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Abstract

In this paper we describe a formal framework for the problémining association rules. The theoretical founda-
tion is based on the field of formal concept analysis. A cohisepomposed of closed subsets of attributes (itemsets)
and objects (transactions). We show that all frequent i&¢srsre uniquely determined by the frequent concepts. We
further show how this lattice-theoretic framework can bedi® find a small rule generating set, from which one can
infer all other association rules.

1 Introduction

Association rule discovery, a successful and importanimgitask, aims at uncovering all frequent patterns amorgg set
(or transactions) composed of data attributes. Most of tineeat work has focused on developing efficient algorithms
[2,3,4, 15,19, 20, 23, 24, 25, 29]. On the other hand, thesdoban little work in formulating a theory of associations.
Such a theory can help in estimating the complexity of theimgitask, and also in developing a unified framework
for common data mining problems.

This paper begins by presenting some complexity resultscbas the connection between frequent itemsets and
bipartite cliques. We then place association rule mininthiwithe lattice-theoretic framework of formal concept
analysis introduced by Wille [28]. Given a binary relatiagonceptonsists of amxtent(transactions) and antent
(attributes), such that all objects in the extent shareftthi&ates in the intent, and vice versa. We show that alldesd
itemsets are uniquely determined by the set@fuent conceptsNe then tackle the problem of generatingase a
minimal rule set, from which all the other association ras be inferred. The concept lattice framework can not only
aid in the development of efficient algorithms, but can alstplin the visualization of discovered associations, and
can provide a unifying framework for reasoning about asg@is, and supervised (classification) and unsupervised
(clustering) concept learning [5, 6, 10].

The rest of the paper is organized as follows. We presentsbecation rule problem statement in Section 2. A
graph-theoretic view of the problem is given in Section 3ct®& 4 casts association mining as a search for frequent
concepts, and Section 5 looks at the problem of generatilegbhases. We discuss related work in Section 6 and
conclude in Section 7.

2 Association Rules: Problem Formulation

The association mining task, introduced in [2], can be dtatefollows: LetA be a set of items, an@ a database
of transactions, where each transaction has a uniquefigertid) and contains a set of items. A set of items is also
called anitemset The supportof an itemsetX, denoteds (X ), is the number of transactions in which it occurs as
a subset. An itemset ifsequentif its support is more than a user-specifi@himum support (misup)value. An
association rulds an expressiod — B, whereA and B are itemsets. The support of the rule is giverréd U B),
and theconfidenceaso(A U B)/o(A) (i.e., the conditional probability that a transaction @ns¢ B, given that it
containsA). The mining task consists of two steps [3]: 1) Find all fregtitemsets. This step computationally and
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I/0 intensive. 2) Generate high confidence rules. This steglatively straightforward; rules of the fori\Y — YV
(whereY cC X), are generated for all frequent itemséfs provided the rules have at leasinimum confidence
(min_conf). Figure 1a shows a bookstore database with six customerdwhbooks by different authors. Figure 1b
shows all the frequent itemsets within_sup = 50% (i.e., those occurring in at least 3 transactions), andehefsll
association rules wittin_conf = 80%. ACTW andC DW are the maximal-by-inclusion frequent itemsets. Since
all other frequent itemsets are subsets of these two iteamsetcan reduce the mining problem to the enumeration of
only the maximal frequent itemsets.

ITEMS FREQUENT ITEMSETS (min_sup = 50%)
Jane Austen A Support ltemsets
Agatha Christie C
Sir Arthur Conan Doyle D 100% (6) C
Mark Twain T
P. G. Wodehouse w 83% (5) w, CW
DATABASE A,D, T, AC, AW
67% (4) CD, CT, ACW
Transcation Items . 2
AT, DW, TW, ACT, ATW
o ) ) ) )
1 ACTW 50% (3) CTwW,
Maximal Frequent Itemsets:
2 C D wW
Association Rules with Confidence = 100%
3 ACTW A — C (4/4) AC — W (4/4) TW — C (3/3)
A — W (4/4) AT — C (3/3) AT — CW (3/3)
A ——CW (4/4) AT — W (3/3) TW — AC (3/3)
4 A CDbw D — C (4/4) AW — C (4/4) ACT — W (3/3)
T ——C(4/4) DW — C (3/3) ATW — C (3/3)
5 A CDTW W — C (5/5) TW — A (3/3) CTW — A (3/3)
Association Rules with Confidence >= 80%
6 cbT [W—A@l5) C — W (5/6) w — AC (4/5) |

Figure 1: a) Example Database, b) Frequent ltemsets ana Ritlermin_con f = 80%

3 Itemset Discovery: Bipartite Graphs

Definition 1 A bipartite graph G = (U, V, E) has two distinct vertex seté andV, and an edge sef = {(u,v) |
u € Uandv € V'}. A complete bipartite subgraph is calledbgartite clique.

Definition 2 A hypergraph onZ is a familyH = {E;, Es, ..., E,,} of edges or subsets @f such that®; # @, and
U, E; =Z. Asetl C T is atransversalof H if it intersects all the edges, thatis to sa§:N E; # 0 VE,.

The input database for association mining is essentiallgrg large bipartite graph, witl/ as the set of itemsy/

as the set of tids, and each (item, tid) pair as an edge. Thegmoof enumerating all (maximal) frequent itemsets
corresponds to the task of enumerating all (maximal) cairgd bipartite cliqued, x 7', wherel C U, T C V, and

|T'| > min_sup. Due to the one-to-one correspondence between bipartghgr binary matrices and hypergraphs,
one can also view it as the problem of enumerating all (maBjiovat submatrices in a binary matrix (see Figure 2a),
or as the problem of enumerating all (minimal) transverséla hypergraph, satisfying the support constrains (a
transversal of a hypergraph is the complement of an indegergkt, which in turn is a clique in the complimen-
tary hypergraph). Figure 2b shows the bipartite graph ofddabase and the maximal constrained bipartite clique
ACTW x 135 (the maximal frequent itemsetC'T' ).

Figure 2c shows the complexity of decision problems for mmatibipartite cliques (itemsets) with restrictions on
the size ofl (items) andl’ (support). For example, the problem whether there existaxdmal bipartite clique such
that/ + T > K (with constantX) is in P, the class of problems that can be solved in polynbtmig. On the other
had, the problem whether there exists a maximal bipartiggelsuch thaf + T' = K is NP-Complete [17], the class
of “hard” problems for which no polynomial time algorithmksown to exist. The last row of the table may seem
contradictory. While there is unlikely to exist a polynoiriane algorithm for finding a clique withl + 7" < K,
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Figure 2: a) Maximal Unit Submatrix, b) Maximal Constrairigigartite CliqueACTW x 135, c) Mining Complexity

the largest cliques witli + 7" > K can be found by reducing it to the maximum matching proble&j, [ivhich has
O((U + V)2:5) complexity. The following theorem says that counting thenber of maximal cliques in a bipartite
graph is extremely hard.

Theorem 1 ([17]) Determining the number of maximal bipartite cliques in adstjie graph is #P-Complete.

The complexity results shown above are quite pessimistid, @ply to general bipartite graphs. We should
therefore focus on special cases where we can find polyndimi@lsolutions. Fortunately for association mining, in
practice the bipartite graph (database) is very sparsewarchn in fact obtain linear complexity in the graph size.

Thearboricity »(G) of a graph is the minimum number of forests into which the edgfeG can be partitioned,
and is given as(G) = maxpgcg {e(H)/(n(H) — 1)}, wheren(H) is the number vertices ared H) the number of
edges of the subgrapti. A bound on the arboricity is equivalent to a notion of heta&gi sparsity. For a bipartite
graphr(G) = I-T/(I+ T — 1), wherel x T is a maximum bipartite clique. Furthermore, if we assume: T
(as is generally the case in practice, since we want largeast)pthenr(G) =~ I, i.e., the arboricity is given by the
maximum sized frequent itemset. For sparse graphs, of abarboricity/, the complexity of finding all maximal
bipartite cliques is linear in number of items and transani

Theorem 2 ([8]) All maximal bipartite cliques can be enumerated in tivg?® - 227 - (U + V)).

Even though the above algorithm has linear complexity,fitaspractical for large databases due to the large constant
overhead [ can easily be around 10 to 20 in practice). Neverthelessethdt is very encouraging, and provides the
reason why all current association mining algorithms eithiear scalability in database size. This result alscssay
that at least in theory the association mining algorithnugh scale linearly in the number of items or attributes, a
very important feature if practicable.

Theorem 3 ([16]) All maximum independent sets can be listed{tU + V' )*° + ) time, wherey is the output size.

The above theorem states that all the maximum (largest)tiigaliques (independent sets in complimentary graph)
of a bipartite graph can be found in time polynomial in inpartd linear in the output size. However, due to the
greater than quadratic complexity, it remains to be sedrisfalgorithm is practical for large databases with mil§on
of transactions.

4 Itemset Discovery: Formal Concept Analysis

In this section we will show that association mining is velysely related tdormal concept analysjsvhich was
introduced in a seminal paper by Wille [28]. We assume thatéiader is familiar with basic concepts of lattice theory
(see [7] for a good introduction).



Definition 3 Let S be a set. A function : P(S) — P(S) defined between the powerset%fis aclosure operator
on S if, forall X, Y C S, ¢ satisfies the following properties:

1) ExtensionX C ¢(X).

2) Monotonicity: if X C Y, thenc(X) C ¢(Y).

3) Idempotencyz(c(X)) = ¢(X).
A subsetX of S is calledclosedif ¢(X) = X.

Definition 4 A contextis a triple (G, M, I'), whereG and M are setsand C G x M. The elements aF are called
objects and the elements d@ff are calledattributes. For an arbitraryg € G, andm € M, we notegIm, wheng is
related tom, i.e.,(g,m) € I.

Definition 5 Let(G, M, I) be a context with C G, andY C M. Then the mappings
s:G—M,s(X)={meM| (VgeX) gIm}
t:M~—GtY)={9geG| (YmeY) gIm}

define aGalois connectionbetweerP(G) andP (M ), the power sets ai and M, respectively.

The sets(X) is the set of attributes common to all the objectsirand¢(Y") is the set of objects common to all
the attributes i. We note that\; C X, = s(X5) C s(X1), for X7, Xo C G (and “dually” for functiont on M).
Furthermore, the compositions= s o t and dually{ o s are closure operators.

Definition 6 A conceptof the contextG, M, I) is defined as a paifX,Y), whereX C G,Y C M, s(X) =Y, and
t(Y) = X. In other words, a conceftX,Y") consists of the closed sel andY, sinceX = ¢(Y) = t(s(X)) =
sot(X) = ¢(X), and similarlyY = ¢(Y"). X is also called theextentandY” theintent of the conceptX,Y).

The concept generated by a single attributee M given asa(m) = (t(m), ¢(m)) is called amttribute concept
while the concept generated by a single objeet G given as3(g) = (c¢(g), s(g)) is called arpbject concept

The set of all concepts of the context is denoted3log:, M, I'). A concept( X1, Y1) is asubconcepof (X, Ys),
denoted a$X1,Y7) < (Xo,Y2), iff X1 C X, (iff Y2 C V7). Notice that the mappings between the closed sets of
andM are anti-isomorphic, i.e., concepts with large extentelsmwall intents, and vice versa. The different concepts
can be organized as a hierarchy of concepts based on the&sapept-subconcept partial order.

Definition 7 A subsetP of an ordered sef) is join-denseif Vg € Q, there existsZ C P, such thayy = VQ Z (and
dually we can definmeet-densg

Theorem 4 ([28]) Fundamental Theorem of Formal Concept AnalysisiLet (G, M, I) be a context. Then
B(G, M, I)is a complete lattice with join and meet given by
Vj(Xj7 Yj) = (C(Uj X;), ﬂj Yj) /\j(Xj7 Yj) = (mj X C(Uj Y;))
Conversely, ifL Is a complete lattice then L is isomorphic &G, M, I) iff there are mappings : G — L, and
u: M — L, such thaty(G) is join-dense inL, u(M) is meet-dense ifi, andgIm is equivalent toy(g) < u(M) for
all g € G andm € M. In particular L is isomorphic ta3(L, L, <).

The complete lattic&(G, M, I) is called theGaloislattice of the context. The concept lattice can be represent
graphically by aHasse diagramwhere each concept is a circle, and for concepts< co, there is a line joining
them, withc; being lower tharee. For example, Figure 3a shows the Galois lattice for our gitardatabase. It is
shown with aminimal labeling where the intent (extent) of a concept can be reconstrustednsidering all labels
reachable above (below) that concept. In other words, eacbept is labeled with an attribute (object) if it is an
attribute (object) concept. Itis clear that an approplyadeawn diagram can aid in visualizing and understandireg th
relationships among the attributes and objects (i.e. céssons).

Define afrequent concepas a conceptX,Y) with X C G, Y C M, and|X| > min_sup. Figure 3b shows all
the frequent concepts within.sup= 50%. All frequent itemsets can be determined by the meagtipe on attribute
concepts. For example, since meet of attribute concBpasdT’, «(D) A a(T), doesn't exist,DT is not frequent,
while a(A) Aa(T) = (135, ACTW), thusAT is frequent. Furthermore, the support4if’ is given by the cardinality
of the resulting concept’s extent, i.e:(AT) = |135| = 3. Thus all frequent itemsets are uniquely determined by
the frequent concepts. This observation can possibly @dldvelopment of efficient algorithms since we need to
enumerate only the closed frequent itemsets, instead ofieraiing all frequent itemsets like most current algorghm



(1234566(:) (123456 x C)
C
(12345 x CW)
oW
(12345 x CW)
(2456 x CD) (1345 x ACW)
: T
(135 x ACTW) @)
(245X CBW) D (1356 x CT) A
(2456 x CD) (1345 x ACW)
a
(56 x CDT) (45 x ACDW)
< 2 1,3
(5 x ACDTW) (245 x CDW) (135 x ACTW)

Figure 3: a) Galois Lattice of Concepts; b) Frequent Corept
5 Rule Generation

Association rules were originally proposed in [2]. Howewee will show below that association rules are exactly the
partial implications satisfying support and confidence constraints, propasad earlier paper [21].

Let (G, M, I) be a context. Apartial implication ruleX 2 Y is a triple(X, Y, p), whereX,Y C M are sets of
attributes, and thprecisionp = P(Y'|X) = [¢(X UY)|/|t(X)]|. Association rules correspond to partial implications
meeting the support and confidence constraints, i.e., iU Y')| > min_sup, andp > min_con f, respectively.

LetZ = {X 2 Y | X,Y C M,p = P(Y|X)}, be a set of partial implications. A rul§ % L can bederived
from Z, denotedZ - K % L, iff we can obtaink % L from Z by applying certain inference rules. In this case we
also callk % L aredundantule according td.

Definition 8 A setR C T is called agenerating setfor Z iff R - Z. A minimal generating set is calledmse

Since the set of all partial implications (i.e., associatinles) can be very large, we are interested in finding a base
for it. This means that only a small and easily understaredsdi of rules can be presented to the user, who can later
selectively derive other rules of interest. The set of phitiplications can be broken into two parts: implicatiorigw
p = 1 and withp < 1. A base for all partial implications can be obtained by cammy the bases of these two sets.

Global Implications A global implication ruleis denoted a — Y, whereX,Y C M, andt(X) C ¢(Y), i.e.,

all objects related to{ are also related t&". It can be shown that(X) C #(Y) < P(Y|X) = 1. Thus, global
implications are precisely the association rules with 1@@#fidence. A global implication can be directly discerned
from the Hasse diagram of the concept lattice, since in thée the meet of attribute conceptsinis less than (lies
below) the meet of attribute conceptsin For example, consider the frequent concepts in Figureddh.— CW,
sincea(A) A a(D) = (45, ACDW) < a(C) A a(W) = (12345, CW). The problem of finding a base of all global
implication rules has been well studied [9, 12, 22, 27]. Omaracterization of a base is given as follows:

Theorem 5 ([9]) The se{ X — ¢(X)\X | X is a pseudo-intentis a base for all global implications, whet¥ is a
pseudo-intentif X = ¢(X), and for all pseudo-intent§ C X, ¢(Q) C X.

For example{ A, D, T, W, CTW } is the set of pseudo-intents in our example database. A thagetal implications
is thus givenby these® = {A - CW, D - C, T — C, W — C, CTW — A}. All other global implications
can be derived fronR by application of simple inference rules such as those gindB@2, pp. 47], 1) Reflexivity:
X C Y impliesY — X, 2) Augmentation:X — Y impliesXZ — Y Z, 3) Transitivity: X — Y andY — Z
impliesX — Z, and so on.

Proper Partial Implications ~ We now turn to the problem of finding a base fooper partial implications with
p < 1, i.e., association rules with confidence less than 100%e Mt for anyZ C X, P(Y|X) = P(Y U Z|X),

and thusX 2 Y iff X 2 Y U Z. In particular,X 2 Y iff X % X UY. We thus only discuss the rulés % v,



with X C Y. Furthermore, it can be shown that 2 vV iff ¢(X) % ¢(Y"). We can thus restrict ourselves to only

the rules whereX andY are intents of a frequent concept. The set of all proper gartiplications is given by
T<YB(G,M,I)) = {K 2 L | K c Lareintents of3(G, M, I)}. The following theorem states that unlike global
implications, partial implications satisfy transitiviignd commutativity only under certain conditions.

Theorem 6 ([21]) Let My, Ms, M3, My C M be intents withAl; C My C My and M; C M3 C My. Then
P(M2|M1) . P(M4|M2) = P(M4|M1) = P(M3|M1) . P(M4|M3) (i.e., My LA Mo and M, N My |mp||eS
My % My).

Consider the Hasse diagram of the frequent concepts witlpribagsion on the edges, shown in Figure 4. The

edge between attribute conceptandW corresponds to the implicatiati 58 W. The reverse implicatioll” — C

has precision 1 by definition. Only the implications betwadfacent concepts need to be considered, since the other
implications can be derived from the above theorem. For @ar@' — A has precisiop = 4/6, sinceP(A|C) =
PW|C) - P(A|W) = 5/6 - 4/5 = 4/6. The diagram provides a wealth of embedded informationlitikgoining
attribute concepf’ and object concept, 3 correspondsto the rulE — A. Immediately we can see that it has the same
confidenced/4) astherule§ — W, T — AC, T — AW, T — ACW, CT — A, CT — W,andCT — AW.

All these other rules are thus redundant! On the other hamdirntk from A to 1, 3 corresponds to the rulé¢ — T,
which generates another set of redundant rules.

(123456 x C)
oW
(12345 x CW)
T
D © (1356 x CT) © A
(2456 x CD) (1345 x ACW)
2© 01,3
(245 x CDW) (135 x ACTW)

Figure 4: Frequent Concepts with Edge Precisions

ForZ' C I<Y(B(G, M, I)), define the grap§(Z’) = (V, E), with vertex sef’ = {N C M | N is an inten},
andedgesef = {(K,L) e VxV | K % LeT}.

Lemma 1 ([21]) If there exists a cycle iG(Z'), then there exists a partial implicatioli € Z such thatZ\ K + K.

As a consequence of this lemma, one rule in every cycle isydaht, and it can be discarded. The next theorem gives
a more precise characterization of a generating set.

Theorem 7 ([21]) Z’ is a generating set if 1§7r(Z’) is a spanning tree. 2}/ is a consequent of only one partial
implication inZ’.

Figure 5a shows a generating set (a minimal spanning tre@jlfthe proper partial implications in our example.
We can derive the precision of a redundant rule by multigytire precisions of the other rules involved in the cycle
(except, we need to invert the precision if we go from a lowmraept to a higher concept in the cycle). For example,
the precision of the missing edde — W can be obtained by mult|ply|ng the mverted precision ondtige fromD
to C, with the precisions on the edges frarrto W, and fromi to 2, i.e.,2 - 2 - %

To obtain the rules satisfying a given valuerafn_.conf one can S|mply d|scard aII edges in the diagram with
p < min_conf For example, Figure 5b shows the generating set for ruldsmit._conf = 80%.



(123456 x C) (123456 x C)

W oW
(12345 x CW) - (12345 x CW)
o T
DO (1358><CT)O'» A D ©- (1356><CT)O'» o CA
(2456 x CD) : (1345 x ACW) (2456 x CD) : . ) (1345 x ACW)
20 01,3 2’0 01,3

(245 x CDW) (135X ACTW) (245 x CDW) (135 X ACTW)

Figure 5: a) Generating Set fpr< 1; b) Generating Set fdi.8 <p < 1

Definition 9 An element: € L of the latticeL, is calledjoin-irreducible (dually meet-irreducible) if it has exactly
one lower (dually upper) neighbor.

Let 7(L) and M (L) denote the set of all join- and meet-irreducible elememtspectively. Any finite latticéL, <)

is uniquely determined (up to isomorphism) By L) and M (L), and restricting the order relation to the sgtL) U
M(L). For the lattice in Figure 3a7(L) = {2,4,6,13},andM(L) = {A, D, T,W}. This observation can help in
reducing the size of the original database. The followireptiem gives upper and lower bounds on the size of a base.

Theorem 8 ([21]) If Z/ C Z<Y(K = B(G, M, I)) is a base, then/2 - |7 (K)NnM(K)| < |7'| < |K|-1

The bad news is that the upper bound is tight for a large numbkttices, and thus for such concept lattices the
construction of a base will not lead to a reduction in storager a generating set. Furthermore, the lower limit is
not very interesting since there exist lattices Wittk’) N M(K) = (. The problem of finding a canonical base
for all partial implications is thus open. Neverthelesg gfenerating set obtained by the application of Theorem 7
should be a good substitute for a base in practice. For exarhplcombining the base for rules wiph= 1 and the

generating set for rules with > 0.8, we obtain a generating set for all association rules with_sup = 50%, and

min_conf =80%: {AScw, DX, T, who ctw oA ¢w w2 A Itcan be easily

verified that all the association rules shown in Figure 1blmderived from this set.

6 Related Work

There has been an astonishing amount of research in dewglefficient algorithms for mining frequent itemsets [1,
2,3,4,15, 19, 20, 23, 24, 25, 29]. In [14, 13], the conneclietween associations and hypergraph transversals was
made. They also presented a model of association miningeatigbovery of maximal elements of theories, and gave
some complexity bounds.

A lot of algorithms have been proposed for generating theiSaattice of concepts [5, 9, 10, 11, 18]. An in-
cremental approach for building the concepts was studidé,ia0]. These algorithms will have to be adapted to
enumerate only the frequent concepts. Further, they halyebeen studied on small datasets. It remains to be seen
how scalable these approaches are compared to the assoamting algorithms. Finally, there has been some work
in pruning discovered association rules by forming ruleate\j26]. However, the problem of constructing a base or
generating set has not been studied previously.

7 Conclusions

In this paper we presented a lattice-theoretic foundationte task of mining associations based on formal concept
analysis. We showed that the set of frequent concepts ugigigtermines all the frequent itemsets. The lattice
of frequent concepts can also be used to obtain a rule gérgesat from which all associations can be derived. We
showed that while there exists a characterization of a lraselies with 100% confidence, the problem of constructing
a base for all associations is still open.
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