
Fundamenta Informaticae 65 (2005) 1–20 1

IOS Press

Efficiently Mining Frequent Embedded Unordered Trees

Mohammed J. Zaki
�

Computer Science Department

Rensselaer Polytechnic Institute

Troy NY 12180

zaki@cs.rpi.edu

Abstract. Mining frequent trees is very useful in domains like bioinformatics, web mining, mining
semi-structured data, and so on. In this paper we introduce SLEUTH, an efficient algorithm for min-
ing frequent, unordered, embedded subtrees in a database oflabeled trees. The key contributions of
our work are as follows: We give the first algorithm that enumerates all embedded, unordered trees.
We propose a new equivalence class extension scheme to generate all candidate trees. We extend
the notion of scope-list joins to compute frequency of unordered trees. We conduct performance
evaluation on several synthetic and real datasets to show that SLEUTH is an efficient algorithm,
which has performance comparable to TreeMiner, that mines only ordered trees.

Keywords: Tree Mining, Embedded Trees, Unordered Trees

1. Introduction

Tree patterns typically arise in applications like bioinformatics, web mining, mining semi-structured
documents, and so on. For example, given a database of XML documents, one might like to mine the
commonly occurring “structural” patterns, i.e., subtrees, that appear in the collection. As another exam-
ple, given several phylogenies (i.e., evolutionary trees)from the Tree of Life [16], indicating evolutionary
history of several organisms, one might be interested in discovering if there are common subtree patterns.

Whereas itemset mining [1] and sequence mining [2] have beenstudied extensively in the past, re-
cently there has been tremendous interest in mining increasingly complex pattern types such as trees [3–
7, 17, 21, 25] and graphs [12, 15, 22]. For example, several algorithms for tree mining have been proposed
�

This work was supported in part by NSF CAREER Award IIS-0092978, DOE Career Award DE-FG02-02ER25538, and NSF
grant EIA-0103708.
Address for correspondence: Lally 307, CSCI, RPI, 110 8th St, Troy NY 12180, USA

2 M. Zaki / Efficiently Mining Frequent Embedded Unordered Trees

recently, which include TreeMiner [25], which mines embedded, ordered trees; FreqT [3], which mines
induced ordered trees, FreeTreeMiner [5] which mines induced, unordered, free trees (i.e., there is no
distinct root); TreeFinder [19], which mines embedded, unordered trees (but it may miss some patterns;
it is not complete); and PathJoin [21], uFreqt [17], uNot [4], CMTreeMiner [7] and HybridTreeMiner [6]
which mine induced, unordered trees. Our focus in this paperis on a complete and efficient algorithm
for mining frequent, labeled, rooted, unordered, and embedded subtrees.

 A

 C A

 B

 B

 C

 C

C

 D

C

 B B B

A A A

 B

 CA

T4T3T2T1

Subtree
Embedded, Unordered

Figure 1. Embedded Unordered Subtree

We choose to look at labeled rooted trees, since those are thetypes of datasets that are most common
in a data mining setting, i.e., datasets represent relationships between items or attributes that are named,
and there is a top root element (e.g., root element in an XML document, the main web page on a site). We
consider unordered trees, since we might miss some potentially frequent patterns if we restrict ourselves
to ordered trees. Further, many datasets are inherently unordered (like phylogenies, semi-structured
data). Finally, we consider embedded subtrees, which are a generalization of induced subtrees; they
allow not only direct parent-child branches, but also ancestor-descendant branches. As such embedded
subtrees are able to extract patterns “hidden” (or embedded) deep within large trees which might be
missed by the induced definition. As an example, consider Figure 1, which shows four labeled trees.
Let’s assume we want to mine subtrees that are common to all four trees (i.e.,

����
frequency). If we

mine induced trees only, then there are no frequent trees of size more than one. If we mine embedded,
but ordered trees, once again no frequent subtrees of size more than one are found. On the other hand,
if we mine embedded, unordered subtrees, then the tree shownin the box is a frequent pattern appearing
in all four trees; it is obtained by skipping the “middle” node in each tree. This example shows why
unordered, and embedded trees are of interest.

In this paper we introduce SLEUTH1, an efficient algorithm for the problem of mining frequent,
unordered, embedded subtrees in a database of trees. The keycontributions of our work are as follows:
1) We give the first algorithm that enumerates all embedded, unordered trees. 2) We propose a new self-
contained equivalence class extension scheme to generate all candidate trees. Only potentially frequent
extensions are considered, but some redundancy is allowed in the candidate generation to make each
class self contained. 3) We extend the notion of scope-list joins (first proposed in [25]) for fast frequency
computation for unordered trees. We conduct performance evaluation on several synthetic dataset and a
real weblog dataset to show that SLEUTH is an efficient algorithm, which has performance comparable
to TreeMiner [25] that mines only ordered trees.

1SLEUTH is an anagram of the bold letters in the phrase:L isting “Hidden” orEmbeddedUnorderedSubTrees

M. Zaki / Efficiently Mining Frequent Embedded Unordered Trees 3

2. Preliminaries

Trees A rooted, labeled, tree, � � �� � � � is a directed, acyclic, connected graph, with� � �� � �,� � � � 	
 as the set of vertices (or nodes),� � ��� � � �
� � � � �
 as the set of edges. One distinguished
vertex � � � is designated theroot, and for all� � � , there is auniquepath from� to �. Further,� � � � � is a labeling function mapping vertices to a set oflabels� � �� � � �� � � � �
. In anordered tree
the children of each vertex are ordered (i.e., if a vertex has� children, then we can designate them as the
first child, second child, and so on up to the�th child), otherwise, the tree isunordered.

If � � � � � and there is a path from� to � , then� is called anancestorof � (and� a descendantof�), denoted as� �� � , where� is the length of the path from� to � . If � � � � (i.e., � is an immediate
ancestor), then� is called theparentof � , and� thechild of �. If � and� have the same parent,� and�
are calledsiblings, and if they have a common ancestor, they are calledcousins.

We also assume that vertex� � � is synonymous with (or numbered according to) its position in the
depth-first (pre-order) traversal of the tree� (for example, the root� is vertex

�
). Let � �� � denote the

subtree rooted at�, and let� be the rightmost leaf (or highest numbered descendant) under �. Then the
scopeof � is given as� �� � � �� � � �. Intuitively, � �� � demarcates the range of vertices under�.

SubTrees Given a tree� � ��� � � � � and tree� � �� � � �, we say that� is anisomorphic subtreeof
� iff there exists a one-to-one mapping! � �� � � , such that�� � � � � � � iff �! �� � � ! �� �� � � . If
! is onto, then� and� are calledisomorphic. � is called aninduced subtreeof � � �� � � �, denoted
� "# � , iff � is an isomorphic subtree of� , and! preserves labels, i.e.,

� �� � � � �! �� �� � $� � ��. That
is, for induced subtrees! preserves the parent-child relationships, as well as vertex labels. The induced
subtree obtained by deleting the rightmost leaf in� is called animmediate prefixof � . The induced tree
obtained from� by a series of rightmost node deletions is called aprefix of � . In the sequel we use
prefix to mean an immediate prefix, unless we indicate otherwise.

� � ��� � � � � is called anembedded subtreeof � � �� � � �, denoted as� "% � iff there exists a
1-to-1 mapping! � �� � � that satisfies: i)�� � � � � � � iff ! �� � �� ! �� �, and ii)

� �� � � � �! �� ��.
That is, for embedded subtrees! preserves ancestor-descendant relationships and labels.A (sub)tree
of size � is also called a�-(sub)tree. If� "% � , we also say that� contains� or � occurs in � .
Note that each occurrence of� in � can be identified by its uniquematch label, given by the sequence
! ��& �! �� �� � � � ! �� '('�, where�# � ��. That is a match label of� is given as the set of matching
positions in� .

Support Let)* �� � denote the number of occurrences (induced or embedded, depending on context) of
the subtree� in a tree� . Let +* be an indicator variable, with+* �� � � �

if)* �� � , �
and+* �� � � �

if)* �� � � �
. Let - denote a database (aforest) of trees. Thesupportof a subtree� in the database is

defined as. �� � � / * 01 +* �� �, i.e., the number of trees in- that contain at least one occurrence of� .
Theweighted supportof � is defined as.2 �� � � / * 01)* �� �, i.e., total number of occurrences of�
over all trees in- . Typically, support is given as a percentage of the total number of trees in- . A subtree
� is frequentif its support is more than or equal to a user-specifiedminimum support(minsup) value.
We denote by34 the set of all frequent subtrees of size�. In some domains one might be interested in
using weighted support, instead of support. Both of them areallowed our mining approach, but we focus
mainly on support.

4 M. Zaki / Efficiently Mining Frequent Embedded Unordered Trees

Tree Mining Tasks Given a collection of trees- and a user specifiedminsupvalue, several tree
mining tasks can be defined, depending on the choices among rooted/free, ordered/unordered or in-
duced/embedded trees.In this paper we focus on efficiently enumerating all frequent, embedded, un-
ordered subtrees in- .

A

B C

induced sub−tree match labels

T S

[5, 5]

[6, 6]

[0, 6]

[1, 5]

[2, 4]

[3, 3] [4, 4]

embedded sub−tree match labels:

A

B

A C

C

BC

6

0

1

2

3 4

5

0

1 2

ordered: {016, 045, 046}

ordered: {016}
unordered: {016, 243}

unordered: {016, 045, 046, 043, 243}

Figure 2. An Example: Tree and Subtree

Example 2.1. Consider Figure 2, which shows an example tree� with vertex labels drawn from the set
� � �� �� � �
, and vertices identified by their depth-first number. The figure shows for each vertex, its
label, depth-first number, and scope. For example, the root is vertex

�
, its label

� �� � � � , and since the
right-most leaf under the root is vertex�, the scope of the root is� �� � � �� � ��.

Consider� ; it is clearly an induced subtree of� . If we look only at ordered subtrees, then the match
label of � in � is given as:

� �� � ! �� �! ���! ��� � � �� (we omit set notation for convenience). If
unordered subtrees are considered, then

���
is also a valid match label.� has additional match labels

as an embedded subtree. In the ordered case, we have additional match labels
���

and
���, and in the

unordered case, we have on top of these two, the label
���

.
Thus the induced weighted support of� is 1 for ordered and 2 for unordered case. The embedded

weighted support of� is 3, if ordered, and 5, if unordered. The support of� is 1 in all cases.

Tree Representation: String Encoding As described in [25], we represent a tree� by its string
encoding, denoted� , generated as follows: Add vertex labels to� in a depth-first preorder traversal of
� , and add a unique symbol	
� � whenever we backtrack from a child to its parent. For example, for
� shown in Figure 2, its string encoding is� � � � 	 � 	 	 � 	 	 � 	. We use the notation� ��� to
denote the element at position

�
in � , where

� � �� �
�
�, and
�
 is the length of the string� .

Database Representation: Scope-ListsWe refer to the tree database in the string encoding format as
the horizontal database. In SLEUTH, we represent the database in the vertical format [25], in which for
every distinct label we store its scope-list, which is a listof tree ids and vertex scopes where that label
occurs. For label�, we denote its scope-list as� �� �; each entry in the scope list is a pair�
 � ��, where

is

a tree id (tid) in which� occurs, and� is the scope of a vertex with label� in tid

.

M. Zaki / Efficiently Mining Frequent Embedded Unordered Trees 5

D in Horizontal Format : (tid, string encoding)

D in Vertical Format: (tid, scope) pairs

Tree T1

Database D of 3 Trees

0, [0, 3]
1, [1, 3]
2, [0, 7]
2, [4, 7]

1, [0, 5]
1, [2, 2]
1, [4, 4]
2, [2, 2]
2, [5, 5]

1, [5, 5]
2, [1, 2]
2, [6, 7]

0, [3, 3]
1, [3, 3]
2, [7, 7]

2, [3, 7]

Tree T0 Tree T2

 A

 D

 B

 A

 B D

 B C

 A

 C

 B

 E

 A

 B C

 D

A B C D E

[1,1]

[4,7]

[2,2]

[4, 4] [5,5]

[1,3]

[0,5]

[0,3]

[3,3]

[2,3]

[2,2]

[1,2]

[0,7]

[3,7]

[5,5]

[7,7]

[6,7]

[3, 3]

(T1, B A B $ D $ $ B $ C $)

(T2, A C B $ E A B $ C D $ $ $ $)
B C

(T0, A C $ B D $ $)

0, [1, 1]0, [2, 3]

0

1

3

0

1

2 3

4 5

1

2

3

4

5 6

7

2

0

Figure 3. Scope-Lists

Example 2.2. Figure 3 shows a database of 3 trees, along with the horizontal format for each tree, and
the vertical scope-lists format for each label. Consider label � ; since it occurs at vertex

�
with scope

�� � �� in tree� & , we add�� � �� � ��� to its scope list.� also occurs in� � with scope�� � ��, and in�� with
scopes�� � �� and �� � ��, thus we add�� � �� � ���, �� � �� � ��� and �� � �� � ��� to � �� �. In a similar manner, the
scope lists for other labels are created.

We use the scope-lists to represent the list of occurrences in the database, for any�-subtree� . Let� be the label of the rightmost leaf in� . The scope list of� consists of triples�
 �� � ��, where

is a tid
where� occurs,� is the scope of vertex with label� in tid

, and� is a match label for the prefix subtree

of � . Thus our vertical database is in fact the set of scope-listsfor all
�
-subtrees (and since they have no

prefix, there is no match label).

3. Related Work

Tree mining, being an instance of frequent structure mining, has obvious relation to association [1] and
sequence [2] mining. Frequent tree mining is also related totree isomorphism [18] and tree pattern
matching [8]. The tree inclusion problem was studied in [13], i.e., given labeled trees� and� , can�
be obtained from� by deleting nodes? This problem is equivalent to checking if� is embedded in� .
Both subtree isomorphism and pattern matching deal with induced subtrees, while we mine embedded
subtrees. Further we are interested in enumerating all common subtrees in a collection of trees.

Recently tree mining has attracted a lot of attention. We developed TreeMiner [25] to mine labeled,
embedded, and ordered subtrees. The notions of scope-listsand rightmost extension were introduced
in that work. TreeMiner was also used in building a structural classifier for XML data [26]. Asai et
al. [3] presented FreqT, an apriori-like algorithm for mining labeled ordered trees; they independently
proposed the rightmost candidate generation scheme. Wang and Liu [20] developed an algorithm to mine
frequently occurring subtrees in XML documents. Their algorithm is also reminiscent of the level-wise
Apriori [1] approach, and they mine induced subtrees only. There are several other recent algorithms that

6 M. Zaki / Efficiently Mining Frequent Embedded Unordered Trees

mine different types of tree patterns, which include FreeTreeMiner [5] which mines induced, unordered,
free trees (i.e., there is no distinct root); and PathJoin [21], uFreqt [17], uNot [4], and HybridTreeM-
iner [6] which mine induced, unordered trees. CMTreeMiner [7] mines maximal and closed induced,
unordered trees. TreeFinder [19] uses an Inductive Logic Programming approach to mine unordered,
embedded subtrees, but it is not a complete method, i.e, it can miss many frequent subtrees, especially as
support is lowered or when the different trees in the database have common node labels. Our focus here
is on an efficient algorithm to mine the complete set of frequent, embedded, unordered trees.

There has also been recent work in mining frequent graph patterns. The AGM algorithm [12] dis-
covers induced (possibly disconnected) subgraphs. The FSGalgorithm [15] improves upon AGM, and
mines only the connected subgraphs. Both methods follow an Apriori-style level-wise approach. Re-
cent methods to mine graphs using a depth-first tree based extension have been proposed in [22, 23].
Another method uses a candidate generation approach based on Canonical Adjacency Matrices [11].
The work by Dehaspe et al [10] describes a level-wise Inductive Logic Programming based technique
to mine frequent substructures (subgraphs) describing thecarcinogenesis of chemical compounds. Work
on molecular feature mining has appeared in [14]. The SUBDUEsystem [9] also discovers graph pat-
terns using the Minimum Description Length principle. An approach termed Graph-Based Induction
(GBI) was proposed in [24], which uses beam search for miningsubgraphs. However, both SUBDUE
and GBI may miss some significant patterns, since they perform a heuristic search. In contrast to these
approaches, we are interested in developing efficient, complete algorithms for tree patterns.

4. Generating Unordered, Embedded Trees

There are two main steps for enumerating frequent subtrees in - . First, we need a systematic way of
generatingcandidatesubtrees whose frequency is to be computed. The candidate set should be non-
redundant to the extent possible; ideally, each subtree should be generated as most once. Second, we
need efficient ways of counting the number of occurrences of each candidate tree in the database- , and
to determine which candidates pass theminsupthreshold. The latter step is data structure dependent, and
will be treated later. Here we are concerned with the problemof candidate generation.

 B

 C B A

 BD

 B

 C B A

 B D

 B

 A

 B D

 C B

 B

 A

 B D

 B C

0

1 2 3

4 5

0

1 2 3

4 5

0

1

2 3

4 5

0

1

2 3

4 5

T1 T2 T3 T4

Figure 4. Some Automorphisms of the Same Graph

Automorphism Group An automorphismof a tree is a isomorphism with itself. Let��
 �� � denote
theautomorphism group, i.e., the set of all label preserving automorphisms, of� . Henceforth, by auto-
morphism, we mean label preserving automorphisms. The goalof candidate generation is to enumerate
only onecanonicalrepresentative from��
 �� �. For an unordered tree� , there can be many automor-
phisms. For example, Figure 4 shows some of the automorphisms of the same tree.

Let there be a linear order� defined on the elements of the label set�. Given any two trees
�

and
�

, we can define a linear order�, calledtree orderbetween them, recursively as follows: Let�� and

M. Zaki / Efficiently Mining Frequent Embedded Unordered Trees 7

�� denote the roots of
�

and
�

, and let���� � � � � � ���� and���� � � � � � ���� denote the ordered list of children
of �� and�� , respectively. Also let� ����# � denote the subtree of

�
rooted at vertex���# . Then

� � �

(alternatively,� ��� � � � ��� �) iff either:

1.)
� ��� � � � ��� �, or

2.)
� ��� � � � ��� �, and either a)	 � � and � ����# � � � ����# � for all

� � � � 	 , i.e.,
�

is a prefix
(not necessarily immediate prefix) of or equal to

�
, or b) there exists� � �� �	
� �� � 	 ��, such that

� ����# � � � ����# � for all
� � � , and� ����� � � � ����� �.

This tree ordering is essentially the same as that in [17], although their tree coding is different.
We can also define acode orderon the tree encodings directly as follows: Assume that the special

backtrack symbol	 , � for all � � � . Given two string encodings
 and� . We say that
 � � iff
either:

i.)
�
 �

 and
 �� � � � �� � for all
� � � �
�
, or

ii.) There exists� � �� �	
� �

�
�
��, such that for all
� � � � �,
 ��� � � ��� and
 �� � � � �� �.

Incidentally, a similar tree code ordering was independently proposed in CMTreeMiner [7].

Lemma 4.1.
� � �

iff
 � � .
Proof Sketch: Condition i) in code order holds if
 and� are identical for the entire length of� ,

but this is true iff
�

is a prefix of (or equal to)
�

.
Condition ii) holds if and only if
 and� are identical up to position� � �

, i.e.,
 �� � � � � � � �
�� � � �� � � � � � � � ��. This is true iff both

�
and

�
share a common prefix tree� with encoding� �
 �� � � � � � � � ��). Let � #� (and�

��) refer to the node in tree
�

(and
�

), that corresponds to position

 ���
� 	 (and� �� �
�).

If � � �
, then� is an empty tree with encoding

� � �. It is clear that
� ��� � � � ��� � iff
 ��� � � ���.

If � , �
, then
 �� � � � �� �, iff one of the following cases is true: A)
 �� �
� 	 and� �� �
� 	: We

immediately have
 �� � � � �� � iff � �� 4� � � � �� 4� � iff
� � �

. B)
 �� �
� 	 and� �� � � 	: let �
�� be

parent of node� 4� (� � �), and let�
�� be the corresponding node in

�
(which refers to� �� �
�). We

then immediately have that� ���� � is a prefix of� ���� �, since
 �� � � � � � � � �� � � �� � � � � � � � ��, and
�
�� has an extra child� 4� , whereas�

�� doesn’t. ��

Given ��
 �� � the canonical representative� � � ��
 �� � is the tree, such that� � � �
for all

� � ��
 �� �. For any� � ��
 �� � we say that� is in canonical formif � � � �. For example,� � � � �
for the automorphism group��
 �� ��, four of whose members are shown in Figure 4. We can see that
the string encoding� � � ��� 	- 		� 	� 	 is smaller than�� � ��� 	- 		� 	� 	 and also smaller
than other members.

Lemma 4.2. A tree� is in canonical form iff for all vertices� � � , � ���# � � � ���#� � � for all
� � �� � � �,

where��� � ��� � � � � � ��4 is the list of ordered children of� .
Proof Sketch: � is in canonical form implies that� � �

for all
� � ��
 �� �. Assume that

there exist some vertex� � � such that� ��# � , � ��#� � � for some
� � �� � � �, where� � � �� � � � � � �4 are

the ordered children of� . But then, we can obtain tree� � by simply swapping the subtrees� ��# � and
� ��#� �� under node� . However, by doing so, we make� � � � , which contradicts the assumption that
� is canonical. ��

8 M. Zaki / Efficiently Mining Frequent Embedded Unordered Trees

Prefix Extension Let � �� � � � ��� � � � �� denote the rightmost path in tree� , i.e., the path from root
� � to the rightmost leaf in� . Given a seed frequent tree� , we can generate new candidates� #

� obtained
by adding a new leaf with label� to any vertex� # on the rightmost path� �� �. We call this process as
prefix-basedextension, since each such candidate has� as its prefix tree.

It has been shown that prefix-based extension can correctly enumerate all ordered embedded or in-
duced trees [3, 25]. For unordered trees, we only have to do a further check to see if the new extension is
the canonical form for its automorphism group, and if so, it is a valid extension. For example, Figure 5
shows the seed tree� , with encoding

� � � - �	� (omitting trailing 	’s). To preserve the prefix tree,
only rightmost branch extensions are allowed. Since the rightmost path is� �� � � � ��

, we can extend
� by adding a new vertex with label� any of these vertices, to obtain a new tree� #

� (
� � �� � � � �
). Note,

how adding� to node
�

gives a different prefix tree encoding� - ��, and is thus disallowed, as shown
in the figure.

Equivalence Class

Element List: (label, attached to position)

 x

 x

 x x

Class Prefix

3

 C

 D

2

1

0

 B A

Prefix String: C D A $ B

 (x, 3) // attached to 3: C D A $ B x $ $ $

 (x, 1) // attached to 1: C D A $ B $ x $ $

(x, 0) // attached to 0: C D A $ B $ $ x $

Figure 5. Prefix Extension and Equivalence Class

In [17] it was shown that for any tree in canonical form its prefix is also in canonical form. Thus
starting from vertices with distinct labels, using prefix extensions, and retaining only canonical forms for
each automorphism group, we can enumerate all unordered trees non-redundantly. For each candidate,
we can count the number of embedded occurrences in database- to determine which are frequent.
Thus the main challenges in tree extension are to: i) efficiently determine whether an extension yields a
canonical tree, and ii) determine extensions which will potentially be frequent. The former step considers
only valid candidates, whereas the latter step minimizes the number of frequency computations against
the database.

Canonical Extension To check if a tree is in canonical form, we need to make sure that for each vertex
� � � , � ��# � � � ��#� � � for all

� � �� � � �, where� � � �� � � � � � �4 is the list of ordered children of� .
However, since we extend only canonical trees, for a new candidate, its prefix is in canonical form, and
we can do better.

Lemma 4.3. Let � be a tree in canonical form, and let� �� � be the rightmost path in� . Let � 4
� be the

tree extension of� when adding a vertex with label� to some vertex�4 in � �� �. For any� # � � �� 4
� �,

let �� ��� � and�� �� denote the last two children of� # 2. Then� 4
� is in canonical form iff for all� # � � �� 4

� �,
� ��� ��� � � � � ��� �� �.

Proof Sketch: Let � �� � � � ��� � � � �4 �4� � � � � �� be the rightmost path in� . By Lemma 4.2,� is
in canonical form implies that for every node� # � � �� �, we have� ��� ��� �� � � ��� �� �.
2If �� is a leaf, then both children are empty, and if� � has only one child, then����	
 is empty

M. Zaki / Efficiently Mining Frequent Embedded Unordered Trees 9

 B

 A

B

 C

B

A

B

C

A

B

 C

A

C

D

C

0

1

4

5

6

7

10 12

13

11

3

2

8

9 x

14

15

Figure 6. Check for Canonical Form

When we extend� to � 4
� , we obtain a new rightmost path� �� 4

� � � � ��� � � � �4 �� , where�� is the
new last child of�4 (with label�). Thus both� �� � and� �� 4

� � share the vertices� ��� � � � �4 in common.
Note that for any

� , � , � # � � �� � is unaffected by the addition of vertex�� . On the other hand, for
all

� � �, the last child�� �� of � # � � �� � (i.e., � # � � �� 4
� �) is affected by�� , whereas�� ��� � remains

unchanged. Also for
� � �, the last two children of�4 change in tree� 4

� ; we have����� � � �4� � and
���� � �� .

Since� is in canonical form, we immediately have that for all� # � �� � � �� � � � � � �4
, � ��� �� � �
� ��� ��� �� for all � � � � �

. Thus we only have to compare the new subtree� ��� �� � with � ��� ��� � �. If
� ��� ��� �� � � ��� �� � for all � # � � �� 4

� �, then by Lemma 4.2, we immediately have that� 4
� is in canonical

form. On the other hand if� ��� ��� � � , � ��� �� � for some� # � � �� 4
� �, then� 4

� cannot be in canonical
form. ��

According to lemma 4.3 we can check if a tree� 4
� is in canonical form by starting from the rightmost

leaf in� �� 4
� � and checking if the subtrees under the last two children for each node on the rightmost path

are ordered according to�. By lemma 4.1 it is sufficient to check if their string encodings are ordered
by �. For example, given the candidate tree� ��

� shown in Figure 6 which has a new vertex
��

with
label � attached to node

��
on the rightmost path, we first compare

��
with its previous sibling

��
. For

� ���� � � ����, we require that� � � . After skipping node
��

(with empty previous sibling), we reach
node

�
, where we compare� ��� and� ����. For � ��� � � ���� we require that� � - , otherwise� ��

�

is not canonical. Thus for any� � - the tree is not canonical. It is possible to speed-up the canonicality
checking by adopting a different tree coding [17], but here we will continue to use the string encoding of
a tree. The corresponding checks for canonicality based on lemma 4.1 among the subtree encodings are
shown below:

Compare 13 and 15:���� 		� 		�� � � 		- 		� 		�� � � 		�
Compare 5 and 11:���� 		� 		�� � � 		- 		� 		�� � � 		�

Based on the check for canonical form, we can determine whichlabels are possible for each rightmost
path extension. Given a tree� and the set of frequent labels3 �, we can then try to extend� with each
label from3 � that leads to a canonical extension. Even though all of thesecandidates are non-redundant
(i.e., there are no isomorphic duplicates), this extensionprocess may still produce too many candidate
trees, whose frequencies have to be counted in the database- . To reduce the number of such trees, we
try to extend� with a vertex that is more likely to result in a frequent tree,using the idea of a prefix
equivalence class.

10 M. Zaki / Efficiently Mining Frequent Embedded Unordered Trees

Equivalence Class-based ExtensionWe say that two�-subtrees
� � � are in the sameprefix equiva-

lence classiff they share the same prefix tree. Thus any two members of a prefix class differ only in the
last vertex. For example, Figure 5 shows the class template for subtrees with the same prefix subtree�
with string encoding

� � � - � 	 � . The figure shows the actual format we use to store an equiva-
lence class; it consists of the class prefix string, and a listof elements. Each element is given as a�� � ��
pair, where� is the

�����
of the last vertex, and

�
specifies the vertex in� to which � is attached. For

example�� � �� refers to the case where� is attached to vertex
�
. The figure shows the encoding of the

subtrees corresponding to each class element. Note how eachof them shares the same prefix up to the
�� � ��th vertex. These subtrees are shown only for illustration purposes; we only store the element list
in a class.

Let � be a prefix subtree of size� � �
; we use the notation�� � to refer to its class (we will use�

and its string encoding
�

interchangeably). If�� � �� is an element of the class, we write it as�� � �� � �� �.
Each �� � �� pair corresponds to a subtree of size�, sharing� as the prefix, with the last vertex labeled�, attached to vertex

�
in � . We use the notation� #

� to refer to the new prefix subtree formed by adding
�� � �� to � .

Let � be a �� � ��-subtree, and let�� � � ��� ���
� #
� is frequent
 be the set of all possible frequent

extensions of prefix tree� . Then the set of potentially frequent candidate trees for the class�� #
� � (obtained

by adding an element�� � �� to �), can be obtained by prefix extensions of� #
� with each element�� � � � �

�� �, given as follows: i)cousin extension: If � � �
and
�
 � � � � � �

, then �� � � � � �� #
� �, and in

addition ii)child extension: If � � �
then �� � � � �� � �� #

� �.

 A

 B

 C D

 A

 B

 A A A

 B B B

 C C C

 A A

 B B D D
 D

 C
 C

 D

 D

Element List: (C,1) (D,0)
Prefix: A B

Prefix: A B C
Element List: (C,2) (C,1) (D,0)

Prefix: A B $ D
Element List: (D,2) (D,0)

C1

C4

P2

C3C2

C5

P1

2 2

1

2

3

1

2

1

2

1 2

3

1 2 3

0

P1
0

P2

11

0
C1

0
C2

0

C3

3

3

0 0 C5C4

Figure 7. Equivalence Class-based Extension

Example 4.1. Consider Figure 7, showing the prefix class
� � �� , which contains 2 elements,�� � ��

and �- � � �. Let’s consider the extensions of first element, i.e., of�� �� � � ��� � �. First we must consider
element�� � �� itself. As child extension, we add�� � �� (tree� �), and as cousin extension, we add�� � ��
(tree� �). Extending with�- � � �, since

� � �
, we only add cousin extension�- � � � (tree� �) to ��� � �.

M. Zaki / Efficiently Mining Frequent Embedded Unordered Trees 11

When considering extensions of�� &
1 � � ��� 	- �, we consider�� � �� first. But since� is attached to

vertex
�
, it cannot preserve the prefix tree�1 . Considering�- � � �, we add�- � � � as a cousin extension

and �- � �� as a child extension, corresponding to trees�� and� � .
The main observation behind equivalence class extension isthat only known frequent elements from

the same class are used for extending� #
� , which itself is known to be frequent from the previous exten-

sion step. Furthermore, we only extend� #
� , if it is in canonical form. However, to guarantee that all

possible extensions are members of�� �, we have to relax the non-redundant tree generation idea. That
is, whereas we extend only canonical� #

� , all possible extensions are added to�� #
� � (which are not nec-

essarily canonical). This contrasts with the purely canonical extension approach, where only canonical
extensions are considered. In essence canonical and equivalence class extensions represent a trade-off
between the number of redundant (isomorphic) candidates generated and the number of potentially fre-
quent candidates to count. Canonical extensions generate non-redundant candidates, but many of which
may turn out not to be frequent. On the other hand, equivalence class extension generates redundant
candidates, but considers a smaller number of (potentiallyfrequent) extensions. In our experiments we
found equivalence class extensions to be more efficient. Oneconsequence of using equivalence class
extensions is that SLEUTH doesn’t depend on any particular canonical form; it can work with any sys-
tematic way of choosing a representative from an automorphism group. Provided only one representative
is extended, its class contains all information about the extensions that can be potentially frequent. This
can provide a lot of flexibility on how tree enumeration is performed.

5. Frequency Computation

SLEUTH uses scope-list joins for fast frequency computation for a new extension. We assume that each
element�� � �� in a prefix class�� � has a scope-list which stores all occurrences of the tree� #

� (obtained
by extending� with �� � ��). The vertical database contains the initial scope lists� �� � for each distinct
label �. To compute the scope-lists for members of�� #

� � we need to join the scope-lists of�� � �� with
every other element�� � � � � �� �. If the resulting tree is frequent, we insert the element in�� #

� �.
Let �� � ��� � �� � be a scope for vertex�, and�� � ��� � �� � a scope for� . We say that�� is strictly

lessthan�� , denoted�� � �� , if and only if �� � �� , i.e., the interval�� has no overlap with�� , and it
occurs before�� . We say that�� contains�� , denoted�� � �� , if and only if

�
� � �� and�� � �� , i.e.,

the interval�� is a proper subset of�� .
Recall from the equivalence class extension that when we extend element�� #

� � there can be at most
two possible outcomes, i.e., child extension or cousin extension. The use of scopes allows us to compute
in constant time whether� is a descendant of� or � is a cousin of�. We describe below how to compute
the embedded support for child and cousin (unordered) extensions, using the descendant and cousin tests.

Descendant Test Given �� � and any two of its elements�� � �� and �� � � �. In a child extension of� #
�

the element�� � � � is added as a child of�� � ��. For embedded frequency computation, we have to find all
occurrences where label� occurs as a descendant of�, sharing the same prefix tree� #

� in some� � - ,
with tid

. This is called thedescendant test. To check if this subtree occurs in an input tree� with tid

,

we search if there exists triples�
� �� � � �� � � � �� � and �
� �� � � �� � � � �� �, such that:
1)

� �

� �

, i.e., the triples both occur in the same tree, with tid

.

2)� � � � � � � , i.e.,� and� are both extensions of the same prefix occurrence, with matchlabel� .

12 M. Zaki / Efficiently Mining Frequent Embedded Unordered Trees

3) �� � �� , i.e.,� lies within the scope of�.
If the three conditions are satisfied, we have found an instance where� is a descendant of� in some input
tree� . We then extend the match label� � of the old prefix� , to get the match label for the new prefix
� #
� (given as� � � �

�), and add the triple�
� � �� � � �
�
� �� � to the scope-list of�� �
�
� in �� #

� �.

Cousin Test Given �� � and any two of its elements�� � �� and �� � � �. In a cousin extension of� #
� the

element�� � � � is added as a cousin of�� � ��. For embedded frequency computation, we have to find all
occurrences where label� occurs as a cousin of�, sharing the same prefix tree� #

� in some input tree
� � - , with tid

. This is called thecousin test. To check if� occurs as a cousin in some tree� with tid

, we need to check if there exists triples�
� �� � � �� � � � �� � and �
� �� � � �� � � � �� �, such that:
1)

� �

� �

, i.e., the triples both occur in the same tree, with tid

.

2) � � � � � � � , i.e.,� and� are both extensions of the same prefix occurrence, with matchlabel� .
3) �� � �� or �� , �� , i.e., either� comes before� or � comes before� in depth-first ordering, and
their scopes do not overlap. This allows us to find the unordered frequency and is one of the crucial
differences compared to ordered tree mining, as in TreeMiner [25], which only checks if�� � �� .
If these conditions are satisfied, we add the triple�
� � �� � � �

�
� �� � to the scope-list of�� � � � in �� #
� �.

1, 1, [2, 2]
2, 0, [2, 2]
2, 0, [5, 5]
2, 4, [5, 5]

A

B

A

C

0, 0, [2, 3] 0, 0, [1, 1]
2, 0, [1, 2]

2, 0, [6, 7]
2, 4, [6, 7]

0, [0, 3]
1, [1, 3]
2, [0, 7]
2, [4, 7]

1, [0, 5]
1, [2, 2]
1, [4, 4]
2, [2, 2]
2, [5, 5]

1, [5, 5]
2, [1, 2]
2, [6, 7]

0, [3, 3]
1, [3, 3]
2, [7, 7]

A B C D

0, [2, 3] 0, [1, 1]

A

B C

0, 02, [1, 1]

2, 02, [6, 7]

2, 45, [6, 7]
2, 05, [6, 7]

2, 05, [1, 2]

Figure 8. Scope-list Joins

Example 5.1. Figure 8 shows an example of how scope-list joins work, usingthe database- from
Figure 3. The initial class with empty prefix consists of fourfrequent labels (� �� � � , and-), with their
scope-lists. All pairs (not necessarily distinct) of elements are considered for extension.

Two of the frequent trees in class�� � are shown, namely�� 	 and�� 	. �� 	 is obtained by joining
the scope lists of� and� and performing descendant tests, since we want to find those occurrences of
� that are within some scope of� (i.e., under a subtree rooted at�). Let �� denote a scope for label�.
For tree�& we find that�� � �� � �� � �� � �� � ��. Thus we add the triple�� � � � �� � ��� to the new scope
list. Similarly, we test the other occurrences of� under� in trees� � and�� . If a new scope-list occurs
in at leastminsuptids, the pattern is considered frequent.

The next candidate shows an example of testing frequency of acousin extension, namely, how to
compute the scope list of�� 	� by joining � ��� � and� ��� �. For finding all unordered embedded
occurrences, we need to test for disjoint scopes, with�� � �� or �� � �� , which have the same match
label. For example, in� & , we find that�� � �� � �� and�� � �� � �� satisfy these condition. Thus we add
the triple �� � �� � �� � ��� to � ��� 	� �. Notice that the new prefix match label (

��
) is obtained by adding

to the old prefix match label (
�
), the position where� occurs (i.e.,

�
). The other occurrences are noted in

the final scope-list.

M. Zaki / Efficiently Mining Frequent Embedded Unordered Trees 13

6. TheSLEUTH Algorithm

Figure 9 shows the high level structure of SLEUTH. The main steps include the computation of the fre-
quent labels (1-subtrees) and 2-subtrees, and the enumeration of all other frequent subtrees via recursive
(depth-first) equivalence class extensions of each class�� � � � 3� . We will now describe each step in
some more detail.

SLEUTH (D,minsup):
1. 3 � � � frequent 1-subtrees
;
2. 3� � � classes�� � � of frequent 2-subtrees
; //create scope-lists
3. for all �� � � � 3� do Enumerate-Frequent-Subtrees(�� � �);

ENUMERATE-FREQUENT-SUBTREES(�� �):
4. for each element�� � �� � �� � do
5. if check-canonical(� #

�) then
6. �� #

� � � �;
7. for each element�� � � � � �� � do
8. if do-child-extensionthen � � = descendant-scope-list-join(�� � �� � �� � � �);
9. if do-cousin-extensionthen � � = cousin-scope-list-join(�� � � � � �� � � �);
10. if child or cousin extension is frequentthen
11. Add �� � � � and/or�� � � � �� to equivalence class�� #

� �; //add scope-list also
12. Enumerate-Frequent-Subtrees(�� #

� �);
Figure 9. SLEUTH Algorithm

Computing 3 � and 3� : SLEUTH assumes that the initial database is in the horizontal string encoded
format. To compute3 � (line 1), for each label

� � � (the string encoding of tree�), we increment
�
’s

count in a count array. This step also computes other database statistics such as the number of trees,
maximum number of labels, and so on. All labels in3 � belong to the class with empty prefix, given as
�� �& � ��� � ��� � � � � � 3 �
, and the position indicates that

�
is not attached to any vertex. Total time

for this step is
� �	 � per tree, where	 �
�
.

For efficient3� counting (line 2) we compute the supports of all candidate byusing a 2D integer
array of size3 � �3 �, where�	
 ��� �� � gives the count of the candidate (embedded) subtree with encoding
�� � 	�. Total time for this step is

� �	� � per tree. While computing3� we also create the vertical
scope-list representation for each frequent item

� � 3 �, and before each call of���� ��	
�����
���
����
���� ��� � � � � � (line 3) we also compute the scope lists of all frequent elements (2-subtrees) in
the class.

Computing 34 �� � ��: Figure 9 shows the pseudo-code for the recursive (depth-first) search for
frequent subtrees (ENUMERATE-FREQUENT-SUBTREES). The input to the procedure is a set of elements
of a class�� �, along with their scope-lists. Frequent subtrees are generated by joining the scope-lists of
all pairs of elements.

Before extending the class�� #
� � we first make sure that� #

� is the canonical representative of its
automorphism group (line 5). If not, the pattern will not be extended. If yes, we try to extend� #

� with

14 M. Zaki / Efficiently Mining Frequent Embedded Unordered Trees

every element�� � � � � �� �. We try both child and cousin extensions, and perform descendant or cousin
tests during scope-list join (lines 8,9). If any candidate is frequent, it is added to the new class�� #

� �.
This way, the subtrees found to be frequent at the current level form the elements of classes for the next
level. This recursive process is repeated until all frequent subtrees have been enumerated. If�� � has	
elements, the total cost is given as

� ��	� �, where� is the cost of a scope-list join. The cost of scope-list
join is

� �� �� �, where� is the average number of distinct tids in the scope list of thetwo elements, and�
is the average number of embeddings of the pattern per tid. The total cost of generating a new class is

therefore
� �� ��	 �� �.

In terms of memory management, we need memory to store classes along a path in DFS search. In
fact we need to store intermediate scope-lists for two classes at a time, i.e., the current class�� �, and a
new candidate class�� #

� �. Thus the memory footprint of SLEUTH is not much, unless the scope-lists
become too big, which can happen if the number of embeddings of a pattern is large. If the lists are too
large to fit in memory, we can do joins in stages. That is, we canbring in portions of the scope-lists
for the two elements to be joined, perform descendant or cousin tests, and write out portions of the new
scope-list.

Lemma 6.1. The equivalence class-based extension inSLEUTH correctly generates all possible em-
bedded, unordered, frequent subtrees.

Proof Sketch: We prove the correctness of SLEUTH by induction on the length � of the mined
�-subtrees. Let’s consider the base cases. For� � �

, SLEUTH considers each label and counts its
frequency, thus all 1-subtrees (3 �) are found correctly. Let� � � � � be any three labels (not necessarily
distinct). For� � �

, SLEUTH considers all possible 2-subtrees of the form�� 	, and counts their
frequency; 2-subtrees are by definition canonical and thus all frequent 2-subtrees are recorded in3� . For
� � �

, SLEUTH considers all 3-subtrees of the form�� � 		 or �� 	� 	, computes their frequency, and
creates prefix equivalence classes��� 	�, where each such class containsall frequent extensions of�� 	.
The class can contain non-canonical elements, but only canonical elements will be output and considered
for extension. Thus all possible 3-subtrees are correctly mined.

For the inductive step, let’s assume that SLEUTH mines the set of frequent�-subtrees, organized as
a set of prefix-based equivalence classes� , where each class� � � has a shared�� � �� length prefix
tree, and consists of all frequent extensions of� (not necessarily canonical extensions). Also note that
SLEUTH correctly outputs only the canonical frequent�-subtrees from each class.

We will now show that SLEUTH will enumerate all canonical frequent �� � ��-subtrees. Consider
any class�� �; let �� � �� and �� � � � be any two elements of the class (not necessarily distinct).From the
previous step we already know that� #

� and�
�
� (i.e, extensions of� with �� � �� and �� � � �) are frequent.

The equivalence class extension step enumerates all frequent subtrees by using the rightmost path ex-
tension, whose correctness has been proved in [3, 25]. SinceSLEUTH extends only canonical subtrees,
each new class�� #

� � has a canonical prefix�-subtree� #
� , and all of its frequent extensions are elements

of the class. Out of these only the canonical�� � ��-subtrees will be output. This proves that SLEUTH
enumerates all possible, embedded, unordered, frequent subtrees. ��

Equivalence Class vs. Canonical ExtensionsAs described above, SLEUTH uses equivalence class
extensions to enumerate the frequent trees. The prefix� is known to be frequent from the previous step,
and we extend it only if it is in canonical form. To ensure thatall possible extensions are members of

M. Zaki / Efficiently Mining Frequent Embedded Unordered Trees 15

�� �, we had to compromise on non-redundant tree generation, by adding all possible extensions of� to
the class�� �, whether they are canonical or not.

SLEUTH-FKF2 (D,minsup):
1. 3 � � � frequent 1-subtrees
;
2. 3� � � classes�� � � of frequent 2-subtrees
; //create scope-lists
3. for all �� � � � 3� do Enumerate-Frequent-Subtrees(�� � � � 3 �);

ENUMERATE-FREQUENT-SUBTREES(�� � � 3�):
4. for each element�� � �� � �� � do
5. �� #

� � � �;
6. for each element�� � � � � �� � � �� �, where��� � 3� do
7. if check-canonical(� #

� extended with�� � � �) then
8. if do-child-extensionthen � � = descendant-scope-list-join(�� � �� � �� � � �);
9. if do-cousin-extensionthen � � = cousin-scope-list-join(�� � �� � �� � � �);
10. if child or cousin extension is frequentthen
11. Add �� � � � and/or�� � � � �� to equivalence class�� #

� �; //add scope-list also
12. Enumerate-Frequent-Subtrees(�� #

� � � 3 �);

Figure 10. SLEUTH-FKF2 Algorithm

For comparison we implemented another approach, called SLEUTH-FKF2, which performs only
canonical extensions. The main idea is to extend a canonicaland frequent subtree, with a known frequent
subtree from3� . The pseudo-code is shown in Figure 10. The computation of3 � and3� is the same
as for SLEUTH(lines 1-2). We then call���� ��	
�����
���
����
���� for each class in3� (line
3). This function takes as input a class�� �, all of whose elements are known to be bothfrequent and
canonical. Each member�� � �� of �� � (line 4) is either extended with another element of�� � or with
elements in��� (line 6), where�� � � 3� denotes all possible frequent 2-subtrees of the form�� 	; to
guarantee correctness we have to extend�� #

� � with all � � ���. Note that elements of both�� � and
��� represent canonical subtrees, and if the child or cousin extension is canonical (line 7), we perform
descendant and cousin joins, and add the new subtree to�� #

� � if is is frequent. This way, each class only
contains elements that are both canonical and frequent.

Lemma 6.2. SLEUTH-FKF2 correctly generates all possible embedded, unordered, frequent subtrees.
Proof Sketch: The proof is similar to that for SLEUTH. The main differenceis that instead of

storing all possible frequent extensions in a prefix class, SLEUTH-FKF2 stores only the canonical,
frequent extensions. To generate new�� � �� length candidates, all possible rightmost path extensions
with elements of3� are considered. If any extension is both canonical and frequent the process continues
to the next level, until all possible embedded, unordered, frequent subtrees have been mined. ��

As we mentioned earlier pure canonical and equivalence class extensions denote a trade-off between
the number of redundant candidates generated and the numberof potentially frequent candidates to
count. Canonical extensions generate non-redundant candidates, but many of which may turn out not
to be frequent (since, in essence, we join34 with 3� to obtain34� �). On the other hand, equivalence
class extension generates redundant candidates, but considers a smaller number of (potentially frequent)

16 M. Zaki / Efficiently Mining Frequent Embedded Unordered Trees

extensions (since, in essence, we join34 with 34 to obtain34� �). In the next section we compare these
two methods experimentally; we found SLEUTH, which uses equivalence class extensions to be more
efficient, than SLEUTH-FKF2, which uses only canonical extensions.

7. Experimental Results

All experiments were performed on a 2.8GHz Pentium 4 processor with 1GB main memory, and with
a 250GB, 7200rpms disk, running RedHat Linux 9. Timings are based on total wall-clock time, and
include all preprocessing costs (such as creating scope-lists).

Synthetic Datasets We constructed a synthetic data generation program to create a database of arti-
ficial website browsing behavior [25]. We first construct a master website browsing tree� based on
parameters supplied by the user. These parameters include the maximum fanout3 of a node, the maxi-
mum depth- of the tree, the total number of nodes� in the tree, and the number of node labels� . For
each node in master tree� , we assign probabilities of following its children nodes, including the option
of backtracking to its parent, such that sum of all the probabilities is 1. Using the master tree, one can
generate a subtree� # " � by randomly picking a subtree of� as the root of�# and then recursively
picking children of the current node according to the probability of following that link.

We used the following default values for the parameters: thenumber of labels� � ���
, the number

of vertices in the master tree� � �� � ���, the maximum depth- � ��
, the maximum fanout3 � ��

and total number of subtrees� � ��� � ���. We use three synthetic datasets:- ��
dataset had all default

values,3 �
had all values set to default, except for fanout3 � �

, and for� �� we set� � � � ��� � ���,
with remaining default values.

CSLOGS Dataset consists of web logs files collected over 1 month at the CS department. The logs
touched 13361 unique web pages within our department’s web site. After processing the raw logs we
obtained 59691 user browsing subtrees of the CS department website. The average string encoding length
for a user subtree was

�� ��
.

7.1. Performance Evaluation

Figure 11 shows the performance of SLEUTH on different datasets for different values of minimum sup-
port, and compares the run time against TreeMiner and SLEUTH-FKF2. Note that, whereas SLEUTH
and SLEUTH-FKF2 mine unordered embedded patterns, TreeMiner mines ordered embedded patterns.
The second column in the figure shows the distribution of frequent embedded, unordered patterns for var-
ious supports. Finally the third column shows the difference between the number of frequent embedded
unordered and ordered patterns; a positive value means thatthere are more frequent unordered patterns
than ordered ones.

Let’s consider the3 �
dataset. We find that unordered and ordered pattern mining (SLEUTH and

TreeMiner, respectively) are comparable, but TreeMiner takes less time. There are two main reasons
for this behavior. First, the number of unordered patterns is more than ordered patterns for this dataset.
Second, SLEUTH needs to perform canonical form tests, whileTreeMiner doesn’t, since for ordered tree
mining, the automorphism group for a tree only contains one member, the tree itself (��
 �� � � ��
).

M. Zaki / Efficiently Mining Frequent Embedded Unordered Trees 17

 0

 20

 40

 60

 80

 100

 120

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
o
ta

l
T

im
e
 (

s
e
c
)

Minimum Support (%)

F5

SLEUTH
TreeMiner

SLEUTH-FkF2

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 2 4 6 8 10 12 14 16

N
u
m

b
e
r

o
f
P

a
tt
e
rn

s

Length of Patterns

F5

1
0.5
0.1

0.075
0.05

0.025

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m

b
e
r

o
f
P

a
tt
e
rn

s

Minimum Support (%)

F5

difference

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
o
ta

l
T

im
e
 (

s
e
c
)

Minimum Support (%)

D10

SLEUTH
TreeMiner

SLEUTH-FkF2

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 2 4 6 8 10 12 14 16

N
u
m

b
e
r

o
f
P

a
tt
e
rn

s

Length of Patterns

D10

1
0.5
0.1

0.075
0.05

0.025

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m

b
e
r

o
f
P

a
tt
e
rn

s

Minimum Support (%)

D10

difference

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
o
ta

l
T

im
e
 (

s
e
c
)

Minimum Support (%)

T1M

SLEUTH
TreeMiner

SLEUTH-FkF2

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 2 4 6 8 10 12 14 16

N
u
m

b
e
r

o
f
P

a
tt
e
rn

s

Length of Patterns

T1M

1
0.5
0.1

0.075
0.05

0.025

-200

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m

b
e
r

o
f
P

a
tt
e
rn

s

Minimum Support (%)

T1M

difference

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1.5 2 2.5 3 3.5 4 4.5 5

T
o
ta

l
T

im
e
 (

s
e
c
)

Minimum Support (%)

cslogs

SLEUTH
TreeMiner

SLEUTH-FkF2

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 1.5 2 2.5 3 3.5 4 4.5 5

N
u
m

b
e
r

o
f
P

a
tt
e
rn

s

Length of Patterns

cslogs

5
2.5

2
1.75

 0

 1

 2

 3

 4

 5

 6

 1.5 2 2.5 3 3.5 4 4.5 5

N
u
m

b
e
r

o
f
P

a
tt
e
rn

s

Minimum Support (%)

cslogs

difference

Figure 11. Performance Evaluation

18 M. Zaki / Efficiently Mining Frequent Embedded Unordered Trees

Looking at the length distribution, we find it to be mainly symmetric across the support values, and also,
generally speaking more unordered tree are found as compared to ordered ones, especially as minimum
support is lowered. Comparing SLEUTHwith SLEUTH-FKF2, we find that there is a big performance
loss for the pure canonical extensions due to the joins of34 with 3� , which result in many infrequent
candidates; SLEUTH-FKF2 can be 5 times slower than SLEUTH. Similar trends are obtained for
- ��

and � �� datasets; TreeMiner is slightly faster than SLEUTH, whereas SLEUTH can be 5-10
times faster than SLEUTH-FKF2. This shows clearly that the strategy of generating some redundant
candidates, but extending only canonical prefix classes is superior to generating many infrequent but
purely canonical candidates.

The web-log dataset� � ���� has different characteristics for the supports at which we mined.
Looking at the pattern length distribution, we find that the number of patterns keep decreasing as length
increases. Also there is not much difference between the number of unordered and ordered embedded
trees. Considering run times, SLEUTH remains faster than SLEUTH-FKF2 and both of them take
the same time as ordered tree mining for higher values of support, but for a low value (1.75%) it takes
much longer to mine unordered patterns. The reason for this gap is that SLEUTH keeps track of all
possible “unordered” mappings from a candidate to a datasettree. For the� � ���� dataset, this results
in longer scope-lists than for TreeMiner, which keeps only the ordered mappings. Longer scope-lists
lead to higher execution time for the joins.

Summarizing from the results over synthetic and reals datasets, we can conclude that SLEUTH is an
efficient, complete, algorithm for mining unordered, embedded trees. Even though it mines more patterns
than TreeMiner, and has to perform canonical form tests, itsperformance is comparable to ordered tree
mining.

8. Conclusions

In this paper we presented, SLEUTH, the first algorithm to mine all unordered, embedded subtrees in
a database of labeled trees. Among our contributions is the procedure for systematic candidate sub-
tree generation using self-contained equivalence prefix classes. All frequent patterns are enumerated
by unordered scope-list joins via the descendant and cousintests. We also compared SLEUTH with
SLEUTH-FKF2, which also mines unordered, embedded trees, but uses pure canonical extensions. Our
experiments show that SLEUTH is more efficient than SLEUTH-FKF2, and is generally comparable
to TreeMiner, which mines only ordered subtrees, even though SLEUTH has to check if a subtree is in
canonical form.

For future work we plan to extend our tree mining framework toincorporate user-specified con-
straints. Given that tree mining, though able to extract informative patterns, is an expensive task, per-
forming general unconstrained mining can be too expensive and is also likely to produce many patterns
that may not be relevant to a given user. Incorporating constraints is one way to focus the search and
to allow interactivity. We also plan to develop efficient algorithms to mine maximal frequent subtrees
from dense datasets which may have very large subtrees. Finally, we plan to apply our tree mining
techniques to compelling applications, such as finding common tree patterns in phylogenetic data within
bioinformatics, as well as the extraction of structure fromXML documents and their use in classification,
clustering, and so on.

M. Zaki / Efficiently Mining Frequent Embedded Unordered Trees 19

References

[1] Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A. I.: Fast Discovery of Association Rules,
Advances in Knowledge Discovery and Data Mining(U. Fayyad, et al, Eds.), AAAI Press, Menlo Park, CA,
1996.

[2] Agrawal, R., Srikant, R.: Mining Sequential Patterns,11th Intl. Conf. on Data Engg., 1995.

[3] Asai, T., Abe, K., Kawasoe, S., Arimura, H., Satamoto, H., Arikawa, S.: Efficient Substructure Discovery
from Large Semi-structured Data,2nd SIAM Int’l Conference on Data Mining, April 2002.

[4] Asai, T., Arimura, H., Uno, T., Nakano, S.: Discovering Frequent Substructures in Large Unordered Trees,
6th Int’l Conf. on Discovery Science, October 2003.

[5] Chi, Y., Yang, Y., Muntz, R. R.: Indexing and Mining Free Trees, 3rd IEEE International Conference on
Data Mining, 2003.

[6] Chi, Y., Yang, Y., Muntz, R. R.: HybridTreeMiner: An Efficient Algorihtm for Mining Frequent Rooted
Trees and Free Trees Using Canonical Forms,16th International Conference on Scientific and Statistical
Database Management, 2004.

[7] Chi, Y., Yang, Y., Xia, Y., Muntz, R. R.: CMTreeMiner: Mining Both Closed and Maximal Frequent Subtrees,
8th Pacific-Asia Conference on Knowledge Discovery and DataMining, 2004.

[8] Cole, R., Hariharan, R., Indyk, P.: Tree pattern matching and subset matching in deterministic� �� ���� � �-
time, 10th Symposium on Discrete Algorithms, 1999.

[9] Cook, D., Holder, L.: Substructure discovery using minimal description length and background knowledge,
Journal of Artificial Intelligence Research, 1, 1994, 231–255.

[10] Dehaspe, L., Toivonen, H., King, R.: Finding frequent substructures in chemical compounds,4th Intl. Conf.
Knowledge Discovery and Data Mining, August 1998.

[11] Huan, J., Wang, W., Prins, J.: Efficient Mining of Frequent Subgraphs in the Presence of Isomorphism,IEEE
Int’l Conf. on Data Mining, 2003.

[12] Inokuchi, A., Washio, T., Motoda, H.: An apriori-basedalgorithm for mining frequent substructures from
graph data,4th European Conference on Principles of Knowledge Discovery and Data Mining, September
2000.

[13] Kilpelainen, P., Mannila, H.: Ordered and unordered tree inclusion, SIAM J. of Computing, 24(2), 1995,
340–356.

[14] Kramer, S., Raedt, L. D., Helma, C.: Molecular Feature Mining in HIV data, Int’l Conf. on Knowledge
Discovery and Data Mining, 2001.

[15] Kuramochi, M., Karypis, G.: Frequent Subgraph Discovery, 1st IEEE Int’l Conf. on Data Mining, November
2001.

[16] Morell, V.: Web-Crawling up the Tree of Life,Science, 273(5275), aug 1996, 568–570.

[17] Nijssen, S., Kok, J. N.: Efficient Discovery of FrequentUnordered Trees,1st Int’l Workshop on Mining
Graphs, Trees and Sequences, 2003.

[18] Shamir, R., Tsur, D.: Faster Subtree Isomorphism,Journal of Algorithms, 33, 1999, 267–280.

[19] Termier, A., Rousset, M.-C., Sebag, M.: TreeFinder: a First Step towards XML Data Mining,IEEE Int’l
Conf. on Data Mining, 2002.

20 M. Zaki / Efficiently Mining Frequent Embedded Unordered Trees

[20] Wang, K., Liu, H.: Discovering Typical Structures of Documents: A Road Map Approach,ACM SIGIR
Conference on Information Retrieval, 1998.

[21] Xiao, Y., Yao, J.-F., Li, Z., Dunham, M. H.: Efficient Data Mining for Maximal Frequent Subtrees,Interna-
tional Conference on Data Mining, 2003.

[22] Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining,IEEE Int’l Conf. on Data Mining, 2002.

[23] Yan, X., Han, J.: CloseGraph: Mining Closed Frequent Graph Patterns,ACM SIGKDD Int. Conf. on Knowl-
edge Discovery and Data Mining, August 2003.

[24] Yoshida, K., Motoda, H.: CLIP: Concept Learning from Inference Patterns,Artificial Intelligence, 75(1),
1995, 63–92.

[25] Zaki, M. J.: Efficiently Mining Frequent Trees in a Forest, 8th ACM SIGKDD Int’l Conf. Knowledge Dis-
covery and Data Mining, July 2002.

[26] Zaki, M. J., Aggarwal, C.: Xrules: An effective structural classifier for XML data,9th ACM SIGKDD Int’l
Conf. Knowledge Discovery and Data Mining, August 2003.

