Chapter 1

MINING RESIDUE CONTACTS IN
PROTEINS

Mohammed J. Zaki and Chris Bystroff

Abstract In this paper we develop data mining techniques to prediot@Ract potentials
among protein residues (or amino acids) based on the higcafaucleation-
propagation model of protein folding. We apply a hybrid aygwh, using a
Hidden Markov Model to extract folding initiation sites,dthen apply associ-
ation mining to discover contact potentials. The new hylpgroach achieves
accuracy results better than those reported previously.
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1. Introduction

Today we are witnessing a paradigm shift in predicting pnosgructure
from its known amino acid sequen¢e;, as, - - -, a,). The traditional orab
initio folding method employed first principles to derive the 3Dusture of
proteins. However, even though considerable progressdwsrhade in under-
standing the chemistry and biology of folding, the succdsahanitio folding
has been quite limited.

Instead of simulation studies, an alternative approacbdus this paper)
is to employ learning from examples using a database of kratein struc-
tures. For example, the Brookhaven Protein Database (P&®Yyds the 3D
coordinates of the atoms of thousands of protein structuhest of these
proteins cluster into around 700 fold-families based orir thienilarity. It is
conjectured that there will be on the order of 1000 fold-fasifor the natural
proteins [WGKOQ]. The PDB thus offers a new paradigm to prog¢ructure
prediction by employing data mining methods like clustgrinlassification,
association rules, hidden Markov models, etc.

A fascinating property of protein chains is that they spoatasly and
reproducibly fold themselves into complex three-dimenaiaylobules when
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placed in an aqueous solution. The sequence of amino acikimgnap the
polypeptide chain contains, encoded within it, the congplaiilding instruc-
tions. This self-organization cannot occur by a random @aonétional search
for the lowest energy state [Hon99], since such a searchdmalde millions
of years, while proteins fold in milliseconds. In recent igea combination
of molecular biological and biophysical techniques hawse&gted the folding
process into fast and slow components which localize taireparts of the
amino acid sequence [SMF92].

Some small, fast-folding regions of the molecule may betifled by their
sequence alone. A library of short sequence patterns thhfdst has been
compiled by cluster analysis of the database of known prat&iictures (the
I-sites Library, [BB98]). In this work, similar short sequees that mapped to
the same local structure in different proteins were deerdiktautonomous
folding units, and the short sequences were compiled irttenos or “profiles”
which could then be used to predict whether or not a segmetiiteoprotein
would tend to fold independently of the rest of the molec@eoss-validation
showed a strong statistical significance to the predictinade by the profiles,
and later NMR studies showed that some peptides predictedtto isolation
actually did so [YBR98]. Peptides with a strong tendency to fold indepen-
dently constitute about 30% of the amino acid residues itepresequences.
The formation of independent folding units (I-sites matitsthe first level of
self-organization in the folding process: the “initiatibn

These short motifs occur in proteins of widely differing ¢dggy, and so
cannot contain sufficient information to define the overmglibbal fold of the
protein molecule. Moreover, they are too short to be theftdding regions
found by experimental dissection. There must be a highet téhself-organization
which dictates how the short pieces come together to forgetatonger glob-
ular domains. The rules defining the propagation of streclong the chain,
starting from the sites of initiation, have been extracteanfthe database of
known protein structures and formalized as a hidden Markodeh(HMM),
called HMMSTR [BTBOOQ] (or “hamster”), discussed furtheridog. HMM-
STR models the interactions between adjacent short regibtiee sequence,
and so attempts to model the second level of self-organizatpropagation”
of structure along the sequence.

The I-sites Library models the initiation sites of foldirapd the new HMM
models interactions between those sites. But HMMSTR [BTBS& net-
work of connections between |-sites motifs, and thus siamdbusly models
both folding initiation and propagation. The two levels ofrgplexity, not dis-
cretely defined but smoothly intermingled, are represeintdte HMM as vari-
able degrees of branching. Unbranched segments areionisasites, whose
probabilities depend simultaneously on short contiguaggrents of the se-
guence, while branching and cycles represent multiple esempidependent
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ways of extending and linking the initiation sites. Arbitrdevels of com-
plexity may be modeled by including HMMs recursively withdrrerarching
HMMs, the latter representing the ways of connecting thewtaf the HMMs
it contains. Hidden Markov models are limited to data that ba expressed
as one-dimensional sequences of discrete symbols, baetdhetechniques for
overcoming both the discreteness and the one-dimendipifldahb89].

The next level of complexity in protein folding is called ‘fedensation”. In
the first few microseconds after introducing the polypeptiiain into an aque-
ous solution, initiation sites form transient, rapidlyerchanging structures,
favoring one or more 3D conformations to varying degreesesébstructures
propagate along the chain by promoting compatible upsteardownstream
conformations, and the resulting transiently-formed sulstures encounter
each other by through-space diffusion, condensing ingelarordered glob-
ules, as energy dictates. The ordering of these three meEds not discrete
but overlapping, and they should therefore be integratemddrsingle compu-
tational model. Modeling of the condensation step givemigt®ns based on
the modeling of initiation/propagation is the subject of fpresent work. A
single Markov state prediction implies a local substruetaind a single amino
acid position within it. Thus, a contact between two Marktates implies a
specific mode of condensation between two local substregtorform tertiary
structure.
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Figure 1.1. Contact Map (PDB protein 2igd, length 61). Circles indicagsidue contacts,
and clusters of circles indicate certain secondary strastu



The contact map of a protein (see Figure 1.1) is a partigulaéful repre-
sentation of protein tertiary structure. Two amino acida frotein that come
into contact with each other form a non-covalent interac{ioydrogen-bonds,
hydrophobic effect, etc.). More formally, we say that twsideies (or amino
acids)a; anda; in a protein are ircontactif the 3D distargceS(ai,aj) is less
than some threshold value(in this paper we useé = 7A as the threshold
distance), wheré(a;, a;) = |r; — r;|, andr; andr; are the coordinates of the
a-Carbon atoms of amino acids anda;. We definesequence separations
the distance between two amino acigsanda; in the amino acid sequence,
given as|i — j|. A contact map for a protein wittV residues is arlV x N
binary matrixC whose elemen€(i,j) = 1 if residuesi andj are in con-
tact, andC'(i,j) = 0 otherwise. The contact map provides a host of useful
information. For example, secondary structure can easilgibcerned from
it. a-Helices appear as thick bands along the main diagonal fiegdnvolve
contacts between one amino acid and its four successorke BASheets are
thin bands parallel or anti-parallel to the main diagontd, elowever, tertiary
structure is not easily found from the contact map. For ptew the elusive
global fold of a protein we are usually interested in onlystgontacts that are
far from the main diagonal. In this paper we thus ignore ariy gfaresidues
whose sequence separatior- j| < 4.

Previous work on contact prediction has employed neuraloris [FC99],
and statistical techniques based on correlated mutatiOv8{, TCS96]. Re-
cent work by Vendruscolo et al [VKD97] has also shown thas ipossible to
recover the 3D structure from even corrupted contact map#his paper we
present a new hybrid technique for contact map predictioa fisst predict lo-
cal structural elements using an HMM. The HMM simultanepuspresents
the initiation and propagation steps of protein folding. Men apply an asso-
ciation mining technique on top of the HMM states to prediet et of states
that frequently co-occur with contacts. These sets areubed for predicting
contacts in unseen proteins. Our model obtains 19% accuamadycoverage
over the set of all proteins; the model is also 5.2 times bdhi@n a random
predictor. We can significantly enhance coverage to over #@% sacrifice
accuracy (13%). For short proteins (lengthi00) we get 30% accuracy and
coverage (4.5 times better than random); if we lower acgui@@6% we can
get coverage upto 63%. We believe that these results aer tiedin (or equal
to) those reported previously.

2. Hybrid Mining Approach

Here we describe the hybrid technique used to predict residatacts. We
first use an HMM to predict local substructures within thetpim We then
use meta-level mining on the output of the HMM using ass@natule min-
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ing. The following sections provide a brief introductiontteese two methods
(readers familiar with them can safely skip ahead to Se@&)on

2.1. Hidden Markov Models

The description of HMM below is based on the excellent taioby Ra-
biner [Rab89]. An HMM is a doubly stochastic process with auderlying
stochastic process that is not observable (it is hidden)duonly be observed
through another set of observed symbols.

An HMM is made up of a finite numbelN of states. At each time step
a new state is entered based on a transition probabilityil@igbn which de-
pends on the previous state (the Markovian property). Adtarh transition is
made, an observation output is produced according to a foamhpility distri-
bution which depends on the the current state. Thus thafsach observation
probability distributions.

As an example of modeling proteins via HMMs, let consider am“and
residue” model. There ar® urns (or states) each filled with a large num-
ber of the 20 possible amino acids. The observation sequengmtein?) is
generated by initially choosing one of théurns (according to an initial prob-
ability distribution), selecting a residue from the initian, recording which
amino acid it is, replacing it, and then choosing a new uratéytaccording
to a transition probability distribution associated witie tcurrent urn. A step
corresponds to a residue position. Thus a typical observatgquence might
be:

step or position 1234.--T |
urn (hidden) state | gsq1q1g2 - qv_2 |
amino acid (observation) GLAK --- S |

An HMM is made up of the following component§: is the length of the
observation sequence&y the number of states in the moddlf the number
of observation symbols (for simplicity we assume here thatdutput is a
discrete symbol, e.g. an amino acid. However we actuallyausentinuous
vector output as we shall see latef);= {q1, g2, - - - qn } is set of HMM states;
V' = {vi,v2,---,vm} is the set of output symbolsi = {a;;} gives the set
of state transition probabilities, i.es;; = P(g; at (t + 1)|g; at t); B =
{bj(k)} is the output symbol probability distribution in statg i.e., b;(k) =
P(vy at t|g; at t); and finallyr = {7;} gives the initial state distribution, i.e.,
mj = P(gjatt=1).

Using the model, an observation sequette- O10- - - - O is generated
as follows: 1) choose an initial state based onr, 2) set positiont = 1, 3)
chooseO, according tob;, (k), 4) choosei,; according to{a,i, , }, 41 =
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1,2,--- N, and 5) set = ¢ + 1; return to step 3 it < 7T’; otherwise terminate
the procedure.

An HMM can be compactly represented using the notaloa (A, B, ).
There are three key problems that have to be solved to buikkfulumodel:
1) Evaluation Problem:Given the observation sequen€e= 0105 - - - Or,
and the model\ = (A, B,7), how to compute the probability of the ob-
served sequenc®(O|\). This can be solved using the Forward-Backward
algorithm [Rab89]. 2Estimation Problem:Given the observation sequence
O = 0105 ---Op, how to choose a state sequernce= iyis - --i7, wWhich
is optimal in some meaningful sense. This can be solved ukiag/iterbi
algorithm [Rab89]. 3Maximization Problem:How to adjust the model pa-
rameters\ = (A, B, 7) to maximizeP(O|\). This can be solved using the
Baum-Welch reestimation method [Rab89]. We will discusshim next sec-
tion the exact details of how the HMM is built to model protgin

2.2. Association Rules

Since its introduction, Association Rule Mining (ARM) [AMS6] has be-
come one of the core data mining tasks, and has attracteérigous interest
among data mining researchers and practitioners. ARM isnalirected or
unsupervised data mining technique, which works on veagidsigth data, and
it produces clear and understandable results. It has aarglggimple prob-
lem statement, that is, to find the set of all subsets of itenwtdbutes that
frequently occur in many database records or examples, dditicaally, to
extract the rules telling us how a subset of items influenbesptesence of
another subset.

The association mining task can be stated as followsZlet a set of items,
andD a database of examples, where each example has a uniquéedénd)
and contains a set of items. A set of items is also calledesnset An item-
set withk items is called &-itemset. Thesupportof an itemsetX, denoted
o(X, D), is the number of examples I where it occurs as a subset. An item-
set isfrequentor large if its support is more than a user-specifiednimum
support (minsup)value.

An association rulds an expressioml = B, whereA and B are itemsets.
The support of the rule is the joint probability of a exampdataining bothA
andB, and is given as (A U B). Theconfidencef the rule is the conditional
probability that an example contai$ given that it containsd, and is given
asoc(AUB)/o(A). Arule isfrequentf its support is greater thamin_sup and
it is strongif its confidence is more than a user-specifieshimum confidence
(min_conf).

The data mining task is to generate all association ruleténdatabase,
which have a support greater thamn_sup i.e., the rules are frequent, and
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which also have confidence greater tmaim_conf i.e., the rules are strong. In
this paper we are interested in rules with a specific itenteddheclass as a
consequent, i.e., we mine rules of the foAm= c; wherec; is a class attribute
(1 <i<k).

This task can be broken into two steps:

1 Find all frequent itemsets having minimum support for asteone class
c;. The search space for enumeration of all frequent itemsel¥’ |
which is exponential imn, the number of items. However, if we assume
that there is a bound on the example length, we can show thkt KR
essentially linear in the database size [Zak0O0Db].

2 Generate strong rules having minimum confidence, from tbguent
itemsets. We generate and test the confidence of all ruldsedform
X = ¢;, whereX is frequent.

2.2.1 Mining Frequent Closed Itemsets. We mine the fre-
guent sets based on the Formal Concept Analysis approac®@;Which is a
very elegant mathematical framework for extracting “cquiséfrom databases.

Consider an itemseX. LetY = {E € D|X C E} be the set of all
examplesE in the databas® whereX occurs. Further leK’ = {i € Z|i €
Neey E} be the set of all items that are common to all examples in th¥ se
Then we say thak is closedif X = X’. In other wordsX is the maximal set
of items that is common to all examples¥n A closed itemset is also called a
concept

The set of all closed frequent itemsets can be orders of maigsmaller
than the set of all frequent itemsets, especially for rezhég) datasets [Zak00a].
At the same time, we don't lose any information; the closethiets uniquely
determine the set of all frequent itemsets and theactfrequency. Thus in-
stead of mining all the frequent itemsets we only mine thguent closed
itemsets using the ARM algorithm [ZH99] we recently developed. A de-
tailed description of the algorithm is beyond the scope of gaper. Suffice
it to say that GIARM can handle very large disk-resident or external mem-
ory databases; it has been tested on databases with mitifasamples, and
it scales linearly in the database size. We refer the readptH99] for the
algorithm description and its efficiency.

3. HMMSTR: An HMM for local structure in
proteins

We describe here the hidden Markov model, HMMSTR [BTBOO},gen-
eral protein sequences based on the I-sites library of segusructure mo-
tifs [BB98]. In the next section we will show how we apply asistion mining
on the output of HMMSTR to predict residue contacts.



Unlike the linear HMMs used to model individual protein faies [Edd98],
HMMSTR has a highly branched topology and captures rectuiosal fea-
tures of protein sequences and structures that transceterpfamily bound-
aries. The model extends the I-sites library by describivgadjacencies of
different sequence-structure motifs as observed in thteipralatabase, and
achieves a great reduction in parameters by representertppping motifs in
a much more compact form.

The I-sites (Invariant or Initiation sites) library corsisof an extensive
set of short sequence motifs, length 3 to 19, obtained byustiva cluster-
ing of sequence segments from a non-redundant databasewhlgtructures
[HB96, BB98]. Each sequence pattern correlates strondlly avrecurrent lo-
cal structural motif in proteins. Approximately one thirfladl residues in the
database are found in an I-sites motif that can be predictédasigh degree
of confidence ¢ 70%). The library is non-redundant in that no motif is com-
pletely contained within another, longer motif. Howeveanmy of the motifs
overlap. Furthermore, the isolated motif model does notureghigher order
relationships such as the distinctly non-random transitiequencies between
the different motifs. The redundancy inherent in the Issiteodel suggests
a better representation that would model the diversity efriotifs and their
higher order relationships while condensing features k@ in common. A
hidden Markov model is well suited to this purpose.

3.1. Description of HMMSTR

Each of the 262 I-sites motifs was represented as a chain dddvatates,
each of which contains information about the sequence audtste attributes
of a single position in the motif. Adjacent positions werprasented by tran-
sitions from one state to the next. Hierarchical mergingheke linear chains
of states, based on sequence and structure similaritytedsn a graph con-
taining almost all the motifs. The merged graph of I-sitedifa@omprises a
network of states connected by probabilistic transitiamramnore specifically,
an HMM as shown in Figure 1.2.

Each state in HMMSTR can produce, or "emit”, amino acids anacture
symbols according to a probability distribution specifi¢tat state. There are
four probability distributions defined for the states in HMWIR, b, d, r, andc,
which describe the probability of observing a particulatireoracid, secondary
structure, backbone angle region, or structural contestrifgtor, respectively.
A context descriptor represents the classification of arsdany structure type
according to its context. For example, a hairpin turn isidiigtished from a
diverging turn, and a beta-strand in the middle of a shedsigduished from
one at the end of a sheet. More formally, for a given sjgtéhere are a set of
emission probabilities, collectively callds;,. Here, we use four in this collec-
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tion, denoted, d, , andc. The value$;(m) (1 < m < 20) are associated with
probabilities for the emission of amino acids. The valdgs:) (1 < m < 3),
are the probabilities of emitting helix(H), strand(S) oopdcoil(T), respec-
tively. The values;(m) (1 < m < 11) are the probabilities of emitting one of
the 11 dihedral angle symbols. Finalty(m) (1 < m < 10) are probabilities
of emitting one of ten structural context symbols.

The database is encoded as a linear sequence of amino adidgw@etural
observables. The amino acid sequence data consists ofentpamino acid
sequence of known three-dimensional structure, and anceacid profile ob-
tained by alignments to the parent sequence [BB98]. The aaiid of the
parent sequence is denoted @y, and the profile by{ O;*}(1 < m < 20).
For the structural identifiers at each positigrihe following nomenclature is
used: 3-state secondary structdpg discrete backbone angle regidh, and
the context symbaol’;. A sequence of lengthT is given by the values of the
attributes at all positions; = {0y, {O]"*}, Dy, R, C;} (1 < t < T). The util-
ity of the HMM to model database sequences is based on thennotia path.
A path is a sequence of states through the HMM, den@led q¢iqs - - - gr.
Thus, the probability of a sequensaiven the model\, P(s|})), is obtained
by summing the relevant contributions from all possiblenp&}:

P(3|/\) = Z i, Biy (Sl)ai1i2bi2 (82) T ainliniT (ST)
all T

wherel = iyiy - - - ip is a fixed sequence of states aBd s;) is the probability
of observings; at statey;, which for observation of a single sequence is given

by
d;(Dy)
B;(st) = ( ri(Ry) )bz’(ot)
CZ‘(Ct)

Usually, only one of the structural emission symb@|s:, or c is included
in B; in any given training run. However, in principle, any corrdtion could
be used. Our HMMs showed significant improvements in peréorce when
we used amino acid profiles instead of single amino acid semsefor training
and for subsequent predictions. For the probability of obsg a given profile
{O;"} positiont in a sequence, we use the multinomial distribution, and the
expression fol3 becomes

d;(Dy) 20
Bi(st) — ( ri(Rt) ) Z bi(m)NcountXOt
Ci(Ct) m=1

To give equal weight to the information in sequence famiiedifferent depths,
N count was taken to be a global paramet®&icount is the effective weight for
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the amino acid sequence proftleversus the other emission symboisd; c).
Statistically it should be the number of independent olzt@ms of the se-
guence in the database of proteins, which would be difféi@mtach protein,
but we made it a global constant (i.e. the same for all prejeso that no pro-
tein or set of proteins dominated the model. The value wegngaising (1.5)
was arrived at by comparing parallel runs of expectatiomimeation, each
with a differentN count value.

3.2. Training HMMSTR

For training, evaluation and testing of the HMMSTR we usedmredundant
database of proteins of known structure, PDBselect:Deeer®938 [HS94],
containing 691 proteins and their sequence families. Theéers in the set
have< 25% sequence similarity. Entries in the database were sedbgtie-
moved if the structure was solved by NMR, had a large numbdaisafifide
bridges or cis-peptide bonds, or if it was a membrane-aatatiprotein ac-
cording to the header records. Disordered or missing coatel in the middle
of a sequence were addressed by dividing the sequence abihatContigu-
ous segments of length less than 20 were ignored. Multipleesgce align-
ments were generated from each sequence using PSI-BLASB{AWV| after
filtering the query sequences for low-complexity regionsH38]. Data for
training the HMM included the sequence profile, computedhfthe multiple
sequence alignment as described before [BB98], the DS®Rda&y structure
assignments [KS83], the backbone angles, and a structoatéxt” symbol.

Backbone angles were measured from the coordinates amphedsusing
a Voronoi method, to 11 regions of phi/psi space. The ceddrof 10 regions
were chosen by K-means clustering of a large subset of tfzifssppairs from
the database. The 11th region is all cis peptides.

A randomly selected set of 73 of the 691 proteins (19,000tipos) was
then set aside and not used for training, but only for the finads-validation.
Before cross-validation, a test for true independence pewed to the training
set) was applied to each member of the test set, and 12 memébersemoved.
The final test set thus contained 61 proteins and 16,000 qusit

The remaining set of 618 parent sequences (145,000 pmitwas used
for training, and divided into a large set of 564 sequencd8,00 positions),
used for optimization via the Expectation-Maximizatioga@ithm, and a small
set of 54 sequences (12,000 positions) used to evaluatedtieive ability of
the model during training. Note that the small set of 54 segeg is used only
for evaluation of the performance of a model and may thusapjoebe a test
set. However, decisions regarding the modification of thelehare based on
results of those evaluations. The set of 54 sequences e&fthemot a test set,
but a training set. For the final round of training we re-comeki the large and
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small training sets, to a total of 618 sequence familieserfte final round of
training, the models were frozen.

4. Data Format and Preparation

After HMMSTR is built we again took the 691 proteins from PD#E&:t
and computed for each protein the optimal HMMSTR statesatage with the
observed amino acids in the protein. In other words for eactejm sequence-
structure we solve the estimation problem, i.e., given the=ovation sequence
O = 0105 --- Or, how to choose a state sequerce- iyis - - - i, Which is
optimal. The output probability distributions of all theatts thus chosen for a
protein sequence is used as input for the association magagithm. In fact,
rather than a single state associated with a given resideibawe available the
probability that the residue at the given position is asged with all the states
of HMMSTR, i.e., we have availabl(g¢;|a;) for all the 282 HMMSTR states
(1 <4 < 282) for all the residues in a given proteith € j < n, wheren
is the length of the protein). For each residue we also kn@nathino acid
at that position; the, d, r, andc outputs, which describe the probability of
observing a particular amino acid, secondary structureklzne angle region,
or structural context descriptor, respectively; the spatbordinates of the:-
Carbon atom(z, y, z); a distance vector of length giving the distance of this
residue from all other residues in the protein; and the 2tharacid profiles
for that position. A protein data file may look like this:

PDB Name: 153l _
Sequence Length: 185

Position: 1

Resi due: R
Coordinates: 0.0 -73.2 177.6
Profile: 0.0 ... 1.0 ... 0.0 #20 Val ues
HVWWSTR St ate Probabilities:
0.0 ... 0.7 .... 0.3 ... 0.0 #282 Val ues
Di stance Vector: 0 3 5 ... 18 15 13 #185 Val ues (Seq Length)
Position: 2
Residue: T
Coordinates: -124.4 0.2 -177.1
Profile: 0.0 ... 1.0 ... 0.0 #20 Val ues
HWBTR St ate Probabilities:
0.0 ... 0.9 ... 0.1 ... 0.0 #282 Val ues

Di stance Vector: 3 0 3 ... 15 13 10 #185 Val ues
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Position: 185

Resi due: Y
Coordi nates: -88.7 0.0 0.0
Profile: 0.0 ... 0.4 ... 0.6 ... 0.0 #20 Val ues
HWEBTR State Probabilities:
0.0... 0.2... 0.5... 0.3 0.0 #282 Val ues
Di stance Vector: 15 13 10 ... 5 3 0 #185 Val ues

We have a file like the one shown above for all of the 691 nomxrdent set
of proteins from PDBSelect. Disordered or missing coordigan the middle
of a protein sequence were addressed by dividing the seguartbat point.
This produces a set of 794 files, most of them containing aineeptotein
sequence, but some of these correspond to proteins thasplére

Given a protein file, we now have to transform the data intorm&t that
can be easily mined for frequent closed itemsets, i.e., vee ne transform
the data into the relational or tabular format where we hauktipte attributes
(columns) for each example (rows) or record. Since we asrasted in pre-
dicting the contact between a pair of amino acids, we use paittas an ex-
ample in the training set, associated with a spedia$sattribute indicating
whether it is a contact({) or non-contact §C'); amino acidsa; anda; are
in contact ifé(a;,a;) < 74, i.e., the distance betweencarbons of amino
acidsa; anda; is less therr A. Our new database has an entry showing the
two amino acids and their class for each pair of amino acidgdch protein.
In order to avoid predicting purely local contacts we ignatepairs whose
sequence separatioh— j| < 4. Note also that the number of contaé®g: is
a lot smaller than the number of non-contastg for any protein.

We found that the percentage of contacts (or number of degadnatries with
class 1) over all pairs is less than 1.7%. Across the 794 fibeslongest se-
guence had length 907, while the smallest had length 35.eMere 17,618,115
pairs over all proteins, while only 292,126 pairs were intach This database
thus corresponds to a highly biased binary classificatioblpm. That is, we
have to build a mining model that can discriminate betweamnasis and non-
contacts between amino acids pairs, where the exampleyvanetelmingly
biased towards the non-contacts.

Our database so far doesn't have enough information for gismtimina-
tion. All we have is the amino acids making up the pair and imaethey are
in contact or not. We need to add more “context” informatioriacilitate the
classification. It is easy to incorporate, for each aminad atithe pair, the 3
secondary structure symbols; (d;), the 11 backbone angle regions,(;),
and the 10 structural context descriptats ¢;). For each pair we would also
like to add the HMMSTR state probabilities. Since assamiatules only work
for categorical attributes, we need to convert the contiswsiate probabilities
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into discrete values. To do this we take the ratio of each ef282 HMM-
STR state probabilities fat; against the background or prior probability of
an amino acid being in that state; if the ratio is more thanestimeshold we
include the state in the context of, else we ignore it. We repeat the same
process for;. Using a similar thresholding method one can incorporage th
amino acid profiles for positionsand;. With all this context information for
botha; anda; we obtain a new database to be used to find the frequent itemset
characterizing the contacts and non-contacts. In sumrharddtabase might
have the following columns for pairs of amino acids over aditpins:

Protein and Position Information:

ProteinlD PairlDi | |i-j]|
Am no Acids and Context: ai aj di dj ri rj ci cj
Profile: pilpi2 ... pjlpj2...
HWSTR qil qgi2 ... qlqg2...
Class: Cor NC

Note that the number of columns can be variable for diffepaits depending
on the profile and HMMSTR state probabilities;,, p;,, etc. show the other
amino acids that can appear in positidifprovided the probability is more
than some threshold), and finally,, ¢;,, etc. show HMMSTR states with
probabilities more than some factor of the prior probapibit those states.

5. Association Mining on the Pairs Database

We are now in a position to cast the above database in theiassndrame-
work. Each attribute-value pair is an item, and is represkmtith a fixed,
unique integer. For examplg = G is one item andy; = L is another item.
By the same token each value®fd;, r;, L;, andR; is a different item. Each
of the HMMSTR states becomes a distinct item, as do the pradiiges. The
items for the context attributes af anda; are also kept distinct. Finally we
separate the examples that are contacts from those thabmeontacts to get
two databases, denotedg andD y ¢, respectively.

Given these databases our goal is to find high support andceigtidence
rules of the form4 = C andA = NC, that discriminate between the con-
tact pairs and the non-contact pairs, respectively. Belend®ascribe the min-
ing/training and testing phases, where we learn from exasnp$ing the fre-
guent closed itemsets, and then classify unseen examplesrascontacts or
non-contacts, respectively.

5.1. Mining on Known Examples

The goal of the mining phase is to learn from known contactresmdcontact
examples and build a model or rule set that discriminatesdet the two
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classes. We selected a random 90% of the files for trainingofoa total of
794 files. The remaining 10% of the files were kept aside fdingshe mined
rule set.

Sin

ce we are primarily interested in predicting the corgaather than the

non-contacts, we mine only on the contacts databbaseHowever, we do use
the non-contacts databaBe, - to prune out those itemsets that are frequent in
both sets. Building a discriminative rule set consists effthllowing steps, in

order:
1

5.2.

Mining: We use GIARM [ZH99] to mine all the frequent closed item-
sets inD¢ based on a suitably choserin_supvalue (determined empir-
ically). Let’s denote the set of frequent closed itemset% as

Counting We compute the support of all itemsets Jin the non-
contacts databaseyc.

Pruning We compute the probability of occurrence of each itemset in
F in both the contact and non-contact databases. The prapadil
occurrence is simply the support of the itemset divided lgy rtliam-
ber of examples in the given dataset. For example, if itef\Set F,
then the probability of its occurrence M is given asP(X,D¢) =
o(X,De)/|Dc|.

As a first step in pruning we can remove all items&tse F which
have a greater probability of occurrence in the non-cortatabase than
in the contact database, i.e., (X,Dnc) > P(X,D¢). Actually,
we compute the ratio of the contact probability versus the-cantact
probability for X, and prune it if this ratio is less than some suitably
chosen thresholg, i.e., we pruneX if P(X,D¢)/P(X,Dnc) < p.

In other words we want to retain only those itemset that hawauah
greater chance of predicting a contact rather than a notacon

Testing on Unknown Examples

The goal of the testing phase is to find how accurately the anged of

rules

predict the contacts versus the non-contacts in nampbes not used

for training. We used a random 10% of the files in the databaseetting.
The test set had a total of 2,336,548 pairs, out of which 35#8L.54% were

conta
find o

cts. Since we do know the true class of each exampledsig for us to
ut how well our rules are for prediction.

For testing we generate a combined databRsecontaining all pairs of
amino acids in contact or otherwise. For each example we khewrue class.
We assign each example a predicted class using the follcstéms:

1

Evidence CalculatiorFor each examplé’ in the test dataseb,, we
compute which itemsets in the set of mined and pruned closegiént
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itemsetsF are subsets oF. Let's denote the set of these itemsets as
S. We next calculate the cumulative contact and non-contgapiat for
exampleF, i.e., the sum of the supports of all itemset$im the contact
and non-contact database. Finally, we compute the evidendebeing

a contact, i.e., we take the ratio of the cumulative contappert over
cumulative non-contact support, denotedpas Any exampleFE with
zero contact support is taken to be a non-contact and destaachd only
the examples or test pairs with positive contact supporteteened for
the next step.

2 Prediction To make the final prediction if a test pair of residues is in
contact or not, we sort all test exampl&s(with positive cumulative
contact support) in decreasing order of contact evidenpcd-inally, the
top v fraction of examples in terms ¢fy are predicted to be contacts
and the remaining — ~ fraction of examples as non-contacts. Heus
chosen will be explained below.

5.3. Model Accuracy and Coverage

In predicting contacts versus non-contacts for the tesnekes, we have to
evaluate the mined model based on two metWascuracyandCoverage Fur-
thermore, we are only interested in the prediction of cdstabius accuracy
and coverage is only considered for contacts. Accuracyeisatio of correct
contacts to the predicted contacts, while coverage is treeptage of all con-
tacts correctly predicted. Thus, accuracy tells us how gbednodel is, while
coverage tells us the number of contacts predicted.

More formally, let V;. denote the number of true contacts in the test ex-
amples,N,,. the number of predicted contact¥y,. the number of true pre-
dicted contacts, and |6V, denote the number of all possible contacts, i.e.,
N, = (N —3) x (N —2)/2 (whereN is the protein length), since the contact
map is symmetric and pairs with sequence separation lessithee ignored.
The accuracy of the model is given as:

A = Nype/Npe
The coverage of the model is given as:
C= thc/Ntc

The number of contacts predictéd,. of course depends on how we chose
v, since the topy fraction of test examples based on evidence is predicted as
contacts. Since a protein is characterized My true contacts, we set =
N} /N} and then predict the top fraction of examples as contacts. Note that
N and N denote the actual contacts and all pairs, respectively, rinee
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positive contact support, since we discard examples with eentact support.
By adopting the above method, the number of predicted ctsmiadimited to
those actually present in the protein. Further, this methasl been used by
previous approaches to contact map prediction [FC99, O\ we retain it
to facilitate comparison with previous results.

We also compare our model against a random predictor. Thaamc of
random prediction of contacts is defined as:

Ar — Ntc/Na

6. Experimental Results

We mined the pairs database using various combinationsraéxbinfor-
mation and then tested the model on the unseen proteins. aiifseedatabases
for training and testing had the following approximate siz®~ = 32M B
for the training contacts databade, - = 2G B for the training non-contacts
database, an®; = 340M B for the testing database (includes both contacts
and non-contacts). For all experiments below, we used anmim support of
0.5% in the contact database, and we pruned a pattern iftibeofacontact to
non-contact frequency was less than 4 (except for the aagids-only case,
where we used a ratio of 1.5).

Amino Acids Only. Our first goal was to test how much informa-
tion is contained in the amino acids only, i.e., for bothrirag and testing,
each example consisted of only the two amino aeidanda;, and nothing
else. Figure 1.3 shows the accuracy, coverage, and impeaerhthe mined
model over the random predictor (legend “ratio” in the gfefain the test set.
The improvement is the ratio of the accuracy of our model wégpect to the
accuracy of the random predictor. This ratio is one of thericetised in past
work on contact maps [FC99, OV97, TCS96]. The accuracy andrege is
the mean value over all proteins. The figure shows that the@agids have
some information that can be used to predict contacts veisusontacts, but
this information is not too good. The figure plots the accy@ued coverage as
percentages. It also plots the improvement of the model theerandom pre-
dictor. The x-axis shows thgrediction factor which is related to the value
(used to predict the top fraction of pairs as contacts). Tregliption factor
is in multiples of V;%,, the number of true contacts in the protein with positive
contact evidence. For example, a value of 10 means thatph@ao N;.) /N
fraction of the examples are predicted as contacts.

The top-most graph in Figure 1.3 shows the accuracy and ageesf the
predictor over test proteins of all lengths. The other twaorég below show
how accuracy and coverage change with protein length. We danded the
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Figure 1.4. HMMSTR States and Amino
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test proteins into four binst < N < 100, 100 < N < 170, 170 < N < 300,
and300 < N.

We find that over all proteins the amino acids by themselvesbeaused
to give an 8.5% accuracy, 1.5% coverage, and an improverventaaandom
predictor by a factor of 2.4. Note also the interesting trenithe graph. As the
prediction factor increases we get better and better cgeefaut the accuracy
trails off. This represents the classic accuracy versusrege trade-off com-
mon to many prediction problems. Which value to choose fergtediction
factor depends on what is more important. It has been rapantf/KD97]
that the 3D structure of proteins can be recovered quitestbbheven from
corrupted contacts maps. This implies that coverage sHuaveé an higher
weight than accuracy. In any case, if we had to choose a vapregenting the
best trade-off, we can pick the point where the accuracy amdrage curves
intersect. This happens for a prediction factor of 7, wheeshave roughly
7% accuracy and coverage, and which is 2 times better thalomanFor 6.3%
accuracy we can increase coverage to 14%.

When we consider the results for proteins of different laegtve find the
same trade-off between accuracy and coverage. Looking attissover point,
we get around 13% accuracy and coverage for short proteits/Nvi< 100,
6% for 100 < N < 170, 4.5% for170 < N < 300, and around 2% of longer
proteins.

HMMSTR States and Amino Acids. We next added the HMM-
STR states corresponding épanda;, i.e., we added the columns,, g;,, - - -
andg;,, qj,, - - - to the training and testing sets. Figure 1.4 shows the sesult
If we look at the cross-over point we get almost 19% accuracl@verage,
while the model remains 5.2 times better than random. For 488aracy we
can get coverage of 25% (still 5.1 times better than rand®&igure 1.7 shows
the results in a slightly different format. It plots the impement in cover-
age/accuracy over a random prediction. These results anparable to or
better than the results recently reported in [ZK00], whbeytexamined pair-
wise amino acid interactions in the context of secondancstral environment
(helix, strand, and coil), and used the environment dep#rmntact energies
for contact prediction experiments. For about 25% covemgemodel does
more than 5 times the random predictor, as compared to thmes timprove-
ment reported in [ZKOO]. Figure 1.8 shows the predicted acininap for the
protein2igd that we used in the introduction. We got 35% accuracy and 37%
coverage for this protein. The figure shows the true contéotscontacts cor-
rectly predicted, and all the contacts predicted (coryemtlincorrectly).

If we look at proteins of various lengths in Figure 1.4, we fihat for
N < 100, we get 26% accuracy and 63% coverage at the extreme point (4
times over random). Far00 < N < 170 we get 21.5% accuracy and 10%
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Figure 1.7. Improvement over Random Prediction

coverage towards the end (6 times over random),lfor < N < 300 we
get 13% accuracy and around 7.5% coverage (6.5 times owdomgnand for
longer proteins we get 9.7% accuracy and 7.5% coveragei(7e8 over ran-
dom). We believe these results are the best, or at least cabipao those
reported so far in the literature on contact map predictle@d9, OV97]. For
example, Fariselli and Casadio [FC99], used a Neural Né&tWased approach
over pairs database, with other contextual informatioe Bequence context
windows, amino acid profiles, and hydrophobicity values.ey heported an
14.4% accuracy over all proteins, with an 5.4 times imprazetover random.
They also got 18% accuracy for short proteins with an 3.1giimgrovement
over random. Olmea and Valencia [OV97] on the other hand useelated
mutations in multiple sequence alignments for contact nragiption. They
added other information like sequence conservation, e stability, con-
tact occupancy, etc. to improve the accuracy. They rep&€&8d accuracy
for short proteins, but they did not report the result forpatiteins. While we
believe that our hybrid approach does better, we should hstydirect com-
parison is not possible, since previous works used a diffef@d smaller)
PDB select database for training and testing. One draw baclesgtprevious
approaches is that they do not report any coverage values,isoot clear
what percentage of contacts are correctly predicted. Aamatpproach to con-
tact map prediction was presented in [TCS96], which wasdeseorrelated
mutations. They obtained an accuracy of 13% or 5 times bistaer random.

Adding Additional Information. We next tried to add more
columns to the training database. For example we sepa@ddlyd the amino
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Figure 1.8. Predicted Contact Map (PDB file 2igdl] = 61)

acid profiles, and the structural context symbols for theaBessecondary struc-
ture Dy, discrete backbone angle regid, and the context symbadl;. The
results for these cases are shown in Figure 1.5 and FiguréA$.@/e can see
adding the profiles did not add any additional prediction @ot® our model,
while adding the structural symbols had a positive (somewtized) effect
on accuracy and coverage. It appears that while the accofahg prediction
drops a little there is tremendous boost in the coverageeofitbdel. For ex-
ample at around 18% accuracy we get about 25% coverage UmsngNM
states and amino acids (see Figure 1.4), but when we addrtletusal sym-
bols, we get about 44% coverage for an accuracy of 12.5%. Yhisatells us
is that the structural symbols can be helpful in providing tight context for
the predictions and thus help in identifying a larger portid the contacts.

In conclusion we have presented a new hybrid HMM and assogiatile
mining method for contact predictions. Our results are & br comparable
to those previously reported. We are currently working tthier improve both
accuracy and coverage by carefully selecting many of trestiold parameters
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used in the experiments, as well as by adding additionabatés that might
help prediction. Ultimately, the test of this method alddgsall others will

take place in the next round of Critical Assessment of pno&tiucture Predic-
tion (CASP) [MPJF95], a world-wide blind prediction expmsent, held every

two years.
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