
Chapter 1

PREDICTING FAILURES IN
EVENT SEQUENCES

Mohammed J. Zaki, Neal Lesh and Mitsunori Ogihara

Abstract In this paper we develop new techniques for predicting failures and
monitoring in categorical event sequences. New techniques are need-
ed because failures are rare and previous data mining algorithms were
overwhelmed by the staggering number of very frequent, but entirely un-
predictive patterns that exist in such databases. This paper combines
several techniques for pruning out unpredictive and redundant patterns,
which reduce the size of the returned rule set by more than three orders
of magnitude.

As a concrete application, we present PlanMine, an algorithm to
extract patterns of events that predict failures in databases of plan ex-
ecutions. PlanMine has also been fully integrated into two real-world
planning systems. We experimentally evaluate the rules discovered by
PlanMine, and show that they are extremely useful for understanding
and improving plans, as well as for building monitors that raise alarms
before failures happen.

Keywords: Data Mining, Sequential Patterns, Association Rules, Predicting Fail-
ures, Mining Rare Events

1. Introduction

Sequences abound in all kinds of categorical or “symbolic” data. Ex-
amples of such sequences include biological sequences of DNA or Amino
Acids, web access logs as well as text and hypertext documents, network
alarms, plan execution traces, multi-player games, simulation data, etc.

One of the important kind of mining that can be performed on such
categorical sequences is that of classification. Usually, the classification
task is binary with a highly skewed class distribution. For example,
given network logs, a secure site might want to know if there have been
any unauthorized accesses. This is the intrusion detection problem. The

1

2

vast majority of traces belong to the “normal” class, while only a very
small fraction of all logs might be “intrusion.” As another compelling
example, consider a plan execution database for important problems
like resume missions or forest-fire prevention, etc. Here we would like to
know if a plan is likely to “succeed” or to “fail”. We expect that most
of the events and plans are successful, and while failures are very rare,
the cost of a failure is high. Thus the aim of mining would be to extract
high confidence rules that predict failures and to even build monitors
that might signal a failure before it happens so that preventive steps
can be taken.

In this paper, we present the PlanMine algorithm for mining such
failure information from plan execution traces. We apply sequence data
mining to extract causes of plan failures, and feed the discovered pat-
terns back into the planner to improve future plans. We also use the
mined rules for building monitors that signal an alarm before a failure is
likely to happen. While the techniques we present are in the context of
planning, we would like to underscore that our approach is equally ap-
plicable in other highly skewed sequence classification problems such as
intrusion detection, or finding rare frequent patterns in DNA sequences,
etc.

We show that one cannot simply apply previous sequence discovery
algorithms [SA96, Zak98] for mining execution traces. Due to the com-
plicated structure and redundancy in the data, simple application of the
known algorithms generates an enormous number of highly frequent, but
unpredictive rules. We use the following novel methodology for prun-
ing the space of discovered sequences. We label each plan as “good” or
“bad” depending on whether it achieved its goal or it failed to do so.
Our goal is to find “interesting” sequences that have a high confidence
of predicting plan failure. We developed a three-step pruning strategy
for selecting only the most predictive rules:

1 Pruning Normative Patterns: We eliminate all normative rules
that are consistent with background knowledge that corresponds
to the normal operation of a (good) plan, i.e., we eliminate those
patterns that not only occur in bad plans, but also occur in the
good plans quite often, since these patterns are not likely to be
predictive of bad events.

2 Pruning Redundant Patterns: We eliminate all redundant patterns
that have the same frequency as at least one of their proper sub-
sequences, i.e., we eliminate those patterns q that are obtained by
augmenting an existing pattern p, while q has the same frequency
as p. The intuition is that p is as predictive as q.

Predicting Failures inEvent Sequences 3

3 Pruning Dominated Patterns: We eliminate all dominated sequences
that are less predictive than any of their proper subsequences, i.e.,
we eliminate those patterns q that are obtained by augmenting an
existing pattern p, where p is shorter or more general than q, and
has a higher confidence of predicting failure than q.

Evacuation
Generate

Plan (s)

Prevention
Failure

Sequence
SPADE

Mining

a) Normative Pruning
b) Redundant Pruning
c) Dominant Pruning

Final Plan Prior to Failure
Raise Alarms

High Confidence
Rule Set

Planner

Monitor
New Plans

MiningPruning
Patterns

Simulator Plan Database

a) Determine How Often It Fails
Simulate Plan

b) Generate Simulation Traces

Good Plans

Bad Plans

Figure 1.1. PlanMine Architecture

These three steps are carried out automatically by mining the good
and bad plans separately and comparing the discovered rules from the
unsuccessful plans against those from the successful plans. The complete
architecture of PlanMine is shown in Figure 1.1. There are two main
goals: 1) to improve an existing plan, and 2) to generate a plan monitor
for raising alarms. In the first case the planner generates a plan and
simulates it multiple times. It then produces a database of good and
bad plans in simulation. This information is fed into the mining engine,
which discovers high frequency patterns in the bad plans. We next apply
our pruning techniques to generate a final set of rules that are highly
predictive of plan failure. This mined information is used for fixing the
plan to prevent failures, and the loop is executed multiple times till no
further improvement is obtained. The planner then generates the final

4

plan. For the second goal, the planner generates multiple plans, and
creates a database of good and bad plans (there is no simulation step).
The high confidence patterns are mined as before, and the information
is used to generate a plan monitor that raises alarms prior to failures in
new plans.

PlanMine has been integrated into two applications in planning:
the TRIPS collaborative planning system [FJ98], and the IMPROVE
algorithm for improving large, probabilistic plans [LMA98]. To experi-
mentally validate our approach, we show that IMPROVE does not work
well if the PlanMine component is replaced by less sophisticated meth-
ods for choosing which parts of the plan to repair. We also show that
the output of PlanMine can be used to build execution monitors which
predict failures in a plan before they occur. We were able to produce
monitors with 100% precision, that signal 90% of all the failures that
occur.

2. Related Work

There has been much research on analyzing planning episodes (i.e.,
invocations of the planner) to improve future planning performance in
terms of efficiency or quality (e.g. [Min90]). Our work is quite different in
that we are analyzing the performance of the plan, and not the planner.

In [McD94] a system is described in which a planning robot analyzes
simulated execution traces of its current plan for bugs, or discrepancies
between what was expected and what occurred. Each bug in the simu-
lations is classified according to an extensive taxonomy of failure modes.
This contrasts to our work in which we mine patterns of failure from
databases of plans that contain many problems, some minor and some
major, and the purpose of analysis is to discover important trends that
distinguish plan failures from successes.

CHEF [Ham90] is a case-based planning system that also analyzes
a simulated execution of a plan. CHEF simulates a plan once, and if
the plan fails, applies a deep causal model to determine the cause of
failure. This work assumes that the simulator has a correct model of
the domain. [RT94] also described a method of producing execution
monitors by analyzing the causal structure of the plan.

Additionally, there has been work on extending classical planners to
probabilistic domains (e.g. [KHW95]). These methods have been ap-
plied to very small plans because the analytic techniques are exponential
in the length of the plan. Furthermore, in this work, plan assessment
and plan refinement are completely separate. They also mention the
importance of using the results of assessing a probabilistic plan to help

Predicting Failures inEvent Sequences 5

guide the choice of how to improve it. Currently, the probabilistic plan-
ner chooses randomly from among all the actions that might improve the
plan. As shown in our second set of experiments, the patterns extracted
by data mining can help focus a planner on what part of the plan to
improve.

[HV98] applies machine learning techniques for robot path planning.
Their system uses predictive features of the environment to create situation-
dependent costs for arcs in a path map used by the planner to create
routes for the robot. They use regression tree [BFOS84] for the mining
engine, to learn separate models for each arc in the path. In our domain
this would correspond to learning rules for each route in the evacuation
domain. However, our goal is different in that we are trying to learn
long sequences of events that cause plan failure.

In [HC95] a methodology called dependency interpretation is present-
ed, that uses statistical dependency detection to identify interesting (un-
usually frequent or infrequent) patterns in plan execution traces. They
then interpret the patterns using a weak model of the planner’s inter-
action with its environment to explain how the patterns might have
been caused by the planner. One limitation is that once the patterns
have been detected, the user is responsible for picking up an interesting
pattern from among the set of mined patterns, and using it for interpre-
tation. In contrast, we automatically extract the set of the highly predic-
tive patterns. They also applied the discovered patterns for preventing
plan failures. However, they detect dependencies between a precursor
and the failure that immediately follows it, and they found that they
were likely to miss dependencies by not considering longer sequences.
Our approach on the other hand detects long failure sequences. In their
failure prevention study they only used traces of failure and recovery
methods, and did not include other influences (e.g., changing weather).
In contrast, we use all possible influences for discovering patterns. In
[OC96], they applied the MSDD algorithm to detect rules among plan-
ning operators and the context. Our work contrasts with theirs in that
in addition to detecting the frequent operators in the bad plans, we ap-
ply effective pruning techniques to automatically extract the rules most
predictive of failure.

Our work is an important application of sequence mining [AS95, SA96,
MTV97, Zak01]. It is built upon the SPADE algorithm [Zak98, Zak01],
which was shown to outperform previous methods [SA96] by up to an
order of magnitude. TASA [HKM+96] is a related system which applies
frequent episode mining to discover frequent alarms in telecommunica-
tion network databases.

6

The high item frequency in our domain distinguishes it from previ-
ous applications of sequential patterns. For example, while extracting
patterns from mail order datasets [SA96], the database items had very
low support, so that support values like 1% or 0.1% were used. For dis-
covering frequent alarm sequences in telecommunication network alarm
databases [HKM+96] the support used was also 1% or less. Furthermore,
in previous applications [HKM+96] only a database of alarms (i.e., only
the bad events) was considered, and the normal events of the network
were ignored. In our approach, since we wanted to predict plan fail-
ures, we have shown that considering only the frequent sequences in the
bad plans is not sufficient (all these have 100% confidence of predicting
failure). We also had to use the good plans as a source of “normative”
information, which was used to prune out unpredictive rules.

The problem formulation for predicting failures can be cast as discov-
ering high confidence classification rules, where the class being predicted
is whether a plan fails. However, there are several characteristics that
render traditional classifiers ineffective in our domain. Firstly, we have a
large number of attributes, many of which have missing values. Second-
ly, we are trying to predict rare events with very low frequency, resulting
in skewed class distribution. Lastly, and most importantly, we are trying
to predict sequence rules, while most previous work only targets non-
temporal domains. The main difficulty is in finding good features to
use to represent the plan traces for decision trees construction. One can
find a reasonable set of features for describing an individual event (i.e.,
action in the plan) and then have a copy of this feature set by every time
step. However, very soon we run into trouble, since our feature space of
multiple event sequences can become exponential. A method to control
this explosion is to bound the feature length to sequences of size 2 for
example. However, this is likely to miss out on longer predictive rules.

An approach similar to ours, but applied in a non-temporal domain,
is the partial classification work in [AMS97]. They try to predict rules
for a specific class out or two or more classes. They isolate the exam-
ples belonging to a given class, mine frequent associations, and then
compare the confidence based on the frequency for that class, and the
frequency in the remaining database, which is similar to our background
pruning. However, they don’t do any redundant or dominant pruning,
and as we mentioned above they do not consider sequences over time. A
brute-force method for mining high-confidence classification rules using
frequent associations was presented in [Bay97]. They also describes sev-
eral pruning strategies to control combinatorial explosion in the number
of candidates counted. One key difference is that we are working in the
sequence domain, as opposed to the association domain. The Brute al-

Predicting Failures inEvent Sequences 7

gorithm [RSE94] also performs a depth-bounded brute-force search for
predictive rules, returning the k best ones. In one of their datasets
applied to Boeing parts they do consider time, but their treatment is
different. The dataset consists of part type and the time it spends at a
particular workstation in a semi-automated factory. They treat time as
another attribute, and the discovered rules may thus have a temporal
component. In our data format each instance corresponds to a sequence
of event sets. Time is not an attribute but is used to order the events,
and we explicitly mine predictive sequences in this database.

3. Discovery of Plan Failures: Sequence Mining

Parameter Value

Action Move, Load, Unload

Outcome Success, Tardy, Late, Overheat, Blowout, Flat, Crash

Route Delta-Exodus, Exodus-Barnacle-Abyss, Delta-Calypso-Delta, ..

From Abyss, Barnacle, Calypso, Delta, Exodus

To Abyss, Barnacle, Calypso, Delta, Exodus

AtLocation Abyss, Barnacle, Calypso, Delta, Exodus

Cargo People7, Person1, Person2, etc.

Vehicle Helicopter, Truck

VehicleId Heli1, Truck1, Truck2

Weather Good, Fair, Rough, Hazardous

Figure 1.2. Plan Database Parameters

The input to PlanMine consists of a database of plans for evacuating
people from one city to another. Each plan is tagged Failure or Success
depending on whether or not it achieved its goal. Each plan has a
unique identifier, and a sequence of actions or events. Each event is
composed of several different items including the event time, the unique
event identifier, the action name, the outcome of the event, and a set
of additional parameters specifying the weather condition, vehicle type,
origin and destination city, cargo type, etc. An example of the different
parameter values is shown in Figure 1.2, and some example plans are
shown in Figure 1.3.

While routing people from one city to another using different vehi-
cles, the plan will occasionally run into trouble. The outcome of an
event specifies the type of error that occurred, if any. Only a few of the
errors, such as a helicopter crashing or a truck breaking down, are severe,
and cause the plan to fail. However, a sequence of non-severe outcomes

8

1 10 78 Move Success Delta

1 20 84 Success

1 30 85

PlanId Time EventId Action Outcome FromRoute To AtLocation VehicleId WeatherCargo

Good

Heli1Load

Exodus Helicopter Heli1Delta-Exodus

People7Exodus

Flat

1 40 101 Helicopter Heli1 HazardousCrash

2 10 7

Move

Truck Truck1 Good

GoodTruck1Truck2 20 10 Move

Move Flat

Breakdown

Delta CalypsoDelta-Calypso-Delta

Delta-Calypso-Delta Calypso Delta

Exodus-Barnacle-Abyss Helicopter Heli1 Fair

Unload

Exodus Barnacle

Barnacle People7

PLAN DATABASE

Vehicle

Figure 1.3. Example Plan Database

may also be the cause of a failure. For example, a rule might be (Load
People-7 Truck-1) 7→ (Move Flat Truck-1) 7→ (Move Late Truck-1) 7→
(Load People-7 Heli-1) 7→ (Move Crash Heli-1 RoughWeather) ⇒ Fail-
ure, indicating that the plan is likely to fail if Truck-1 gets Late due to a
Flat. This causes the Helicopter-1 to crash, a severe outcome, since the
weather gets Rough with time.

We now cast the problem of mining for causes of plan failures as the
problem of finding sequential patterns [AS95]. Let I = {i1, i2, · · · , im} be
a set of m distinct attributes, also called items. Each distinct parameter
and value pair is an item. For example, in Figure 1.2, Action=Move,
Action=Load, etc., are all distinct items (below, we omit the parameter
name and refer to items only by their value). An event is an unordered
collection of items, all of which are assumed to occur at the same time.
Without loss of generality, we assume that the items are mapped to
integers, and that items of an event are sorted in increasing order. An
event i is denoted as (i1i2 · · · ik), where ij is an item.

A sequence is an ordered list of events. A sequence α is denoted as
(α1 7→ α2 7→ · · · 7→ αn), where each sequence element αj is an event. An
item can occur only once in an event, but it can occur multiple times in
different events of a sequence. A sequence with k items (k =

∑
j |αj |)

is called a k-sequence. We say that α is a subsequence of β, denoted as

Predicting Failures inEvent Sequences 9

α � β, if there exist integers i1 < i2 < · · · < in such that αj ⊆ βij for
all αj. For example, B 7→ AC is a subsequence of AB 7→ E 7→ ACD.
We say that α is a proper subsequence of β, denoted α ≺ β, if α � β

and β 6� α. If α is obtained by removing a single item from β, we write
it as α ≺1 β. For example, (B 7→ AC) ≺1 (BE 7→ AC).

We now cast our plans in the sequence mining framework. An event
E has a unique identifier and is composed of different parameter values
(the items). For example, in Figure 1.3 the second row (event) of the first
plan is given by the item set (84, Load, Success, Exodus, People7, Heli1).
A plan or plan-sequence S has a unique identifier and is associated with
a sequence of events E1 7→ E2 7→ · · · 7→ En. Without loss of generality,
we assume that no plan has more than one event with the same time-
stamp, and that the events are sorted by the event-time. The input plan
database, denoted D, consists of a number of such plan-sequences.

Support. A plan S is said to contain a sequence α, if α � S, i.e., if
α is a subsequence of the plan-sequence S. The support or frequency of
a sequence α, denoted fr(α,D) is the fraction of plans in the database
D that contain α, i.e.,

fr(α,D) =
|{α � S ∈ D}|

|D|
.

According to this definition a sequence α is counted only once per plan
even though it may occur multiple times in that plan. It is easy to
modify this definition to count a sequence multiple times per plan, if
the semantics of the problem require it. Given a user-specified threshold
called the minimum support (denoted min sup), we say that a sequence
is frequent if fr(α,D) ≥ min sup.

Confidence. Let α and β be two sequences. The confidence of
a sequence rule α ⇒ β is the conditional probability that sequence β

occurs, given that α occurs in a plan, given as

Conf(α,D) =
fr(α 7→ β,D)

fr(α,D)
.

Given a user-specified threshold called the minimum confidence (denoted
min conf), we say that a sequence is strong if Conf(α,D) ≥ min conf .

Discovery Task. Given a database D of good and bad plans,
tagged as Success and Failure, respectively, the problem of discovering
causes of plan failures can be formulated as finding all strong rules of
the form α ⇒ Failure, where α is a frequent sequence. This task can be
broken into two main steps:

10

1 Find all frequent sequences. This step is computationally and I/O
intensive, since there can be potentially an exponential number of
frequent sequences.

2 Generate all strong rules. Since we are interested in predicting fail-
ures, we only consider rules of the form α ⇒ Failure, although our
formulation allows rules with consequents having multiple items.
The rule generation step has relatively low computational cost.

We use the SPADE algorithm [Zak98] to efficiently enumerate all the
frequent sequences. Generally a very large number of frequent pattern-
s are discovered in the first step, and consequently a large number of
strong rules are generated in the second step. If one thinks of the fre-
quent sequence discovery step as the quantitiative step due to its high
computational cost, then the rule generation step is the qualitative one,
where the quality of the discovered rules is important and not the quan-
tity. The main focus of this paper is on how to apply effective pruning
techniques to reduce the final set of discovered rules, retaining only the
rules that are most predictive of failure, and on how to do this automat-
ically. In what follows, we usually omit the rule consequent i.e., Failure,
since we mine only rules of the form α ⇒ Failure; the sequence α is used
to refer to the entire rule.

4. Sequential Pattern Discovery Algorithm

We now briefly describe the SPADE [Zak98, Zak01] algorithm, that we
used for efficient discovery of sequential patterns. SPADE is disk-based
and is designed to work with very large datasets.

SPADE uses the observation that the subsequence relation � defines
a partial order on the set of sequences, i.e., if β is a frequent sequence,
then all subsequences α � β are also frequent. The algorithm systemat-
ically searches the sequence lattice spanned by the subsequence relation,
from the most general (single items) to the most specific frequent se-
quences (maximal sequences) in a depth-first (or breadth-first) manner.
For example, let the set of frequent items F1 = {A,B,C}, and let the
maximal frequent sequences be (ABC) 7→ A, and (B 7→ A 7→ C), then
Figure 1.4 shows the lattice of frequent sequences induced by the maxi-
mal elements (note that a sequence is maximal if it is not a subsequence
of any other sequence).

Given Fk, the set of frequent sequences of length k, we say that two
sequences belong to the same equivalence class if they share a common
k − 1 length prefix. For example, from the F2 shown in Figure 1.4,
we obtain the following three equivalence classes: [A] = {A 7→ A,A 7→
C,AB,AC}; [B] = {B 7→ A,B 7→ C,BC}; and [C] = {C 7→ A}. Each

Predicting Failures inEvent Sequences 11

A->A A->C AB AC B->A B->C BC C->A

A B C

AC->A ABC BC->AAB->A

{}

B->A->C

ABC->A

LATTICE OF FREQUENT SEQUENCES

SubLattice Spanned by A

SubLattice Spanned by B

SubLattice Spanned by C

Cross-Links

Figure 1.4. Lattice Induced by Maximal Sequences

class [℘] has complete information for generating all frequent sequences
with the prefix ℘. Each class can thus be solved independently.

SPADE decomposes the original problem into smaller subproblems
by the recursive partitioning into equivalence classes (sub-lattices). This
allows each class to be processed entirely in main-memory, and generally
requires up to two complete database scans. Figure 1.5 shows the outline
of the algorithm. SPADE systematically searches the sub-lattices in a
breadth-first manner (SPADE can also use a depth-first search if main-
memory is limited), i.e. it starts with the frequent single items, and
during each iteration the frequent sequences of the previous level are
extended by one more item. Before computing the support of a newly
formed sequence, a check is made to ensure that all its subsequences are
frequent. If any subsequence is found to be infrequent, then the sequence
cannot possibly be frequent due to the monotone support property. This
pruning criterion is extremely effective in reducing the search space.

12

SPADE (min sup,D):
1. F1 = { frequent items };
2. F2 = { frequent 2-sequences };
3. for all classes C2 ∈ F2 do
4. for (k = 3; Ck−1 6= ∅; k = k + 1) do
5. for all classes [ε] ∈ Ck−1 do
6. for all sequences α ∈ [ε] do
7. for all sequences β ∈ [ε], β ≥ α do
8. if (|L(α) ∩t L(β)| ≥ min sup) then
9. S = α ∪t β

10. [ℵS] = [ℵS] ∪ S
11. Ck = Ck ∪ [ℵS];

Figure 1.5. The SPADE Algorithm

For applying global pruning across all equivalence classes, all the cross
class links have to maintained, which corresponds to storing all frequent
sequences in memory. If memory is limited, then only local pruning
within a class can be applied.

For fast frequency computation, SPADE maintains, for each distinct
item, an inverted list (denoted L) of (PlanId, EventTime) pairs where
the item occurs. For example, from our initial database in Figure 1.3, we
obtain, L(Move) = {(1, 10)(1, 30)(2, 10)(2, 20)}, and L(Flat) = {(1, 30)-
(2, 10)}. To compute the support of a sequence from any two of its
subsets, their lists are intersected in a special way. For example to ob-
tain L(Move, F lat) = {(1, 30)(2, 10)}, an equality check is made for
each pair, and to obtain L(Move 7→ Flat) = {(1, 30)}, a check is made
whether there exists any EventTime for Flat that follows any Event-
Time for Move, for pairs with the same PlanId. The reverse hold-
s if when finding L(Flat 7→ Move) = {(2, 20)} We use the notation
L(Move) ∩t L(Flat) for the temporal intersection refering to all three
cases. When intersecting the lists for Move and Flat, SPADE simulta-
neously checks for the three possible candidate sequences, Move 7→ Flat,
(Move, F lat), and Flat 7→ Move. We use the notation Move∪t Flat to
denote these three possibilities. Please see [Zak01] for more details.

5. Mining Strong Sequence Rules

We now describe our methodology for extracting the predictive se-
quences on a sample plan database. Let Dg and Db refer to the good
and bad plans, respectively. All experiments were performed on an S-

Predicting Failures inEvent Sequences 13

GI machine with a 100MHz MIPS processor and 256MB main memory,
running IRIX 6.2.

5.1. Mining the Whole Database (D = Dg + Db)

We used an example database with 522 items, 1000 good plans and
51 bad plans, with an average of 274 events per good plan, 196 events
per bad plan, and an average event length of 6.3 in both. We mined
the entire database of good and bad plans for frequent sequences. Since
there are about 5% bad plans, we would have to use a minimum support
of at least 5% to discover patterns that have some failure condition.
However, even at 100% minimum support, the algorithm proved to be
intractable. For example, we would find more than a 100 length sequence
of the form Move · · · 7→ Move, all 2100 of whose subsequences would also
be frequent, since about half of the events contain a Move. Such long
sequences would also be discovered for other common items such as
Success, Truck, etc. With this high level of item frequency, and long
plan-sequences, we would generate an exponential number of frequent
patterns. Mining the whole database is thus infeasible. Note also that
none of these rules can have high confidence, i.e., none can be used to
predict plan failure, because they occur in all the good as well as the bad
plans. The problem here is that the common strategy of mining for all
highly frequent rules and then eliminating all the low confidences ones
will be infeasible in this highly structured database.

5.2. Mining the Bad Plans (Db)

Since we are interested in rules that predict failure, we only need to
consider patterns that are frequent in the failed plans. A rule that is fre-
quent in the successful plans cannot have a high confidence of predicting
failure. To reduce the plan-sequence length and the complexity of the
problem, we decided to focus only on those events that had an outcome
other than a Success. The rationale is that the plan solves its goal if
things go the way we expect, and so it is reasonable to assume that only
non-successful actions contribute to failure. We thus removed all actions
with a successful outcome from the database of failed plans, obtaining a
smaller database of bad plans, which had an average of about 8.5 events
per plan.

The number of frequent sequences of different lengths for various levels
of minimum support are plotted in Figure 1.6, while the running times
and the total number of frequent sequences is shown in Table 1.1. At
60% support level we found an overwhelming number of patterns. Even
at 75% support, we have too many patterns (38386), most of which are

14

Table 1.1. Discovered Patterns and Running Times

MS=100% MS=75% MS=60%

#Sequences 544 38386 642597

Time 0.2s 19.8s 185.0s

1

10

100

1000

10000

100000

1e+06

0 2 4 6 8 10 12 14 16 18 20

F

re
qu

en
t S

eq
ue

nc
es

Sequence Length

MS=100%
MS=75%
MS=60%

Figure 1.6. Sequences of Different Length Mined at Various Levels of Minimum
Support (MS)

quite useless when we compute their confidence relative to the entire
database of plans. For example, the pattern Move 7→ Truck-1 7→ Move
had a 100% support in the bad plans. However, it is not at all predictive
of a failure, since it occurs in every plan, both good and bad. The
problem here is that if we only look at bad plans, the confidence of a rule
is not an effective metric for pruning uninteresting rules. In particular,
every frequent sequence α will have 100% confidence, since fr(α 7→
Failure,Db) is the same as fr(α,Db). However, all potentially useful
patterns are present in the sequences mined from the bad plans. We
must, therefore, extract the interesting ones from this set. We can also
reduce the number of patterns generated by putting sequence length or
event width restrictions, by incorporating maximum and minimum gaps,
time windows, and so on [Zak00].

Predicting Failures inEvent Sequences 15

5.3. Extracting Interesting Rules

A discovered pattern may be uninteresting due to various reason-
s [KMR+94]. For example, it may correspond to background knowledge,
or it may be redundant, i.e., subsumed by another equally predictive but
more general pattern. Below we present our pruning schemes for retain-
ing only the most predictive patterns.

5.3.1 Pruning Normative Patterns. Background knowl-
edge plays an important role in data mining [FPSSU96]. One type of
background knowledge, which we call normative knowledge, corresponds
to a set of patterns that are uninteresting to the user, often because they
are obvious. Normative knowledge can be used to constrain or prune the
search space, and thereby enhance the performance. Typically, the nor-
mative knowledge is hand-coded by an expert who knows the domain.
In our case normative knowledge is present in the database Dg of good
plans. The good plans describe the normal operations, including the mi-
nor problems that may arise frequently but do not lead to plan failure.
We automatically extract the normative knowledge from the database
of good plans as follows: We first mine the bad plans Db for frequent
sequences. We also compute the support of the discovered sequences in
the successful plans. We then eliminate those sequences that have a high
support (greater than a user-specified max sup in Dg) in the successful
plans, since such sequences represent the normal events of successful
plans. This automatic technique for incorporating background knowl-
edge is effective in pruning the uninteresting patterns. Figure 1.7 shows
the reduction in the number of frequent sequences by excluding norma-
tive patterns. At 25% maximum support in Dg, we get more than a
factor of 2 reduction (from 38386 to 17492 rules).

5.3.2 Pruning Redundant Patterns. Even after pruning
based on normative knowledge, we are left with many patterns (17492),
which have high frequency and high confidence, i.e., they are highly
predictive of failure. The problem is that the existence of one good rule
implies the existence of many almost identical, and equally predictive
rules. For example, suppose (Flat Truck-1) 7→ (Overheat Truck-1) is
highly predictive, and that the first action of every plan is a Move. In
this case Move 7→ (Flat Truck-1) 7→ (Overheat Truck-1), will be equally
predictive, and will have the same frequency. The latter sequence is
thus redundant. Formally, β is redundant if there exists α ≺1 β, with
the same support as β both in good and bad plans (recall that α ≺1 β,
if α is obtained by removing a single item from β).

16

MaxS=100% MaxS=75% MaxS=50% MaxS=25% MaxS=10% MaxS=0%
1

10

100

1000

10000

100000
N

um
be

r
of

 F
re

qu
en

t S
eq

ue
nc

es
Initial

Normative

Redundant

Dominant

Figure 1.7. Effect of Different Pruning Techniques

Given the high frequency of some actions in our domain, there is
tremendous redundancy in the set of highly predictive and frequent pat-
terns obtained after normative pruning. Therefore, we prune all redun-
dant patterns. Figure 1.7 shows that by applying redundant pruning
in addition to normative pruning we are able to reduce the pattern set
from 17492 down to 113. This technique is thus very effective.

/* Mine Bad Plans */
1. I = SPADE (min sup,Db)

/* Prune Normative Patterns */
2. H = {α ∈ I | fr(α,Dg) < max sup}

/* Prune Redundant Patterns */
3. R = {α ∈ H |6 ∃β ≻1 α such that fr(α,Db) = fr(β,Db)

and fr(α,Dg) = fr(β,Dg)}

/* Prune Dominated Patterns */
4. F = {α ∈ R |6 ∃β ≻1 α such that fr(α,Db) ≥ fr(β,Db)

and fr(α,Dg) ≤ fr(β,Dg)}

Figure 1.8. The Complete PlanMine Algorithm

Predicting Failures inEvent Sequences 17

5.3.3 Pruning Dominated Patterns. After applying norma-
tive and redundant pruning, there still remain some patterns that are
very similar. Above, we pruned rules which had equivalent support. We
can also prune rules based on confidence. We say that β is dominated
by α, if α ≺1 β, and α has lower support in good and higher support in
bad plans (i.e., α has higher confidence than β). Figure 1.7 shows that
dominant pruning, when applied along with normative and redundant
pruning, reduces the rule set from 113 down to only 5 highly predictive
patterns. The combined effect of the three pruning techniques is to re-
tain only the patterns that have the highest confidence of predicting a
failure, where confidence is given as:

Conf(α) =
fr(α 7→ Failure,D)

fr(α,D)
=

|α � Sb ∈ Db|

|α � S ∈ D|
(1.1)

Figure 1.8 shows the complete pruning algorithm. An important feature
of our approach is that all steps are automatic. The lattice structure
on sequences makes the redundancy and dominance easy to compute.
Given the databases Db and Dg, min sup, and max sup, the algorithm
returns the set of the most predictive patterns.

6. Experimental Evaluation

In this section we present an experimental evaluation of PlanMine.
We show how it is used in the TRIPS [FJ98] and IMPROVE [LMA98]
applications, and how it is be used to build plan monitors.

6.1. TRIPS and IMPROVE Applications

TRIPS is an integrated system in which a person collaborates with a
computer to develop a high quality plan to evacuate people from a small
island. During the process of building the plan, the system simulates the
plan repeatedly based on a probabilistic model of the domain, including
predicted weather patterns and their effect on vehicle performance. The
system returns an estimate of the plan’s success. Additionally, TRIPS
invokes PlanMine on the execution traces produced by simulation, in
order to analyze why the plan failed when it did. This information can
be used to improve the plan.

It is difficult to quantify the performance of TRIPS or how much the
PlanMine component contributes to it. However, both seem to work
well on our test cases. In one example, we use TRIPS to develop a plan
that involves using two trucks to bring the people to the far side of a
collapsed bridge near the destination city. A helicopter then shuttles the
people, one at a time, to the destination city. The plan works well unless
the truck with the longer route gets two or more flat tires, which delay

18

the truck. If the truck is late, then the helicopter is also more likely to
crash, since the weather worsens as time progresses. On this example,
PlanMine successfully determined that (Move Truck1 Flat) → (Move
Truck1 Flat) ⇒ Failure, as well as (Move Heli1 Crash) ⇒ Failure, is a
high confidence rule for predicting plan failure.

Table 1.2. Performance of Improve (averaged over 70 trials).

initial final initial final num.
plan plan success success plans

length length rate rate tested

IMPROVE 272.3 278.9 0.82 0.98 11.7
RANDOM 272.3 287.4 0.82 0.85 23.4
HIGH 272.6 287.0 0.82 0.83 23.0

PlanMine has also been integrated into an algorithm for automatical-
ly modifying a given plan so that it has a higher probability of achieving
its goal. IMPROVE [LMA98] runs PlanMine on the execution traces
of the given plan to pinpoint defects in the plan that most often lead
to plan failure. It then applies qualitative reasoning and plan adapta-
tion algorithms to modify the plan to correct the defects detected by
PlanMine. It does this by adding actions to make the patterns that
predict failure less likely to occur. For example, if PlanMine produces
the rule (Truck1 Flat) → (Truck1 Overheat) ⇒ Failure then IMPROVE
will conclude that either preventing Truck1 from getting a flat or from
overheating might improve the plan. In each iteration, Improve con-
structs several plans which might be better than the original plan. If any
of the plans performs better in simulation than the original plan, then
IMPROVE repeats the entire process on the new best plan in simula-
tion. This process is repeated until no suggested modification improves
the plan.

Table 1.2 shows the performance of the IMPROVE algorithm, as re-
ported in [LMA98], on a large evacuation domain that contains 35 cities,
45 roads, and 100 people. The people are scattered randomly in each
trial, and the goal is always to bring all the people, using two trucks
and a helicopter, to one central location. The trucks can hold 25 people
and the helicopter only one person, so the plans involve multiple round
trips. The plans succeed unless a truck breaks down or the helicopter
crashes. For each trial we generate a random set of road conditions and
rules which give rise to a variety of malfunctions in the vehicles, such as
a truck getting a flat tire or overheating. Some malfunctions worsen the
condition of the truck and make other problems, such as the truck break-

Predicting Failures inEvent Sequences 19

ing down more likely. The process is not completely random in that by
design there usually exists some sequence of two to three malfunctions
that makes a breakdown or crash very likely. Furthermore, there are
always several malfunctions, such as trucks getting dents or having their
windows cracked, that occur frequently and never cause other problems.
We use a domain-specific greedy scheduling algorithm to generate initial
plans for this domain. The initial plans contain over 250 steps.

We compared Improve with two less sophisticated alternatives. The
RANDOM approach modifies the plan randomly five times in each iter-
ation, and chooses the modification that works best in simulation. The
HIGH approach replaces the PlanMine component of IMPROVE with
a technique that simply tries to prevent the malfunctions that occur most
often. As shown in Table 1.2, IMPROVE with PlanMine increases a
plan’s probability of achieving its goal, on average, by about 15%, but
without PlanMine only by, on average, about 3%.

6.2. Plan Monitoring

We now describe experiments to directly test PlanMine. In each
trial, we generate a training and a test set of plan executions. We run
PlanMine on the training set and then evaluate the discovered rules
on the test set. We used the sequence rules to build monitors, which
observe the execution of the plan, and sound an alarm when a plan
failure is likely. The hypothesis behind these tests is that predicting
failure accurately will be useful in avoiding errors during plan execution.
We used the same evacuation domain described above. The training set
had 1000 plan traces, with around 5% plan-failure rate. Only 300 of the
good plans were used for background knowledge. We used a min sup of
60% in the bad plans, and a max sup of 20% in the good plans.

We run PlanMine on the training data and use the discovered set of
rules R to build a monitor – a function that takes as input the actions
executed so far and outputs failure iff any of the rules in R is a subse-
quence of the action sequence. For example, a monitor built on the rules
(Truck-1 Flat) 7→ (Truck-1 Overheat) ⇒ Failure and (Truck-2 Flat) 7→
(Truck-2 Flat) ⇒ Failure sounds its alarm if Truck-1 gets a flat tire and
overheats, or if Truck-2 gets two flat tires. The precision of a monitor is
the percentage of times the monitor signals a failure, and a failure actu-
ally occurs (i.e., the ratio of correct failure signals to the total number
of failure signals). The recall of a monitor is the percentage of failures
signaled prior to their occurrence. A monitor that always signals failure
has 100% recall and p% precision where p is the rate of plan failure.
To generate monitors, first we mine the database of execution traces for

20

sequence rules. We then build a monitor by picking some threshold λ,
varied in the experiments, and retain only those rules that have at least
λ precision or confidence (see Equation 1.1) on the training data.

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(P
re

cis
io

n/
Re

ca
ll/F

re
qu

en
cy

) i
n

Te
st

 S
et

Min. Precision in Training Set

Precision
Recall

Frequency

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18

(P
re

cis
io

n/
Re

ca
ll/F

re
qu

en
cy

) i
n

Te
st

 S
et

Failure Count

Precision
Recall

Frequency

Figure 1.9. a) Using PlanMine for Prediction; b) Using Failure Count for Predic-
tion

Figure 1.9a shows the evaluation of the monitors produced with Plan-

Mine on a test set of 500 (novel) plans. The results are the averages over
105 trials, and thus each number reflects an average of approximately
50,000 separate tests. It plots the precision, recall, and frequency of
the mined rules in the test database against the precision threshold in

Predicting Failures inEvent Sequences 21

the training data. The frequency graph shows the percent of trials for
which we found at least one rule of the given precision. The figure
clearly shows that our mining and pruning techniques produce excellent
monitors, which have 100% precision with recall greater than 90%. We
can produce monitors with significantly higher recall, but only by re-
ducing precision to around 50%. The desired tradeoff depends on the
application. If plan failures are very costly then it might be worth sac-
rificing precision for recall. For comparison we also built monitors that
signaled failure as soon as a fixed number of malfunctions of any kind
occurred. Figure 1.9b shows that this approach produces poor monitors,
since there was no correlation between the number of malfunctions and
the chance of failure (precision).

We also investigated whether or not data mining was really necessary
to obtain these results. The graphs in Figure 1.10 describe the perfor-
mance of the system if we limit the length of the rules. For example,
limiting the rules to length two corresponds to building a monitor out
of the pairs of actions that best predict failure. The figure shows the
precision, recall, and frequency of the rules of different lengths discov-
ered in the test database plotted against the precision threshold in the
training data. The frequency graph shows the percent of trials for which
we found at least one rule of the given precision and the given length.
For example, at 0.5 training precision, out of the 105 trials, we found a
frequent rule of length 3 in more than 90% of the trials, and a rule of
length 5 in 10% of the trials, and so on.

The results indicate that monitors built out of rules of length less
than three are much worse than monitors built out of longer rules. In
particular, the graphs show that there were very few rules of length
one or two with even 50% or higher precision. Furthermore, rules of
higher length always had better recall for the same level of precision.
However, only 30% of our experiments produced useful rules of length
four and only 10% produced rules of length five. But when these rules
were produced, they were highly effective.

7. Conclusions

We presented PlanMine, an automatic mining method that discovers
event sequences causing failures in plans. We developed novel pruning
techniques to extract the set of the most predictive rules from highly
structured plan databases. Our pruning strategies reduced the size of
the rule set by three orders of magnitude. The rules discovered by Plan-

Mine were extremely useful for understanding and improving plans, as
well as for building monitors that raise alarms before failures happen,

22

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

isi
on

 in
 T

es
t S

et

Min. Precision in Training Set

Len=1
Len=2
Len=3
Len=4
Len=5

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Re
ca

ll i
n

Te
st

Se
t

Min. Precision in Training Set

Len=1
Len=2
Len=3
Len=4
Len=5

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fr
eq

ue
nc

y i
n

Te
st

Se
t

Min. Precision in Training Set

Len=1
Len=2
Len=3
Len=4
Len=5

Figure 1.10. a) Precision, b) Recall and c) Frequency of Discovered Sequences in
Test Set

REFERENCES 23

i.e., we show that not only can we analyze the simulation traces of a sin-
gle plan to improve it, but we also can analyze multiple plans executions
and detect common failure modes.

There are several directions in which this work can be extended. In
the experiments we were limited to using a 60% minimum support. A
lower value would easily generate more than a million patterns. But
a high support value can miss long failure sequences. It will only find
fragments of the long sequences. We would thus like to be able to lower
the minimum support threshold, and we would like to do this without
making the problem intractable. One reason for the combinatorial ex-
plosion of patterns with decreasing support is that we do not impose
any restrictions on the event times. It might be reasonable to assume
that failures are caused by events that follow closely in time, for example
only within a specific window of time. Such constraints can significantly
reduce the number of patterns, and can enable us to mine at lower sup-
port levels. Other types of constraints include putting restrictions on
the sequence lengths, minimum and maximum gaps between successive
sequence elements, and so on.

In our current approach we first mine the bad plans, and then ap-
ply the pruning in a separate step by comparing the support in both the
good and bad plans. A promising direction is to incorporate the pruning
directly into the first step, and to mine both the databases simultane-
ously. This can result in significant speedups by pruning patterns as
early in the computation as possible. One can perhaps use information
about the planner and the kinds of action sequences that can even be
generated to improve the efficiency of this application significantly.

Using support as a percentage of the whole plan database can also be
potentially limiting. For example, if the planner performs a wide variety
of plans for differing goals, we would need a lower support threshold to
compensate for the diversity. While incorporating constraints on dis-
covered patterns is one solution, an alternative would be to change the
denominator in the frequency formula to reflect similarity in the goals of
the plans. It would also be interesting to study the long term effects of
data mining, i.e., what happens if the process is repeated on new traces?
How does one merge new rules with the existing ones? and so on.

References

[AMS97] K. Ali, S. Manganaris, and R. Srikant. Partial Classification
using Association Rules. In 3rd Int’l Conference on Knowl-
edge Discovery in Databases and Data Mining, August 1997.

24

[AS95] R. Agrawal and R. Srikant. Mining sequential patterns. In
11th Intl. Conf. on Data Engg., 1995.

[Bay97] R. J. Bayardo. Brute-force mining of high-confidence clas-
sification rules. In 3rd Intl. Conf. on Knowledge Discovery
and Data Mining, August 1997.

[BFOS84] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone.
Classification and Regression Trees. Wadsworth, Belmont,
1984.

[FJ98] G. Ferguson and A. James. TRIPS: An Integrated Intelligent
Problem-Solving Assistant . In 15th Nat. Conf. AI, 1998.

[FPSSU96] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthu-
rusamy, editors. Advances in Knowledge Discovery and Data
Mining. AAAI Press, Menlo Park, CA, 1996.

[Ham90] K. Hammond. Explaining and repairing plans that fail. J.
Artificial Intelligence, 45:173–228, 1990.

[HC95] A. E. Howe and P. R. Cohen. Understanding planner behav-
ior. J. Artificial Intelligence, 76(1):125–166, 1995.

[HKM+96] K. Hatonen, M. Klemettinen, H. Mannila, P. Ronkainen, and
H. Toivonen. Knowledge discovery from telecommunication
network alarm databases. In 12th Intl. Conf. Data Engineer-
ing, February 1996.

[HV98] K. Z. Haigh and M. M. Veloso. Learning situation-dependent
costs: Improving planning from probabilistic robot execu-
tion. In Intl. Conf. Autonomous Agents, May 1998.

[KHW95] N. Kushmerick, S. Hanks, and D. Weld. An Algorithm for
Probabilistic Planning. J. Artificial Intelligence, 76:239–286,
1995.

[KMR+94] M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen,
and A. I. Verkamo. Finding interesting rules from large sets
of discovered association rules. In 3rd Intl. Conf. Informa-
tion and Knowledge Management, pages 401–407, November
1994.

[LMA98] N. Lesh, N. Martin, and J. Allen. Improving big plans. In
15th Nat. Conf. AI, 1998.

[McD94] D. McDermott. Improving robot plans during execution. In
2nd Intl. Conf. AI Planning Systems, pages 7–12, June 1994.

[Min90] Steven Minton. Quantitative results concerning the utility of
explanation-based learning. Artificial Intelligence, 42(2–3),
1990.

REFERENCES 25

[MTV97] H. Mannila, H. Toivonen, and I. Verkamo. Discovery of
frequent episodes in event sequences. Data Mining and
Knowledge Discovery: An International Journal, 1(3):259–
289, 1997.

[OC96] T. Oates and P. R. Cohen. Searching for planning operators
with context-dependent and probabilistic effects. In 13th
Nat. Conf. AI, 1996.

[RSE94] P. Riddle, R. Segal, and O. Etzioni. Representation de-
sign and brute-force induction in a boeing manufacturing
domain. Applied Aritficial Intelligence, 8:125–147, 1994.

[RT94] G. Reece and A. Tate. Syntehsizing portection monitors from
causal structure. In 2nd Intl. Conf. AI Planning Systems,
June 1994.

[SA96] R. Srikant and R. Agrawal. Mining sequential patterns:
Generalizations and performance improvements. In 5th Intl.
Conf. Extending Database Technology, March 1996.

[Zak98] M. J. Zaki. Efficient enumeration of frequent sequences. In
7th Intl. Conf. on Information and Knowledge Management,
November 1998.

[Zak00] M. J. Zaki. Sequences mining in categorical domains: Incor-
porating constraints. In 9th Intl. Conf. on Information and
Knowledge Management, November 2000.

[Zak01] M. J. Zaki. SPADE: An efficient algorithm for mining
frequent sequences. Machine Learning Journal, 42(1/2),
Jan/Feb 2001. Special issue on Unsupervised Learning.

