Web Usage Mining - Languages and Algorithms

John R. Punin, Mukkai S.Krishnamoorthy, Mohammed J.Zaki

Computer Science Department
Rensselaer Polytechnic Institute, Troy NY 12180, USA

Abstract: Web Usage Mining deals with the discovery of interesting informa-
tion from user navigational patterns from web logs. While extracting simple
information from web logs is easy, mining complex structural information is
very challenging. Data cleaning and preparation constitute a very significant
effort before mining can even be applied. We propose two new XML appli-
cations, XGMML and LOGML to help us in this task. XGMML is a graph
description language and LOGML is a web-log report description language. We
generate a web graph in XGMML format for a web site and generate web-log
reports in LOGML format for a web site from web log files and the web graph.
We show the simplicity with which mining algorithms can be specified and
implemented efficiently using our two XML applications.

1 Introduction

Recently XML has gained wider acceptance in both commercial and re-
search establishments. In this paper, we present two XML languages
and a web data mining application which utilizes them to extract com-
plex structural information. Extensible Graph Markup and Modeling
Language (XGMML) is an XML application based on Graph Modeling
Language (GML) which is used for graph description. XGMML uses
tags to describe nodes and edges of a graph. The purpose of XGMML is
to make possible the exchange of graphs between different authoring and
browsing tools. The conversion of graphs written in GML to XGMML
is straight forward. Using Extensible Stylesheet Language (XSL) with
XGMML allows the translation of graphs to different formats.

Log Markup Language (LOGML) (Punin & Krishnamoorthy 2000) is an
XML application designed to describe log reports of web servers. Web
data mining is one of the current hot topics in computer science. Min-
ing data that has been collected from web server logfiles, is not only
useful for studying customer choices, but also helps to better organize
web pages. This is accomplished by knowing which web pages are most
frequently accessed by the web surfers. When mining the data from the
log statistics, we use the web graph for annotating the log information.
Further we produce summary reports, comprising of information such
as client sites, types of browsers and the usage time statistics. We also
gather the client activity in a web site as a subgraph of the web site

graph. This subgraph can be used to get better understanding of gen-
eral user activity in the web site. In LOGML, we create a new XML
vocabulary to structurally express the contents of the logfile information.

Recently web data mining has been gaining a lot of attention because
of its potential commercial benefits. For example, consider a web log
database at a popular site, where an object is a web user and an at-
tribute is a web page. The mined patterns could be the sets or sequences
of most frequently accessed pages at that site. This kind of information
can be used to restructure the web-site, or to dynamically insert relevant
links in web pages based on user access patterns. Furthermore, click-
stream mining can help E-commerce vendors to target potential online
customers in a more effective way, at the same time enabling person-
alized service to the customers. Web mining is an umbrella term that
refers to mainly two distinct tasks. One is web content mining (Cooley,
Mobasher, & Srivastava 1997), which deals with problems of automatic
information filtering and categorization, intelligent search agents, and
personalize web agents. Web usage mining (Cooley, Mobasher, & Sri-
vastava 1997) on the other hand relies on the structure of the site, and
concerns itself with discovering interesting information from user navi-
gational behavior as stored in web access logs. The focus of this paper
is on web usage mining. While extracting simple information from web
logs is easy, mining complex structural information is very challenging.
Data cleaning and preparation constitute a very significant effort be-
fore mining can even be applied. The relevant data challenges include:
elimination of irrelevant information such as image files and cgi scripts,
user identification, user session formation, and incorporating temporal
windows in the user modeling. After all this pre-processing, one is ready
to mine the resulting database.

Web Site
YN Frequent Sets
N
L Tt " —® | ABCDEG
| XGMML cmee
Mining
Web Graph
S~ Frequent Sequences
TN A->B
N A->C->D
- A>C->E->G
| sequence —
Mining
N~ Frequent Subtrees
Y A
LOGML] O ©
| Tree —_—
Database Mining 9 e
N
Raw Logs (Multiple) @

Figure 1: Web Usage Mining Architecture

The proposed LOGML and XGMML languages have been designed to
facilitate this web mining process in addition to storing additional sum-
mary information extracted from web logs. Using the LOGML generated
documents the pre-processing steps of mining are considerably simpli-
fied. We also propose a new mining paradigm, called Frequent Pattern
Mining, to extract increasingly informative patterns from the LOGML
database. Our approach and its application to real log databases are
discussed further in Section 5. We provide an example to demonstrate
the ease with which information about a web site can be generated using
LOGML with style sheets (XSLT). Additional information about web
characterization can also be extracted from the mined data.

The overall architecture of our system is shown in Figure 1. The two
inputs to our web mining system are 1) web site to be analyzed, and 2)
raw log files spanning many days, months, or extended periods of time.
The web site is used to populate a XGMML web graph with the help
of a web crawler. The raw logs are processed by the LOGML generator
and turned into a LOGML database. This processed database contains
log information that can be used to mine various kinds of frequent pat-
tern information such as itemsets, sequences and subtrees. The LOGML
database and web graph information can also be used for web character-
ization, providing detailed statistics on top k pages, addresses, browsers,
and so on.

It should be noted that association and sequence mining have also been
applied to web usage mining in the past. Chen et al. (Chen, Park, & Yu
1996) introduced the notion of a maximal forward chain of web pages
and gave an algorithm to mine them. The WUM system (Spiliopoulou
& Faulstich 1998) applies sequence mining to analyze the navigational
behavior of users in a web site. WUM also supports an integrated en-
vironment for log preparation, querying and visualization. Cooley et
al. (Cooley, Mobasher, & Srivastava 1999) describe various data prepara-
tion schemes for facilitating web mining. Recent advances and more de-
tailed survey on various aspects of web mining spanning content, struc-
ture and usage discovery can be found in (Masand & Spiliopoulou 2000;
Kosala & Blockeel 2000). Our work differs in that our system uses new
XML based languages to streamline the whole web mining process and
allows multiple kinds of mining and characterization tasks to be per-
formed with relative ease.

2 XGMML

A graph, G= (V,E), is a set of nodes V and a set of edges E. Each edge
is either an ordered (directed graph) or unordered (undirected) pair of

nodes. Graphs can be described as data objects whose elements are
nodes and edges (which are themselves data objects). XML is an ideal
way to represent graphs. Structure of the World Wide Web is a typical
example of a graph where the web pages are “nodes,” and the hyperlinks
are “edges.” One of the best ways to describe a web site structure is
using a graph structure and hence XGMML documents are a good choice
for containing the structural information of a web site. XGMML was
created for use within the WWWPal System (Punin & Krishnamoorthy
1998) to visualize web sites as a graph. The web robot of W3C (webbot),
a component of the WWWPal System, navigates through web sites and
saves the graph information as an XGMML file. XGMML, as any other
XML application, can be mixed with other markup languages to describe
additional graph, node and/or edge information.

Structure of XGMML Documents: An XGMML document de-
scribes a graph structure. The root element is the graph element and it
can contain node, edge and att elements. The node element describes a
node of a graph and the edge element describes an edge of a graph. Ad-
ditional information for graphs, nodes and edges can be attached using
the att element. A graph element can be contained in an att element
and this graph will be considered as subgraph of the main graph. The
graphics element can be included in a node or edge element, and it
describes the graphic representation either of a node or an edge.

Resource Description Framework (RDF) is one way to describe metadata
about resources. XGMML includes metadata information for a graph,
node and/or edge using the att tag. The example below is part of a
graph describing a web site. The nodes represent web pages and the
edges represent hyperlinks. The metadata of the web pages is included
as attributes of a node. RDF and Dublin Core (DC) vocabularies have
been used to describe the metadata of the nodes.

<?xml version="1.0"7>
<graph xmlns = "http://www.cs.rpi.edu/XGMML"
xmlns:xsi="http://www.w3.o0rg/2000/10/XMLSchema-instance"
xsi:schemalocation="http://www.cs.rpi.edu/XGMML
http://www.cs.rpi.edu/~puninj/XGMML/xgmml .xsd"
directed="1" >
<node id="3" label="http://www.cs.rpi.edu/courses/" weight="5427">
<att>
<rdf :RDF
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.0/">
<rdf:Description about="http://www.cs.rpi.edu/courses/"
dc:title="Courses at Rensselaer Computer Science Department"
dc:subject="M.S. requirements; Courses; People;
Graduate Program; Computer Algorithms; Programming in Java;
Research; Course Selection
Guide; Programming in Java; Models of Computation"
dc:date="2000-01-31"
dc:type="Text"

>
</rdf :Description>
</rdf :RDF>
</att>
</node>

<edge source="1" target="3" weight="0" label="SRC IMG gfx/courses2.jpg" />
<edge source="7" target="3" weight="0" label="SRC IMG ../gfx/courses2.jpg" />
</graph>

3 LOGML (Log Markup Language)

Log reports are the compressed version of logfiles. Web masters in gen-
eral save web server logs in several files. Usually each logfile contains a
single day of information. Due to disk space limitation, old log data gets
deleted to make room for new log information. Generally, web masters
generate HI'ML reports of the logfiles and do not have problems keeping
them for a long period of time as the HI'ML reports are an insignifi-
cant size. If a web master likes to generate reports for a large period
of time, he has to combine several HTML reports to produce a final
report. LOGML is conceived to make this task easier. Web masters
can generate LOGML reports of logfiles and combine them on a regular
basis without much effort. LOGML files can be combined with XSLT to
produce HTML reports. LOGML offers the flexibility to combine them
with other XML applications, to produce graphics of the statistics of the
reports. LOGML can also be combined with RDF to provide some meta-
data information about the web server that is being analyzed. LOGML
is based on XGMML. LOGML document can be seen as a snapshot of
the web site as the user visits web pages and traverses hyperlinks. It also
provides a succinct way to save the user sessions. In the W3C Work-
ing Draft “Web Characterization Terminology & Definitions Sheet”, the
user session is defined as “a delimited set of user clicks across one or
more Web servers”.

Structure of LOGML Documents: A typical LOGML document
has three sections under the root element logml element. The first
section is a graph that describes the log graph of the visits of the users
to web pages and hyperlinks. This section uses XGMML to describe the
graph and its root element is the graph element. The second section
is the additional information of log reports such as top visiting hosts,
top user agents, and top keywords. The third section is the report of
the user sessions. Each user session is a subgraph of the log graph. The
subgraphs are reported as a list of edges that refer to the nodes of the
log graph. Each edge of the user sessions also has a timestamp for when
the edge was traversed. This timestamp helps to compute the total time
of the user session. LOGML files are large files.

LOGML Elements and Attributes: The root element of a LOGML
document is the logml element. The rest of the elements are classified
with respect to the three sections of the LOGML document. The first
section is the report of the log graph and we use the XGMML elements
to describe this graph. The second section report the general statistics
of the web server such as top pages, top referer URLs, top visiting user
agents, etc. And, the last section reports the user sessions.

The following global attributes are used by most of the LOGML ele-
ments: id - unique number to identify the elements of LOGML doc-
ument. name - string to identify the elements of LOGML document.
label - text representation of the LOGML element access_count - num-
ber of times the web server has been accessed. For example, the number
of times of a specific user agent accessed the web server. total_count -
total number of times that an element is found in a logfile. For example,
the total count of a keyword. bytes - number of bytes downloaded.
html_pages - number of HTML pages requested from the web server.
For example, the number of html pages requested by a specific site.

The XGMML elements that we use to describe the log graph are graph,
node, edge and att. We add the hits attribute to the node and edge
elements to report the number of visits to the node (web page) and the
number of traversals of the edge (hyperlink). The att element is used
to report metadata information of the web page such as mime type and
size of the file. The elements of the second section include hostname,
IP, domains, directories, user agents, referers, host referers, keywords,
http code, method and version, summary information like the the total
number of requests, user sessions or bytes transferred, and statistics by
date of requests.

The third section of the LOGML document reports the user sessions and
the LOGML elements are:

e userSessions, userSession- The userSessions element is the con-
tainer element for the set of the user sessions. Each user session is de-
scribed using the userSession, path and uedge elements where a path
is the collection of hyperlinks that the user has traversed during the
session.

e path - The path element contains all hyperlinks that the user has
traversed during the user session.

e uedge - The uedge element reports a hyperlink that has been traversed
during the user session. The source and the target attributes are ref-
erence to nodes of the Log Graph in the first section and the utime
attribute is the timestamp where the user traversed this hyperlink. Ex-
ample below is the report of one user session in a LOGML document:

<userSession name="proxy.artech.com.uy" ureferer="No referer"
entry_page="www.cs.rpi.edu/~puninj/XGMML/" start_time="12/0ct/2000:12:50:11"
access_count="4">

<path count="3">

<uedge source="3" target="10" utime="12/0ct/2000:12:50:12"/>

<uedge source="3" target="21" utime="12/0ct/2000:12:51:41"/>

<uedge source="21" target="22" utime="12/0ct/2000:12:52:02"/>

</path>

</userSession>

LOGML Generator: We have written a simple LOGML Generator as
part of our WWWPal System. The LOGML Generator reads a common
or extended log file and generates a LOGML file. The LOGML Gen-
erator also can read the webgraph (XGMML file) of the web site being
analyzed and combine the information of the web pages and hyperlinks
with the log information.

The information that we extract from the common log files include host
name or [P, date of the request, relative URI of the requested page,
HTTP version, HT'TP status code, HTTP method and the number of
bytes transferred to the web client. The extended log files additionally
contain the absolute URI of the referer web page and a string that
describes the User Agent (web browser or web crawler) that has made
the request. This information is saved in a data structure to generate
the corresponding LOGML document. The LOGML Generator also
can output HTML reports making this module a powerful tool for web
administrators.

Several algorithms have been developed to find the user sessions in the
log files (Cooley, Mobasher, & Srivastava 1999; Wu, Yu, & Ballman
1997). A simple algorithm uses the IP or host name of the web client
to identify a user. SpeedTracer System (Wu, Yu, & Ballman 1997) also
checks the User Agent and date of the request to find the user session.
Straight ways to find user session requires “cookies” or remote user iden-
tification (Cooley, Mobasher, & Srivastava 1999). The LOGML Gen-
erator algorithm, to find user sessions, is very similar to the algorithm
used by SpeedTracer System.

4 Using LOGML for Web Data Mining

In this section, we propose solving a wide class of mining problems that
arise in web data mining, using a novel, generic framework, which we
term Frequent Pattern Mining (FPM). FPM not only encompasses im-
portant data mining techniques like discovering associations and fre-
quent sequences, but at the same time generalizes the problem to in-
clude more complex patterns like tree mining and graph mining. These
patterns arise in complex domains like the web. Association mining,
and frequent subsequence mining are some of the specific instances of

FPM that have been studied in the past (Agrawal et al. 1996; Zaki 2000;
Srikant & Agrawal 1996; Zaki 2001b). In general, however, we can dis-
cover increasingly complex structures from the same database. Such
complex patterns include frequent subtrees, frequent DAGs and frequent
directed or undirected subgraphs. Mining such general patterns was also
discussed in (Schmidt-Thieme & Gaul 2001). As one increases the com-
plexity of the structures to be discovered, one extracts more informative
patterns.

The same underlying LOGML document that stores the web graph, as
well as the user sessions, which are subgraphs of the web graph, can
be used to extract increasingly complex and more informative patterns.
Given a LOGML document extracted from the database of web access
logs at a popular site, one can perform several mining tasks. The sim-
plest is to ignore all link information from the user sessions, and to mine
only the frequent sets of pages accessed by users. The next step can be
to form for each user the sequence of links they followed, and to mine
the most frequent user access paths. It is also possible to look at only
the forward accesses of a user, and to mine the most frequently accessed
subtrees at that site. Generalizing even further, a web site can be mod-
eled as a directed graph, since in addition to the forward hyperlinks,
it can have back references, creating cycles. Given a database of user
accesses one can discover the frequently occurring subgraphs.

In the rest of this section, we first formulate the FPM problem. We
show how LOGML facilitates the creation of a database suitable for
web mining. We illustrate this with actual examples from RPT logs (from
one day). Using the same example we also describe several increasingly
complex mining tasks that can be performed.

4.1 Frequent Pattern Mining: Problem Formulation

FPM is a novel, generic framework for mining various kinds of frequent
patterns. Consider a database D of a collection of structures, built out
of a set of primitive items Z. A structure represents some relationship
among items or sets of items. For a given structure G, let S < G denote
the fact that S is a substructure of G. If S < G we also say that G
contains S. The collection of all possible structures composed of the set
of items Z forms a partially ordered set under the substructure relation
<. A structure formed from k items is called a k-structure. A structure
is called mazimal if it is not a substructure of any other in a collection
of structures. We define the support of a structure GG in a database D to
be the number of structures in D that contain G. Alternately, if there is
only one very large structure in the database, the support is the number

of times G occurs as a substructure within it. We say that a structure
is frequent if its support is more than a user-specified minimum support
(min_sup) value. The set of frequent k-structures is denoted as Fy.

A structural rule is an expression X = Y, where X and Y are struc-
tures. The support of the rule in the database of structures is the joint
probability of X and Y, and the confidence is the conditional proba-
bility that a structure contains Y, given that it contains X. A rule is
strong if its confidence is more than a user-specified minimum confidence
(min_conf).

The frequent pattern mining task is to generate all structural rules in
the database, which have a support greater than min_sup and have con-
fidence greater than min_conf. This task can be broken into two main
steps: 1) Find all frequent structures having minimum support and other
constraints. This step is the most computational and I/O intensive step,
since the search space for enumeration of all frequent substructures is
exponential in the worst case. The minimum support criterion is very
successful in reducing the search space. In addition other constraints can
be induced, such as finding maximal, closed or correlated substructures.
2) Generate all strong structural rules having minimum confidence. Rule
generation is also exponential in the size of the longest substructure.
However, this time we do not have to access the database; we only need
the set of frequent structures.

4.2 Database Creation: LOGML to Web Mining

We designed the LOGML language to facilitate web mining. The LOGML
document created from web logs has all the information we need to per-
form various FPM tasks. For structure mining from web logs, we mainly
make use of two sections of the LOGML document. As described above,
the first section contains the web graph; i.e., the actual structure of the
web site in consideration. We use the web graph to obtain the page
URLs and their node identifiers. For example, the example below shows
a snippet of the (node id, URL) pairs (out of a total of 56623 nodes) we
extracted from the web graph of the RPI computer science department:

1 http://www.cs.rpi.edu/

6 http://www.cs.rpi.edu/courses/

8 http://www.cs.rpi.edu/current-events/
12 http://www.cs.rpi.edu/People/

14 http://www.cs.rpi.edu/research/

For enabling web mining we make use of the third section of the LOGML
document that stores the user sessions organized as subgraphs of the web

10

graph. We have complete history of the user clicks including the time
at which a page is requested. Each user session has a session id (the
IP or host name), a path count (the number of source and destination
node pairs) and the time when a link is traversed. We simply extract the
relevant information depending on the mining task at hand. For example
if our goal is to discover frequent sets of pages accessed, we ignore all
link information and note down the unique source or destination nodes
in a user session. For example, let a user session have the following
information as part of a LOGML document:

<userSession name="ppp0-69.ank2.isbank.net.tr" ...>
<path count="6">

<uedge source="5938" target="16470"
utime="24/0ct/2000:07:53:46"/>
<uedge source="16470" target="24754"
utime="24/0ct/2000:07:56:13"/>
<uedge source="16470" target="24755"
utime="24/0ct/2000:07:56:36"/>
<uedge source="24755" target="47387"
utime="24/0ct/2000:07:57:14"/>
<uedge source="24755" target="47397"
utime="24/0ct/2000:07:57:28"/>
<uedge source="16470" target="24756"
utime="24/0ct/2000:07:58:30"/>

We can then extract the set of nodes accessed by this user:

#format: user name, number of nodes accessed, node list
ppp0-69.ank2.isbank.net.tr 7 5938 16470 24754 24755 47387 47397 24756

After extracting this information from all the user sessions we obtain a
database that is ready to be used for frequent set mining, as we shall see
below. On the other hand if our task is to perform sequence mining, we
look for the longest forward links, and generate a new sequence each time
a back edge is traversed. Using a simple stack-based implementation all
maximal forward node sequences can be found. For the example user
session above this would yield:

#format: user name, sequence id, node position, node accessed

ppp0-69.ank2.isbank.net.tr 1 1 5938
ppp0-69.ank2.isbank.net.tr 1 2 16470
ppp0-69.ank2.isbank.net.tr 1 3 24754
ppp0-69.ank2.isbank.net.tr 2 1 5938
ppp0-69.ank2.isbank.net.tr 2 2 16470
ppp0-69.ank2.isbank.net.tr 2 3 24755
ppp0-69.ank2.isbank.net.tr 2 4 47387
ppp0-69.ank2.isbank.net.tr 3 1 5938
ppp0-69.ank2.isbank.net.tr 3 2 16470
ppp0-69.ank2.isbank.net.tr 3 3 24755
ppp0-69.ank2.isbank.net.tr 3 4 47397
ppp0-69.ank2.isbank.net.tr 4 1 5938
ppp0-69.ank2.isbank.net.tr 4 2 16470
ppp0-69.ank2.isbank.net.tr 4 3 24756

11

Original Site Graph

Figure 2: LOGML Document: Web Site Graph and User Sessions

For more complex mining task like tree or graph mining, once again
the appropriate information can be directly produced from the LOGML
user sessions.

We will illustrate various instances of the FPM paradigm in web min-
ing using the example in Figure 2, which pictorially depicts the original
web graph of a particular web site. There are 7 pages, forming the set
of primitive items Z = {A, B,C, D, E, F, G} connected with hyperlinks.
Now the LOGML document already stores in a systematic manner the
user sessions, each of them being a subgraph of the web graph. The
figure shows the pages visited by 6 users. We will see below how this
user browsing information can be used for mining different kinds of in-
creasingly complex substructures, starting with the frequently accessed
pages and frequently traversed paths, to the frequent subtrees, etc.

4.3 Web Data Mining

Frequent Sets: This is the well known association rule mining prob-
lem(Agrawal et al. 1996; Zaki 2000). Here the database D is a collection
of transactions, which are simply subsets of primitive items Z. Each
structure in the database is a transaction, and < denotes the subset
relation. The mining task, then, is to discover all frequent subsets in D.
These subsets are called itemsets in association mining literature.

Consider the example web logs database shown in Figure 3. For each
user (in Figure 2) we only record the pages accessed by them, ignoring
the path information. The mining task is to find all frequently accessed
sets of pages. Figure 3 shows all the frequent k-itemsets Fj that are
contained in at least three user transactions; i.e., min_sup = 3. ABC),
AF and CF, are the maximal frequent itemsets.

12

We applied the Charm association mining algorithm (Zaki & Hsiao 2002)
to a real LOGML document from the RPI web site (one day’s logs).
There were 200 user sessions with an average of 56 distinct nodes in
each session. It took us 0.03s to do the mining with 10% minimum
support. An example frequent set found is shown below:

FREQUENCY = 22 , NODE IDS = 25854 5938 25649 25650 25310 16511
http://www.cs.rpi.edu/ sibel/poetry/poems/nazim_hikmet/turkce.html
http://www.cs.rpi.edu/ sibel/poetry/sair_listesi.html
http://www.cs.rpi.edu/ sibel/poetry/frames/nazim_hikmet_1.html
http://www.cs.rpi.edu/ sibel/poetry/frames/nazim_hikmet_2.html
http://www.cs.rpi.edu/ sibel/poetry/links.html
http://www.cs.rpi.edu/ sibel/poetry/nazim_hikmet.html

Set Database Minsup =3 T
Userl | ABC AlB|C|F RIS
F1 o
User2 | ACDEF 4131613 e
User3 | CEG AB | AC | BC | CF -
F2 —
Userd | ABC 314 13]3 2
User5 | CDF ABC =
F3 A
User6 | ABCF 3 <
Figure 3: Set Mining Figure 4: Sequence Mining

Frequent Sequences: The problem of mining sequences (Srikant &
Agrawal 1996; Zaki 2001b) can be stated as follows: An event is simply
an itemset made up of the items Z. A sequence is an ordered list of
events. A sequence « is denoted as (o — as — -+ — ay), where
«; is an event; the symbol — denotes a “happens-after” relationship.
We say «a is a subsequence of another sequence 3, denoted as a <X 3, if
there exists a one-to-one order-preserving function f that maps events
in a to events in 3, such that, 1) a; C f(c), and 2) if a; < «; then

flai) < f(ay).

The structure database D consists of a collection of sequences, and =
denotes the subsequence relation. The mining goal is to discover all
frequent subsequences. For example, consider the sequence database
shown in Figure 4, by storing all paths from the starting page to a leaf
(note that there are other ways of constructing user access paths; this
is just one example). With minimum support of 3 we find that A — B,
A — C, C — F are the maximal frequent sequences.

We applied the SPADE sequence mining algorithm (Zaki 2001b) to an
actual LOGML document from the RPI web site. From the 200 user
sessions, we obtain 8208 maximal forward sequences. It took us 0.12s to
do the mining with minimum support set to 0.1%. An example frequent
sequence found is shown below:

13

Let Path=http://www.cs.rpi.edu/~sibel/poetry
FREQUENCY = 21, NODE IDS = 37668 -> 5944 -> 25649 -> 31409
Path/ -> Path/translation.html ->
Path/frames/nazim_hikmet_1.html -> Path/poems/nazim_hikmet/english.html

@W®|©|®

4 3 6 3 ¢’
| s

HIOJ©O

F1

Figure 5: Frequent Tree Mining

Frequent Trees: We denote an ordered, labeled tree as T' = (V;, E}),
where V; is the vertex set, and FE; are the edges or branches. We say
that a tree S = (Vi, Es) is a subtree of T, denoted as S < T, if and
only if V5 C V4, and for all edges e = (v1,v2) € Es, v1 is an ancestor
or descendant of vy in T'. Note that this definition is different from the
usual definition of a subtree. In our case, we require that for any branch
that appears in S, the two vertices must be on the same path from a
root to some leaf. For example, in Figure 2 the tree S, with V = {C, G}
and F = {CG} is a subtree of the site graph.

Given a database D of trees (i.e., a forest) on the vertex set Z, the
frequent tree mining problem (Zaki 2001a) is to find all subtrees that
appear in at least min_sup trees. For example, for the user access sub-
trees shown in Figure 2, we mine the frequent subtrees shown in Figure 5.
There are two maximal frequent subtrees, (V = {C,F}, E = {CF}) and
(V={A,B,C},E ={AB, AC}) for min_sup = 3.

We applied the TreeMinerV algorithm (Zaki 2001a) to the same RPI
LOGML file used above. From the 200 user sessions, we obtain 1009
subtrees. It took us 0.37s to do the mining with minimum support set
to 5% (or a frequency of at least 50). An example frequent subtree found
is shown below (-1 denotes a back edge):

Let Path=http://www.cs.rpi.edu/"sibel/poetry
Let Poet = Path/poems/orhan_veli
FREQUENCY = 65, NODE IDS = 16499 31397 37807 -1 37836 -1 -1 25309
Path/orhan_veli.html
/ \
/ \
Poet/turkce.html Path/frames/orhan_veli_2.html
/ \
/ \
Poet/golgem.html Poet/gunes.html

14

Raw Logs LOGML LOGML Breakdown
Source Regular Gzip Regular Gzip Webgraph | Sessions | Other
RPII(14Jun) | 52.4MB | 5.5MB | 19.9MB | 2.IMB 88.3% 8.3% 3.4%
RPI2(15Jun) | 52.4MB | 5.5MB | 19.4MB | 2.1MB 88.2% 8.4% 3.4%
CS1 (28Jun) 10.5MB | 1.1MB 4.6MB 0.5MB 74.6% 16.7% 8.7%
CS2 (29Jun) 10.3MB | 1.1MB 5.3MB 0.6MB 75.8% 16.6% 7.6%

Table 1: Size of Raw Log Files versus LOGML Files (Size is in Bytes)

Size of LOGML Documents: Since raw log files can be large, there
is a concern that the LOGML files will be large as well. Table 1 shows the
observed size of raw log files compared to the LOGML documents (with
and without compression), the number of requests and user sessions, and
the breakdown of LOGML files for the CS department (www.cs.rpi.edu)
and RPI web site (www.rpi.edu). For example, for RPI1 (logs from
14th June, 2001) there were about 275,000 request for different nodes
comprising 6,000 user sessions. The LOGML file is more than 2.5 times
smaller than the raw log file. Same trends are observed for other sources.

The benefits of LOGML become prominent when we consider the break-
down of the LOGML files. For the RPI site we find that about 88% of
the LOGML file is used to store the webgraph, while the user sessions
occupy only 8% (the other elements to store statistics, etc. use up 3.4%
space). For the CS department site, we find that the webgraph takes
about 75% space, while the user sessions occupy 17%. In general, the
webgraph is not likely to change much from one day to the next, and
even if it does, one can always store a master webgraph spanning sev-
eral days or months separately. Then on a per day basis we need only
store the user sessions (and the other LOGML sections if desired). For
example for the RPI site this would require us to store 174,573 bytes per
day, while for the CS site is comes to 86,888 bytes per day for storing
only the user sessions (with compression). Thus, not only does LOGML
facilitate web usage mining, it also can drastically reduce the amount of
daily information that needs to be stored at each site.

Conclusion: In this paper, we defined two new XML languages, XG-
MML and LOGML, and a web usage mining application. XGMML is
a graph file description format, and an ideal candidate to describe the
structure of web sites. Furthermore XGMML is a container for meta-
data information. LOGML, on the other hand, is an extension of XG-
MML to collect web usage. Future work includes mining user graphs
(structural information of web usages), as well as visualization of mined
data using WWWPal system (Punin & Krishnamoorthy 1998). To per-
form web content mining, we need keyword information and content for
each of the nodes. Obtaining this information will involve analyzing
each of the web pages and collecting relevant keywords. Work is under
way to accomplish this task.

15

References

AGRAWAL, R.; MANNILA, H.; SRIKANT, R.; TOIVONEN, H.; and
VERKAMO, A. 1. (1996): Fast discovery of association rules. In Fayyad,
U., and et al. (Eds.), Advances in Knowledge Discovery and Data Mining,
307-328. AAAI Press, Menlo Park, CA.

CHEN, M.; PARK, J.; and YU, P. (1996): Data mining for path traversal
patterns in a web environment. In International Conference on Distributed
Computing Systems.

COOLEY, R.; MOBASHER, B.; and SRIVASTAVA, J. (1997): Web mining;:
Information and pattern discovery on the world wide web. In 8th IEEE Intl.
Conf. on Tools with AL

COOLEY, R.; MOBASHER, B.; and SRIVASTAVA J. (1999): Data prepara-
tion for mining world wide web browsing pattern. Knowledge and Information
Systems 1(1).

KOSALA, R., and BLOCKEEL, H. (2000): Web mining research: A survey.
SIGKDD Ezplorations 2(1).

MASAND, B., and SPILIOPOULOU, M. (Eds.). (2000): Advances in Web
Usage Mining and User Profiling: Proceedings of the WEBKDD’99 Workshop.
Number 1836 in LNAI. Springer Verlag.

PUNIN, J., and KRISHNAMOORTHY, M. (1998): WWWPal System -
A System for Analysis and Synthesis of Web Pages. In Proceedings of the
WebNet 98 Conference.

PUNIN, J., and KRISHNAMOORTHY, M. (2000): Log Markup Lan-
guage Specification. http:// www.cs.rpi.edu/ ~puninj/ LOGML/ draft-
logml.html.

SCHMIDT-THIEME, L., and GAUL, W. (2001): Frequent substructures
in web usage data - a unified approach. In Web Mining Workhsop (with 1st
SIAM Int’l Conf. on Data Mining.

SPILIOPOULOU, M., and FAULSTICH, L. (1998): WUM: A Tool for Web
Utilization Analysis. In EDBT Workshop WebDB’98, LNCS 1590. Springer
Verlag.

SRIKANT, R., and AGRAWAL, R. (1996): Mining sequential patterns:
Generalizations and performance improvements. In 5th Intl. Conf. Extending
Database Technology.

WU, K.; YU, P.; and BALLMAN, A. (1997): Speed Tracer: A Web usage
mining and analysis tool. Internet Computing 37(1):89.

ZAKI, M. J., and HSTAO, C.-J. (2002): CHARM: An efficient algorithm
for closed itemset mining. In 2nd SIAM International Conference on Data
Mining.

ZAKI, M. J. (2000): Scalable algorithms for association mining. IEEFE
Transactions on Knowledge and Data Engineering 12(3):372-390.

ZAKI, M. J. (2001a): Efficiently mining trees in a forest. Technical Report
01-7, Computer Science Dept., Rensselaer Polytechnic Institute.

ZAKI, M. J. (2001b): SPADE: An efficient algorithm for mining frequent
sequences. Machine Learning Journal 42(1/2):31-60.

