by-inclusion frequent itemsets. Since
all other frequent itemsets are subsets of these two itemsets, we can reduce the mining problem to the enumeration of
only the maximal frequent itemsets.
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Figure 1: a) Example Database, b) Frequent Itemsets and Rules withmin conf = 80%

3 Itemset Discovery: Bipartite Graphs

Definition 1 A bipartite graph G = (U, V, E) has two distinct vertex setsU andV , and an edge setE = {(u, v) |
u ∈ Uandv ∈ V }. A complete bipartite subgraph is called abipartite clique .

Definition 2 A hypergraph on I is a familyH = {E1, E2, ..., En} of edges or subsets ofI, such thatEi 6= ∅, and
∪n

i=1
Ei = I. A setT ⊂ I is a transversalof H if it intersects all the edges, that is to say:T ∩ Ei 6= ∅ ∀Ei.

The input database for association mining is essentially a very large bipartite graph, withU as the set of items,V
as the set of tids, and each (item, tid) pair as an edge. The problem of enumerating all (maximal) frequent itemsets
corresponds to the task of enumerating all (maximal) constrained bipartite cliques,I × T , whereI ⊆ U , T ⊆ V , and
|T | ≥ min sup. Due to the one-to-one correspondence between bipartite graphs, binary matrices and hypergraphs,
one can also view it as the problem of enumerating all (maximal) unit submatrices in a binary matrix (see Figure 2a),
or as the problem of enumerating all (minimal) transversalsof a hypergraph, satisfying the support constrains (a
transversal of a hypergraph is the complement of an independent set, which in turn is a clique in the complimen-
tary hypergraph). Figure 2b shows the bipartite graph of thedatabase and the maximal constrained bipartite clique
ACTW × 135 (the maximal frequent itemsetACTW ).

Figure 2c shows the complexity of decision problems for maximal bipartite cliques (itemsets) with restrictions on
the size ofI (items) andT (support). For example, the problem whether there exists a maximal bipartite clique such
thatI + T ≥ K (with constantK) is in P, the class of problems that can be solved in polynomial time. On the other
had, the problem whether there exists a maximal bipartite clique such thatI + T = K is NP-Complete [17], the class
of “hard” problems for which no polynomial time algorithm isknown to exist. The last row of the table may seem
contradictory. While there is unlikely to exist a polynomial time algorithm for finding a clique withI + T ≤ K,
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Figure 2: a) Maximal Unit Submatrix, b) Maximal ConstrainedBipartite CliqueACTW ×135, c) Mining Complexity

the largest cliques withI + T ≥ K can be found by reducing it to the maximum matching problem [16], which has
O((U + V )2.5) complexity. The following theorem says that counting the number of maximal cliques in a bipartite
graph is extremely hard.

Theorem 1 ([17]) Determining the number of maximal bipartite cliques in a bipartite graph is #P-Complete.

The complexity results shown above are quite pessimistic, and apply to general bipartite graphs. We should
therefore focus on special cases where we can find polynomialtime solutions. Fortunately for association mining, in
practice the bipartite graph (database) is very sparse, andwe can in fact obtain linear complexity in the graph size.

Thearboricity r(G) of a graph is the minimum number of forests into which the edges of G can be partitioned,
and is given asr(G) = maxH⊂G {e(H)/(n(H) − 1)}, wheren(H) is the number vertices ande(H) the number of
edges of the subgraphH . A bound on the arboricity is equivalent to a notion of hereditary sparsity. For a bipartite
graphr(G) = I · T/(I + T − 1), whereI × T is a maximum bipartite clique. Furthermore, if we assumeI ≪ T
(as is generally the case in practice, since we want large support), thenr(G) ≈ I, i.e., the arboricity is given by the
maximum sized frequent itemset. For sparse graphs, of bounded arboricityI, the complexity of finding all maximal
bipartite cliques is linear in number of items and transactions:

Theorem 2 ([8]) All maximal bipartite cliques can be enumerated in timeO(I3 · 22I · (U + V )).

Even though the above algorithm has linear complexity, it isnot practical for large databases due to the large constant
overhead (I can easily be around 10 to 20 in practice). Nevertheless, theresult is very encouraging, and provides the
reason why all current association mining algorithms exhibit linear scalability in database size. This result also says
that at least in theory the association mining algorithms should scale linearly in the number of items or attributes, a
very important feature if practicable.

Theorem 3 ([16]) All maximum independent sets can be listed inO((U + V )2.5 + γ) time, whereγ is the output size.

The above theorem states that all the maximum (largest) bipartite cliques (independent sets in complimentary graph)
of a bipartite graph can be found in time polynomial in input,and linear in the output size. However, due to the
greater than quadratic complexity, it remains to be seen if this algorithm is practical for large databases with millions
of transactions.

4 Itemset Discovery: Formal Concept Analysis

In this section we will show that association mining is very closely related toformal concept analysis, which was
introduced in a seminal paper by Wille [28]. We assume that the reader is familiar with basic concepts of lattice theory
(see [7] for a good introduction).
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Definition 3 Let S be a set. A functionc : P(S) 7→ P(S) defined between the powerset ofS, is aclosure operator
onS if, for all X, Y ⊆ S, c satisfies the following properties:

1) Extension:X ⊆ c(X).
2) Monotonicity: ifX ⊆ Y , thenc(X) ⊆ c(Y ).
3) Idempotency:c(c(X)) = c(X).

A subsetX of S is calledclosedif c(X) = X .

Definition 4 A context is a triple (G, M, I), whereG andM are sets andI ⊆ G×M . The elements ofG are called
objects, and the elements ofM are calledattributes. For an arbitraryg ∈ G, andm ∈ M , we notegIm, wheng is
related tom, i.e.,(g, m) ∈ I.

Definition 5 Let (G, M, I) be a context withX ⊆ G, andY ⊆ M . Then the mappings

s : G 7→ M, s(X) = {m ∈ M | (∀g ∈ X) gIm}

t : M 7→ G, t(Y ) = {g ∈ G | (∀m ∈ Y ) gIm}

define aGalois connectionbetweenP(G) andP(M), the power sets ofG andM , respectively.

The sets(X) is the set of attributes common to all the objects inX andt(Y ) is the set of objects common to all
the attributes inY . We note thatX1 ⊆ X2 ⇒ s(X2) ⊆ s(X1), for X1, X2 ⊆ G (and “dually” for functiont onM ).
Furthermore, the compositionsc = s ◦ t and dually,t ◦ s are closure operators.

Definition 6 A conceptof the context(G, M, I) is defined as a pair(X, Y ), whereX ⊆ G, Y ⊆ M , s(X) = Y , and
t(Y ) = X . In other words, a concept(X, Y ) consists of the closed setsX andY , sinceX = t(Y ) = t(s(X)) =
s ◦ t(X) = c(X), and similarlyY = c(Y ). X is also called theextentandY the intent of the concept(X, Y ).

The concept generated by a single attributem ∈ M given asα(m) = (t(m), c(m)) is called anattribute concept,
while the concept generated by a single objectg ∈ G given asβ(g) = (c(g), s(g)) is called anobject concept.

The set of all concepts of the context is denoted byB(G, M, I). A concept(X1, Y1) is asubconceptof (X2, Y2),
denoted as(X1, Y1) ≤ (X2, Y2), iff X1 ⊆ X2 (iff Y2 ⊆ Y1). Notice that the mappings between the closed sets ofG
andM are anti-isomorphic, i.e., concepts with large extents have small intents, and vice versa. The different concepts
can be organized as a hierarchy of concepts based on the superconcept-subconcept partial order.

Definition 7 A subsetP of an ordered setQ is join-denseif ∀q ∈ Q, there existsZ ⊆ P , such thatq =
∨

Q Z (and
dually we can definemeet-dense).

Theorem 4 ([28]) Fundamental Theorem of Formal Concept Analysis:Let (G, M, I) be a context. Then
B(G, M, I) is a complete lattice with join and meet given by∨

j(Xj , Yj) = (c(
⋃

j Xj),
⋂

j Yj)
∧

j(Xj , Yj) = (
⋂

j Xj, c(
⋃

j Yj))
Conversely, ifL is a complete lattice then L is isomorphic toB(G, M, I) iff there are mappingsγ : G 7→ L, and

µ : M 7→ L, such thatγ(G) is join-dense inL, µ(M) is meet-dense inL, andgIm is equivalent toγ(g) ≤ µ(M) for
all g ∈ G andm ∈ M . In particularL is isomorphic toB(L, L,≤).

The complete latticeB(G, M, I) is called theGalois lattice of the context. The concept lattice can be represented
graphically by aHasse diagram, where each concept is a circle, and for conceptsc1 ≤ c2, there is a line joining
them, withc1 being lower thanc2. For example, Figure 3a shows the Galois lattice for our example database. It is
shown with aminimal labeling, where the intent (extent) of a concept can be reconstructedby considering all labels
reachable above (below) that concept. In other words, each concept is labeled with an attribute (object) if it is an
attribute (object) concept. It is clear that an appropriately drawn diagram can aid in visualizing and understanding the
relationships among the attributes and objects (i.e., associations).

Define afrequent conceptas a concept(X, Y ) with X ⊆ G, Y ⊆ M , and|X | ≥ min sup. Figure 3b shows all
the frequent concepts withmin sup= 50%. All frequent itemsets can be determined by the meet operation on attribute
concepts. For example, since meet of attribute conceptsD andT , α(D) ∧ α(T ), doesn’t exist,DT is not frequent,
while α(A)∧α(T ) = (135, ACTW ), thusAT is frequent. Furthermore, the support ofAT is given by the cardinality
of the resulting concept’s extent, i.e.,σ(AT ) = |135| = 3. Thus all frequent itemsets are uniquely determined by
the frequent concepts. This observation can possibly aid the development of efficient algorithms since we need to
enumerate only the closed frequent itemsets, instead of enumerating all frequent itemsets like most current algorithms.
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5 Rule Generation

Association rules were originally proposed in [2]. However, we will show below that association rules are exactly the
partial implications, satisfying support and confidence constraints, proposed in an earlier paper [21].

Let (G, M, I) be a context. Apartial implication ruleX
p
→ Y is a triple(X, Y, p), whereX, Y ⊆ M are sets of

attributes, and theprecisionp = P (Y |X) = |t(X ∪ Y )|/|t(X)|. Association rules correspond to partial implications
meeting the support and confidence constraints, i.e., with|t(X ∪ Y )| ≥ min sup, andp ≥ min conf , respectively.

Let I = {X
p
→ Y | X, Y ⊆ M, p = P (Y |X)}, be a set of partial implications. A ruleK

p
→ L can bederived

from I, denotedI ⊢ K
p
→ L, iff we can obtainK

p
→ L from I by applying certain inference rules. In this case we

also callK
p
→ L a redundantrule according toI.

Definition 8 A setR ⊆ I is called agenerating setfor I iff R ⊢ I. A minimal generating set is called abase.

Since the set of all partial implications (i.e., association rules) can be very large, we are interested in finding a base
for it. This means that only a small and easily understandable set of rules can be presented to the user, who can later
selectively derive other rules of interest. The set of partial implications can be broken into two parts: implications with
p = 1 and withp < 1. A base for all partial implications can be obtained by combining the bases of these two sets.

Global Implications A global implication ruleis denoted asX → Y , whereX, Y ⊆ M , andt(X) ⊆ t(Y ), i.e.,
all objects related toX are also related toY . It can be shown thatt(X) ⊆ t(Y ) ⇔ P (Y |X) = 1. Thus, global
implications are precisely the association rules with 100%confidence. A global implication can be directly discerned
from the Hasse diagram of the concept lattice, since in this case the meet of attribute concepts inX is less than (lies
below) the meet of attribute concepts inY . For example, consider the frequent concepts in Figure 3b.AD → CW ,
sinceα(A) ∧ α(D) = (45, ACDW ) ≤ α(C) ∧ α(W ) = (12345, CW ). The problem of finding a base of all global
implication rules has been well studied [9, 12, 22, 27]. One characterization of a base is given as follows:

Theorem 5 ([9]) The set{X → c(X)\X | X is a pseudo-intent} is a base for all global implications, whereX is a
pseudo-intentif X 6= c(X), and for all pseudo-intentsQ ⊂ X , c(Q) ⊆ X .

For example,{A, D, T, W, CTW} is the set of pseudo-intents in our example database. A base of global implications
is thus given by the setR = {A → CW, D → C, T → C, W → C, CTW → A}. All other global implications
can be derived fromR by application of simple inference rules such as those givenin [22, pp. 47], 1) Reflexivity:
X ⊆ Y impliesY → X , 2) Augmentation:X → Y impliesXZ → Y Z, 3) Transitivity: X → Y andY → Z
impliesX → Z, and so on.

Proper Partial Implications We now turn to the problem of finding a base forproper partial implications with
p < 1, i.e., association rules with confidence less than 100%. Note that for anyZ ⊆ X , P (Y |X) = P (Y ∪ Z|X),
and thusX

p
→ Y iff X

p
→ Y ∪ Z. In particular,X

p
→ Y iff X

p
→ X ∪ Y . We thus only discuss the rulesX

p
→ Y ,
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with X ⊆ Y . Furthermore, it can be shown thatX
p
→ Y iff c(X)

p
→ c(Y ). We can thus restrict ourselves to only

the rules whereX andY are intents of a frequent concept. The set of all proper partial implications is given by
I<1(B(G, M, I)) = {K

p
→ L | K ⊂ L are intents ofB(G, M, I)}. The following theorem states that unlike global

implications, partial implications satisfy transitivityand commutativity only under certain conditions.

Theorem 6 ([21]) Let M1, M2, M3, M4 ⊆ M be intents withM1 ⊆ M2 ⊆ M4 and M1 ⊆ M3 ⊆ M4. Then
P (M2|M1) · P (M4|M2) = P (M4|M1) = P (M3|M1) · P (M4|M3) (i.e., M1

p
→ M2 and M2

q
→ M4 implies

M1

pq
→ M4).

Consider the Hasse diagram of the frequent concepts with theprecision on the edges, shown in Figure 4. The

edge between attribute conceptsC andW corresponds to the implicationC
5/6

→ W . The reverse implicationW → C
has precision 1 by definition. Only the implications betweenadjacent concepts need to be considered, since the other
implications can be derived from the above theorem. For example,C → A has precisionp = 4/6, sinceP (A|C) =
P (W |C) · P (A|W ) = 5/6 · 4/5 = 4/6. The diagram provides a wealth of embedded information; thelink joining
attribute conceptT and object concept1, 3 corresponds to the ruleT → A. Immediately we can see that it has the same
confidence (3/4) as the rulesT → W, T → AC, T → AW, T → ACW, CT → A, CT → W, andCT → AW .
All these other rules are thus redundant! On the other hand the link from A to 1, 3 corresponds to the ruleA → T ,
which generates another set of redundant rules.
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(12345 x CW)

(245 x CDW)
2

(1356 x CT)
TD

(2456 x CD)

1, 3
(135 x ACTW)

C
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3/4

4/
6
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5

3/4
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Figure 4: Frequent Concepts with Edge Precisions

For I ′ ⊆ I<1(B(G, M, I)), define the graphG(I ′) = (V, E), with vertex setV = {N ⊆ M | N is an intent},
and edge setE = {(K, L) ∈ V × V | K

p
→ L ∈ I′}.

Lemma 1 ([21]) If there exists a cycle inG(I ′), then there exists a partial implicationK ∈ I such thatI\K ⊢ K.

As a consequence of this lemma, one rule in every cycle is redundant, and it can be discarded. The next theorem gives
a more precise characterization of a generating set.

Theorem 7 ([21]) I ′ is a generating set if 1)Gr(I ′) is a spanning tree. 2)M is a consequent of only one partial
implication inI ′.

Figure 5a shows a generating set (a minimal spanning tree) for all the proper partial implications in our example.
We can derive the precision of a redundant rule by multiplying the precisions of the other rules involved in the cycle
(except, we need to invert the precision if we go from a lower concept to a higher concept in the cycle). For example,
the precision of the missing edgeD → W can be obtained by multiplying the inverted precision on theedge fromD
to C, with the precisions on the edges fromC to W , and fromW to 2, i.e., 6

4
· 5

6
· 3

5
= 3

4
.

To obtain the rules satisfying a given value ofmin conf, one can simply discard all edges in the diagram with
p < min conf For example, Figure 5b shows the generating set for rules with min conf = 80%.
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Definition 9 An elementx ∈ L of the latticeL, is calledjoin-irreducible (duallymeet-irreducible) if it has exactly
one lower (dually upper) neighbor.

Let J (L) andM(L) denote the set of all join- and meet-irreducible elements, respectively. Any finite lattice(L,≤)
is uniquely determined (up to isomorphism) byJ (L) andM(L), and restricting the order relation to the setJ (L) ∪
M(L). For the lattice in Figure 3a,J (L) = {2, 4, 6, 13}, andM(L) = {A, D, T, W}. This observation can help in
reducing the size of the original database. The following theorem gives upper and lower bounds on the size of a base.

Theorem 8 ([21]) If I ′ ⊆ I<1(K = B(G, M, I)) is a base, then1/2 · |J (K) ∩M(K)| ≤ |I′| ≤ |K| − 1

The bad news is that the upper bound is tight for a large numberof lattices, and thus for such concept lattices the
construction of a base will not lead to a reduction in storageover a generating set. Furthermore, the lower limit is
not very interesting since there exist lattices withJ (K) ∩ M(K) = ∅. The problem of finding a canonical base
for all partial implications is thus open. Nevertheless, the generating set obtained by the application of Theorem 7
should be a good substitute for a base in practice. For example, by combining the base for rules withp = 1 and the
generating set for rules withp ≥ 0.8, we obtain a generating set for all association rules withmin sup = 50%, and

min conf = 80%: {A
1
→ CW, D

1
→ C, T

1
→ C, W

1
→ C, CTW

1
→ A, C

5/6

→ W, W
4/5

→ A}. It can be easily
verified that all the association rules shown in Figure 1b canbe derived from this set.

6 Related Work

There has been an astonishing amount of research in developing efficient algorithms for mining frequent itemsets [1,
2, 3, 4, 15, 19, 20, 23, 24, 25, 29]. In [14, 13], the connectionbetween associations and hypergraph transversals was
made. They also presented a model of association mining as the discovery of maximal elements of theories, and gave
some complexity bounds.

A lot of algorithms have been proposed for generating the Galois lattice of concepts [5, 9, 10, 11, 18]. An in-
cremental approach for building the concepts was studied in[6, 10]. These algorithms will have to be adapted to
enumerate only the frequent concepts. Further, they have only been studied on small datasets. It remains to be seen
how scalable these approaches are compared to the association mining algorithms. Finally, there has been some work
in pruning discovered association rules by forming rule covers [26]. However, the problem of constructing a base or
generating set has not been studied previously.

7 Conclusions

In this paper we presented a lattice-theoretic foundation for the task of mining associations based on formal concept
analysis. We showed that the set of frequent concepts uniquely determines all the frequent itemsets. The lattice
of frequent concepts can also be used to obtain a rule generating set from which all associations can be derived. We
showed that while there exists a characterization of a base for rules with 100% confidence, the problem of constructing
a base for all associations is still open.
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