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DEFINITION

Let I be a set of binary-valued attributes, called items. A set X ⊆ I is called an itemset. A transaction
database D is a multiset of itemsets, where each itemset, called a transaction, has a unique identifier,
called a tid. The support of an itemset X in a dataset D, denoted sup(X), is the fraction of transactions
in D where X appears as a subset. X is said to be a frequent itemset in D if sup(X) ≥ minsup, where
minsup is a user defined minimum support threshold. An (frequent) itemset is called closed if it has no
(frequent) superset having the same support.
An association rule is an expression A ⇒ B, where A and B are itemsets, and A ∩ B = ∅. The support

of the rule is the joint probability of a transaction containing both A and B, given as sup(A ⇒ B) =
P (A ∧ B) = sup(A ∪ B). The confidence of a rule is the conditional probability that a transaction

contains B, given that it contains A, given as: conf(A ⇒ B) = P (B|A) = P (A∧B)
P (A) = sup(A∪B)

sup(A) . A rule

is frequent if the itemset A∪B is frequent. A rule is confident if conf ≥ minconf , where minconf is a
user-specified minimum threshold. The aim of non-redundant association rule mining is to generate a
rule basis, a small, non-redundant set of rules, from which all other association rules can be derived.

HISTORICAL BACKGROUND

The notion of closed itemsets has its origins in the elegant mathematical framework of Formal Concept Analysis
(FCA) [3], where they are called concepts. The task of mining frequent closed itemsets was independently proposed
in [11] and [7]. Approaches for non-redundant association rule mining were also independently proposed in [9]
and [1]. These approaches rely heavily on the seminal work on rule bases in [5] and [6]. Efficient algorithms for
mining frequent closed itemsets include CHARM [10], CLOSET [8] and several new approaches described in the
Frequent Itemset Mining Implementations workshops [4].

SCIENTIFIC FUNDAMENTALS

Let I = {i1, i2, · · · , im} be the set of items, and let T = {t1, t2, · · · , tn} be the set of tids, the transaction identifiers.
Just as a subset of items is called an itemset, a subset of tids is called a tidset. Let t : 2I → 2T be a function,
defined as follows:

t(X) = {t ∈ T | X ⊆ i(t)}

That is, t(X) is the set of transactions that contain all the items in the itemset X . Let i : 2T → 2I be a function,



defined as follows:

i(Y ) = {i ∈ I | ∀t ∈ Y, t contains x}

That is, i(T ) is the set of items that are contained in all the tids in the tidset Y . Formally, an itemset X is closed
if i ◦ t(X) = X , i.e., if X is a fixed-point of the closure operator c = i ◦ t. From the properties of the closure
operator, one can derive that X is the maximal itemset that is contained in all the transactions t(X), which gives
the simple definition of a closed itemset, namely, a closed itemset is one that has no superset that has the same
support.
Based on the discussion above, three main families of itemsets can be distinguished. Let F denote the set of all
frequent itemsets, given as

F = {X | X ⊆ I and sup(X) ≥ minsup}

Let C denote the set of all closed frequent itemsets, given as

C = {X | X ∈ F and 6 ∃Y ⊃ X with sup(X) = sup(Y )}

Finally, let M denote the set of all maximal frequent itemsets, given as

M = {X | X ∈ F and 6 ∃Y ⊃ X, such that Y ∈ F}

i(t)
1 ACTW
2 CDW
3 ACTW
4 ACDW
5 ACDTW
6 CDT

Table 1: Example Transaction Dataset

DWTW AWAT AC CD CT CW

CDWACWCTWATWACT

ACTW

CW

ACW

ACTW CDW

CDCT

(1345) (123456)

(135)

(1345) (2456)

(135) (135)

(135)

(135) (135)

(1345)

(1345)

(2456) (1356)

(1356)

(12345)

(12345)

(245)

( 245)

(123456)

(2456)(1356)(1345)

(12345)

(245)(135)

A DC T W
C

MAXIMAL ITEMSETS

CLOSED ITEMSETSFREQUENT ITEMSETS

Figure 1: Frequent, Closed Frequent and Maximal Frequent Itemsets

The following relationship holds between these sets: M ⊆ C ⊆ F , which is illustrated in Figure 1, based on the
example dataset shown in Table 1 and using minimum support minsup = 3. The equivalence classes of itemsets
that have the same tidsets have been shown clearly; the largest itemset in each equivalence class is a closed
itemset. The figure also shows that the maximal itemsets are a subset of the closed itemsets.
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Mining Closed Frequent Itemsets: CHARM [10] is an efficient algorithm for mining closed itemsets. Define
two itemsets X, Y of length k as belonging to the same prefix equivalence class, [P ], if they share the k− 1 length
prefix P , i.e., X = Px and Y = Py, where x, y ∈ I. More formally, [P ] = {Pxi | xi ∈ I}, is the class of all itemsets
sharing P as a common prefix. In CHARM there is no distinct candidate generation and support counting phase.
Rather, counting is simultaneous with candidate generation. For a given prefix class, one performs intersections of
the tidsets of all pairs of itemsets in the class, and checks if the resulting tidsets have cardinality at least minsup.
Each resulting frequent itemset generates a new class which will be expanded in the next step. That is, for a
given class of itemsets with prefix P , [P ] = {Px1, Px2, ..., Pxn}, one performs the intersection of Pxi with all
Pxj with j > i to obtain a new class [Pxi] = [P ′] with elements P ′xj provided the itemset Pxixj is frequent.
The computation progresses recursively until no more frequent itemsets are produced. The initial invocation
is with the class of frequent single items (the class [∅]). All tidset intersections for pairs of class elements are
computed. However in addition to checking for frequency, CHARM eliminates branches that cannot lead to closed
sets, and grows closed itemsets using subset relationships among tidsets. There are four cases: if t(Xi) ⊂ t(Xj)
or if t(Xi) = t(Xj), then replace every occurrence of Xi with Xi ∪ Xj , since whenever Xi occurs Xj also occurs,
which implies that c(Xi) ⊆ c(Xi ∪ Xj). If t(Xi) ⊃ t(Xj) then replace Xj for the same reason. Finally, further
recursion is required if t(Xi) 6= t(Xj). These four properties allow CHARM to efficiently prune the search tree
(for additional details see [10]).
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Figure 2: CHARM: Mining Closed Frequent Itemsets

Figure 2 shows how CHARM works on the example database shown in Table 1. First, CHARM sorts the items in
increasing order of support, and initializes the root class as [∅] = {D × 2456, T × 1356, A× 1345, W × 12345, C ×
123456}. The notation D × 2456 stands for the itemset D and its tidset t(D) = {2, 4, 5, 6}. CHARM first
processes the node D × 2456; it will be combined with the sibling elements. DT and DA are not frequent and
are thus pruned. Looking at W , since t(D) 6= t(W ), W is inserted in the new equivalence class [D]. For C, since
t(D) ⊂ t(C), all occurrences of D are replaced with DC, which means that [D] is also changed to [DC], and the
element DW to DWC. A recursive call with class [DC] is then made and since there is only a single itemset
DWC, it is added to the set of closed itemsets C. When the call returns to D (i.e., DC) all elements in the class
have been processed, so DC itself is added to C.
When processing T , t(T ) 6= t(A), and thus CHARM inserts A in the new class [T ]. Next it finds that t(T ) 6= t(W )
and updates [T ] = {A, W}. When it finds t(T ) ⊂ t(C) it updates all occurrences of T with TC. The class [T ]
becomes [TC] = {A, W}. CHARM then makes a recursive call to process [TC]. When combining TAC with
TWC it finds t(TAC) = t(TWC), and thus replaces TAC with TACW , deleting TWC at the same time. Since
TACW cannot be extended further, it is inserted in C. Finally, when it is done processing the branch TC, it too
is added to C. Since t(A) ⊂ t(W ) ⊂ t(C) no new recursion is made; the final set of closed itemsets C consists of
the uncrossed itemsets shown in Figure 2.
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Non-Redundant Association Rules: Given the set of closed frequent itemsets C, one can generate all non-
redundant association rules. There are two main classes of rules: i) those that have 100% confidence, and ii)
those that have less than 100% confidence [9]. Let X1 and X2 be closed frequent itemsets. The 100% confidence
rules are equivalent to those directed from X1 to X2, where X2 ⊆ X1, i.e., from a superset to a subset (not
necessarily proper subset). For example, the rule C ⇒ W is equivalent to the rule between the closed itemsets

c(W ) ⇒ c(C) ≡ CW ⇒ C. Its support is sup(CW ) = 5/6, and its confidence is sup(CW )
sup(W ) = 5/5 = 1, i.e., 100%.

The less than 100% confidence rules are equivalent to those from X1 to X2 where X1 ⊂ X2, i.e., from a subset to
a proper superset. For example, the rule W ⇒ T is equivalent to the rule c(W ) ⇒ c(W ∪ T ) ≡ CW ⇒ ACTW .

Its support is sup(TW ) = 3/6 = 0.5, and its confidence is sup(TW )
sup(W ) = 3/5 = 0.6 or 60%. More details on how to

generate these non-redundant rules appears in [9].

KEY APPLICATIONS*

Closed itemsets provide a loss-less representation of the set of all frequent itemsets; they allow one to determine
not only the frequent sets but also their exact support. At the same time they can be orders of magnitude fewer.
Likewise, the non-redundant rules provide a much smaller, and manageable, set of rules, from which all other
rules can be derived. There are numerous applications of these methods, such as market basket analysis, web
usage mining, gene expression pattern mining, and so on.

FUTURE DIRECTIONS

Closed itemset mining has inspired a lot of subsequent research in mining compressed representations or summaries
of the set of frequent patterns; see [2] for a survey of these approaches. Mining compressed pattern bases remains
an active area of study.

EXPERIMENTAL RESULTS*

A number of algorithms have been proposed to mine frequent closed itemsets, and to extract non-redundant rule
bases. The Frequent Itemset Mining Implementations (FIMI) Repository contains links to many of the latest
implementations for mining closed itemsets. A report on the comparison of these methods also appears in [4].
Other implementations can be obtained from individual author’s websites.

DATA SETS*

The FIMI repository has a number of real and synthetic datasets used in various studies on closed itemset mining.

URL TO CODE*

The main FIMI website is at http://fimi.cs.helsinki.fi/, which is also mirrored at: http://www.cs.rpi.

edu/~zaki/FIMI/

CROSS REFERENCE*

Data Mining, Association Rule Mining.

RECOMMENDED READING

Between 5 and 15 citations to important literature, e.g., in journals, conference proceedings, and

websites.
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