Fundamenta Informaticae 65 (2005) 1-20
10S Press

Efficiently Mining Frequent Embedded Unordered Trees

Mohammed J. Zaki *
Computer Science Department
Rensselaer Polytechnic Institute
Troy NY 12180

zaki@cs.rpi.edu

1.

Tree patterns typically arise in applications like biomatics, web mining, mining semi-structured
documents, and so on. For example, given a database of XMunueats, one might like to mine the
commonly occurring “structural” patterns, i.e., subtrgbat appear in the collection. As another exam-
ple, given several phylogenies (i.e., evolutionary trées) the Tree of Life [16], indicating evolutionary
history of several organisms, one might be interested rodering if there are common subtree patterns.
Whereas itemset mining [1] and sequence mining [2] have baetied extensively in the past, re-
cently there has been tremendous interest in mining incrglgiscomplex pattern types such as trees [3—
7,17, 21, 25] and graphs [12, 15, 22]. For example, sevagati#hms for tree mining have been proposed

Abstract. Mining frequent trees is very useful in domains like bioimfatics, web mining, mining
semi-structured data, and so on. In this paper we introdu&8 5 H, an efficient algorithm for min-
ing frequent, unordered, embedded subtrees in a databtdeetdd trees. The key contributions of
our work are as follows: We give the first algorithm that entetes all embedded, unordered trees.
We propose a new equivalence class extension scheme toatga#ircandidate trees. We extend
the notion of scope-list joins to compute frequency of ueoed trees. We conduct performance
evaluation on several synthetic and real datasets to shawSthEUTH is an efficient algorithm,
which has performance comparable to TreeMiner, that mingsardered trees.

Keywords: Tree Mining, Embedded Trees, Unordered Trees

Introduction

*This work was supported in part by NSF CAREER Award 11S-0082DOE Career Award DE-FG02-02ER25538, and NSF

grant EIA-0103708.
Address for correspondence: Lally 307, CSCI, RPI, 110 8ty NY 12180, USA



2 M. Zaki/ Efficiently Mining Frequent Embedded Unorderedesre

recently, which include TreeMiner [25], which mines embedidordered trees; FreqT [3], which mines
induced ordered trees, FreeTreeMiner [5] which mines iaducnordered, free trees (i.e., there is no
distinct root); TreeFinder [19], which mines embedded,rdeced trees (but it may miss some patterns;
it is not complete); and PathJoin [21], uFreqt [17], uNot @MTreeMiner [7] and HybridTreeMiner [6]
which mine induced, unordered trees. Our focus in this pegpen a complete and efficient algorithm
for mining frequent, labeled, rooted, unordered, and eméddubtrees.

™ T2 T3 T4
G e e e Embedsdueb(%}euenorder
(A (®) © (o) (e)

© E © B 0 B 0 B OERC

Figure 1. Embedded Unordered Subtree

We choose to look at labeled rooted trees, since those atgabe of datasets that are most common
in a data mining setting, i.e., datasets represent rekltipa between items or attributes that are named,
and there is a top root element (e.g., root element in an XMiudeent, the main web page on a site). We
consider unordered trees, since we might miss some pdteritequent patterns if we restrict ourselves
to ordered trees. Further, many datasets are inherentlyderenl (like phylogenies, semi-structured
data). Finally, we consider embedded subtrees, which aenarglization of induced subtrees; they
allow not only direct parent-child branches, but also atwegescendant branches. As such embedded
subtrees are able to extract patterns “hidden” (or embgddieep within large trees which might be
missed by the induced definition. As an example, consideurEid, which shows four labeled trees.
Let's assume we want to mine subtrees that are common toualkfees (i.e.100% frequency). If we
mine induced trees only, then there are no frequent treegensore than one. If we mine embedded,
but ordered trees, once again no frequent subtrees of size timen one are found. On the other hand,
if we mine embedded, unordered subtrees, then the tree shatvebox is a frequent pattern appearing
in all four trees; it is obtained by skipping the “middle” r@@h each tree. This example shows why
unordered, and embedded trees are of interest.

In this paper we introduce SLEUTH an efficient algorithm for the problem of mining frequent,
unordered, embedded subtrees in a database of trees. Therkefputions of our work are as follows:
1) We give the first algorithm that enumerates all embeddedrdered trees. 2) We propose a new self-
contained equivalence class extension scheme to gendresmdidate trees. Only potentially frequent
extensions are considered, but some redundancy is allaw#ticandidate generation to make each
class self contained. 3) We extend the notion of scopedinsj(first proposed in [25]) for fast frequency
computation for unordered trees. We conduct performanakiation on several synthetic dataset and a
real weblog dataset to show that SLEUTH is an efficient allgorj which has performance comparable
to TreeMiner [25] that mines only ordered trees.

!SLEUTH is an anagram of the bold letters in the phrassting “Hidden” orEmbeddedJnorderedSubT rees



M. Zaki/ Efficiently Mining Frequent Embedded Unorderedesre 3

2. Preliminaries

Trees A rooted, labeled, treeT" = (V, E) is a directed, acyclic, connected graph, with= {0, 1,

- ,n} as the set of vertices (or node#),= {(z,y)|z,y € V} as the set of edges. One distinguished
vertexr € V is designated theoot, and for allz € V, there is auniquepath fromr to z. Further,
l:V — Lis alabeling function mapping vertices to a setadfels . = {1, 45, --- }. In anordered tree
the children of each vertex are ordered (i.e., if a vertexthetsildren, then we can designate them as the
first child, second child, and so on up to thi child), otherwise, the tree ismordered

If z,y € V and there is a path fromto y, thenz is called anancestorof y (andy a descendantf
z), denoted ag <, y, wherep is the length of the path from to y. If z <; y (i.e., z is an immediate
ancestor), them is called theparentof y, andy the child of z. If z andy have the same parentandy
are callecsiblings and if they have a common ancestor, they are caltgins

We also assume that vertexc V' is synonymous with (or numbered according to) its positiothe
depth-first (pre-order) traversal of the tr€e(for example, the root is vertex0). Let T'(z) denote the
subtree rooted at, and lety be the rightmost leaf (or highest numbered descendant) undehen the
scopeof z is given ass(z) = [z, y]. Intuitively, s(z) demarcates the range of vertices ungler

SubTrees Given a treeS = (Vs, E;) and treel’ = (V;, E;), we say thafS is anisomorphic subtreef
T iff there exists a one-to-one mappipg Vi — V;, such that(z,y) € E; iff (¢(z),¢(y)) € E;. If
@ is onto, thenS andT are calledsomorphic S is called annduced subtreef T' = (V;, E;), denoted
S =; T, iff Sis an isomorphic subtree @f, andy preserves labels, i.d(z) = I(¢(z)),Vz € V. That
is, for induced subtreeg preserves the parent-child relationships, as well asxéteels. The induced
subtree obtained by deleting the rightmost ledl’irs called arimmediate prefixof T'. The induced tree
obtained fromTI" by a series of rightmost node deletions is calleprrefix of T'. In the sequel we use
prefix to mean an immediate prefix, unless we indicate otlserwi

S = (Vs, E;) is called arembedded subtregf T' = (V;, E;), denoted as' <. T iff there exists a
1-to-1 mappingp : V; — V; that satisfies: ifz,y) € E; iff o(z) <, ¢(y), and ii)l(z) = l(¢(z)).
That is, for embedded subtregspreserves ancestor-descendant relationships and labdsub)tree
of size k is also called &-(sub)tree. IfS <. T, we also say thaf’ containsS or S occursin T
Note that each occurrence §fin T' can be identified by its uniquaatch label given by the sequence
o(wo)p(w1) - -~ ¢(m5), wherez; € V. That is a match label of is given as the set of matching
positions inT".

Support Letdr(S) denote the number of occurrences (induced or embeddedhdiegeon context) of
the subtrees in a treeT'. Letdy be an indicator variable, witti(S) = 1 if é7(S) > 0 anddr(S) =0

if 67(S) = 0. Let D denote a database f@es) of trees. Thesupportof a subtreeS in the database is
defined agr (S) = > 1 p dr(S), i.e., the number of trees iR that contain at least one occurrencesof
Theweighted supporbf S is defined a,,(S) = > rcp 67(S5), i.e., total number of occurrences 8f
over all trees inD. Typically, support is given as a percentage of the totallmemof trees inD. A subtree

S is frequentif its support is more than or equal to a user-specifigdimum suppor{minsup value.
We denote byF}, the set of all frequent subtrees of sizeln some domains one might be interested in
using weighted support, instead of support. Both of themaliogved our mining approach, but we focus
mainly on support.



4 M. Zaki/ Efficiently Mining Frequent Embedded Unorderedesre

Tree Mining Tasks Given a collection of treed and a user specifiethinsupvalue, several tree
mining tasks can be defined, depending on the choices amanegdffsee, ordered/unordered or in-
duced/embedded treetn this paper we focus on efficiently enumerating all frequembedded, un-

ordered subtrees ib.
S
0
1 \2
B (o

induced sub—tree match label
ordered: {016}
unordered: {016, 243}

embedded sub—tree match labels:
ordered: {016, 045, 046}
unordered: {016, 045, 046, 043, 243}

Figure 2. An Example: Tree and Subtree

Example 2.1. Consider Figure 2, which shows an example ffe@ith vertex labels drawn from the set
L ={A, B,C}, and vertices identified by their depth-first number. TherBghows for each vertex, its
label, depth-first number, and scope. For example, the sogrtex), its labell(0) = A, and since the
right-most leaf under the root is vertéxthe scope of the root ig0) = [0, 6].

ConsiderS; itis clearly an induced subtree @t. If we look only at ordered subtrees, then the match
label of S in T' is given as:012 — ¢(0)¢(1)¢(2) = 016 (we omit set notation for convenience). If
unordered subtrees are considered, théhis also a valid match labelS has additional match labels
as an embedded subtree. In the ordered case, we have aalditiatch label$)45 and 046, and in the
unordered case, we have on top of these two, the &3l

Thus the induced weighted support®fis 1 for ordered and 2 for unordered case. The embedded
weighted support of is 3, if ordered, and 5, if unordered. The supporfas 1 in all casesa

Tree Representation: String Encoding As described in [25], we represent a tréeby its string
encoding denoted7, generated as follows: Add vertex labels7tan a depth-first preorder traversal of
T, and add a unique symb®l¢ L whenever we backtrack from a child to its parent. For exanfple
T shown in Figure 2, its string encodingssB A C $ B$$ C $§ $ C $. We use the notatioff [¢] to
denote the element at positiom 7, wherei € [1,|7], and|T| is the length of the string".

Database Representation: Scope-Lists We refer to the tree database in the string encoding format as
the horizontal database. In SLEUTH, we represent the dsg¢abahe vertical format [25], in which for
every distinct label we store its scope-list, which is adiktree ids and vertex scopes where that label
occurs. For labet, we denote its scope-list @4¢); each entry in the scope list is a péirs), wheret is
atree id (tid) in which¥ occurs, and is the scope of a vertex with labéin tid ¢.



M. Zaki/ Efficiently Mining Frequent Embedded Unorderedesre 5

Database D of 3 Trees _ _ o ,
D in Horizontal Format : (tid, string encoding)

Tree TO Tree T2 (TO, AC$BDS$9)
(Tl, BAB$D$$BS$CS)
(T2, ACBSEABS$CDS$$$9)

D in Vertical Format: (tid, scope) pairs

A B C D E
0,[0,3]| 0,[2,3]| 0,[1,1]| 0,[3,3]| 2, [3,7]
1,[1,3]| 1,[0,5] | 1,[5,5] | 1, [3,3]4
2,0,71 1,12, 21| 2,11, 2] | 2,17, 7]
2,[4,7| 1,[4,4]| 2,[6,7]
5 2,2, 2]
2,[5, 5]

Figure 3. Scope-Lists

Example 2.2. Figure 3 shows a database of 3 trees, along with the horiztumtaat for each tree, and
the vertical scope-lists format for each label. Considbela; since it occurs at verteft with scope
[0, 3] in treeTy, we add(0, [0, 3]) to its scope list.A also occurs irff} with scope[l, 3], and inT, with
scoped0, 7] and[4, 7], thus we add1, [1, 3]), (2, [0, 7]) and(2, [4,7]) to L(A). In a similar manner, the
scope lists for other labels are creatmd.

We use the scope-lists to represent the list of occurremcd®idatabase, for arysubtreeS. Let
z be the label of the rightmost leaf . The scope list of' consists of triplegt, m, s), wheret is a tid
whereS occurs,s is the scope of vertex with labelin tid ¢, andm is a match label for the prefix subtree
of S. Thus our vertical database is in fact the set of scopefbstall 1-subtrees (and since they have no
prefix, there is no match label).

3. Related Work

Tree mining, being an instance of frequent structure minirag obvious relation to association [1] and
sequence [2] mining. Frequent tree mining is also relatette® isomorphism [18] and tree pattern
matching [8]. The tree inclusion problem was studied in [18],, given labeled treeB andT’, canP
be obtained fronT’ by deleting nodes? This problem is equivalent to checking i embedded ifT".
Both subtree isomorphism and pattern matching deal withded subtrees, while we mine embedded
subtrees. Further we are interested in enumerating all @ymsubtrees in a collection of trees.
Recently tree mining has attracted a lot of attention. Weslbgpped TreeMiner [25] to mine labeled,
embedded, and ordered subtrees. The notions of scopefidtsightmost extension were introduced
in that work. TreeMiner was also used in building a strudtatassifier for XML data [26]. Asai et
al. [3] presented FreqT, an apriori-like algorithm for nmigilabeled ordered trees; they independently
proposed the rightmost candidate generation scheme. Waiga[20] developed an algorithm to mine
frequently occurring subtrees in XML documents. Their alpon is also reminiscent of the level-wise
Apriori [1] approach, and they mine induced subtrees onher€ are several other recent algorithms that



6 M. Zaki/ Efficiently Mining Frequent Embedded Unorderedesre

mine different types of tree patterns, which include FreeMiner [5] which mines induced, unordered,
free trees (i.e., there is no distinct root); and PathJoi, [@Freqt [17], uNot [4], and HybridTreeM-
iner [6] which mine induced, unordered trees. CMTreeMingrriines maximal and closed induced,
unordered trees. TreeFinder [19] uses an Inductive Logigi@mming approach to mine unordered,
embedded subtrees, but it is not a complete method, i.e) iniss many frequent subtrees, especially as
support is lowered or when the different trees in the dabase common node labels. Our focus here
is on an efficient algorithm to mine the complete set of fremjuembedded, unordered trees.

There has also been recent work in mining frequent graplenpatt The AGM algorithm [12] dis-
covers induced (possibly disconnected) subgraphs. Thedi@@&thm [15] improves upon AGM, and
mines only the connected subgraphs. Both methods follow @iioé-style level-wise approach. Re-
cent methods to mine graphs using a depth-first tree basedstxh have been proposed in [22, 23].
Another method uses a candidate generation approach bas€drmnical Adjacency Matrices [11].
The work by Dehaspe et al [10] describes a level-wise Indedtogic Programming based technique
to mine frequent substructures (subgraphs) describingatenogenesis of chemical compounds. Work
on molecular feature mining has appeared in [14]. The SUBBYHEem [9] also discovers graph pat-
terns using the Minimum Description Length principle. Arpegach termed Graph-Based Induction
(GBI) was proposed in [24], which uses beam search for misiriggraphs. However, both SUBDUE
and GBI may miss some significant patterns, since they parfoheuristic search. In contrast to these
approaches, we are interested in developing efficient, timplgorithms for tree patterns.

4. Generating Unordered, Embedded Trees

There are two main steps for enumerating frequent subtreés iFirst, we need a systematic way of
generatingcandidatesubtrees whose frequency is to be computed. The candidagh@ad be non-
redundant to the extent possible; ideally, each subtreeldhi® generated as most once. Second, we
need efficient ways of counting the number of occurrencescii eandidate tree in the databdseand

to determine which candidates passmhiesupthreshold. The latter step is data structure dependent, and
will be treated later. Here we are concerned with the prolwéoandidate generation.

Figure 4. Some Automorphisms of the Same Graph

Automorphism Group An automorphisnof a tree is a isomorphism with itself. Letut(T") denote
theautomorphism groupi.e., the set of all label preserving automorphismsl’oHenceforth, by auto-
morphism, we mean label preserving automorphisms. Theaja@indidate generation is to enumerate
only onecanonicalrepresentative fromut(7"). For an unordered treE, there can be many automor-
phisms. For example, Figure 4 shows some of the automorgloéthe same tree.

Let there be a linear ordet defined on the elements of the label SetGiven any two treeX and
Y, we can define a linear ordet, calledtree orderbetween them, recursively as follows: Letand



M. Zaki/ Efficiently Mining Frequent Embedded Unorderedesre 7

ry denote the roots ok andY’, and letc®, - - - , ¢j2 andc’l"“, -+, ¢ denote the ordered list of children
of r, andry, respectively. Also lef’(c;*) denote the subtree df rooted at vertex;”. ThenX <Y
(alternatively,T'(r,) < T'(r)) iff either:

1) l(ry) < I(ry), Or

2.) l(ry) = I(ry), and either ap < m andT(c[*) = T(c;*) forall1 < i < n,ie,Y is a prefix
(not necessarily immediate prefix) of or equalXo or b) there existg € [1, min(m,n)], such that
T(¢®) = T(c;") foralli < 7, andT(c}*) < T'(c}").

This tree ordering is essentially the same as that in [1#pabh their tree coding is different.

We can also define eode orderon the tree encodings directly as follows: Assume that tleeiap
backtrack symbo$ > ¢ for all £ € L. Given two string encoding®” and). We say thatt < Y iff
either:

i) |V <|X|andX[k] = Y[k]forall1 <k < |Y|, or
ii.) There existsk € [1, min(| X[, |Y|)], such that for all <i < k, X[i] = Y[i] andX[k] < V[k].

Incidentally, a similar tree code ordering was indepergenbposed in CMTreeMiner [7].

Lemma4.l. X <Y iff Xx <.

Proof Sketch Condition i) in code order holds it and) are identical for the entire length §f,
but this is true iffY is a prefix of (or equal to) .

Condition ii) holds if and only ifX and) are identical up to positiok — 1, i.e., X[1,--- ,k —
1] = Y[1,--+ ,k — 1]. This is true iff bothX andY share a common prefix tre@ with encoding
P = X[1,--- ,k—1]). Letv’ (andwvi,) refer to the node in tre& (andY’), that corresponds to position
X[i] £ $ (and[j] # 9).

If £ = 1, thenP is an empty tree with encodirf@ = 0. Itis clear thati(r;) < I(ry) iff X[1] < Y[1].
If & > 1, thenX[k] < Y[k], iff one of the following cases is true: AY[k] # $ andY[k] # $: We
immediately havet[k] < Y[k] iff T(v%) < T(v¥) iff X <Y. B) X[k] # $ andY[k] = $: letv’, be
parent of node/; (j < k), and Ietv{/ be the corresponding node ¥ (which refers tq)[j] # $). We
then immediately have thﬁt(v{/) is a prefix ofT(vgf), sinceX[j,--- ,k —1] = Y[j,--- ,k — 1], and
v, has an extra child%, whereas?, doesn't. 0

Given Aut(T) the canonical representati® € Aut(T) is the tree, such thdaf, < X for all
X € Aut(T). ForanyP € Aut(T) we say thaiP is in canonical formf P = T,. For exampleT, = T}
for the automorphism groudut(7}), four of whose members are shown in Figure 4. We can see that
the string encoding; = BABS$D$$BS$CS is smaller thari7; = BAB$D$$C$B$ and also smaller
than other members.

Lemma 4.2. A treeT is in canonical form iff for all vertices € T, T(c}) < T(c}, ) for alli € [1,k],

wherect,cs, - - , ¢}, is the list of ordered children af.
Proof Sketcht T is in canonical form implies thal' < X for all X € Aut(T). Assume that
there exist some vertex € T' such thatl'(c;) > T(c;+1) for some: € [1, k], wherecy, cz,- - , ¢, are

the ordered children of. But then, we can obtain treE by simply swapping the subtre@¥c;) and
T(c;+1) under nodey. However, by doing so, we mak < T', which contradicts the assumption that
T is canonical. O



8 M. Zaki/ Efficiently Mining Frequent Embedded Unorderedesre

Prefix Extension Let R(P) = vivs - - - v, denote the rightmost path in trég i.e., the path from root
P, to the rightmost leaf iP. Given a seed frequent trég we can generate new candidafésobtained
by adding a new leaf with label to any vertexy; on the rightmost patt(P). We call this process as
prefix-basedextension, since each such candidate Pas its prefix tree.

It has been shown that prefix-based extension can correuti;merate all ordered embedded or in-
duced trees [3, 25]. For unordered trees, we only have to ddfeef check to see if the new extension is
the canonical form for its automorphism group, and if scs ik ivalid extension. For example, Figure 5
shows the seed treR, with encodingP = C D A$B (omitting trailing $'s). To preserve the prefix tree,
only rightmost branch extensions are allowed. Since th@migst path isR(P) = 013, we can extend
P by adding a new vertex with labelany of these vertices, to obtain a new ti&e(i € {0, 1, 3}). Note,
how addingz to node2 gives a different prefix tree encodigD Az, and is thus disallowed, as shown
in the figure.

Class Prefix

Equivalence Class

Prefix String: CDA$B

R Element List: (label, attached to position)

. (x (x, 0) // attached to 7 CDASB $$x$
T (x, 1) // attached to B $x$$
x (x, 3) // attachedto 3: CDA$Bx$%$$

Figure 5. Prefix Extension and Equivalence Class

In [17] it was shown that for any tree in canonical form itsfprés also in canonical form. Thus
starting from vertices with distinct labels, using prefixansions, and retaining only canonical forms for
each automorphism group, we can enumerate all unorderesl nien-redundantly. For each candidate,
we can count the number of embedded occurrences in datdbdsedetermine which are frequent.
Thus the main challenges in tree extension are to: i) effiljieletermine whether an extension yields a
canonical tree, and ii) determine extensions which wilgptially be frequent. The former step considers
only valid candidates, whereas the latter step minimizeswttmber of frequency computations against
the database.

Canonical Extension To check if a tree is in canonical form, we need to make surtgdha&ach vertex
v € T, T(c;) < T(ciq1) forall i € [1,k], wherecy,ca,- -+ , ¢ is the list of ordered children af.
However, since we extend only canonical trees, for a newidate] its prefix is in canonical form, and
we can do better.

Lemma 4.3. Let P be a tree in canonical form, and [B{ P) be the rightmost path if?. Let P¥ be the
tree extension oP when adding a vertex with labelto some vertexy, in R(P). For anyv; € R(PF),
letc;? | andc} denote the last two children of 2. ThenP¥ is in canonical form iff for alby; € R(PF),
T(c) ;) <T(¢)").

Proof Sketcht Let R(P) = viva - - - vgUg41 - - - U, DE the rightmost path ii?. By Lemma 4.2P is
in canonical form implies that for every nodge R(P), we havel'(¢;" ;) < T'(¢;).

2f v; is a leaf, then both children are empty, and;ihas only one child, thecﬁ1 is empty



M. Zaki/ Efficiently Mining Frequent Embedded Unorderedesre 9

Figure 6. Check for Canonical Form

When we extend® to P¥, we obtain a new rightmost paf(P*) = vy v - - - vxv,,, wherew,, is the
new last child ofy;, (with labelz). Thus bothR(P) andR(PF) share the vertices v, - - - v, in common.
Note that for anyi > k, v; € R(P) is unaffected by the addition of vertey. On the other hand, for
all i < k, the last childe}* of v; € R(P) (i.e.,v; € R(PF)) is affected byv,, whereas)? | remains
unchanged. Also foi = k, the last two children ofy, change in treeP?; we havec)* | = vj41 and
k= v,.

l Since P is in canonical form, we immediately have that for ajl € {v1,vo,-+- , v}, T(c}) <
T(c",) forall j < I —1. Thus we only have to compare the new subff§e;*) with T'(c;* ;). If
T(c)*,) < T(c*) for all v; € R(PF), then by Lemma 4.2, we immediately have ti®4tis in canonical
form. On the other hand T'(¢;* ;) > T'(c}*) for somev; € R(P¥), then P¥ cannot be in canonical
form. ]

According to lemma 4.3 we can check if a tiBf is in canonical form by starting from the rightmost
leaf in R(PF) and checking if the subtrees under the last two childrendoh@ode on the rightmost path
are ordered according 9. By lemma 4.1 it is sufficient to check if their string encagsnare ordered
by <. For example, given the candidate trBg shown in Figure 6 which has a new vertex with
label z attached to nod&2 on the rightmost path, we first compar& with its previous siblingl3. For
T(13) < T(15), we require that: > C. After skipping nodd 1 (with empty previous sibling), we reach
node0, where we compar@(5) and7(11). ForT(5) < T(11) we require that: > D, otherwiseP,
is not canonical. Thus for any < D the tree is not canonical. It is possible to speed-up therdeality
checking by adopting a different tree coding [17], but hegawill continue to use the string encoding of
a tree. The corresponding checks for canonicality basedramia 4.1 among the subtree encodings are
shown below:

Compare 13 and 15BAAC$$BS$SABCCS$$D$$BSSABCC$$x
Compare 5 and 11BAACS$$B$$SABCC$$D$$BSSABCCE%x

Based on the check for canonical form, we can determine wais are possible for each rightmost
path extension. Given a trd@ and the set of frequent label§, we can then try to exten® with each
label from F} that leads to a canonical extension. Even though all of tbesdidates are non-redundant
(i.e., there are no isomorphic duplicates), this extenpimtess may still produce too many candidate
trees, whose frequencies have to be counted in the dat@hase reduce the number of such trees, we
try to extendP with a vertex that is more likely to result in a frequent trasing the idea of a prefix
equivalence class.



10 M. Zaki/ Efficiently Mining Frequent Embedded Unorderedesre

Equivalence Class-based ExtensionWe say that twdk-subtreesX, Y are in the samerefix equiva-
lence classff they share the same prefix tree. Thus any two members oéfaxlass differ only in the
last vertex. For example, Figure 5 shows the class tempateubtrees with the same prefix subtiee
with string encoding®? = C D A $ B. The figure shows the actual format we use to store an equiva-
lence class; it consists of the class prefix string, and afistements. Each element is given agrai)
pair, wherez is thelabel of the last vertex, and specifies the vertex i¥ to which z is attached. For
example(z, 1) refers to the case whereis attached to vertex. The figure shows the encoding of the
subtrees corresponding to each class element. Note howog#ubm shares the same prefix up to the
(k — 1)th vertex. These subtrees are shown only for illustratiomp@ses; we only store the element list
in a class.

Let P be a prefix subtree of size— 1; we use the notatiofiP] to refer to its class (we will us&
and its string encodin@ interchangeably). Iz, ) is an element of the class, we write it@si) € [P].
Each(z, ) pair corresponds to a subtree of sizesharingP as the prefix, with the last vertex labeled
, attached to vertexin P. We use the notatiof? to refer to the new prefix subtree formed by adding
(z,i) to P.

Let P be a(k — 1)-subtree, and IetP] = {(z i)| P! is frequent be the set of all possible frequent
extensions of prefix treB. Then the set of potentially frequent candidate trees foctasg P?] (obtained
by adding an elemeritr, i) to P), can be obtained by prefix extensionsRifwith each elementy, j) €
[P], given as follows: i)cousin extensianlf j < i and|P| = k — 1 > 1, then(y, j) € [PZ], and in
addition ii) child extensionlf j = i then(y, k — 1) € [P%].

Prefix: AB
Element List: (C,1) (D,0)
P1 P2

Prefix: AB$ D
Element List: (D,2) (D,0)
Cc4  C5

Prefix: AB C
Element List: (C,2) (C,1) (D,0)
Cl c2 «c3

Figure 7. Equivalence Class-based Extension

Example 4.1. Consider Figure 7, showing the prefix cl&8s= AB, which contains 2 element&;, 1)
and(D,0). Let's consider the extensions of first element, i.e[R}] = [ABC)]. First we must consider
element(C, 1) itself. As child extension, we add’, 2) (treeC}), and as cousin extension, we gdd 1)
(treeCy). Extending with(D, 0), since0 < 1, we only add cousin extensidi, 0) (treeCs) to [ABC].



M. Zaki/ Efficiently Mining Frequent Embedded Unorderedesre 11

When considering extensions[@?} ] = [AB$D], we considefC, 1) first. But sinceC is attached to
vertex1, it cannot preserve the prefix trég,. Considering D, 0), we add(D, 0) as a cousin extension
and(D, 2) as a child extension, corresponding to trégsandCs. m

The main observation behind equivalence class extensibati®nly known frequent elements from
the same class are used for extenditjg which itself is known to be frequent from the previous exten
sion step. Furthermore, we only exteR, if it is in canonical form. However, to guarantee that all
possible extensions are memberg®f, we have to relax the non-redundant tree generation ideat Th
is, whereas we extend only canonidl, all possible extensions are added Rji] (which are not nec-
essarily canonical). This contrasts with the purely cacainéxtension approach, where only canonical
extensions are considered. In essence canonical and lemgieaclass extensions represent a trade-off
between the number of redundant (isomorphic) candidatesrgied and the number of potentially fre-
guent candidates to count. Canonical extensions genesateedundant candidates, but many of which
may turn out not to be frequent. On the other hand, equivaletass extension generates redundant
candidates, but considers a smaller number of (potenfia@tyuent) extensions. In our experiments we
found equivalence class extensions to be more efficient. @neequence of using equivalence class
extensions is that SLEUTH doesn’t depend on any partic@aogical form; it can work with any sys-
tematic way of choosing a representative from an automsmpligiroup. Provided only one representative
is extended, its class contains all information about therestons that can be potentially frequent. This
can provide a lot of flexibility on how tree enumeration isfpaned.

5. Frequency Computation

SLEUTH uses scope-list joins for fast frequency computetiy a new extension. We assume that each
element(z, i) in a prefix clasgP] has a scope-list which stores all occurrences of theRie@btained

by extendingP with (z,4)). The vertical database contains the initial scope #¥# for each distinct
label £. To compute the scope-lists for membersBf] we need to join the scope-lists Gf, i) with
every other elemertly, j) € [P]. If the resulting tree is frequent, we insert the elemerififj.

Lets, = [l, u,] be a scope for vertex, ands, = [l,,u,] a scope fory. We say thas, is strictly
lessthans,,, denoteds; < sy, if and only ifu, < I, i.e., the intervak, has no overlap wits,, and it
occurs befores,. We say thak, containss,, denoteds, D s, if and only ifl, < I, andu, > uy, i.e.,
the intervals,, is a proper subset f;.

Recall from the equivalence class extension that when wendxélemeniP;] there can be at most
two possible outcomes, i.e., child extension or cousinresita. The use of scopes allows us to compute
in constant time whetheyis a descendant af or y is a cousin ofc. We describe below how to compute
the embedded support for child and cousin (unordered) sixtes, using the descendant and cousin tests.

Descendant Test Given[P] and any two of its elements:, ) and(y, 7). In a child extension of:

the elementy, 7) is added as a child dfz, ). For embedded frequency computation, we have to find all
occurrences where labgloccurs as a descendantmfsharing the same prefix trd& in someT € D,
with tid ¢. This is called thelescendant tesffo check if this subtree occurs in an input tfBevith tid ¢,

we search if there exists triplé€s,, m,, s,) € L(y) and(tz, mg, sy) € L(z), such that:

1)t, =t; =1, i.e., the triples both occur in the same tree, withttid

2) my = my = m, i.e.,z andy are both extensions of the same prefix occurrence, with nialbetm.



12 M. Zaki/ Efficiently Mining Frequent Embedded Unorderedesre

3) sy C sz, I.€.,y lies within the scope af.

If the three conditions are satisfied, we have found an iestarherey is a descendant afin some input
treeT’. We then extend the match labal, of the old prefixP, to get the match label for the new prefix
P! (given asm, U l;), and add the triplét,, {m, Ul,}, s,) to the scope-list ofy, | P|) in [PZ].

Cousin Test Given[P] and any two of its elements, i) and(y, j). In a cousin extension P the
element(y, j) is added as a cousin éf,4). For embedded frequency computation, we have to find all
occurrences where labgloccurs as a cousin af, sharing the same prefix tré&. in some input tree
T € D, with tid t. This is called theousin testTo check ify occurs as a cousin in some trEewith tid

t, we need to check if there exists triplgg, m,, sy) € L(y) and(t;, my, s;) € L(z), such that:

1)t, =t; =t,i.e., the triples both occur in the same tree, with¢tid

2) my = my; = m, i.e.,z andy are both extensions of the same prefix occurrence, with nialetrm.

3) s < sy OF 55, > sy, I.€., eitherz comes beforg or y comes beforer in depth-first ordering, and
their scopes do not overlap. This allows us to find the unediérequency and is one of the crucial
differences compared to ordered tree mining, as in TreeMitt, which only checks i, < s,,.

If these conditions are satisfied, we add the triple {m, Ul,}, s,) to the scope-list ofy, j) in [P%].

@ © © ® @

0,[0,3]] 0,[2,3]| 0,[1,1] 0,[3,3]

1,[1,3]| 1,[0,5] | 1,[5,5]| 1,[3, 3] ® ® (©

200,71 1,[2,2]| 2,[1,2]| 2,[7,7] 0,0,[2,3]| 0,0,[1,1 0,02, 1, 1]

214,71 1,[4, 4] | 2,[6,7] 1,1,[2,2] 2,011, 2] 2,05, [1, 2]

2, [2, 2] 2,0, [2, 2] 2,0,[6,7] 2,02, [6, 7]

2,15, 5] 2,0,[5, 5] 2,4,16,7] 2,05, 16, 7]

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 2,4,[5,5] 2,45,[6,7]

Figure 8. Scope-list Joins

Example 5.1. Figure 8 shows an example of how scope-list joins work, usirggdatabasé from
Figure 3. The initial class with empty prefix consists of finequent labels4, B, C, andD), with their
scope-lists. All pairs (not necessarily distinct) of elenseare considered for extension.

Two of the frequent trees in clagd] are shown, namelyl B$ and AC$. ABS$ is obtained by joining
the scope lists oA and B and performing descendant tests, since we want to find thuserences of
B that are within some scope df (i.e., under a subtree rooted 4j}. Let s, denote a scope for label
For treeT, we find thatsg = [2,3] C s4 = [0, 3]. Thus we add the triplé0, 0, [2, 3]) to the new scope
list. Similarly, we test the other occurrences@®inderA in treesT; andTs. If a new scope-list occurs
in at leastminsuptids, the pattern is considered frequent.

The next candidate shows an example of testing frequencycotiain extension, namely, how to
compute the scope list dBS$C by joining L(AB) andL(AC). For finding all unordered embedded
occurrences, we need to test for disjoint scopes, with< s¢ or s¢ < s, which have the same match
label. For example, iffy, we find thatsp = [2, 3] andsc = [1, 1] satisfy these condition. Thus we add
the triple (0,02, [1,1]) to L(ABS$C). Notice that the new prefix match labéR] is obtained by adding
to the old prefix match labe0}, the position wherd3 occurs (i.e2). The other occurrences are noted in
the final scope-listm



M. Zaki/ Efficiently Mining Frequent Embedded Unorderedesre 13

6. The SLEUTH Algorithm

Figure 9 shows the high level structure of SLEUTH. The ma@psinclude the computation of the fre-
guent labels (1-subtrees) and 2-subtrees, and the enimnevtll other frequent subtrees via recursive
(depth-first) equivalence class extensions of each ¢Rsse F,. We will now describe each step in

some more detail.

SLEUTH (D, minsup:

1. F; = {frequent 1-subtreef

2. F, = { classegP]; of frequent 2-subtreef //create scope-lists
3. for all [P]; € F, do Enumerate-Frequent-SubtréfB], );

ENUMERATE-FREQUENTSUBTREEY[P)]):
4. for eachelement(z,i) € [P] do
5.  if check-canonical?) then

6 [Pi] = 0

7 for each element(y, j) € [P] do

8. if do-child-extensiorthen £, = descendant-scope-list-jo{ay, %), (v, 7));

9 if do-cousin-extensiothen L. = cousin-scope-list-joiri, i), (v, 7));

10. if child or cousin extension is frequethien

11. Add(y, j) and/or(y, k — 1) to equivalence clag#:]; //add scope-list alsc

12. Enumerate-Frequent-Subtré&4{);
Figure 9. SLEUTH Algorithm

Computing F; and Fy,: SLEUTH assumes that the initial database is in the horitasitriag encoded
format. To computer; (line 1), for each label € T (the string encoding of tre€), we increment’s
count in a count array. This step also computes other dagatiatistics such as the number of trees,
maximum number of labels, and so on. All labelsFinbelong to the class with empty prefix, given as
[Plo = [0] = {(4,-), ¢ € F1 }, and the position indicates that is not attached to any vertex. Total time
for this step isO(n) per tree, wheres = |T'|.

For efficient F;, counting (line 2) we compute the supports of all candidateusing a 2D integer
array of sizeF; x F, wherecnt[i][j] gives the count of the candidate (embedded) subtree withoémg
(i 5 $). Total time for this step i€)(n?) per tree. While computing® we also create the vertical
scope-list representation for each frequent iiemF;, and before each call @humerate-Frequent-
Subtrees ([P]; € E) (line 3) we also compute the scope lists of all frequent efgmg-subtrees) in
the class.

Computing Fi(k > 3): Figure 9 shows the pseudo-code for the recursive (depth-fiesrch for
frequent subtrees fEUMERATE-FREQUENTSUBTREES). The input to the procedure is a set of elements
of a clasg P], along with their scope-lists. Frequent subtrees are géetby joining the scope-lists of
all pairs of elements.

Before extending the clag®:] we first make sure thaP? is the canonical representative of its
automorphism group (line 5). If not, the pattern will not beemded. If yes, we try to exten®? with



14 M. Zaki/ Efficiently Mining Frequent Embedded Unorderedesre

every elementy, j) € [P]. We try both child and cousin extensions, and perform deis@or cousin
tests during scope-list join (lines 8,9). If any candidadrequent, it is added to the new cld$¥)].
This way, the subtrees found to be frequent at the currest fevm the elements of classes for the next
level. This recursive process is repeated until all fretjsebtrees have been enumerated.Plf hasn
elements, the total cost is given@$gn?), whereq is the cost of a scope-list join. The cost of scope-list
join is O(me?), wherem is the average number of distinct tids in the scope list ottiweelements, and

e is the average number of embeddings of the pattern per tid.tdtal cost of generating a new class is
thereforeO (m(en)?).

In terms of memory management, we need memory to store slagseg a path in DFS search. In
fact we need to store intermediate scope-lists for two elass a time, i.e., the current cld$¥, and a
new candidate clagg’i]. Thus the memory footprint of SLEUTH is not much, unless tbeps-lists
become too big, which can happen if the number of embeddihggattern is large. If the lists are too
large to fit in memory, we can do joins in stages. That is, welwmamg in portions of the scope-lists
for the two elements to be joined, perform descendant oricdests, and write out portions of the new
scope-list.

Lemma 6.1. The equivalence class-based extensioBlrEUTH correctly generates all possible em-
bedded, unordered, frequent subtrees.

Proof Sketcht  We prove the correctness of SLEUTH by induction on the lerkgof the mined
k-subtrees. Let's consider the base cases. iFer 1, SLEUTH considers each label and counts its
frequency, thus all 1-subtree;( are found correctly. Lek,y, z be any three labels (not necessarily
distinct). Fork = 2, SLEUTH considers all possible 2-subtrees of the farp§, and counts their
frequency; 2-subtrees are by definition canonical and thfiequent 2-subtrees are recordedrn For
k = 3, SLEUTH considers all 3-subtrees of the formz$$ or zy$2$, computes their frequency, and
creates prefix equivalence clas$eg$], where each such class contaaisfrequent extensions afy$.
The class can contain non-canonical elements, but onlynieadcelements will be output and considered
for extension. Thus all possible 3-subtrees are correciheh

For the inductive step, let's assume that SLEUTH mines thefdeequentk-subtrees, organized as
a set of prefix-based equivalence clasBesvhere each clasB € P has a share@k — 1) length prefix
tree, and consists of all frequent extensiong’afnot necessarily canonical extensions). Also note that
SLEUTH correctly outputs only the canonical frequérdubtrees from each class.

We will now show that SLEUTH will enumerate all canonicalduent(k + 1)-subtrees. Consider
any clasgP]; let (z,4) and(y, j) be any two elements of the class (not necessarily distiffcm the
previous step we already know th&t and P} (i.e, extensions of with (z,4) and(y, 7)) are frequent.
The equivalence class extension step enumerates all frequbtrees by using the rightmost path ex-
tension, whose correctness has been proved in [3, 25]. ShE&JTH extends only canonical subtrees,
each new clasfP!] has a canonical prefik-subtreeP:, and all of its frequent extensions are elements
of the class. Out of these only the canoniah- 1)-subtrees will be output. This proves that SLEUTH
enumerates all possible, embedded, unordered, frequietness. 0

Equivalence Class vs. Canonical ExtensionsAs described above, SLEUTH uses equivalence class
extensions to enumerate the frequent trees. The pRebknown to be frequent from the previous step,
and we extend it only if it is in canonical form. To ensure thttpossible extensions are members of



M. Zaki/ Efficiently Mining Frequent Embedded Unorderedesre 15

[P], we had to compromise on non-redundant tree generationddipgall possible extensions &f to
the clasgP], whether they are canonical or not.

SLEUTH-FKF2 (D, minsup:

1. F; = {frequent 1-subtreef

2. F, = { classedP]; of frequent 2-subtreef //create scope-lists
3. for all [P]; € F, do Enumerate-Frequent-SubtrégR]; , F»);

ENUMERATE-FREQUENTFSUBTREEY[P], F3):
4. for eachelement(z,i) € [P] do
5. [Pyl =0;

6. for eachelement(y, j) € [P] U [z], where[z] € F, do

7. if check-canonicalf? extended with(y, 7)) then

8. if do-child-extensiorthen £, = descendant-scope-list-jo{af 7), (v, 7));

9. if do-cousin-extensiothen L. = cousin-scope-list-joirtfc, ), (v, 7));

10. if child or cousin extension is frequethten

11. Add(y, j) and/or(y, k — 1) to equivalence clag®:]; //add scope-list alsq

12.  Enumerate-Frequent-Subtré&4(, F»);
Figure 10. SLEUTH-KF2 Algorithm

For comparison we implemented another approach, calledlSIHEFKF2, which performs only
canonical extensions. The main idea is to extend a canamchirequent subtree, with a known frequent
subtree fromFy. The pseudo-code is shown in Figure 10. The computatiof, gind F5 is the same
as for SLEUTH(lines 1-2). We then c&humerate-Frequent-Subtrees for each class iF; (line
3). This function takes as input a clagg], all of whose elements are known to be bétguent and
canonical Each membefz,i) of [P] (line 4) is either extended with another elemen{Bf or with
elements inz] (line 6), where[z] € F, denotes all possible frequent 2-subtrees of the fog$; to
guarantee correctness we have to extgf with all y € [z]. Note that elements of botlP] and
[z] represent canonical subtrees, and if the child or cousi@nsidn is canonical (line 7), we perform
descendant and cousin joins, and add the new subtig&td is is frequent. This way, each class only
contains elements that are both canonical and frequent.

Lemma 6.2. SLEUTH-FF2 correctly generates all possible embedded, unordereyljdre subtrees.

Proof Sketch  The proof is similar to that for SLEUTH. The main differenisethat instead of
storing all possible frequent extensions in a prefix clads=3TH-FKF2 stores only the canonical,
frequent extensions. To generate ngw4- 1) length candidates, all possible rightmost path extensions
with elements off;, are considered. If any extension is both canonical and &efihe process continues
to the next level, until all possible embedded, unordenesgtjufent subtrees have been mined. ]

As we mentioned earlier pure canonical and equivalencs etagnsions denote a trade-off between
the number of redundant candidates generated and the nwhipetentially frequent candidates to
count. Canonical extensions generate non-redundantdated| but many of which may turn out not
to be frequent (since, in essence, we jélnwith F, to obtainFj1). On the other hand, equivalence
class extension generates redundant candidates, butdenaismaller number of (potentially frequent)



16 M. Zaki/ Efficiently Mining Frequent Embedded Unorderedesre

extensions (since, in essence, we jpjnwith F to obtainFy,1). In the next section we compare these
two methods experimentally; we found SLEUTH, which uses\adence class extensions to be more
efficient, than SLEUTH-KF2, which uses only canonical extensions.

7. Experimental Results

All experiments were performed on a 2.8GHz Pentium 4 praresgh 1GB main memory, and with
a 250GB, 7200rpms disk, running RedHat Linux 9. Timings aseldl on total wall-clock time, and
include all preprocessing costs (such as creating scef®-li

Synthetic Datasets We constructed a synthetic data generation program toeceedatabase of arti-
ficial website browsing behavior [25]. We first construct astea website browsing tre® based on
parameters supplied by the user. These parameters intlaageaximum fanouf’ of a node, the maxi-
mum depthD of the tree, the total number of nod&sin the tree, and the number of node lab¥lsFor
each node in master tré&, we assign probabilities of following its children nodes;luding the option
of backtracking to its parent, such that sum of all the prdhes is 1. Using the master tree, one can
generate a subtréB < W by randomly picking a subtree &V as the root off; and then recursively
picking children of the current node according to the prdlizgiof following that link.

We used the following default values for the parametersntimaber of labelsV = 100, the number
of vertices in the master tree = 10, 000, the maximum deptt = 10, the maximum fanouF’ = 10
and total number of subtreds= 100, 000. We use three synthetic datasefst0 dataset had all default
values,F'5 had all values set to default, except for fandut= 5, and forT'1 M we setl” = 1,000, 000,
with remaining default values.

CSLOGS Dataset consists of web logs files collected over 1 month at the CSrtiepat. The logs
touched 13361 unique web pages within our department’s web After processing the raw logs we
obtained 59691 user browsing subtrees of the CS departnadsite. The average string encoding length
for a user subtree was.3.

7.1. Performance Evaluation

Figure 11 shows the performance of SLEUTH on different adasf®r different values of minimum sup-
port, and compares the run time against TreeMiner and SLEAFKH2. Note that, whereas SLEUTH
and SLEUTH-KF2 mine unordered embedded patterns, TreeMiner minesaar@enbedded patterns.
The second column in the figure shows the distribution oftfesdy embedded, unordered patterns for var-
ious supports. Finally the third column shows the diffeeshetween the number of frequent embedded
unordered and ordered patterns; a positive value meanthtratare more frequent unordered patterns
than ordered ones.

Let's consider theF'5 dataset. We find that unordered and ordered pattern minibg(§'H and
TreeMiner, respectively) are comparable, but TreeMinkeddess time. There are two main reasons
for this behavior. First, the number of unordered pattesnaore than ordered patterns for this dataset.
Second, SLEUTH needs to perform canonical form tests, WindeMiner doesn't, since for ordered tree
mining, the automorphism group for a tree only contains oeentver, the tree itselfAut(T") = {T'}).



Total Time (sec)

Total Time (sec)

Total Time (sec)

Total Time (sec)

M. Zaki/ Efficiently Mining Frequent Embedded Unorderedesre

0

0

F5
120 B —
SLEUTH —8—
TreeMiner -
100 SLEUTH-FkF2 o
80
60
40 []
20
O' T T T T . L T - L
1 09 08 07 06 05 04 03 02 01
Minimum Support (%)
D10
220 T
SLEUTH —8—
200 TreeMiner "
180 SLEUTH-FkF2 =
160
140
120
100
80 .
60 i
40 .'
2 e
1 09 08 07 06 05 04 03 02 01
Minimum Support (%)
TIM
1400 ——— ————
SLEUTH —&—
TreeMiner —x—u
1200 SLEUTHFKR2 —u- |
1000
800
600 i
[}
400 a
']
200

0 \‘ = \V - I ‘"\ Il Il Il Il
1 09 08 07 06 05 04 03 02 01

0
Minimum Support (%)
cslogs
45 , . . . . .
SLEUTH —— '
0 TreeMiner ------ i
SLEUTH-FkF2 -
35
30
2
20
15
10
5 »
5 45 4 35 3 25 2 15
Minimum Support (%)

Number of Patterns Number of Patterns Number of Patterns

Number of Patterns

Figure 11.

F5 F5
50000 I T T 8000 ————
50 0 é —— difference —+—
40000 foe 0L —x o
‘ 0.075 = o 6000
35000 005 --n- <
/ 0025 -0 £ 5000
30000 8
25000 ? } 5 4000
20000 “ 2 3000
; } £
15000 N N § 3
10000 sw 8 Z 200
5000 T Y 1000
0 =§-;§“xxx§“g'“:}-§=== L — e
0 2 4 6 8 10 12 14 16 1 09 08 07 06 05 04 03 02 01 0
Length of Patterns Minimum Support (%)
D10 D10
70000 T T 4500 ——
1 —— difference —+—
o 05 e
60000 - 4000
g 0 0.075 8 , 3500
50000 / ) 0.05 --#- <
0.025 --o g 3000
40000 | | £ 250
: B o
30000 ? 8 2000
£ 150
20000 T b z
6y 1000
e o':", ¥ Q-E., b o 500
0 .‘%Z"”% S-S S [ ——— e
0 2 4 6 8 10 12 14 16 1 09 08 07 06 05 04 03 02 01 0
Length of Patterns Minimum Support (%)
TIM TIM
40000 T T T T T T T 1400 7 ——
A 1—— diference ——
Sk 05 -
35000 J 0l % 1200
30000 o a 1000
25000 0,025 --e % 800
4 0 0
20000 : s 5 600
| ]
15000 } Q400
e ! E
10000 ol zZ
5000 Loy 0]
X Ny N
0 ey Do o 200 I I . | | | . | |
0 2 4 6 8 10 12 14 16 1 09 08 07 06 05 04 03 02 01 0
Length of Patterns Minimum Support (%)
cslogs cslogs
5 —— difference ——
45 25 %
2% 5
wh 175 o .
c
35 2] 5 4
30 . T
R 0
BL 53
0 Sy g
X £,
15 IR 3
10 R .
5
0 | X ke - 0 |
1 15 2 25 3 35 4 45 5 5 45 4 35 3 25 2 15
Length of Patterns Minimum Support (%)

Performance Evaluation

17



18 M. Zaki/ Efficiently Mining Frequent Embedded Unorderedesre

Looking at the length distribution, we find it to be mainly syratric across the support values, and also,
generally speaking more unordered tree are found as cothfratedered ones, especially as minimum
support is lowered. Comparing SLEUTHwith SLEUTH«F2, we find that there is a big performance
loss for the pure canonical extensions due to the joinBiodvith F», which result in many infrequent
candidates; SLEUTH-kF2 can be 5 times slower than SLEUTH. Similar trends are néthifor
D10 andT1M datasets; TreeMiner is slightly faster than SLEUTH, wherS8&EUTH can be 5-10
times faster than SLEUTH+H2. This shows clearly that the strategy of generating s@dandant
candidates, but extending only canonical prefix classespsrfor to generating many infrequent but
purely canonical candidates.

The web-log datasef’ SLOGS has different characteristics for the supports at which virgeth
Looking at the pattern length distribution, we find that thenier of patterns keep decreasing as length
increases. Also there is not much difference between thebauwf unordered and ordered embedded
trees. Considering run times, SLEUTH remains faster thak@LH-FKF2 and both of them take
the same time as ordered tree mining for higher values ofstpput for a low value (1.75%) it takes
much longer to mine unordered patterns. The reason for #psiggthat SLEUTH keeps track of all
possible “unordered” mappings from a candidate to a dateeset For the”' SLOG.S dataset, this results
in longer scope-lists than for TreeMiner, which keeps ohly érdered mappings. Longer scope-lists
lead to higher execution time for the joins.

Summarizing from the results over synthetic and reals d&gag/e can conclude that SLEUTH is an
efficient, complete, algorithm for mining unordered, endesitrees. Even though it mines more patterns
than TreeMiner, and has to perform canonical form testqetformance is comparable to ordered tree
mining.

8. Conclusions

In this paper we presented, SLEUTH, the first algorithm toerait unordered, embedded subtrees in
a database of labeled trees. Among our contributions is tbeegure for systematic candidate sub-
tree generation using self-contained equivalence preéigsels. All frequent patterns are enumerated
by unordered scope-list joins via the descendant and cdesia. We also compared SLEUTH with
SLEUTH-FF2, which also mines unordered, embedded trees, but usesgumnical extensions. Our
experiments show that SLEUTH is more efficient than SLEUTKFE, and is generally comparable
to TreeMiner, which mines only ordered subtrees, even tha&Ige UTH has to check if a subtree is in
canonical form.

For future work we plan to extend our tree mining frameworkirtcorporate user-specified con-
straints. Given that tree mining, though able to extracbrimfative patterns, is an expensive task, per-
forming general unconstrained mining can be too expensidasaalso likely to produce many patterns
that may not be relevant to a given user. Incorporating caimgs is one way to focus the search and
to allow interactivity. We also plan to develop efficient @ighms to mine maximal frequent subtrees
from dense datasets which may have very large subtreesllyi-wa plan to apply our tree mining
techniques to compelling applications, such as finding comtree patterns in phylogenetic data within
bioinformatics, as well as the extraction of structure f2éML documents and their use in classification,
clustering, and so on.



M. Zaki/ Efficiently Mining Frequent Embedded Unorderedesre 19

References

[1] Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., ¥amo, A. |.: Fast Discovery of Association Rules,
Advances in Knowledge Discovery and Data Minfhg Fayyad, et al, Eds.), AAAI Press, Menlo Park, CA,
1996.

[2] Agrawal, R., Srikant, R.: Mining Sequential Patterda4th Intl. Conf. on Data Engg1995.

[3] Asali, T., Abe, K., Kawasoe, S., Arimura, H., Satamoto, Arikawa, S.: Efficient Substructure Discovery
from Large Semi-structured Datand SIAM Int'| Conference on Data Miningpril 2002.

[4] Asai, T., Arimura, H., Uno, T., Nakano, S.: DiscoveringeBuent Substructures in Large Unordered Trees,
6th Int’l Conf. on Discovery Scienc®ctober 2003.

[5] Chi, Y., Yang, Y., Muntz, R. R.: Indexing and Mining Free€Es, 3rd IEEE International Conference on
Data Mining, 2003.

[6] Chi, Y., Yang, Y., Muntz, R. R.: HybridTreeMiner: An Effient Algorihtm for Mining Frequent Rooted
Trees and Free Trees Using Canonical Forrh6th International Conference on Scientific and Stati$tica
Database Managemerz004.

[7] Chi,Y., Yang,Y., Xia, Y., Muntz, R. R.: CMTreeMiner: Ming Both Closed and Maximal Frequent Subtrees,
8th Pacific-Asia Conference on Knowledge Discovery and ¥atéang, 2004.

[8] Cole, R., Hariharan, R., Indyk, P.: Tree pattern matghand subset matching in deterministi¢n log® n)-
time, 10th Symposium on Discrete Algorithri999.

[9] Cook, D., Holder, L.: Substructure discovery using miai description length and background knowledge,
Journal of Artificial Intelligence Research, 1994, 231-255.

[10] Dehaspe, L., Toivonen, H., King, R.: Finding frequeaistructures in chemical compoundsh Intl. Conf.
Knowledge Discovery and Data Miningugust 1998.

[11] Huan, J., Wang, W., Prins, J.: Efficient Mining of Frequ8ubgraphs in the Presence of IsomorphikfiE
Int’l Conf. on Data Mining 2003.

[12] Inokuchi, A., Washio, T., Motoda, H.: An apriori-basafjorithm for mining frequent substructures from
graph data4th European Conference on Principles of Knowledge Disgoaad Data Mining September
2000.

[13] Kilpelainen, P., Mannila, H.: Ordered and unorderaskticlusion, SIAM J. of Computing24(2), 1995,
340-356.

[14] Kramer, S., Raedt, L. D., Helma, C.: Molecular Featurmily in HIV data, Int'l Conf. on Knowledge
Discovery and Data Mining2001.

[15] Kuramochi, M., Karypis, G.: Frequent Subgraph Disagyést IEEE Int'| Conf. on Data MiningNovember
2001.

[16] Morell, V.: Web-Crawling up the Tree of LifeScience2735275), aug 1996, 568-570.

[17] Nijssen, S., Kok, J. N.: Efficient Discovery of Frequéstordered Trees1st Int'l Workshop on Mining
Graphs, Trees and Sequenc2803.

[18] Shamir, R., Tsur, D.: Faster Subtree Isomorphidournal of Algorithms33, 1999, 267-280.

[19] Termier, A., Rousset, M.-C., Sebag, M.: TreeFinder:iratFStep towards XML Data Mining|EEE Int'l
Conf. on Data Mining2002.



20 M. Zaki/ Efficiently Mining Frequent Embedded Unorderedesre

[20] Wang, K., Liu, H.: Discovering Typical Structures of Baments: A Road Map ApproachACM SIGIR
Conference on Information Retrieydl998.

[21] Xiao, Y., Yao, J.-F., Li, Z., Dunham, M. H.: Efficient DmtMining for Maximal Frequent Subtreelterna-
tional Conference on Data Minin@003.

[22] Yan, X., Han, J.: gSpan: Graph-based substructurenpatbining,IEEE Int'| Conf. on Data Mining 2002.

[23] Yan, X., Han, J.: CloseGraph: Mining Closed FrequerdgdrPatternsACM SIGKDD Int. Conf. on Knowl-
edge Discovery and Data Miningugust 2003.

[24] Yoshida, K., Motoda, H.: CLIP: Concept Learning fronfdrence PatternsArtificial Intelligence 75(1),
1995, 63-92.

[25] zaki, M. J.: Efficiently Mining Frequent Trees in a Fore8th ACM SIGKDD Int'| Conf. Knowledge Dis-
covery and Data MiningJuly 2002.

[26] zaki, M. J., Aggarwal, C.: Xrules: An effective structl classifier for XML data,9th ACM SIGKDD Intl
Conf. Knowledge Discovery and Data Miningugust 2003.



