
Surprising results of trie-based FIM algorithms

Ferenc Bodon∗

bodon@cs.bme.hu
Department of Computer Science and Information Theory,

Budapest University of Technology and Economics

Abstract

Trie is a popular data structure in frequent itemset mining
(FIM) algorithms. It is memory-efficient, and allows fast
construction and information retrieval. Many trie-related
techniques can be applied in FIM algorithms to improve
efficiency. In this paper we propose new techniques for
fast management, but more importantly we scrutinize the
well-known ones especially those which can be employed
in APRIORI. The theoretical claims are supported by re-
sults of a comprehensive set of experiments, based on hun-
dreds of tests that were performed on numerous databases,
with different support thresholds. We offer some surpris-
ing conclusions, which at some point contradict published
claims.

1. Introduction

Frequent itemset mining is the most researched field of
frequent pattern mining. Techniques and algorithms devel-
oped here are often used in search for other types of patterns
(like sequences, rooted trees, boolean formulas, graphs).
The original problem was to discover association rules [2],
where the main step was to find frequently occurring item-
sets. Over one hundred FIM algorithms were proposed –
the majority claiming to be the most efficient. The truth
is that no single most efficient algorithm exists; there is no
published method that outperforms every other method on
every dataset with every support threshold [11]. However,
there are three algorithms that play central role due to their
efficiency and the fact that many algorithms are modifica-
tions or combinations of these basic methods. These algo-
rithms are APRIORI [3], Eclat [25] and FP-growth [12].

Those who employed one of the basic algorithms as a
search strategy, tended to employ the whole set of proce-
dures and data structures as well, which is trie (prefix tree)
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in the case of APRIORI and FP-growth. Therefore it is use-
ful and instructive to analyze tries, and clarify those details
that have an effect on run-time or memory need. In this pa-
per we will see, that small details can have a large influence
on efficiency and taking a closer look at them brings up new
questions and new solutions.

The rest of the paper is organized as follows. The prob-
lem is presented in Section 2, trie and its role in FIM is
described in Section 3. Section 4 introduces accelerating
techniques one-by-one. Surprising experimental results and
the explanations are given in Section 5.

2. Problem statement

Frequent itemset mining is a special case of frequent pat-
tern mining. Let us first describe this general case. We
assume that the reader is familiar with the basics of poset
theory. We call a poset (P,�) locally finite, if every inter-
val [x, y] is finite, i.e. the number of elements z, such that
x � z � y is finite. The element x covers y, if y � x and
for any y � z, z �� x.

Definition 1. We call the poset PC = (P,�) pattern con-
text, if there exists exactly one minimal element, PC is lo-
cally finite and graded, i.e. there exists a size function
| | : P → Z, such that |p| = |p′| + 1, if p covers p′. The
elements of P are called patterns and P is called the pattern
space1 or pattern set.

Without loss of generality we assume that the size of the
minimal pattern is 0 and it is called the empty pattern.

In the frequent pattern mining problem we are given the
set of input data T, the pattern context PC = (P,�), the
anti-monotonic function suppT : P → N and min supp ∈
N. We have to find the set F = {p ∈ P : suppT(p) ≥

1Many researchers improperly refer to the pattern space as the pattern
lattice. It may come from the fact that patterns were first examined as sets
of items [2], when (P,�) actually formed a lattice. However this property
does not hold for many other types of patterns. It is easy to prove that if the
type of pattern is sequence, boolean formula or graph, then the least upper
bound is not unique.
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min supp} and the support of the patterns in F . Elements
of F are called frequent patterns, suppT is the support func-
tion and min supp is referred to as support threshold.

There are many types of patterns: itemsets [2], item se-
quences, sequences of itemsets [4], episodes [16], boolean
formulas [15], rooted labeled ordered/unordered trees [24],
labeled induced subgraphs [13], labeled subgraphs [14]. In
frequent itemset mining [2] the pattern context is (2I,⊆),
where I is a given set, ⊆ is the usual subset relation, and the
input data is a sequence of transactions (T = 〈t1, . . . , tm〉).
The elements of I are called items and each transaction is
a set of items. The support of itemset I is the number of
transactions that contain I as a subset.

There exist many algorithms which efficiently solve the
FIM problem. Most of them are APRIORI and FP-growth
based where efficiency comes from the sophisticated use of
the trie data structure. The goal of our work is to scruti-
nize the use of trie theoretically and experimentally. Our
claims are supported by hundreds of experiments based on
many different databases with various support thresholds.
We believe that a result of our work was to clarify impor-
tant technical details of APRIORI, and to take some steps
towards finding the best implementation.

3. Tries

The data structure trie was originally introduced by de
la Briandais [9] and Fredkin [10] to store and efficiently
retrieve words of a dictionary. A trie is a rooted, labeled
tree. The root is defined to be at depth 0, and a node at
depth d can point to nodes at depth d + 1. A pointer is also
referred to as edge or link. If node u points to node v, then
we call u the parent of v, and v is a child node of u. For
the sake of efficiency – concerning insertion and deletion –
a total order on the labels of edges has to be defined.

Tries are suitable for storing and retrieving not only
words, but any finite sets (or sequences). In FIM algorithms
tries (also called a lexicographic tree) are used to quickly
determine the support of itemsets whose size is greater than
2. In the FIM setting a link is labeled by a frequent item, and
a node represents an itemset, which is the set of the items in
the path from the root to the leaf. The label of a node stores
the counter of the itemset that the node represents.

Figure 1 presents a trie (without the counters) that stores
the itemsets {A}, {C}, {E}, {F}, {A,C}, {A,E}, {A,F},
{E,F}, {A,E,F}. Building a trie is straightforward; we omit
the details.

Tries can be implemented in many ways. In compact
representation the edges of a node are stored in a vector.
Each element of a vector is a pair; the first element stores
the label of the edge, the second stores the address of the
node, which the edge points to. This solution is very similar
to the widespread “doubly chained” representation, where

A C
E F

C
E

F
F

F

Figure 1. Example: a trie

edges of a node are stored in a linked list.

In the non compact representation (also called tabular
implementation by Fredkin) only the pointers are stored in
a vector with a length equal to that of the alphabet (fre-
quent items in our case). An element at index i belongs
to the edge whose label is the ith item. If there is no edge
with such a label, then the element is NIL. This solution
has the advantage of finding an edge with a given label in
O(1) time, instead of O(log n) required by a binary search –
which is the case in compact representation. Unfortunately
for nodes with few edges this representation requires some
more memory than compact representation. On the con-
trary, if a node has many edges (exact formula can be given
based on the memory need of pointers and labels), then the
non-compact representation needs less memory since labels
are not stored explicitly. According to the memory need the
two approaches can be combined [21], [23], [6]. If there are
many nodes with single edges, then further memory can be
saved by using patricia tries. Throughout this paper and in
the implementations compact representation of tries is used.

Tries are used in FIM algorithms in two ways. In APRI-
ORI based algorithms the tries store candidates (itemsets
whose support has to be determined), and in APRIORI and
FP-growth based algorithms the input sequence (more pre-
cisely a projection of the input) is stored in a trie.

4. Techniques for fast management

In this section we take trie issues one-by-one, describe
the problem and present previous claims or naive expecta-
tions. Some issues apply to APRIORI and FP-growth based
algorithms, but some apply only to the first algorithm fam-
ily.
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4.1. Storing the transactions

Let us call the itemset that is obtained by removing infre-
quent items from t the filtered transaction of t. All frequent
itemsets can be determined even if only filtered transactions
are available. To reduce IO cost and speed up the algorithm,
the filtered transactions can be stored in main memory in-
stead of on disk. It is useless to store the same filtered trans-
actions multiple times. Instead store them once and employ
counters which store the multiplicities. This way memory
is saved and run-time can be significantly improved.

This fact is used in FP-growth and can be used in APRI-
ORI as well. In FP-growth the filtered transactions are
stored in an FP-tree, which is a trie with cross-links and
a header table. Size of the FP-tree that stores filtered trans-
actions is declared to be “substantially smaller than the size
of database”. This is said to come from the fact that a trie
stores the same prefixes only once.

In the case of APRIORI, collecting filtered transactions
has a significant influence on run-time. This is due to the
fact that finding candidates that occur in a given transaction
is a slow operation and the number of these procedure calls
is considerably reduced. If a filtered transaction occurs n
times, then the expensive procedure will be called just once
(with counter increment n) instead of n times (with counter
increment 1). A trie can be used to store the filtered trans-
action, and is actually used in the today’s fastest APRIORI
implementation made by Christian Borgelt [6].

Is trie really the best solution for collecting filtered trans-
actions for APRIORI, or there exists a better solution? See
the experimental results and explanation for the surprising
answer.

4.2. Order of items

For quick insertion and to quickly decide if an itemset
is stored in a trie, it is useful to store edges ordered ac-
cording to their labels (i.e. items in our case) and apply
a binary search. In [20] it was first noted that the order
of the items affects the shape of the trie. The next figure
shows an example of two tries, that store the same itemsets
(ABC, ABD, ACE) but use different orders (A > B >
C > D > E and its reverse).

For the sake of reducing the memory need and traverse
time, it would be useful to use the ordering that results in the
minimal trie. Comer and Sethi proved in [8] that the mini-
mal trie problem is NP-complete. On the other hand, a sim-
ple heuristic (which was employed in FP-growth) performs
very well in practice; use the descending order according
to the frequencies. This is inspired by the fact that tries
store same prefixes only once, and there is a higher chance
of itemsets having the same prefixes if frequent items have
small indices.
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Figure 2. Example: Tries with different orders

The heuristic does not always result in the minimal trie,
which is proven by the following example. Let us store
itemsets AX , AY , BXK , BXL, BM , BN in a trie. A
trie that uses descending order according to frequencies
(B ≺ X ≺ A ≺ K ≺ L ≺ M ≺ N ) is depicted on
the left side of Figure 3. On the right side we can see a trie
that uses an other order (items X and A are reversed) and
has fewer nodes.
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Figure 3. Example: descending order does
not result the smallest trie

Descending order may not result in the smallest trie,
when the trie has subtrees in which the order of items, ac-
cording to the frequency of the subtree, does not correspond
to the order of items according to the frequency in the whole
trie. This seldom occurs in real life databases (a kind of ho-
mogeneousity exists), which is the reason for the success of
the heuristic.

Can this heuristic be applied in APRIORI as well? Fewer
nodes require less memory, also fewer nodes need to be vis-
ited during the support count (fewer recursive steps), which
would suggest faster operation. However previous observa-
tions [1] [6] claim the opposite. Here we conduct compre-
hensive experiments and try to find reasons for the contra-
diction.
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4.3. Routing strategies at the nodes

Routing strategy in a trie refers to the method used at
an inner node to select the edge to follow. To find out if
a single itemset I is contained in a trie, the best routing
strategy is to perform a binary search: at depth d − 1 we
have to find the edge whose label is the same as the d th item
of I . The best routing strategy is not so straightforward, if
we have to find all the �-itemset subsets of a given itemset,
that are contained in a given trie. This is the main step of
support count in APRIORI and this is the step that primarily
determines the run-time of the algorithm. In this section we
examine the possible solutions and propose a novel solution
that is expected to be more efficient.

In support count methods we have to find all the leaves
that represent �-itemset candidates that are contained in a
given transaction t. Let us assume that arrive at a node at
depth d by following the j th item of the transaction. We
move forward on links that have labels i ∈ t with an index
greater than j, but less than |t| − k + d + 1, because we
need at least k − d − 1 items to reach a leaf that represents
a candidate. Or simply, given a part of the transaction (t ′),
we have to find the edges that correspond to an item in t ′.
Items in the transactions and items of the edges are ordered.
The number of edges of the node is denoted by n. Two
elementary solutions may be applicable:

simultaneous traversal: two pointers are maintained; one
is initialized to the first element of t′, and the other is
initialized to the item of the first edge. The pointer that
points to the smaller item is increased. If the pointed
items are the same, then a match is found, and both
pointers are increased. Worst case run-time is O(n +
|t′|).

binary search: This includes two basic approaches and the
combination of both: for each item in t ′ we find the
corresponding edge (if there is any), or for each edge
the corresponding item of t ′. Run-times of the two
approaches are O(|t′| log n) and O(n log |t′|), respec-
tively. Since the lists are ordered, it is not necessary to
perform a binary search on the whole list if a match is
found. For example if the first item in t ′ corresponds
to the label of the fifth edge, then for the second el-
ement in t′ we have to check labels starting from the
sixth edge.

From the run-times we can see that if the size of t ′

is small and there are many edges, then the first kind
of binary search is faster and in the opposite case the
second kind is better. We can combine the two solu-
tions: if |t′| log n < n log |t′|, then we perform a bi-
nary search on the edges – otherwise the binary search
is applied on t′.

bitvector based: As mentioned before, a binary search can
be avoided if a non-compact representation is used.
However this increases the memory need. A much bet-
ter solution is to change the representation of the fil-
tered transaction rather than the nodes of the trie. We
can use a bitvector instead of an ordered list. The ele-
ment at index i is 1 if item i is stored in the transaction,
and the length of the bitvector is the number of fre-
quent items. A bitvector needs more space if the size
of the filtered transaction is small, which is the general
case in most applications. Hence, it is useful to store
the filtered transactions as lists and convert them into
bitvectors if stored candidates have to be determined.
The run-time of this solution is O(n).

indexvector based: The problem with bitvectors is that
they do not exploit the fact that at a certain depth only
a part of the transaction needs to be examined. For ex-
ample, if the item of the first edge is the same as the last
item of the basket, then the other edges should not be
examined. The bitvector-based approach does not take
into consideration the positions of items in the basket.
We can easily overcome this problem if the indices of
the items are stored in the vector. For example trans-
action {B, D, G} is stored as [0, 1, 0, 2, 0, 0, 3, 0, 0, 0]
if the number of frequent items is 10. The routing
strategy with this vector is the following. We take the
items of the edges one-by-one. If item i is the actual,
we check the element i of the vector. If it is 0, the
item is not contained. If the element is smaller than
|t| − k + d + 1 then match is found(and the support
count is processed with the next edge). Otherwise the
procedure is terminated. The worst case run-time of
this solution is O(n).

We have presented six different routing strategies that
do not change the structure of the trie. Theoretically no
best strategy can be declared. However, our experiments
have shown that the solution we proposed last always out-
performs the others.

4.4. Storing the frequent itemsets

In FIM algorithms frequent itemsets that are not needed
by the algorithm can be written to the disk, and memory
can be freed. For example in APRIORI we need frequent
items of size � only for the candidate generation of (� + 1)-
itemsets, and later they are not used. Consequently memory
need can be reduced if in the candidate generation the fre-
quent itemsets are written out to disk and branches of the
trie that do not lead to any candidate are pruned.

In most applications (for example to generate association
rules) frequent itemsets are mined in order to be used. In
such applications it is useful if the existence and the support
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of the frequent itemsets can be quickly determined. Again, a
trie is a suitable data structure for storing frequent itemsets,
since frequent itemsets often share prefixes.

Regarding memory need, it is a wasteful solution to store
frequent itemsets and candidates in a different trie. To illus-
trate this, examine the following tries.

Candidates

A

B

C

C
D

D

B

C

D

Frequent itemsets

A
B

C D

B
C

D
C

D D

The two tries above can easily be merged into one trie,
which is shown in Figure 4.

A
B

C D

B
C

D
C

D D

C
D D D

Figure 4. Example: Tries that store candi-
dates and frequent itemsets

The memory need of the two tries (10 + 11 nodes) is
more than the memory need of the merged trie (15 nodes),
which stores candidates and frequent itemsets as well. The
problem with a merged trie is that support counting be-
comes slower. This is due to the superfluous travel, i.e travel
on routes that do not lead to candidates. For example, if
the transaction contains items C, D, then we will follow the

edges that start from the root and have labels C, D. This
is obviously useless work since these edges do not lead to
nodes at depth 3, where the candidates can be found.

To avoid this superfluous traveling, at every node we
store the length of the longest directed path that starts from
that node [5]. When searching for �-itemset candidates at
depth d, we move downward only if the maximum path
length at the pointed node is � − d + 1. Storing maximum
path lengths requires memory, but it considerably reduces
the search time for large itemsets.

A better solution is to distinguish two kinds of edges. If
an edge is on the way to a candidate, then it is a dashed
edge and any other edges are normal edges. This solution
is shown in Figure 4. Dashed and normal edges belonging
to the same node are stored in different lists. During a sup-
port count only dashed edges are taken into consideration.
This way many edges (the normal ones) are ignored even if
their label corresponds to some element of the transaction.
With this solution pointer increments are reduced (the list
with dashed edges is shorter than the two lists together) and
we do not need to check if the edge leads to a candidate (a
comparison with an addition is spared).

4.5. Deleting unimportant transactions

Let us call a filtered transaction unimportant at the �th

iteration of APRIORI, if it does not contain any (� − 1)-
itemset candidates. Unimportant transactions need mem-
ory and slow down support count, since a part of the trie
is visited but no leaf representing a candidate is reached.
Consequently unimportant transactions should be removed,
i.e. if a filtered transaction does not contain any candidate
it should be removed from the memory and ignored in the
later phases of APRIORI. Due to the anti-monotonic prop-
erty of the support function, an ignored transaction can not
contain candidates of greater sizes. Does this idea lead to
faster methods? Surprisingly, experiments do not suggest
that it does.

5. Experimental results

All tests were carried out on ten public “benchmark”
databases, which can be downloaded from the FIM repos-
itory2. Seven different min supp values were used for
each database. Results would require too much space,
hence only the most typical ones are shown below. All re-
sults, all programs and even the test scripts can be down-
loaded from http://www.cs.bme.hu/˜bodon/en/
fim/test.html.

Tests were run on a PC with a 1.8 GHz Intel P4 proces-
sor and 1 Gbytes of RAM. The operating system was De-
bian Linux (kernel version: 2.4.24). Run-times and memory

2http://fimi.cs.helsinki.fi/data/
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usage were obtained using the time and memusage com-
mand respectively. In the tables, time is given in seconds
and memory need in Mbytes. min freq denotes the fre-
quency threshold, i.e min supp divided by the number of
transactions.

5.1. Storing the transactions

First we compared three data structures used for storing
filtered transactions. The memory need and construction
time of the commonly used trie was compared to a sorted
list and a red-black tree (denoted by RB-tree). RB-tree (or
symmetric binary B-tree) is a self-balanced binary search
tree with a useful characteristic: inserting an element needs
O(log m), where m is the number of nodes (number of al-
ready inserted filtered transaction in our case).

min sorted trie RB-
freq list tree

0.05 12.4 61.1 13.8
0.02 16.2 88.5 17.1

0.0073 17.0 94.9 18.0
0.006 17.1 95.3 18.1

Database: T40I10D100K

Table 1. Memory need: storing filtered trans-
actions

All 70 tests support the same observation: single lists
need the least memory, RB-trees need a bit more, and tries
consume the most memory – up to 5-6 times more than RB-
trees.

The next figure shows a typical result on the construction
and destruction time of the different data structures. Based
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Figure 5. Construction and destruction time:
storing filtered transactions

on the 70 measurements we can conclude that there is no
significant difference if the database is small (i.e the num-
ber of filtered transaction is small), however – as expected
– sorted lists do slow down as the database grows. RB-trees
are always faster than tries, but the difference is not signifi-
cant (it was always under 30%).

In support count of APRIORI, each filtered transaction
has to be visited to determine the contained candidates. If
transactions are stored in a sorted list, then going through
the elements is a very fast operation. In the case of RB-
trees and trie, this operation is slower, since a tree has to
be traversed. However experiments showed that there is no
significant difference when compared to building the data
structure, so it does not merit serious consideration.

Experiments showed that RB-tree is the best data struc-
ture for storing filtered transactions. It needs little memory
and it is the fastest with regard construction time. But why
does RB-tree require less memory than trie, when trie stores
the same prefixes only once and former and RB-tree stores
them as many times as they appear in a filtered transaction?

The answer to this comes from the fact that a trie has
many more nodes – therefore many more edges – than an
RB-tree (except for one bit per node, RB-trees need the
same amount of memory as simple binary trees need). In
a trie each node stores a counter and a list of edges. For
each edge we have to store the label and the identifier of
the node the edge points to. Thus adding a node to a trie
increases memory need by at least 5 · 4 bytes (if items and
pointers are represented in 4 bytes). In a binary tree, like
an RB-tree, the number of nodes equals to the number of
filtered transactions. Each node stores a filtered transaction
and its counter.

When inserting the first k-itemset filtered transaction in
a trie, k nodes are created. However in an RB-tree we create
only one node. Although the same prefixes are stored only
once in a trie, this does not limit the memory increase as
much. This is the reason that a binary tree needs 3-10 times
less memory than a trie needs.

5.2. Order of items

To test the effect of ordering, we used 5 different orders:
ascending and descending order by support (first item has
the smallest/highest support) and three random orders. The
results with the random orders were always between the re-
sults of the ascending and descending order. First the con-
struction times and the memory needs of FP-trees (without
cross links) were examined. Experiments showed that there
is little difference in the construction time whichever type of
ordering is used (the difference was always less than 8%).
As expected, memory need is greatly affected by the order-
ing. Table 2 shows typical results.

Experiments with FP-trees with different orders meet our
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min freq (%) 1 0.2 0.09 0.035 0.02
ascending 42.48 58.03 61.34 63.6 65.04
descending 27.58 39.74 41.69 43.66 44.10
random 1 29.84 42.30 44.49 46.60 46.41
random 2 36.98 48.97 55.02 56.85 56.72
random 3 34.87 52.18 55.68 58.01 55.50

Database: BMS-POS

Table 2. Memory need: FP-tree with different
orders

expectations: descending order leads to the smallest mem-
ory need, while ascending order leads to the highest. This
agrees with the heuristic; a trie is expected to have small
number of nodes if the order of the items corresponds to the
descending order of supports.

Our experiments drew the attention to the fact that the
memory need of FP-trees is greatly affected by the order
used. The difference between ascending and descending or-
der can be up to tenfold. In the basic FIM problem this
does not cause any trouble; we can use the descending or-
der. However in other FIM-related fields where the order
of the items cannot be chosen freely, this side-effect has
to be taken into consideration. Such fields are prefix anti-
monotonic constraint based FIM algorithms, or FIM with
multiple support threshold. For example, to handle prefix
anti-monotonic constrains with FP-growth, we have to use
the order determined by the constraint [19]. A naive so-
lution for handling constraints is to add post processing to
the FIM algorithm, where itemsets that do not return true
on all constraints are pruned. It can be more efficient if the
constraints are deeply embedded in the algorithm. In [19]
it was shown that a single prefix anti-monotonic predicate
can be effectively treated by FP-growth. Our experiments
proved that FP-growth is very sensitive to the order of the
items. Consequently, embedding a prefix anti-monotonic
constraint into FP-growth does not trivially decrease re-
source need. Although search space can be reduced, we
have seen that this may greatly increase memory need and
thus traversal time.

Results on the effect of ordering in APRIORI are surpris-
ing (Figure 6). They contradict our initial claim. In almost
all experiments APRIORI with the ascending order turned
out to be the fastest, and the one that used descending or-
dering was the slowest. Highest difference (6 fold) was in
the case of retail.dat [7].

These experiments support the previously stated, but fur-
ther unexplained observation, i.e. ascending order is the
best order to use in APRIORI. We have seen that a trie that
uses descending order is expected to have fewer nodes than
a trie that uses ascending order. However, ascending order
has two advantages over descending order. First, nodes have
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Figure 6. APRIORI with different orders

fewer edges and hence the main step of support count (find-
ing the corresponding edges at a given node) is faster. The
second and more important factor is that a smaller number
of nodes is visited during the support count. This comes
from the fact that nodes near the root have edges with rare
frequent items as labels. This means that in the beginning
of the support count the most selective items are checked.
Many transactions do not contain rare frequent items, hence
the support count is terminated in the earliest phase. On the
contrary, when descending order is used, many edges are
visited before we get to the selective items. To illustrate
this fact, let us go back to Figure 2 and consider the task of
determining the candidates in transaction {A, B, F, G, H}.
Nodes 0,1,2 will be visited if descending order is used,
while the search will be terminated immediately at the root
in the case of the ascending order.

Concerning memory need, as expected, descending or-
der is the best solution. However its advantage is insignifi-
cant. APRIORI with ascending order never consumed more
than 2% extra memory compared to APRIORI with de-
scending order.

5.3. Routing strategies at the nodes

In the experiments of APRIORI with different rout-
ing strategies, we tested 5 competitors: (1) simultaneous
traversal, (2-3) corresponding items were found by a bi-
nary search on the items of the transaction/labels of the
edges, and (4-5) transactions were represented by bitvec-
tors/vectors of indices. The results can not be characterized
by a single table. Figure 7 and 8 present results with two
databases. For a more comprehensive account the reader is
referred to the aforementioned test web page.

Our newly proposed routing technique (i.e. indexvector
based) almost always outperformed the other routing strate-
gies. Simultaneous traversal was the runner up. The other
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three alternated in performance. The bitvector approach
was most often the least effective. Routing that employed
binary search on the edges sometimes lead to extremely
bad result,but on one database (retail) it finished in first
place.

Simultaneous traversal performed very well, and almost
always beat the binary search approaches. Theoretical run-
times do not necessarily support this. To understand why si-
multaneous traversal outperformed the binary search based
approaches, we have to take a closer look at them.

Simultaneous traversal is a very simple method; it com-
pares the values of the pointers and increments one or both
of them. These elementary operations are very fast. In bi-
nary search approach we increment pointers and invoke bi-
nary searches. In each binary search we make comparisons,

additions and even divisions. If we take into consideration
that calling a subroutine with parameters always means ex-
tra value assignments, then we can conclude the overhead
of the binary search is significant and is not profitable, if
the list we are searching through is short. In our case nei-
ther the number of edges of the nodes nor the number of
frequent items in the transaction is large. This explains the
bad performance of binary search in our case.

By using a binary vector we can avoid binary search
with all of its overhead. However, experiments showed
that although the bitvector based approach was better than
binary search-based approaches, it could not outperform
the simultaneous traversal. This is because a bitvector-
based approach does not take into consideration that only
a part of the transaction has to be examined. Let us see
an example. Assume that the only 4-itemset candidate is
{D, E, F, G} and we have to find the candidates in transac-
tion {A, B, C, D, E, F}. Except for the bitvector-based ap-
proach all the techniques considered will not visit any node
in the trie, because there is no edge of the root whose la-
bel corresponds to any of the first 6 − 4 + 1 = 3 items
in the transaction. On the contrary, the bitvector-based ap-
proach uses the whole transaction and starts with a super-
fluous travel that goes down even to depth 3. A vector that
stores the indices (the 5th competitor) overcomes this defi-
ciency. This seems to be the reason behind the good perfor-
mance (first place most of the time).

5.4. Storing the frequent itemsets

Figure 9 shows typical run-times of three different vari-
ants of APRIORI. In the first and second frequent itemset
were stored in the memory, in the third they were written to
disk. To avoid superfluous traversing, maximum path val-
ues were used in the first APRIORI, and different lists of
edges in the second.

Memory needs of the three implementations are found in
the next table.

min maximum different written
freq (%) paths edgelists out
0.064 3.48 3.98 2.38
0.062 7.38 8.98 3.61
0.06 14.3 17.9 6.0
0.058 33.5 43.5 13.2
0.056 133.6 176.0 47.8

Database: BMS-WebView-1

Table 3. Memory need: different frequent
itemset handling

As expected, we obtain the fastest APRIORI if frequent
itemsets are not stored in memory but written to disk in the
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candidate generation process. Experiments show that this
APRIORI, however, is not significantly faster than APRI-
ORI that stores maximum path lengths. This comes from
the fact that APRIORI spends most of the time in determin-
ing the support of small and medium sized candidates. In
such cases most edges lead to leaves, hence removing other
edges does not accelerate the algorithm too much.

However, the memory need can be significantly reduced
if frequent itemsets are not stored in memory. Experiments
show that memory need may even decrease to the third or
the quarter. Consequently if frequent itemsets are needed
to determine valid association rules and memory consump-
tion is an important factor, then it is useful to write frequent
itemsets to disk and read them back when the association
rule discovery phase starts.

5.5. Deleting unimportant transactions

Test results for deleting unimportant transactions contra-
dict our expectations. Typical run-times are listed in Table
4.

min freq (%) 90 81 75 71 69 67
non-delete 4.76 11.82 65.1 430 905 1301

delete 4.48 12.09 66.5 442 917 1339
Database: pumsb

Table 4. Run-time: deleting unimportant
transactions

In six out of ten databases, deleting unimportant trans-
action slowed down APRIORI. In the other three databases

the difference was insignificant (under 1%). The trick ac-
celerated the algorithm only for the retail database.

Deleting unimportant transactions was expected to de-
crease run-time. However test results showed the contrary.
This is attributed two extra cost factors that come into play
as soon as we want to delete unimportant transactions.

First, we have to determine if a given transaction con-
tains any candidates. This means some overhead (one as-
signment at each elementary step of the support count) and
does not save time during APRIORI in cases where the
transaction contains candidates (which is the typical case).

The second kind of extra cost comes from the fact that
filtered transactions were stored in an RB-tree. For this we
used map implemented in STL. However deleting an entry
from an RB-tree is not as cheap as deleting a leaf from a
simple binary tree. The red-black property has to be main-
tained which sometimes requires the expensive rotation op-
eration. Notice that after determining the multiplicity of the
filtered transactions we don’t need to maintain any sophis-
ticated data structures, only the filtered transactions and the
multiplicity values are needed for the support count. Con-
sequently, the second extra cost problem can be overcome
in two ways. We can copy the filtered transactions and the
counters of the RB-tree into a list or we may let the delete
operations invalidate the red-black property of the tree. Test
results showed that even with these modifications, deleting
unimportant transactions does not lead to a faster APRIORI.

5.6. Overall performance gain

With our last experiment we would like to illustrate the
overall performance gain of the prospective improvements.
Two APRIORI implementations with different trie related
options are compared. In the first ascending order, simul-
taneous traversal is used and filtered transactions are stored
in an RB-tree. In the second implementation descending or-
der, binary search on the edges is applied and filtered trans-
actions are not collected.

min freq (%) 90 83 75 71 67 65.5
original 213 2616 16315 34556 71265 stopped

new 3.5 9.3 66 158 365 706
Database: connect

Table 5. Comparing run-time of two APRIORI
with different options

The results support our claim, that suitable data structure
techniques lead to a remarkable improvements.
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5.7. Effect of programming techniques

Most papers on FIM focus on new algorithms, new can-
didate generation methods, support count techniques or data
structure-related issues. Less attention is paid to details,
like the ones mentioned above, despite the fact that these
tricks are able to speed up algorithms that are not regarded
as being very fast. The fastest APRIORI implementation
[6], which incorporates many sophisticated techniques, sup-
ports this claim by finishing among the best implementa-
tions (beating many newer algorithms) in the first FIM con-
test [11].

Besides the algorithmic and data-structure issues there is
a third factor that quite possibly influences effectiveness.
This factor is programming technique. FIM algorithms
are computationally expensive and therefore, no algorithms
that are implemented in a high level programming language
(like Java, C#) are competitive with lower level implemen-
tations. The language C is widely used, flexible and effec-
tive, which is the reason why every competitive FIM imple-
mentation is implemented in C.

Unfortunately, C gives too much freedom to the imple-
mentors. Elementary operations like binary search, building
different trees, list operations, memory-allocation, etc. can
be done in many ways. This is a disadvantage because effi-
ciency depends on the way these elementary operations are
programmed. This may also be the reason for the perfor-
mance gain of a FIM implementation. An experienced pro-
grammer is more likely to code a fast FIM algorithm than a
FIM expert with less programming experience.

A tool that provides standard procedures for the ele-
mentary operations has double advantage. Efficiency of
the implementation would only depend on the algorithm
itself. The code would be more readable and maintain-
able because of the higher level of abstraction. Such a tool
exists – it is the C++ and the Standard Template Library
(STL). STL provides containers (general data structures),
algorithms and functions that were carefully programmed
by professional programmers. By using STL the code will
be easier to read and less prone to error, while maintain-
ing efficiency (STL algorithms are asymptotically optimal).
Due to these advantages, STL should be used whenever pos-
sible. Actually it could be the “common language” among
data mining programmers.

Besides the aforementioned advantages of STL, it also
introduces some dangers. To make good use of STL’s ca-
pabilities, we first need to have more advanced knowledge
about them. Our experiments on STL-related issues showed
that small details and small changes can lead to high varia-
tions in run-time or memory need. The goal of this paper is
to draw attention to data-structure related issues, however,
we also have to mention some STL-related issues that have
to be taken into careful consideration. Next, we list some of

the factors we ran into that have a large impact on efficiency.
These are: (1) when to use sorted vector instead of an RB-
tree (i.e. sorted vector vs. map), (2) when to a store
pointers instead of objects in a container (double referenc-
ing vs. copy constructor), (3) memory management of the
containers and the need for using the “swap trick” to avoid
unnecessary memory occupation, (4) contiguous-memory
containers vs. node-based containers, (5) iterators vs. us-
ing the index operator, etc. These issues are important. For
example, when a vector storing pointers of objects was sub-
stituted by a vector that stores simply the objects and copy
constructor overhead was avoided by reserving memory in
advance, the run-time decreased significantly (for example
to one third in the case of the T10I4D100K database). For
more information on STL-related questions, the reader is
referred to [22] [17].

6. APRIORI implementation submitted to
FIMI’04

Based on our theoretical and experimental analysis, we
implemented a fast APRIORI algorithm. Since we believe
that readability is also very important we sacrificed an in-
significant amount of efficiency if it led to a simpler code.
Our final implementation uses a red-black tree to store fil-
tered transactions, item order is ascending according to their
support, simultaneous traversal is used as a routing strat-
egy, nodes representing frequent itemsets, but playing no
role in support count, are pruned and unimportant filtered
transactions are not removed. Moreover, a single vector
and an array is used to quickly find the support of one
and two itemset candidates [18] [5]. The implementation
(version 2.4.1 at the time of writing) is fully documented
and can be freely downloaded for research purposes at
http://www.cs.bme.hu/˜bodon/en/apriori.

A version that uses a simplified output format and con-
figuration options was submitted to the FIMI’04 contest.

7. Conclusion

In this paper we analyzed speed-up techniques of trie-
based algorithms. Our main target was the algorithm APRI-
ORI, however, some trie-related issues also apply to other
algorithms like FP-growth. We also presented new tech-
niques that result in a faster APRIORI.

Experiments proved that these data-structure issues
greatly affect the run-time and memory consumption of the
algorithms. A carefully chosen combination of these tech-
niques can lead to a 2 to 1000 fold decrease in run-time,
without significantly increasing memory consumption.
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Abstract

In this paper, we present an ongoing work to discover
maximal frequent itemsets in a transactional database. We
propose an algorithm called ABS for Adaptive Borders
Search, which is in the spirit of algorithms based on the
concept of dualization. From an abstract point of view, our
contribution can be seen as an improvement of the basic
APRIORI algorithm for mining maximal frequent itemsets.
The key point is to decide dynamically at which iteration, if
any, the dualization has to be made to avoid the enumera-
tion of all subsets of large maximal itemsets. Once the first
dualization has been done from the current negative border,
APRIORI is no longer used and instead, another dualiza-
tion is carried out from the positive border known so far.
The process is repeated until no change occurs anymore in
the positive border in construction.

Experiments have been done on FIMI datasets from
which tradeoffs on adaptive behavior have been proposed
to guess the best iteration for the first dualization. Far
from being the best implementation wrt FIMI’03 contribu-
tions, performance evaluations of ABS exhibit better per-
formance than IBE, the only public implementation based
on the concept of dualization.

1 Introduction

In this paper, we present an ongoing work to discover
maximal frequent itemsets in a transactional database. We
propose to adapt an algorithm originally devised for mining

inclusion dependencies in databases [8]. This algorithm is
called ABS for Adaptive Borders Search, and is in the spirit
of algorithms based on the concept of dualization [14, 21].

The basic idea of our proposition is to combine the
strength of both levelwise algorithm [1, 18] and Dualize and
Advance algorithm [14] in such a way that:

• "small" maximal frequent itemsets are efficiently gen-
erated with levelwise strategies.

• "large" maximal frequent itemsets may be found effi-
ciently by dualization.

The dualization performed is quite similar to that pro-
posed in the Dualize and Advance algorithm. Nevertheless,
instead of starting from some subset of maximal frequent
itemsets as Dualize and Advance algorithm does, we use
infrequent itemsets to perform the dualization. As a conse-
quence, we obtain the so-called optimistic positive border of
maximal frequent itemsets. The set of such candidates cor-
responds exactly to k-uniform hypergraph clique proposed
in [22]. As a consequence, our proposition contributes to
clarify some related contributions [22, 17, 3, 12, 7]) since
it gives an exact characterization of the optimistic positive
border of maximal frequent itemsets from some subset of
infrequent itemsets.

From an abstract point of view, our contribution can be
seen as an improvement of the basic APRIORI algorithm
for mining maximal frequent itemsets. The key point is to
decide dynamically at which iteration, if any, the dualiza-
tion has to be made to avoid the enumeration of all subsets
of large maximal itemsets. Once the first dualization has
been done from the current negative border available at that



iteration, APRIORI is no longer used and instead, another
dualization is carried out from the positive border known so
far. The process is repeated until no change occurs anymore
in the positive border in construction.

Experiments have been done on FIMI datasets [10]. The
adaptive behavior of our algorithm has been tuned from
results gathered from these experiments. For the tested
dataset, we were able to guess dynamically the best iteration
for the first dualization, a key parameter of our algorithm.

Far from being the best implementation wrt FIMI’03
contributions [11], performance evaluations of ABS exhibit
better performance than IBE [21], the only public imple-
mentation based on the concept of dualization.

2 Preliminaries

Let R be a set of symbols called items; a line is a subset
of R, and a binary relation r over R is a multiset of lines.
We suppose the reader is familiar with the notions of item-
sets, support, and with the main aspects of frequent item-
sets mining problem in a binary relation, given a threshold
minsup (see e.g. [1] for details). We recall the notion of
borders of a set of itemsets [18]. Given F a set of item-
sets over R, the positive border of F denoted by Bd+(F ) is
defined by Bd+(F ) = max⊆{X ∈ F}. The negative bor-
der of F is defined by Bd−(F ) = min⊆{Y ⊆ R | ∀X ∈
F, Y �⊆ X}. If FI is the set of all itemsets frequent in r,
then Bd+(FI) is called the set of maximal frequent itemsets
in r.

We will use the concepts of hypergraph and minimal
transversal of a hypergraph, whose definition is pointed out
here (see for example [4] for more details). Given V a
finite set of elements. A subset E of V defines a hyper-
graph H = (V, E), where elements of V are called ver-
tices of H and elements of E edges of H. A transversal T
of H = (V, E) is a subset of V that intersect all the ele-
ments of E. T is minimal if no other transversal of H are
included in T. The set of all minimal transversals of H is
noted Tr(H).

The relationship between the notion of borders and min-
imal transversals of hypergraph has been exhibited in [18].
Indeed, any set of itemsets can be seen as a hypergraph; if
FI is the set of frequent itemsets in a binary relation r, we
have: Tr(FI) = Bd−(FI), where FI = {R − X | X ∈
FI}.

3 Method description

3.1 Starting with a levelwise algorithm

The algorithm Apriori [1] was initially devoted to fre-
quent itemset mining; Nevertheless, it has been proved to

be still competitive for maximal frequent itemsets mining
in many cases [11], when the size of elements to discover
remain small.

Our goal is to exploit the efficiency of Apriori, but to
automatically detect when it will fall into troubles and stop
its execution. Then we propose to exploit the knowledge
mined so far to initialize a different search, based on the
concept of dualization between positive and negative bor-
ders; each border is updated and used to compute the corre-
sponding dual border, until a fix point is reached.

3.2 From negative to positive border

In the sequel, let r be a binary database over a set of
items R, minsup a minimum support, and FI the set of
frequent itemsets in r. After the levelwise part, our method
is still iterative; at each iteration i, new elements of the posi-
tive and negative borders are expected to be discovered. We
denote by Bd+

i (resp. Bd−
i ) the subset of Bd+(FI) (resp.

Bd−(FI)) discovered until the ith iteration. In other words,
∀i < j,Bd+

i ⊆ Bd+
j and Bd−

i ⊆ Bd−j . Roughly speaking,
candidates for Bd+

i are obtained from elements of Bd−
i , and

candidates for Bd−
i+1 are obtained from elements of Bd+

i .
The following definitions and results have been proposed

in [8] for inclusion dependency discovery problem in rela-
tional databases. We recall them in the context of maximal
frequent itemsets mining, only the proofs are omitted.

We first define the notion of Optimistic positive border.

Definition 1(Optimistic positive border) Given a set F of
itemsets, the optimistic positive border of F is: Fopt(F ) =
max⊆{X ⊆ R | ∀Y ∈ F, Y �⊆ X}.

The next theorem gives a constructive characterization
of Fopt(F ).

Theorem 1[8] Fopt(F ) = Tr(F )

Therefore, the idea is to compute the optimistic positive
border for Bd−

i to obtain exactly the largest itemsets which
do not contain any infrequent itemset discovered so far.

Proposition 1 Let X ∈ Fopt(Bd−
i ). If sup(X) ≥

minsup, X ∈ Bd+(FI).

Proof Since X is maximal in the definition of Fopt(Bd−
i ),

each of its superset contains at least one element of Bd−
i ,

and is infrequent by anti-monotonicity. �

Then, Bd+
i is exactly made up of all the frequent itemsets

in Fopt(Bd−
i ).

3.3 From positive to negative border

In a dual way, the set Bd+
i is then used to compute its

negative border Bd−(Bd+
i ), to finally update the negative

border in construction and obtain Bd−
i+1.



The next theorem gives a constructive characterization
of Bd−(F ), for any set F of frequent itemsets.

Theorem 2[18] Bd−(F ) = Tr(F )

Proposition 2 Let X ∈ Bd−(Bd+
i ). If sup(X) <

minsup, X ∈ Bd−(FI).

Proof Let X be an element of Bd−(Bd+
i ). By the definition

of the negative cover of a set, each subset of X is included
in an element of Bd+(FI) and then is frequent. �

Then, Bd−
i+1 is exactly made up of all the infrequent

itemsets in Bd−(Bd+
i ).

3.4 The Algorithm ABS

Algorithm 1 computes the positive and negative borders
of frequent itemsets in a given binary database. Within
the framework of levelwise algorithms, ABS decides at
each level whether or not the levelwise approach has to
be stopped. In that case, the levelwise approach is halted,
and the two borders are incrementally updated as de-
scribed previously. The functions GenPosBorder and
GenNegBorder compute respectively the optimistic pos-
itive and negative borders, using characterizations in theo-
rems 1 and 2. The algorithm terminates when all elements
of the optimistic positive border currently computed are fre-
quent. It is worth noting that no dualization may occur at all:
in this case, ABS is reduced to APRIORI . The proposi-
tion 3 ensures the correctness of ABS.

The behavior of the function IsDualizationRelevant
is described in section 3.5.

Proposition 3 The algorithm ABS returns Bd+(FI) and
Bd−(FI).

Proof If the test performed by IsDualizationRelevant()
is never true, the demonstration is obvious.
If not, in line 15, from propositions 1 and 2, we haveBd+

i ⊆
Bd+(FI) and Bd−

i−1 ⊆ Bd−(FI)
Moreover, the termination condition ensures that Bd+

i =
GenPosBorder(Bd−i−1); all elements in Bd+

i are frequent
and all elements in Bd−

i−1 are infrequent. Suppose that
∃X ∈ Bd−(FI) | X �∈ Bd−i−1. Then:

• if ∃Y ∈ Bd−i−1 | Y ⊂ X , since Y is infrequent, X �∈
Bd−(FI) and there is a contradiction

• if � ∃Y ∈ Bd−i−1 | Y ⊆ X , then from the definition of
the optimistic positive border ∃Z ∈ Bd+

i | X ⊆ Z ,
which contradict the fact that X is infrequent.

Thus Bd−
i−1 = Bd−(FI). An identical reasoning leads to

Bd+
i = Bd+(FI).

�

Algorithm 1 ABS: Adaptive Border Search
Require: a binary database r, a integer minsup
Ensure: Bd+(FI) and Bd−(FI)

1: F1 = {A ∈ R | sup(A) ≥ minsup}
2: C2 = AprioriGen(F1)
3: i = 2; Bd−1 = R − F1; Bd+

0 = ∅
4: while Ci �= ∅ do
5: Fi = {X ∈ Ci | sup(X) ≥ minsup}
6: Bd−i = Bd−i−1 ∪ (Ci − Fi)
7: Bd+

i−1 = Bd+
i−2 ∪ {X ∈ Fi−1 | ∀Y ∈ Fi, X �⊆ Y }

8: if IsDualizationRelevant(i, |Bd−i |, |Fi|, |Ci|) =
TRUE then

9: Bd+
i = {X ∈ GenPosBorder(Bd−i ) | |X | ≥

minsup}
10: while Bd+

i �= Bd+
i−1 do

11: Bd−i = {X ∈ GenNegBorder(Bd+
i ) | |X | ≤

minsup}
12: Bd+

i+1 = {X ∈ GenPosBorder(Bd−i ) |
|X | ≥ minsup}

13: i = i + 1
14: end while
15: Return Bd+

i and Bd−
i−1 and exit

16: end if
17: Ci+1 = AprioriGen(Fi)
18: i = i + 1
19: end while
20: Bd+

i−1 = Bd+
i−2 ∪ Fi−1

21: Return Bd+
i−1 and Bd−

i−1

3.5 Adaptive aspects of ABS

The main adaptive aspect of ABS is conveyed by the
function IsDualizationRelevant, line 8 of algorithm 1.
As mentioned, its goal is to estimate if it is interesting to
dualize the current negative border to the optimistic positive
border.

We have identified four parameters specific to a given
iteration of the levelwise algorithm, which can be obtained
dynamically without any overhead:

• The current level i. No jump is allowed until a given
integer threshold; we set the threshold equal to 4, since
Apriori is very efficient in practice to explore the lev-
els 1 to 4. In our experiments, dualizing before this
level incurs no improvement.

• |Bd−i |, the size of the current negative border. A sim-
ple remark can be made here: if this parameter is very
large (more than 100000) the minimal transversals
computation become prohibitive. We are not aware
of existing implementations of minimal transversals



computation able to handle such input hypergraphs 1.
Moreover, such cases are likely to correspond to best
scenario for Apriori.

• |Fi|, the number of frequent i-itemsets and |Bd−
i | have

to be compared. Indeed, a small value of |Bd−
i | wrt

|Fi| is likely to give a successful dualization.

• |Fi| and |Ci|, the number of candidates in level i, can
also be compared. If |Fi|/|Ci| is close to 1, we can
suspect to be in a "dense" part of the search space, and
thus the levelwise search should be stopped.

3.6 Practical aspects

3.6.1 Candidate generation from the current positive
border

From [18], candidate generation of a levelwise algorithm
for a problem representable as sets can be formulated using
dualization: At the ith iteration, we have

Ci+1 = Tr(∪j≤iFj) − ∪j≤iCj

It is shown in [18] that candidate itemsets of Ci+1 are ex-
actly of size i + 1, which allows to improve candidate gen-
eration.

In the setting of this paper, we can see Ci+1 as the set
Bd−i+1 − Bd−i , and thus we get:

Ci+1 = Tr(Bd+
i ) − ∪j≤iCj

Here, the major difference with a pure levelwise ap-
proach is that Bd+

i may contain some elements of size
greater than i + 1.

One may question about the size of the largest elements
of Ci+1: does there exist elements of size strictly greater
than i + 1 ? The answer is yes as shown in the following
non trivial example.

Example 1
Let r be the binary relation over a schema R =
{A, B, C, D, E, F, G, H, I} represented in Table 1. For a
minsup equals to 1, the borders of frequent itemsets in r
are Bd− = {AE, BF, CG, DH, ABCDI} and Bd+ =
{ABCHI, ABDGI, ABGHI, ACDFI, ACFHI,
ADFGI, AFGHI, BCDEI, BCEHI, BDEGI,
BEGHI, CDEFI, CEFHI, DEFGI, EFGHI,
ABCD}.
After a levelwise pass until level two, the four NFI
of size two have been discovered, i.e. Bd−

2 =
{AE, BF, CG, DH}. Suppose the algorithm decides here
to stop the pure levelwise search. Then, these sets are used

1Experiments conducted in [16, 2] only consider hypergraphs with not
more than 32000 edges.

A B C D E F G H I
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1

1 1 1 1

Table 1. Example database

to compute the optimistic positive border from level 2. It
is made up of 16 itemsets of size 5, among which the only
non frequent itemset is ABCDI . Thus, at this time, Bd+

2 =
{ABCHI, ABDGI, ABGHI, ACDFI, ACFHI,
ADFGI, AFGHI, BCDEI, BCEHI, BDEGI,
BEGHI, CDEFI, CEFHI, DEFGI, EFGHI}. We
obtain Bd−(Bd+

2 ) = {ABCD} of size 4, being understood
that no elements of size 3 does exist.

In our first implementation, computing the set
Bd−(Bd+

i ) using minimal transversals had a quite
prohibitive cost on large hypergraph instances. Therefore,
we made the choice to restrict Bd−(Bd+

i ) to its (i + 1)-
itemsets for efficiency reasons. This choice has no effect
on the correctness of the algorithm, since the termination
condition is always the same2.

3.6.2 Dealing with "almost frequent" large candidate
itemsets

Let us consider the case of a candidate itemset obtained af-
ter a dualization from the current negative border. Let X
be this candidate. Two main cases do exist: either X is
frequent, or X is infrequent. In that case, we propose to
estimate a degree of error in order to "qualify the jump".

Given a new user-defined threshold δ, and a
minimal support minsup, an error measure, noted

2We suspect the algorithm PincerSearch [17] to be not complete.
Indeed, the search strategy of PincerSearch is very close to our propo-
sition: if we only consider (i + 1)-itemsets in Bd−(Bd+

i ), they cor-
respond exactly to the candidate set Ci+1 of PincerSearch. Since
PincerSearch stops as soon as Ci+1 = ∅, some elements could be for-
gotten. From the example 1, after the level 2, C3 is empty, and therefore
the maximal set ABCD seems to be never generated by PincerSearch.



error(X, minsup), can be defined as the ratio between the
minsup minsup and the support of the infrequent itemset
X , i.e. error(X, minsup) = 1 − support(X)

minsup .
Two sub-cases are worth considering:

• either error(X, minsup) ≤ δ : the "jump" was not
successful but solutions should exist among the nearest
subsets of X .

• or error(X, minsup) > δ : In that case, the jump
was over-optimistic and probably, no solution does ex-
ist among the nearest generalizations of X .

Note that this error measure is decreasing, i.e. X ⊂
Y ⇒ error(X, minsup) ≤ error(Y, minsup)

In our current implementation, these almost frequent
large itemsets are first considered as frequent to enable more
pruning in subsequent passes. Afterward, they are consid-
ered at the very end of our algorithm. A pure top-down
levelwise approach has been implemented to find out their
subsets which can be maximal frequent itemsets.

4 Implementation details and experimental
results

4.1 Implementation details

An implementation of the algorithm has been performed
in C++/STL. Two existing implementations available from
the FIMI repository website [10] were borrowed: the
Apriori code of C. Borgelt [5] and the prefix-tree imple-
mentation of B. Goethals using C++/STL [10].

To keep coherence with this implementation, we use a
similar data structure for the new parts of the algorithm.
The itemsets and the transactions are stored in a prefix-tree
[1, 6].

Minimal Transversals computation For the minimal
transversals computation, we implemented the algorithm
proposed in [9] using a prefix-tree in order to handle rel-
atively large hypergraph instances. Its incremental aspect
is very interesting in our case, since the negative border is
itself incremental. Note that improvements have been per-
formed by exploiting the knowledge of previous dualiza-
tions. We do not give more details here.

4.2 Experimental results

We conducted experiments on a pentium 4.3GHz Pro-
cessor, with 1Go of memory. The operating system was
Redhat Linux 7.3 and we used gcc 2.96 for the compilation.
We used four datasets available on the FIMI’03 repository.

We first evaluate the influence of the level from which
the levelwise approach is stopped on the performances of
ABS. Then, the impact of "almost frequent" large itemsets
is studied for different threshold values for the error mea-
sure. Finally, we compare ABS with four maximal frequent
itemsets mining algorithms: Apriori and Eclat [12] imple-
mented by C.Borgelt [5], Fpmax [13] based on FP−trees
[15] and IBE [21].
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Figure 1. Forcing the first dualization at level
k for connect (top) and pumsb* (bottom)

In figure 1, we forced the first dualization for different
levels (from 3 to 8), on the connect dataset with a minsup
of 80 % and the pumsb* dataset with a minsup of 30%.
The results confirm the necessity to fix dynamically this pa-
rameter, and then justify an adaptive approach. Second, for
all tested datasets, our function IsDualizationRelevant
has dynamically determined the best level to begin dualiza-
tion.

The optimization based on the error measure is evalu-
ated on figure 2. From pumsb dataset (on the top), this op-
timization appears to be interesting with a threshold value
near 0.002. Nevertheless, on the connect dataset (bottom)
no improvements is achieved. This comes from the fact that
the proposed error measure is not strictly decreasing; and
the equivalence classes induced by closed frequent itemsets
are large. Our top down levelwise approach is prone to fail
on this kind of databases .
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Figure 2. Exec. times for pumsb (top) and
connect (down) wrt different error measure
thresholds

From figures 3, 5 and 6, ABS is far to compete with
best known implementations but tends to outperform IBE
for most of our experimentations. Recall that IBE is the
unique implementation based on the concept of dualization
available from FIMI’03. We believe that this is due to the
number of dualization performed by IBE, which is in the
size of the positive border.
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Pumsb

From figure 4, IBE exhibits better performances than
ABS for low support thresholds (less than 20%). This is
due to the fact that while the size of the positive border re-
mains small (less than 5000 elements) the size of the neg-
ative border exceeds 106 elements, where some elements
appear to have a very large size. This seems to be the worst
case for ABS.
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Pumsb*

From figure 5, ABS behaves like Apriori as expected.
Indeed, the positive border of retail is made up of "small"
itemsets, and Apriori turns out to be the best implementa-
tion for this kind of datasets.
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Figure 5. Execution times for database Retail

From figure 6, ABS is not as efficient as best known
implementations (e.g. fpmax), but improves Apriori by a
factor of ten and beats Eclat and IBE.
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nect

To sum up, two main reasons explain our mitigate re-
sults: 1) the cost of dualization remains high on very large
hypergraph instances and 2) candidate generation and sup-
port counting seems to be not enough efficient in our current
implementation.

The main parameter influencing performance of ABS
turns out to be around the negative border. If for a given
minsup, the negative border does not become too huge
and its largest element remains "small" with respect to the
largest maximal frequent itemset, ABS should have good
performance.

5 Related works

Several algorithms exist for discovering maximal fre-
quent itemsets mining in a transactional database (see
FIMI’03). The goal is always to avoid an exponential search
by characterizing as fast as possible largest frequent item-
sets without exploring their subsets. MaxMiner [3] uses a
levelwise approach to explore the candidate itemsets, using
the Rymon’s enumeration system [20] - in which itemsets
are arranged in a non redundant tree. But when a candi-
date X is counted over the database, the greatest candidate
in the subtree of X is also counted; if it is frequent, then
all the subtree can be pruned by anti-monotony of the "is
frequent" property. Jumps done by MaxMiner depend on
the ordering of items used to build the tree and are therefore
quiet different from jumps proposed in this paper. The al-
gorithms Mafia [7] and GenMax [12] use the same prin-
ciple as MaxMiner with efficient optimizations, e.g. ver-
tical bitmaps.

The Pincer − Search Algorithm [17] uses a search
strategy very close to ours. After a levelwise initialization,
the principle is also to look at the largest not yet eliminated
candidates. However, these large candidates are not charac-
terized in a formal way.

In [14], the authors propose the Dualize and Advance
algorithm. In their approach, the positive border in con-
struction is always a subset of the positive border to be dis-
covered. At each step, from some elements of the positive
border already discovered, they generate the correspond-
ing negative border. If one element of the negative border
appears to be satisfied, they generate a specialization of it
which belongs to the positive border and they re-iterate the
process until each element of the negative border is indeed
not satisfied. An implementation of a variant of Dualize and
Advance has been proposed in [21] with an irredundant du-
alization. Their code is available from the FIMI’03 website.

Some algorithms like Mafia [7] or DCI [19] can adapt
themselves to mine frequent itemsets, with respect to the
dataset density and some architectural characteristics (e.g.
available memory). Even if these aspects improve perfor-
mances, it only concerns choices for data structures; the
mentioned algorithms do not really adapt their strategy to
explore the search space.

6 Conclusion and future works

In this paper, we have proposed an ongoing effort to-
ward the discovery of maximal frequent itemsets. Our con-
tribution takes its roots from the algorithm ZigZag devised
for inclusion dependency discovery in databases. Even if
this two data mining problems fit into the same theoretical
framework [18], they widely differ in practice which is not
a surprise. Indeed, while ZigZag performed very well in
our experiments3, ABS does not exhibit such a good behav-
ior for maximal frequent itemsets mining. Many reasons
explain this result, for instance the availability of public
datasets allowing thorough experimentations, the intrinsic
properties of each problem, and may be the more impor-
tant reason lies in the cost of a database access, in-memory
resident data vs data stored into a DBMS.

Many improvements can be brought to our current im-
plementation. Some are specific to our algorithm like for
instance minimal transversal computation on large hyper-
graph instances or taking into account large equivalence
classes induced by closed frequent itemsets during candi-
date generation from "almost frequent" itemsets. Some oth-
ers belong to "the state of the art" of maximal frequent item-
sets implementation : managing huge set of set, support
counting... Complexity issues need also to be addressed.

To end up, we want to quote a personal note on the main
objective of the FIMI workshop. We believe that frequent,
closed and maximal itemsets mining are key data mining
tasks since algorithms devised to solve these tasks are likely
to be used in other contexts under some conditions [18].
Roughly speaking, for every problem representable as sets

3Note that dynamic parameters were quiet different, e.g. the first dual-
ization was always performed at the second level.



with an anti-monotone predicate as for instance with func-
tional dependency inference or simply anti-monotone pred-
icates on itemsets other than "is frequent", the algorithms
devised for FIMI should be useful to answer these tasks.
Nevertheless, it seems rather optimistic to envision the ap-
plication of many FIMI’03 [11] implementations to another
data mining problem representable as sets. Indeed, even if
the development of efficient data structures for managing
huge sets of set is definitely useful, loading the database in
main memory using sophisticated data structure specially
devised for the anti-monotone predicate to be mined turns
out to give very efficient algorithms but deserve other data
mining tasks.
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Abstract

One of the main problems raising up in the frequent
closed itemsetsmining problem is the duplicate detection.
In this paper we propose a general technique for promptly
detecting and discarding duplicate closed itemsets, with-
out the need of keeping in the main memory the whole set
of closed patterns.

Our approach can be exploited with substantial perfor-
mance benefits by any algorithm that adopts a vertical
representation of the dataset. We implemented our tech-
nique within a new depth-first closed itemsets mining al-
gorithm. The experimental evaluation demonstrates that
our algorithm outperforms other state of the art algo-
rithms like CLOSET+ and FPCLOSE.

1. Introduction

Frequent itemsets mining is the most important and
demanding task in many data mining applications. To
describe the mining problem we introduce the follow-
ing notation. Let I = {a1, ..., aM} be a finite set of
items, and D a finite set of transactions (the dataset),
where each transaction t ∈ D is a list of distinct items
t = {i0, i1, ..., iT }, ij ∈ I. A k-itemset is a sequence of k
distinct items I = {i0, i1, ..., ik} | ij ∈ I, sorted on the
basis of some total order relation between item literals.
The number of transactions in the dataset including an
itemset I is defined as the support of I (or supp(I)).
Mining all the frequent itemsets from D requires to dis-

cover all the itemsets having support higher than (or
equal to) a given threshold min supp.

The paper is organized as follows. In Sect. 2 we in-
troduce closed itemsets and describe a framework for
mining them. This framework is shared by all the algo-
rithms surveyed in Sect. 3. In Sect. 4 we formalize the
problem of duplicates and propose our technique. Sec-
tion 5 proposes an implementation of our technique
and discusses the experimental results obtained. Fol-
low some concluding remarks.

2. Closed itemsets

The concept of closed itemset is based on the two
following functions f and g:

f(T ) = {i ∈ I | ∀t ∈ T, i ∈ t}
g(I) = {t ∈ D | ∀i ∈ I, i ∈ t}

where T and I, T ⊆ D and I ⊆ I are, respectively,
subsets of all the transactions and items occurring in
dataset D. Function f returns the set of itemsets in-
cluded in all the transactions in T , while function g re-
turns the set of transactions supporting a given item-
set I. Since the set of transaction g(I) can be repre-
sented by a list of transaction identifiers, we refer to
g(I) as the tid-list of I. We can introduce the follow-
ing definition:

Definition 1 An itemset I is said to be closed if and
only if

c(I) = f(g(I)) = f ◦ g(I) = I



where the composite function f ◦ g is called Galois oper-
ator or closure operator.

The closure operator defines a set of equivalence
classes over the lattice of frequent itemsets: two item-
sets belong to the same equivalence class iff they have
the same closure, i.e. they are supported by the same
set of transactions. We can also show that an itemset I
is closed if no superset of I with the same support ex-
ists. Thus, a closed itemset is also the maximal itemset
of an equivalence class. Mining all these maximal ele-
ments of each equivalence class corresponds to mine all
the closed itemsets.

Figure 1.(a) shows the lattice of frequent itemsets
derived from the simple dataset reported in Fig. 1.(b),
mined with min supp = 1. We can see that the item-
sets with the same closure are grouped in the same
equivalence class. Each equivalence class contains ele-
ments sharing the same supporting transactions, and
closed itemsets are their maximal elements. Note that
the number of closed itemsets (five) is remarkably lower
than the number of frequent itemsets (fifteen).

CB

Ø

A

ACAB AD BDBC CD

ABC

ABCD

ABD ACD BCD

D

1

2 12

2

2 1

2

1

1 1

3 3 2

2

ABD1B 3 Frequent

Closed Itemset Frequent itemset

Equivalence 

Class

SUPPORT

(a)

TID items
1 B D
2 A B C D
3 A B C
4 C

(b)

Figure 1. (a) Lattice of frequent itemsets with
closed itemsets and equivalence classes given by
the dataset (b).

The algorithms for mining frequent closed itemsets
adopt a strategy based on two main steps: Search space
browsing, and Closure calculation. In fact, they browse
the search space by traversing the lattice of frequent
itemsets from an equivalence class to another, and they
calculate the closure of the frequent itemsets visited in
order to determine the maximal elements (closed item-
sets) of the corresponding equivalence classes. Let us
analyze in some depth these two phases.

Browsing the search space. The goal of an effec-
tive browsing strategy should be to devise a spanning
tree over the lattice of frequent itemsets, visiting ex-
actly a single itemset in each equivalence class. We
could in fact mine all the closed itemsets by calculat-
ing the closure of just an itemset per equivalence class.
Let us call the itemsets used to compute closures dur-
ing the visit closure generators.

Some algorithms choose the minimal elements (or
key patterns) of each equivalence class as closure gen-
erators. Key patterns form a lattice, and this lattice can
be easily traversed with a simple apriori-like algorithm.
Unfortunately, an equivalence class can have more than
one minimal element leading to the same closed item-
set. For example, the closed itemset {ABCD} of Fig.
1 may be mined twice, since it can be obtained as clo-
sure of the two minimal elements of its equivalence class
{AD} and {CD}.

Other algorithms use instead a different technique
that we call closure climbing. As soon as a generator
is devised, its closure is computed, and new genera-
tors are built as supersets of the closed itemset discov-
ered. Since closed itemsets are maximal elements, this
strategy always guarantees to jump from an equiva-
lence class to another. Unfortunately, it does not guar-
antee that the new generators belong to equivalence
classes that were not previously visited.

Regardless of the strategy adopted, some kind of
duplicate check has thus to be introduced. A naive ap-
proach to check for duplicates is to search for each gen-
erated closed itemset among all the ones mined so far.
Indeed, in order to avoid to perform a lot of expen-
sive closure operations, several algorithms exploit the
following lemma:

Lemma 1 Given two itemsets X and Y , if X ⊂ Y and
supp(X) = supp(Y ) (i.e. |g(X)| = |g(Y )|), then c(X) =
c(Y ).

Proof. If X ⊂ Y , then g(Y ) ⊆ g(X). Since |g(Y )| =
|g(X)| then g(Y ) = g(X). g(X) = g(Y ) ⇒ f(g(X)) =
f(g(Y ))⇒ c(X) = c(Y ).
�

Therefore, given a generator X, if we find an al-
ready mined closed itemsets Y that set-includes X,



and the supports of Y and X are identical, we can
conclude that c(X) = c(Y ). Hence we can prune the
generator X without actually calculating its closure.
Also this duplicates checking strategy is however ex-
pensive, both in time and space. In time because we
may need to search for the inclusion of each genera-
tor in a huge number of closed itemsets, in space be-
cause to perform it we need to keep all the closed item-
sets in the main memory. To reduce such costs, closed
sets can be stored in compact prefix tree structures, in-
dexed by one or more levels of hashing.

Calculating Closures. To calculate the closure of an
itemset X, we have to apply the Galois operator c. Ap-
plying c requires to intersect all the transactions of the
dataset including X. Another way to calculate the clo-
sure is given by the following lemma:

Lemma 2 Given an itemset X and an item i, if g(X) ⊆
g(i)⇒ i ∈ c(X).

Proof. Since g(X ∪ i) = g(X) ∩ g(i), g(X) ⊆ g(i) ⇒
g(X ∪ i) = g(X). Therefore, if g(X ∪ i) = g(X) then
f(g(X ∪ i)) = f(g(X))⇒ c(X ∪ i) = c(X)⇒ i ∈ c(X).
�

From the above lemma, we know that if g(X) ⊆ g(i),
then i ∈ c(X). Therefore, by performing this inclusion
check for all the items in I not included in X, we can
incrementally compute c(X). Note that, since the set
g(i) can be represented by the tid-list associated with
i, this suggests the adoption of a vertical format for the
input dataset in order to efficiently implement the in-
clusion check: g(X) ⊆ g(i).

The closure calculation can be performed off-line or
on-line. In the first case we firstly retrieve the com-
plete set of generators, and then we calculate their clo-
sures. In the second case, as soon as a new generator
is discovered, its closure is computed on-the-fly.

The algorithms that compute closures on-line are
generally more efficient. This is because they can adopt
the closure climbing strategy, according to which new
generators are created recursively from closed itemsets.
These generators are likely longer than key patterns,
which are the minimal itemsets of the equivalence class
and thus are the shorter possible generators. Obviously,
the longer the generator is, the fewer checks (on fur-
ther items to add) are needed to get its closure.

3. Related Works

The first algorithm proposed for mining closed item-
sets was A-CLOSE [5] (N. Pasquier, et al.). A-CLOSE
first browses level-wise the frequent itemsets lattice by
means of an Apriori-like strategy, and mines all the

minimal elements of each equivalence class. Since a k-
itemset is a key pattern if and only if no one of its
(k − 1)-subsets has the same support, minimal ele-
ments are discovered with an intensive subset check-
ing. In its second step, A-CLOSE calculates the closure
of all the minimal generators previously found. Since a
single equivalence class may have more than one min-
imal itemsets, redundant closures may be computed.
A-CLOSE performance suffers from the high cost of
the off-line closure calculation and the huge number of
subset searches.

The authors of FP-Growth [2] (J. Han, et al.) pro-
posed CLOSET [6] and CLOSET+ [7]. These two algo-
rithms inherit from FP-Growth the compact FP-Tree
data structure and the exploration technique based on
recursive conditional projections of the FP-Tree. Fre-
quent single items are detected after a first scan of the
dataset, and with another scan the pruned transactions
are inserted in the FP-Tree stored in the main memory.
With a depth first browsing of the FP-Tree and recur-
sive conditional FP-Tree projections, CLOSET mines
closed itemsets by closure climbing, and growing up
frequent closed itemsets with items having the same
support in the conditional dataset. Duplicates are dis-
covered with subset checking by exploiting Lemma 2.
Thus, all closed sets previously discovered are kept in
the main memory, and are indexed by a two level hash.
CLOSET+ is similar to CLOSET, but exploits an
adaptive behaviour in order to fit both sparse and dense
datasets. As regards the duplicate detection technique,
CLOSET+ introduces a new one for sparse datasets
named upward checking. This technique consists in the
intersection of every path of the initial FP-Tree leading
to a candidate closed itemset X, if such intersection is
empty then X is actually closed. The rationale for us-
ing it only in sparse dataset is that the transactions
are short, a thus the intersections can be performed
quickly. Note that with dense dataset, where the trans-
actions are usually longer, closed itemsets equivalence
classes are large and the number of duplicates is high,
such technique is not used because of its inefficiency,
and CLOSET+ steps back using the same strategy of
CLOSET, i.e. storing every mined closed itemset.

FPCLOSE [1], which is a variant of CLOSET+, re-
sulted to be the best algorithm for closed itemsets min-
ing presented at the ICDM 2003 Frequent Itemset Min-
ing Implementations Workshop.

CHARM [9] (M. Zaki, et al.) performs a bottom-up
depth-first browsing of a prefix tree of frequent item-
sets built incrementally. As soon as a frequent itemset
is generated, its tid-list is compared with those of the
other itemsets having the same parent. If one tid-list
includes another one, the associated nodes are merged



since both the itemsets surely belong to the same equiv-
alence class. Itemset tid-lists are stored in each node of
the tree by using the diff-set technique [8]. Since differ-
ent paths can however lead to the same closed itemset,
also in this case a duplicates pruning strategy is imple-
mented. CHARM adopts a technique similar to that of
CLOSET, by storing in the main memory the closed
itemsets indexed by single level hash.

According to our classification, A-CLOSE exploits a
key pattern browsing strategy and performs off-line clo-
sure calculations, while CHARM, CLOSET+ and FP-
CLOSE are different implementations of the same clo-
sure climbing strategy with incremental closure com-
putation.

4. Removing duplicate generators of
closed itemsets

In this Section we discuss a particular visit of the lat-
tice of frequent sets used by our algorithm to identify
unique generators of each equivalence class, and com-
pute all the closed patterns through the minimum num-
ber of closure calculations.

In our algorithm, we use closure climbing to browse
the search space, find generators and compute their
closure. As soon as a generator is found, its closure is
computed, and new generators are built as supersets
of the closed itemset discovered so far. So, each gen-
erator gen browsed by our algorithm can be generally
represented as gen = Y ∪ i, where Y is a closed item-
set, and i, i 6∈ Y is an item in I1.

Looking at Figure 1.(a), we can unfortunately dis-
cover multiple generators gen = Y ∪ i, whose closures
produce an identical closed itemset. For example, we
have four generators, {A}, {A,B}, {A,C} and {B,C},
whose closure is equal to the closed itemsets {A,B,C}.
Note that all these generators have the form Y ∪ i,
since they can be obtained by adding a single items to
a smaller closed itemset, namely ∅, {B} and {C}.

The technique exploited by our algorithm to detect
duplicate generators exploits a total lexicographic or-
der relation ≺ between all the itemsets of our search
space2. Since there exist a relation ≺ between each pair
of k-itemsets, in order to avoid duplicate closed item-
sets, we do not compute the closure of the generators

1 For each closed itemset Y ′ 6= c (∅), it is straightforward to
show that there must exists at least a generator having the
form gen = Y ∪ i, where Y , Y ⊂ Y ′, is a closed itemset, i 6∈ Y ,
and Y ′ = c(gen).

2 This lexicographic order is induced by an order relation be-
tween single item literals, according to which each k-itemset
I can be considered as a sorted set of k distinct items
{i0, i1, ..., ik}.

that do not result order preserving according to the def-
inition below.

Definition 2 A generator X = Y ∪ i, where Y is a
closed itemset and i 6∈ Y , is said to be order preserv-
ing one iff i ≺ (c(X) \X).

The following Theorem shows that, for any closed
itemset Y , it is possible to find a sequence of order pre-
serving generators in order to climb a sequence of clo-
sure itemsets and arrive at Y . The following Corollary
states that this sequence is unique.

Theorem 1 For each closed itemsetY 6= c (∅), there ex-
ists a sequence of n (n ≥ 1) items i0 ≺ i1 ≺ ... ≺ in−1

such that

{gen0, gen1, . . . , genn−1} = {Y0∪i0, Y1∪i1, . . . , Yn−1∪in−1}

where the various geni are order preserving generators,
with Y0 = c (∅), Yj+1 = c(Yj ∪ ij) ∀j ∈ [0, n − 1] and
Y = Yn.

Proof. First of all, we show that given a generic gener-
ator gen ⊆ Y , c(gen) ⊆ Y . More formally, if ∃Y ′ such
that Y ′ is a closed itemset, and Y ′ ⊂ Y , and we extend
Y ′ with an item i ∈ Y \Y ′ to obtain gen = Y ′∪ i ⊆ Y ,
then ∀j ∈ c(gen), j ∈ Y .

Note that g(Y ) ⊆ g(gen) because gen ⊆ Y . More-
over, if j ∈ c(gen), then g(c(gen)) ⊆ g(j). Thus, since
g(Y ) ⊆ g(gen), then g(Y ) ⊆ g(j) also holds, so that
j ∈ c(Y ) too. So, if j 6∈ Y hold, Y would not be closed,
and this is in contradiction with the hypothesis.

As regards the proof of the Theorem, we show it by
constructing a sequence of closed itemsets and associ-
ated generators having the properties stated above.

We have that Y0 = c (∅). All the items in Y0 ap-
pear in every transaction of the dataset and therefore
by definition of closure they must be included also in
Y , i.e. Y0 ⊆ Y .

Since Y0 6= Y by definition, we choose
i0 = min≺ (Y \ Y0), i.e. i0 is the smallest item
in {Y \ Y0} with respect to the lexicographic or-
der ≺, in order to create the first order preserv-
ing generator {Y0 ∪ i0}. Afterwards we calculate
Y1 = c(Y0 ∪ i0) = c(gen0).

Once Y1 is found, if Y1 = Y we stop.
Otherwise we choose i1 = min≺ (Y \ Y1), where

i0 ≺ i1 by construction, in order to build the next or-
der preserving generator gen1 = Y1 ∪ i1 and we calcu-
late Y2 = c(Y1 ∪ i1) = c(gen1).

Once Y2 is found, if Y2 = Y we stop, otherwise we
iterate, by choosing i2 = min≺ (Y \ Y2), and so on.

Note that each generator genj = {Yj ∪ ij} is order
preserving, because c({Yj ∪ ij}) = Yj+1 ⊆ Y and ij is



the minimum item in {Y \Yj} by construction, i.e. ij ≺
{Yj+1 \ {Yj ∪ ij}}.
�

Corollary 1 For each closed itemset Y 6= c (∅),
the sequence of order preserving generators
{gen0, gen1, . . . , genn} = {Y0 ∪ i0, Y1 ∪ i1, . . . , Yn ∪ in}
as stated in Theorem 1 is unique.

Proof. Since all the items in Y0 appear in every transac-
tion of the dataset, by definition of closure, they must
be included also in Y , we have that Y0 = c (∅).

During the construction of the sequence of genera-
tors, suppose that we choose ij 6= min≺ (Y \ Yj) to con-
struct generator genj . Since genj and all the following
generators must be order preserving, it should be im-
possible to obtain Y , since we can not consider any-
more the item i = min≺ (Y \ Yj) ∈ Y in any other gen-
erator or closure in order to respect the order preserv-
ing property.
�

Looking at Figure 1.(a), for each closed itemset we
can easily identify those unique sequences of order pre-
serving generators. For example, for the the closed
itemset Y = {A,B,C, D}, we have Y0 = c(∅) = ∅,
gen0 = ∅ ∪ A, Y1 = c(gen0) = {A,B,C}, gen1 =
{A,B, C} ∪D, and, finally, Y = c(gen1). Another ex-
ample regards the closed itemset Y = {B,D}, where
we have Y0 = c(∅) = ∅, gen0 = ∅ ∪ B, Y1 = c(gen0) =
B, gen1 = B ∪D, and, finally, Y = c(gen1).

In order to exploit the results of Theorem 1, we need
a fast way to check whether a generator is order pre-
serving.

Lemma 3 Let gen = Y ∪ i be a generator of a closed
itemset where Y is a closed itemset and i 6∈ Y , and let
pre-set(gen) = {j ≺ i | j 6∈ gen}. gen is not order pre-
serving, iff ∃j ∈ pre-set(gen), such that g(gen) ⊆ g(j).

Proof. If g(gen) ⊆ g(j), then j ∈ c(gen). Since, by hy-
pothesis, j ≺ i, it is not true that i ≺ (c(gen)\gen) be-
cause j ∈ (c(gen) \ gen).
�

The previous Lemma introduces the concept of
pre-set(gen), where gen = {Y ∪ i} is a genera-
tor, and gives a way to check the order preserv-
ing property of gen by scanning all the g(j), for all
j ∈ pre-set(gen).

We have thus contributed a deep study on the the
problem of duplicates in mining frequent closed item-
sets. By reformulating the duplicates problem as the
problem of visiting the lattice of frequent itemsets, ac-
cording to a total (lexicographic) order, we have moved
the dependencies of the order preserving check from the

set of closed itemsets already mined to the tid-lists as-
sociated with single items. This new technique is not
resource demanding, because frequent closed itemsets
need not to be stored in the main memory during the
computation, and it is not time demanding, because the
order preserving check is cheaper than searching the set
of closed itemsets mined so far. Note that CLOSET+
needs the initial FP-tree as an additional requirement
the current FP-tree in use, and morover does not use
its upward checking tchnique with dense datasets.

5. The DCI Closed algorithm.

The pseudo-code of the recursive procedure
DCI Closed() is shown in Algorithm 1. The pro-
cedure receives three parameters: a closed item-
sets CLOSED SET, and two sets of items, i.e. the
PRE SET and POST SET.

The procedure will output all the non-duplicate
closed itemsets that properly contain CLOSED SET.
In particular, the goal of the procedure is to deeply
explore each valid new generator obtained from
CLOSED SET by extending it with all the ele-
ment in POST SET.

Before calling procedure DCI Closed(), the dataset
D is scanned to determine the frequent single items
F1 ⊆ I, and to build the bitwise vertical dataset
VD containing the various tid-lists g(i), ∀i ∈ F1.
The procedure is thus called by passing as arguments
CLOSED SET = c(∅), PRE SET = ∅, and POST SET
= F1 \ c(∅). Note that the itemset c(∅) contains, if
any, the items that occur in all the transactions of the
dataset D.

The procedure builds all the possible generators,
by extending CLOSED SET with the various items
in POST SET (lines 2–3). The infrequent and dupli-
cate generators (i.e., the not order preserving ones) are
however discarded as invalid (lines 4-5). Note that the
items i ∈ POST SET used to obtain those invalid gen-
erators will no longer be considered in the following
recursive calls. Only the valid generators are then ex-
tended to compute their closure (lines 6–15). It is worth
noting that each generator new gen← CLOSED SET
∪ i is strictly extended according to the order preserv-
ing property, i.e. by using all items j ∈ POST SET
such that i ≺ j (line 8). Note that all the items j, i ≺ j,
which do not belong to c(new gen) are included in the
new POST SET (line 12) and are used for the next re-
cursive call. At the end of this process, a new closed set
(CLOSED SETNew ← c(new gen)) is obtained (line
15). From this new closed set, new generators and cor-
responding closed sets can be build, by recursively call-
ing the procedure DCI Closed() (line 16). Finally, it



Algorithm 1 DCI-closed pseudocode
1: procedure DCI Closed(CLOSED SET, PRE SET, POST SET)
2: for all i ∈ POST SET do . Try to create a new generator
3: new gen← CLOSED SET ∪ i
4: if supp(new gen) ≥ min supp then . new gen is frequent
5: if is dup(new gen, PRE SET) = FALSE then . Duplication check
6: CLOSED SETNew ← new gen
7: POST SETNew ← ∅
8: for all j ∈ POST SET, i ≺ j do . Compute closure of new gen
9: if g(new gen) ⊆ g(j) then

10: CLOSED SETNew ← CLOSED SETNew ∪ j
11: else
12: POST SETNew ← POST SETNew ∪ j
13: end if
14: end for
15: Write out CLOSED SETNew and its support
16: DCI Closed(CLOSED SETNew, PRE SET, POST SETNew)
17: PRE SET ← PRE SET ∪ i
18: end if
19: end if
20: end for
21: end procedure
22:

23:

24: function is dup(new gen, PRE SET)
25: for all j ∈ PRE SET do . Duplicate check
26: if g(new gen) ⊆ g(j) then
27: return FALSE . new gen is not order preserving!!
28: end if
29: end for
30: return TRUE
31: end function
is worth to point out that, in order to force the lexico-
graphic order of the visit, the two for all’s (line 2 and
line 8) have to extract items from POST SET while re-
specting this order.

Before recursively calling the procedure, it is neces-
sary to prepare the suitable PRE SET and POST SET
to be passed to the new recursive call of the procedure.
Upon each recursive call to the procedure, the size of
the new POST SET is monotonically decreased, while
the new PRE SET’s size is instead increased.

As regards the composition of the new POST SET,
assume that the closed set X =CLOSED SETnew

passed to the procedure (line 16) has been obtained
by computing the closure of a generator new gen =
Y ∪ i (c(new gen)), where Y =CLOSED SET and
i ∈ POST SET. The POST SETnew to be passed to
the recursive call of the procedure is built as the set of
all the items that follow i in the lexicographic order and
that have not been already included in X. More for-
mally, POST SETnew = {j ∈ F1 | i ≺ j and j 6∈ X}.
This condition allows the recursive call of the proce-

dure to only build new generators X ∪ j, where i ≺ j
(according to the hypotheses of Theorem 1.

The composition of the new PRE SET depends in-
stead on the valid generators3 that precedes new gen =
Y ∪ i in the lexicographic order. If all the generators
were valid, it would simply be composed of all the items
j that precede i in the lexicographic order, and j 6∈ X =
c(new gen). In other words, the new PRE SET would
be the complement set of X ∪ POST SETnew.

While the composition of POST SET guarantees
that the various generators will be produced accord-
ing to the lexicographic order ≺, the composition of
PRE SET guarantees that duplicate generators will be
pruned by function is dup().

Since we have shown that for each closed itemset
Y exists one and only one sequence of order preserv-
ing generators and since our algorithm clearly explores
every possible order preserving generator from every

3 The ones that have passed the frequency and duplicate tests.



closed itemset, we have that the algorithm is complete
and does not produce any duplicate.

5.0.1. Some optimizations exploited in the al-
gorithm. We adopted a large amount of optimizations
to reduce the cost of the bitwise intersections, needed
for the duplication and closure computations (line 10
and 34). For the sake of simplicity, these optimizations
are not reported in the pseudo-code shown in Algo-
rithm 1.

DCI-CLOSED inherits the internal representation of
our previous works DCI[4] and kDCI[3].The dataset is
stored in the main memory using a vertical bitmap rep-
resentation. With two successive scans of the dataset,
a bitmap matrix DM×N is stored in the main memory.
The D(i, j) bit is set to 1 if and only if the j -th trans-
action contains the i -th frequent single item. Row i of
the matrix thus represent the tid-list of item i.

The columns of D are then reordered to profit of
data correlation. This is possible and highly worthwhile
when we mine dense datasets. As in [3][4], columns are
reordered to create a submatrix E of D having all its
rows identical. Every operation (e.g. intersection ones)
involving rows in the submatrix E will be performed
only once, thus gaining strong performance improve-
ments.

This kind of representation fits with our framework,
because the three main operations, i.e. support count,
closure, and duplicates check, can be fastly performed
with cheap bit-wise AND/OR operation.

Besides the DCI optimizations, specifically tailored
for sparse and dense datasets, we exploited more spe-
cific techniques made possible by the depth-first visit
of the lattice of itemsets.

In order to determine that the itemset X is closed,
the tidlist g(X) must have been compared with all the
g(j)’s, for all items j contained in the pre-list (post-
list) of X, i.e. the items that precede (follows) all
items included in X according to a lexicographic or-
der. The PRE SET must have been accessed for check-
ing duplicate generators, and the POST SET for com-
puting the closure. In particular, for all j ∈ PRE SET
∪ POST SET, we already know that g(X) * g(j), oth-
erwise those items j must have been included in X.

Therefore, since g(X) must have already been com-
pared with all the g(j), for all items j contained in
the PRE SET (POST SET) of X, we may save some
important information regarding each comparison be-
tween g(j) and g(X). Such information will be used
to reduce the cost of the following use of g(j), when
these tidlists g(j) will have to be exploited to look for
further closed itemsets that include/extend X. In par-
ticular, even if, for all j, it is true that g(X) * g(j),

we may know that some large portions of the bitwise
tidlists g(X) are however strictly included in g(j). Let
g(X)j be the portion of the bitwise tidlist g(X) strictly
included in the corresponding portion of g(j), namely
g(j). Hence, since g(X)j ⊆ g(j), it is straightforward to
show that g(X ∪ Y )j ⊆ g(j) continues to hold, for all
itemset Y used to extend X, because g(X ∪Y ) ⊆ g(X)
holds . So, when we extend X to obtain a new genera-
tor, we can limit the inclusion check of the various g(j)
to the complementary portions of tid-lists g(j), thus
strongly reducing the cost of them.

5.0.2. Dealing with sparse datasets. It is possi-
ble to show that in sparse datasets the number of closed
itemsets is nearly equal to the number of frequent ones,
so near that they are often the same. This means that
the techniques for mining closed itemsets are of no use,
because almost every duplicate checking or closure cal-
culating procedure is likely to fail.

For this reason, in case of sparse datasets, we pre-
ferred to exploit our frequent itemset mining algorithm
[3] with an additional closedness test over the frequent
itemset discovered. Given a new frequent itemset X,
every of it subset of length |X| − 1 with the same sup-
port as X is marked as non closed. Experiments showed
that this approach is fruitful (see Fig. 2.b).

5.0.3. Space complexity. For all the algorithms re-
quiring to keep in the main memory the whole set of
closed itemsets to perform the duplicate check, the size
of the output is actually a lower bound on their space
complexity. Conversely, we will show that the amount
of memory required by an implementation based on
our duplicate discarding technique is independent of
the size of the output. To some extent, its memory oc-
cupation depends on those data structures that also
need to be maintained in memory by other algorithms
that visit depth-first the lattice and exploit tid-list in-
tersections adopting a vertical datasets.

The main information needed to be kept in the
main memory is the tid-list of each node in the cur-
rent path along the lattice, and the tid-list of every
frequent single item. In this way we are able to browse
the search space intersecting nodes with single item
tid-lists, and to discard duplicates checking the order
preserving property.

The worst case of memory occupation happens when
the number of generators and frequent single items is
maximal: this occurs when c(∅) = ∅ and every item-
set is frequent and closed. If N is the number of fre-
quent single items, the deepest path has N nodes, and
since one of this node is a single item, the total num-
ber of tid-lists to be kept in the main memory is 2N−1.
Since the length of a tid-list is equal to the number of
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Figure 2. (a) Memory occupation on the connect dataset as a function of the minimum support threshold.
(b-f) Execution times of FPCLOSE, CLOSET+, and DCI-CLOSET as a function of the minimum support
threshold on various publicly available datasets.



transactions T in the dataset, the space complexity of
our algorithm is

O ((2N − 1)× T ) .

Figure 2.(a) plots memory occupation of FPCLOSE,
CLOSET+ and our algorithm DCI-CLOSED when
mining the connect dataset as a function of the sup-
port threshold. The experimental results agree with our
estimates: whereas FPCLOSE and CLOSET+ mem-
ory occupation grows exponentially because of the huge
number of closed itemsets generated, our implementa-
tion needs much less memory (up to two order of mag-
nitude) because its occupation depends linearly on N .

5.1. Experimental results

We tested our implementation on a suite of pub-
licly available dense datasets (chess, connect, pumsb,
pumsb*), and compared the performances with those of
two well known state of the art algorithms: FPCLOSE
[1], and CLOSET+ [7]. FPCLOSE is publicly available
as http://fimi.cs.helsinki.fi/src/fimi06.html,
while the Windows binary executable of CLOSET+
was kindly provided us from the authors. Since FP-
CLOSE was already proved to outperform CHARM in
every dataset, we did not used CHARM in our tests.

The experiments were conducted on a Windows XP
PC equipped with a 2.8GHz Pentium IV and 512MB
of RAM memory. The algorithms FPCLOSE and DCI-
CLOSED were compiled with the gcc compiler avail-
able in the cygwin environment.

As shown in Fig. 2.(b-f), DCI-CLOSED outperforms
both algorithms in all the tests conducted. CLOSET+
performs quite well on the connect dataset with low
supports, but in any other case it is about two orders
of magnitude slower. FPCLOSE is effective in pumsb*,
where it is near to DCI-CLOSED, but it is at one or-
der of magnitude slower in all the other tests.

6. Conclusions

In this paper we provide a deep study on the prob-
lem of mining frequent closed itemsets, formalizing a
general framework fitting every mining algorithm. Use
such framework we were able to analyse the problem
of duplicates rising in this new mining problem.

We have proposed a technique for promptly detect-
ing and discarding duplicates, without the need of keep-
ing in the main memory the whole set of closed pat-
terns, and we implemented this technique into a new
algorithm which uses a vertical bitmap representation
of the dataset.

The experimental evaluation demonstrated that our
approach is very effective. The proposed implementa-
tion outperforms FPCLOSE and CLOSET+ in all the
test conducted and requires orders of magnitude less
memory.
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Abstract

Frequency mining problem comprises the core of
several data mining algorithms. Among frequent pat-
tern discovery algorithms, FP-GROWTH employs a
unique search strategy using compact structures re-
sulting in a high performance algorithm that requires
only two database passes. We introduce an enhanced
version of this algorithm called FP-GROWTH-TINY

which can mine larger databases due to a space op-
timization eliminating the need for intermediate con-
ditional pattern bases. We present the algorithms re-
quired for directly constructing a conditional FP-Tree
in detail. The experiments demonstrate that our imple-
mentation has a running time performance compara-
ble to the original algorithm while reducing memory
use up to twofold.

1. Introduction

Frequency mining is the discovery of all frequent
patterns in a transaction or relational database. Fre-
quent pattern discovery comprises the core of several
data mining algorithms such as association rule min-
ing and sequence mining [10], dominating the running
time of these algorithms. The problem involves a trans-
action database T = {X |X ⊆ I} that consists in a set
of transactions each of which are drawn from a set I of
items. The mining algorithm finds all patterns that oc-
cur with a frequency satisfying a given absolute sup-
port threshold ε. In practice, the number of items |I| is
in the order of magnitude of 103 and more. The number
of transactions is much larger, at least 105. A pattern is
X ⊆ I , a subset of I , and the set of all patterns is 2I .
The frequency function f(T, x) = |{x ∈ Y |Y ∈ T }|

computes the number of times a given item x ∈ I oc-
curs in the transaction set T ; it is extended to sets of
items f(T, X) = |{X ⊆ Y |Y ∈ T }| to compute the
frequency of a pattern.

Frequency mining is the discovery of all frequent
patterns in a transaction set with a frequency of sup-
port threshold ε and more. The set of all frequent pat-
terns is F(T, ε) = {X |X ∈ 2I ∧ f(T, X) ≥ ε}. In
the algorithms, the set of frequent items F = {x ∈
I | f(T, x) ≥ ε} may require special consideration.
A significant property of frequency mining known as
downward closure states that if X ∈ F(T, ε) then
∀Y ⊂ X, Y ∈ F(T, ε) [2].

An inherent limitation of frequency mining is the
amount of main memory available [8]. In this paper,
we present a space optimization to FP-Growth algo-
rithm and we demonstrate its impact on performance
with experiments on synthetic and real-world datasets.
In the next section, we give the background on the FP-
GROWTH algorithm. Section 3 and Section 4 explain
our algorithm and implementation. Section 5 presents
the experiments, following that we offer our conclu-
sions.

2. Background

2.1. Compact structures

Compact data structures have been used for efficient
storage and query/update of candidate item sets in fre-
quency mining algorithms. SEAR [12], SPEAR [12],
and DIC [6] use tries (also known as prefix trees) while
FP-GROWTH [10] uses FP-Tree which is an enhanced
trie structure.

Using concise structures can reduce both running
time and memory size requirements of an algorithm.
Tries are well known structures that are widely used



for storing strings and have decent query/update per-
formance. The aforementioned algorithms exploit this
property of the data structure for better performance.
Tries are also efficient in storage. A large number of
strings can be stored in this dictionary type which
would not otherwise fit into main memory. For fre-
quency mining algorithms both properties are criti-
cal as our goal is to achieve efficient and scalable al-
gorithms. In particular, the scalability of these struc-
tures is quite high [10] as they allow an algorithm to
track the frequency information of the candidate pat-
terns for very large databases. The FP-Tree structure in
FP-GROWTH allows the algorithm to maintain all fre-
quency information in the main memory obtained from
two database passes. Using the FP-Tree structure has
also resulted in novel search strategies.

A notable work on compact structures is [15] in
which a binary-trie based summary structure for repre-
senting transaction sets is proposed. The trie is further
compressed using Patricia tries. Although significant
savings in storage and improvements in query time are
reported, the effectiveness of the scheme in a frequency
mining algorithm remains to be seen. In another work
in FIMI 2003 workshop [3], an algorithm called PATRI-
CIAMINE using Patricia tries has been proposed [13].
The performance of PATRICIAMINE has been shown to
be consistently good in the extensive benchmark stud-
ies of FIMI workshop [3]; it was one of the fastest
algorithms although it was not the most efficient. For
many applications, the average case performance may
be more important than performing well in a small
number of cases, therefore further research on this PA-
TRICIAMINE would be worthwhile.

In this paper, we introduce an optimized version of
FP-GROWTH. A closer analysis of it is in order.

2.2. FP-Growth algorithm

The FP-GROWTH algorithm uses the frequent pat-
tern tree (FP-Tree) structure. FP-Tree is an improved
trie structure such that each itemset is stored as a string
in the trie along with its frequency. At each node of the
trie, item, count and next fields are stored. The items
of the path from the root of the trie to a node consti-
tute the item set stored at the node and the count is
the frequency of this item set. The node link next is a
pointer to the next node with the same item in the FP-
Tree. Field parent holds a pointer to the parent node,
null for root. Additionally, we maintain a header table

which stores heads of node links accessing the linked
list that spans all same items. FP-Tree stores only fre-
quent items. At the root of the trie is a null item, and
strings are inserted in the trie by sorting item sets in a
unique1 decreasing frequency order [10].

Table 1 shows a sample transaction set and frequent
items in descending frequency order. Figure 1 illus-
trates the FP-Tree of sample transaction set in Table 1.
As shown in [10], FP-Tree carries complete informa-
tion required for frequency mining and in a compact
manner; the height of the tree is bounded by maxi-
mal number of frequent items in a transaction. MAKE-
FP-TREE (Algorithm 1) constructs an FP-Tree from a
given transaction set T and support threshold ε as de-
scribed.

Transaction Ordered Frequent Items

t1 = {f, a, c, d, g, i, m, p} {f, c, a, m, p}
t2 = {a, b, c, f, l, m, o} {f, c, a, b, m}
t3 = {b, f, h, j, o} {f, b}
t4 = {b, c, k, s, p} {c, b, p}
t5 = {a, f, c, e, l, p, m, n} {f, c, a, m, p}

Table 1. A sample Transaction Set

In Algorithm 3 we describe FP-GROWTH which has
innovative features such as:

1. Novel search strategy

2. Effective use of a summary structure

3. Two database passes

FP-GROWTH turns the frequency k-length pattern min-
ing problem into “a sequence of k-frequent 1-item
set mining problems via a set of conditional pattern
bases” [10]. It is proposed that with FP-GROWTH there
is “no need to generate any combinations of candidate
sets in the entire mining process”. With an FP-Tree
Tree given as input the algorithm generates all fre-
quent patterns. There are two points in the algorithm
that should be explained: the single path case and con-
ditional pattern bases. If an FP-Tree has only a single
path, then an optimization is to consider all combina-
tions of items in the path (single path case is the ba-

1 All strings must be inserted in the same order; the order of items
with the same frequency must be the same.
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Figure 1. An FP-Tree Structure.

sis of recursion in FP-GROWTH). Otherwise, the algo-
rithm constructs for each item ai in the header table a
conditional pattern base and an FP-Tree Treeβ based
on this structure for recursive frequency mining. Con-
ditional pattern base is simply a compact representa-
tion of a derivative database in which only a i and its
prefix paths in the original Tree occur. Consider path
< f : 4, c : 3, a : 3, m : 2, p : 2 > in Tree. For min-
ing patterns including m in this path, we need to con-
sider only the prefix path of m since the nodes after m
will be mined elsewhere (in this case only p). In the pre-
fix path < f : 4, c : 3, a : 3 > any pattern including m
can have frequency equal to the frequency of m, there-
fore we may adjust the frequencies in the prefix path
as < f : 2, c : 2, a : 2 > which is called a trans-
formed prefix path [10]. The set of transformed prefix
paths of ai forms a small database of patterns which co-
occur with ai and thus contains complete information
required for mining patterns including a i. Therefore,
recursively mining conditional pattern bases for all a i

in Tree is equivalent to mining Tree (which is equiva-
lent to ning the complete DB.). Treeβ in FP-GROWTH

is the FP-Tree of the conditional pattern base.
FP-GROWTH is indeed remarkable with its unique

divide and conquer approach. Nevertheless, it may be
profitable for us to view it as generating candidates de-
spite the title of [10]. The conditional pattern base is

a set of candidates among which only some of them
turn out to be frequent. The main innovation how-
ever remains intact: FP-GROWTH takes advantage of
a tailored data structure to solve the frequency min-
ing problem with a divide-and-conquer method and
with demonstrated efficiency and scalability. Besides,
the conditional pattern base is guaranteed to be smaller
than the original tree, which is a desirable property. An
important distinction of this algorithm is that, when ex-
amined within the taxonomy of algorithms, it employs
a unique search strategy. When the item sets tested
are considered, it is seen that this algorithm is neither
DFS nor BFS. The classification for FP-GROWTH in
Figure 3 of [11] may be slightly misleading. As Hipp
later mentions in [11], “FP-Growth does not follow the
nodes of the tree . . . , but directly descends to some part
of the itemsets in the search space”. In fact, the part is
so well defined that it would be unfair to classify FP-
GROWTH as conducting a DFS. It does not even start
with item sets of small length and proceed to longer
item sets. Rather, it considers a set of patterns at the
same time by taking advantage of the data structure.
This unique search strategy makes it hard to classify
FP-GROWTH in the context of traditional uninformed
search algorithms.

Algorithm 1 MAKE-FP-TREE(DB, ε)
1: Compute F and f(x) where x ∈ F
2: Sort F in frequency decreasing order as L
3: Create root of an FP-Tree T with label “null”
4: for all transaction ti ∈ T do
5: Sort frequent items in ti according to L. Let

sorted list be [p|P ] where p is the head of the
list and P the rest.

6: INSERT-TRIE([p|P ])
7: end for

3. An improved version of FP-Growth

During experiments with large databases, we have
observed that FP-GROWTH was costly in terms of
memory use. Thus, we have experimented with im-
provements to the original algorithm. In this section,
we propose FP-GROWTH-TINY (Algorithm 4) which
is an enhancement of FP-GROWTH featuring a space
optimization and minor improvements. An important
optimization eliminates the need for intermediate con-
ditional pattern bases. A minor improvement comes



Algorithm 2 INSERT-TRIE([p|P ], T )
1: if T has a child N such that item[N ] = item[p]

then
2: count[N ] ← count[N ] + 1
3: else
4: Create new node N with count = 1, parent

linked to T and node-link linked to nodes with
the same item via next

5: end if
6: if P 	= ∅ then
7: INSERT-TRIE(P, N)
8: end if

Algorithm 3 FP-GROWTH(Tree, α)
1: if Tree contains a single path P then
2: for all combination β of the nodes in path P do
3: generate pattern β ∪α with support minimum

support of nodes in β
4: end for
5: else
6: for all ai in header table of Tree do
7: generate pattern β ← ai ∪ α with support =

support[ai]
8: construct β’s conditional pattern base and

then β’s conditional FP-Tree Treeβ

9: if Treeβ 	= ∅ then
10: FP-GROWTH(Treeβ , β)
11: end if
12: end for
13: end if

from not outputting all combinations of the single path
in the basis of recursion. Instead, we output a repre-
sentation of this task since subsequent algorithms can
take advantage of a compact representation for gener-
ating association rules and so forth.2 Another improve-
ment is pruning the infrequent nodes of the single path.

In the following subsection, the space optimization
is discussed.

3.1. Eliminating conditional pattern base con-
struction

The conditional tree Treeβ can be constructed di-
rectly from Tree without an intermediate condi-
tional pattern base. The conditional pattern base in

2 For the FIMI workshop, we output all patterns separately as re-
quired. It can be argued that a meaningful mining of all frequent
patterns must output them one by one.

Algorithm 4 FP-GROWTH-TINY(Tree, α)
1: if Tree contains a single path P then
2: prune infrequent nodes of P
3: if |P | > 0 then
4: output “all patterns in 2P and α”
5: end if
6: else
7: for all ai in header table of Tree do
8: Treeβ ← CONS-CONDITIONAL-FP-TREE(Tree, ai)
9: output pattern β ← ai ∪ α with count =

f(ai) � f(x) of Tree
10: if Treeβ 	= ∅ then
11: FP-GROWTH(Treeβ, β)
12: end if
13: end for
14: end if

FP-GROWTH can be implemented as a set of pat-
terns. A pattern in FP-GROWTH consists of a set of
symbols and an associated count. With a counting al-
gorithm and retrieval/insertion of patterns directly into
the FP-Tree structure, we can eliminate the need for
such a pattern base. Algorithm 5 constructs a con-
ditional FP-Tree from a given Tree and a symbol
s for which the transformed prefix paths are com-
puted.

The improved procedure first counts the symbols in
the conditional tree without generating an intermedi-
ate structure and constructs the set of frequent items.
Then, each transformed prefix path is computed as pat-
terns retrieved from Tree and are inserted in Treeβ .

COUNT-PREFIX-PATH presented in Algorithm 6
scans the prefix paths of a given node. Since the pat-
tern corresponding to the transformed prefix path has
the count of the node, it simply adds the count to the
count of all symbols in the prefix path. This step is re-
quired for construction of a conditional FP-Tree
directly since an FP-Tree is based on the decreas-
ing frequency order of F . This small algorithm allows
us to compute the counts of the symbols in the condi-
tional tree in an efficient way, and was the key obser-
vation in making the optimization possible.

Algorithm 7 retrieves a transformed prefix path for
a given node excluding node itself and Algorithm 8 in-
serts a pattern into the FP-Tree. GET-PATTERN com-
putes the transformed prefix path as described in [10].
INSERT-PATTERN prunes the items not present in the
frequent item set F of Tree (which does not have to
be identical to the F of calling procedure) and sorts the
pattern in decreasing frequency order to maintain FP-



Algorithm 5 CONS-CONDITIONAL-FP-TREE(Tree, s)
1: table ← itemtable[Tree]
2: list ← table[symbol]
3: Tree′ ← MAKE-FP-TREE

4: � Count symbols without generating an interme-
diate structure

5: node ← list
6: while node 	= null do
7: COUNT-PREFIX-PATH(node, count[Tree])
8: node ← next[node]
9: end while

10: for all sym ∈ range[count] do
11: if count[sym] ≥ ε then
12: F [Tree′] ← F [Tree′] ∪ sym
13: end if
14: end for
15: � Insert conditional patterns to Treeβ

16: node ← list
17: while node 	= null do
18: pattern ← GET-PATTERN(node)
19: INSERT-PATTERN(Tree′, pattern)
20: node ← next[node]
21: end while
22: return Tree′

Algorithm 6 COUNT-PREFIX-PATH(node, count)
1: prefixcount ← count[node]
2: node ← parent[node]
3: while parent[node] 	= null do
4: count[symbol[node]] ←

count[symbol[node]] + prefixcount
5: node ← parent[node]
6: end while

Algorithm 7 GET-PATTERN(node)
1: pattern ← MAKE-PATTERN

2: if parent[node] 	= null then
3: count[pattern] ← count[node]
4: currnode ← parent[node]
5: while parent[node] 	= null do
6: symbols[pattern] ← symbols[pattern] ∪

symbol[currnode]
7: currnode ← parent[currnode]
8: end while
9: else

10: count[pattern] ← 0
11: end if
12: return pattern

Tree properties and adds the obtained string to the FP-
Tree structure. The addition is similar to insertion of a
single string, with the difference that insertion of a pat-
tern is equivalent to insertion of the symbol string of
the pattern count[pattern] times.

Algorithm 8 INSERT-PATTERN(Tree, pattern)
1: pattern ← pattern ∩ F [Tree]
2: Sort pattern in a predetermined frequency decreas-

ing order
3: Add the pattern to the structure

The optimization in Algorithm 5 makes FP-
GROWTH more efficient and scalable by avoiding
additional iterations and cutting down storage re-
quirements. An implementation that uses an inter-
mediate conditional pattern base structure will scan
the tree once, constructing a linked list with trans-
formed prefix paths in it. Then, it will construct the
frequent item set from the linked list, and in a sec-
ond iteration insert all transformed prefix paths
with a procedure similar to INSERT-PATTERN. Such
an implementation would have to copy the trans-
formed prefix paths twice, and iterate over all pre-
fix paths three times, once in the tree, and twice
in the conditional pattern list. In contrast, our op-
timized procedure does not execute any expensive
copying operations and it needs to scan the pat-
tern bases only twice in the tree. Besides efficiency,
the elimination of extra storage requirement is signif-
icant because it allows FP-GROWTH to mine more
complicated data sets with the same amount of mem-
ory.

An idea similar to our algorithm was independently
explored in FP-GROWTH∗ by making use of informa-
tion in 2-items [9]. In their implementations, Grahne
and Zhu have used strategies based on 2-items to im-
prove running time and memory usage, and they have
reported favorable performance, which has also been
demonstrated in the benchmarks of the FIMI ’03 work-
shop [3].

4. Implementation notes

We have made a straightforward implementation of
FP-GROWTH-TINY and licensed it under GNU GPL
for public use. It has been written in C++, using GNU
g++ compiler version 3.2.2.



For variable length arrays, we used vector<T> in
standard library. For storing transactions, patterns and
other structures representable as strings we have used
efficient variable length arrays. We used set<T> to
store item sets in certain places where it would be fast
to do so, otherwise we have used sorted arrays to im-
plement sets.

No low level memory or I/O optimizations were em-
ployed.

A shortcoming of the pattern growth approach is
that it does not seem to be very memory efficient. We
store many fields per node and the algorithm consumes
a lot of memory in practice.

The algorithm has a detail which required a special
code: sorting the frequent items in a transaction accord-
ing to an order L, in line 2 of Algorithm 1 and line 2
of Algorithm 8. For preserving FP-Tree properties all
transactions must be inserted in the very same order. 3

The items are sorted first in order of decreasing fre-
quency and secondarily in order of indices to achieve
a unique frequency decreasing order. Using this proce-
dure, we are not obliged to maintain an L.

5. Performance study

In this section we report on our experiments demon-
strating the performance of FP-GROWTH-TINY. We
have measured the performance of Algorithm 3 and Al-
gorithm 4 on a 2.4Ghz Pentium 4 Linux system with
1GB memory and a common 7200 RPM IDE hard disk.
Both algorithms were run on four synthetic and five
real-world databases with varying support threshold.
The implementation of the original FP-GROWTH al-
gorithm is due to Bart Goethals.4

We describe the data sets used for our experiments
in the next two subsections. Following that, we present
our performance experiments and interpret the results
briefly, comparing the performance of the improved al-
gorithm with the original one.

5.1. Synthetic data

We have used the association rule generator de-
scribed in [2] for synthetic data. Synthetic databases in
our evaluation have been selected from [17] and [16].

3 For patterns also in our implementation.
4 Goethals has made his implementation publicly available at

http://www.cs.helsinki.fi/u/goethals/

These databases have been derived from previous stud-
ies [1, 2, 14]. Table 2 explains the symbols we use
for denoting the parameters of association rule gener-
ator tool. The experimental databases are depicted in
Table 3. In all synthetic databases, |I| is 1000, and
|Fmax| is 2000. The original algorithm could not pro-
cess T20.I6.D1137 in memory therefore the number of
transactions was decreased to 450K.

|T | Number of transactions in transaction set
|t|avg Average size of a transaction ti

|fm|avg Average length of maximal pattern fm

I Number of items in transaction set
|Fmax| Number of maximal frequent patterns

Table 2. Dataset parameters

Name |T | |t|avg |fm|avg

T10.I6.1600K 1.6 × 106 10 6
T10.I4.1024K 1.024 × 106 10 4
T15.I4.367K 3.67 × 105 15 4
T20.I6.450K 4.5 × 105 20 6

Table 3. Synthetic data sets

5.2. Real-world data

We have used five publicly available datasets in the
FIMI repository. accidents is a traffic accident data
[7]. retail is market basket data from an anony-
mous Belgian retail store [5]. The bms-webview1,
bms-webview2 and bms-pos datasets are from a
benchmark study described in [4]. Some statistics of
the datasets are presented in Table 4.

5.3. Memory consumption and running time

The memory consumption and running time of FP-
GROWTH-TINY and FP-GROWTH are plotted for vary-
ing relative supports from 0.25% to 0.75% in Figure 2
and Figure 3 for synthetic databases and Figure 4 and
Figure 5 for real-world databases except for accidents
database which is a denser database that should be
mined at 10% and more. The implementations were run
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Figure 2. Memory consumption of FP-
GROWTH-TINY and FP-GROWTH on syn-
thetic databases
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Figure 3. Running time performance of
FP-GROWTH-TINY and FP-GROWTH on
synthetic databases
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Figure 4. Memory consumption of FP-
GROWTH-TINY and FP-GROWTH on real-
world databases
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Figure 5. Running time performance of
FP-GROWTH-TINY and FP-GROWTH on
real-world databases



Name |T | |I| |t|avg

accidents 3.41 × 105 469 33.81
retail 8.82 × 104 16470 10.31
bms-pos 5.16 × 105 1657 6.53
bms-webview1 5.96 × 104 60978 2.51
bms-webview2 7.75 × 104 330286 4.62

Table 4. Real-world data sets

inside a typical KDE desktop session. The running time
is measured as the wall-clock time of the system call.
The memory usage is measured using the GNU glibc
tool memusage, considering only the maximum heap
size since stack use is much smaller than heap size.

The plots for synthetic datasets are similar among
themselves, while we observe more variation in real-
world datasets. Memory is saved in all databases, ex-
cept in bms-webview2, which requires 2.74 times the
memory used in FP-GROWTH; this has an adverse ef-
fect on running time as discussed below. In others, we
observe that memory usage reduces down to 41.5% in
accidents database with 4% support, which is 2.4 times
smaller than FP-GROWTH.

Due to the optimization, our implementation can
process larger databases than the vanilla version. For
most problem instances, the memory consumption has
been reduced more than twofold compared to the orig-
inal algorithm. An advantage of our approach is that
with the same amount of memory, we can process more
complicated databases.5 The experiments overall show
that the conditional pattern base construction which we
have eliminated has a significant space cost during the
recursive construction of conditional FP-Trees.

The running time behaviors of two algorithms are
quite similar on the average. Our algorithm tends to
perform better and is faster in higher support thresh-
olds, while in lower thresholds the performance gap
becomes closer. FP-GROWTH-TINY runs faster ex-
cept in bms-webview1, bms-webview2 and lower
thresholds of T10.I4.1024K. In bms-webview1
database, FP-GROWTH-TINY runs 10-27% slower;
in bms-webview2 database we observe that FP-
GROWTH-TINY has slowed down by a factor of 5.56
for 0.25% support threshold, and slowdown is ob-
served also for other support thresholds (down to

5 Note that FP-GROWTH uses a compressed representation of fre-
quency information, whose size may be thought of as related to
complexity of the dataset.

50%). In T10.I4.1024K we see 12% slowdown for
0.25% support and 2% slowdown for 0.3% sup-
port. In other problem instances FP-GROWTH-TINY,
runs faster, up to 28.5% for retail dataset at 0.75% sup-
port.

In the figures, we observe a relation between mem-
ory saving and decreased running time. We had ex-
pected that improving space utilization would remark-
ably decrease the running time. However, we have
not observed as large an improvement as we would
have liked in running time. On the other hand, our tri-
als show significant improvement in memory use con-
trasted to vanilla FP-GROWTH, allowing us to mine
more complicated/larger datasets with the same amount
of memory.

The adverse situation with bms-webview1 and bms-
webview2 shows that the performance study must be
extended to determine whether the undesirable behav-
ior recurs at a large scale, since these are both sparse
data sets coming from the same source. At any rate, a
closer inspection of FP-GROWTH-TINY seems neces-
sary. We anticipate that the benchmark studies at the
FIMI workshop will illustrate its performance more
precisely.

6. Conclusions

We have presented our version of FP-GROWTH

which sports multiple improvements in Section 3. An
optimization over the original algorithm eliminates a
large intermediate structure required in the recursive
step of the published FP-GROWTH algorithm in addi-
tion to two other minor improvements.

In Section 5, we have reported the results of our
performance experiments on synthetic and real-world
databases. The performance of the optimized algo-
rithm has been compared with a publicly available
FP-GROWTH implementation. We have observed more
than twofold improvement in memory utilization over
the vanilla algorithm. In the best case, memory size
has become 2.4 times smaller, while in the worst case
memory saving was not possible in a small real-world
database. Typically, our implementation makes better
use of memory, enabling it to mine larger and more
complicated databases that cannot be processed by
the original algorithm. The running time behavior of
both algorithms are quite similar on the average; FP-
GROWTH-TINY runs up to 28.5% percent faster, how-
ever it may run slower in a minority of instances.
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Abstract

We describe a frequent itemset mining algorithm and
implementation based on the well-known algorithm FP-
growth. The theoretical difference is the main data structure
(tree), which is more compact and which we do not need to
rebuild for each conditional step. We thoroughly deal with
implementation issues, data structures, memory layout, I/O
and library functions we use to achieve comparable per-
formance as the best implementations of the 1st Frequent
Itemset Mining Implementations (FIMI) Workshop.

1. Introduction

Frequent Itemset Mining (FIM) is one of the first and
thus most well studied problems of data mining. From the
many published algorithms for this task, pattern growth ap-
proaches (FP-growth and its variations) were among the
best performing ones.

This paper describes an implementation of a pattern
growth algorithm. We assume the reader is familiar with the
problem of frequent itemset mining[2] and pattern growth
algorithms[5], like FP-growth, and hence we will omit their
description here. For the reasons and goals for analyzing
implementation issues of the FIM problem, see the intro-
duction to the 1st FIMI workshop [3].

Our implementation is based on a variation of FP-tree,
a similar data structure than used by FP-growth, but with a
more compact representation that allows faster allocation,
traversal, and optionally projection. It maintains less ad-
ministrative information (the nodes do not need to store
their labels (item identifiers), no header lists and children
mappings are required, only counters and parent pointers),
and allows more recursive steps to be carried out on the
same data structure, without the need to rebuild it. There
are also drawbacks of never rebuilding the tree: though pro-
jection is possible to filter conditionally infrequent items,
the order of items cannot be changed to adapt to the con-

ditional frequencies. Hence the acronym of the algorithm:
nonordfp.

We describe implementational details, data structure
traversal routines, memory allocation scheme, library func-
tions and I/O acceleration, among with the algorithmic pa-
rameters of our implementation that control different traver-
sal functions and projection. The implementation is freely
available for research purposes, aimed not only for perfor-
mance comparison but for further tuning of these theoretical
parameters.

2. Overview of the algorithm and data struc-
tures

As a preprocession the database is scanned and the
global frequencies of the items are counted. Using the
minimum support infrequent items are erased and frequent
items are renumbered in frequency-descending order. Dur-
ing a second scan of the database all transactions are pre-
processed: infrequent items are erased, frequent items are
translated and sorted according to the new numbering. Then
the itemset is inserted into a temporary trie.

This trie is similar to the classic FP-tree: each node con-
tains an item identifier, a counter, a parent pointer and a chil-
dren map. The children map is an unordered array of pairs
(child item identifier, child node index). Lookup is done
with linear scan. Though this is asymptotically not an op-
timal structure, the number of elements in a single children
map is expected to be very small, linear scan has the least
overhead compared to ordered arrays with binary search,
or search trees/hash maps. The implementation uses syn-
tactics that are equivalent to the Standard Template Library
(STL) interface pair-associative container thus it is easy to
exchange this to the RB-tree based STL map or hash map.
It results in a slight performance decrease due to data struc-
ture overhead.

As a final step in the preprocessing phase this trie is
copied into the data structure that the core of the algorithm
will use, which we will describe later.



The core algorithm consists of a recursion. In each step
the input is a condition (an itemset), a trie structure and an
array of counters that describe the conditional frequencies
of the trie nodes. In the body we iterate through the remain-
ing items, calculate the conditional counters for the input
condition extended with that single item, and call the recur-
sion with the new counters and with the original or a new,
projected structure, depending on the projection configura-
tion and the percentage of empty nodes. The core recursion
is shown as Algorithm 1.

Algorithm 1 Core algorithm
Recursion(condition, nextitem, structure, counters):

for citem=nextitem-1 downto 0 do
if support of citem < min supp then

continue at next citem
end if
newcounters=aggregate conditional pattern base for
condition ∪ citem
if projection is beneficial then

newstructure=projection of structure to newcoun-
ters
Recursion(condition∪citem, citem, newstructure,
newcounters)

else
Recursion(condition∪citem, citem, structure, new-
counters)

end if
end for

The recursion has four different implementations, that
suit differently sized FP trees:

• Very large FP trees that contain millions of nodes are
treated by simultaneous projection: the tree is tra-
versed once and a projection to each item is calculated
simultaneously. This phase is applied only at the first
level of recursion; very large trees are expected to arise
from sparse databases, like real market basket data;
conditional trees projected to a single item are already
small in this case.

• Sparse aggregate is an aggregation and projection al-
gorithm that does not traverse those part of the tree that
will not exist in the next projection. To achieve this, a
linked list is built dynamically that contains the indices
to non-zero counters. This is similar to the header lists
of FP-trees. This aggregation algorithm is used typ-
ically near the top of the recursion, where the tree is
large and many zeroes are expected. The exact choice
is tunable with parameters.

• Dense aggregate is the default aggregation algorithm.
Each node of the tree is visited exactly once and its

conditional counter is added to the counter of the par-
ent. This is the default aggregation algorithm and it is
very fast due to the memory layout of the data struc-
ture, described later.

• Single node optimization is used near the last levels
of recursion, when there is at most one node for each
item left in the tree. (This is a slight generalization of
the tree being a single chain.) In this case no aggre-
gation and calculation of new counters is needed, so a
specialized very simple recursive procedure starts that
outputs all subsets of the paths in the tree as a frequent
itemset.

The core data structure is a trie. Each node contains
a counter and a pointer to the parent. As the trie is never
searched, only traversed from the bottom to the top, child
maps are not required. The nodes are stored in an array,
node pointers are indices to this array.

Nodes that are labelled with the same item occupy a con-
secutive part of this array, this way we do not need to store
the item identifiers in the nodes. Furthermore, we do not
need the header lists, as processing all nodes of a specified
item requires traversing an interval of this array. This also
allows faster execution as only contiguous memory reads
are executed. We only need one memory cell per frequent
item to store the starting points of these intervals (the item-
starts array).

The parent pointers (indices) and the counters are stored
in separate arrays (parents and counters rsp.) to fit the core
algorithm’s flexibility: if projection is not beneficial, then
the recursion proceeds with the same structural information
(parent pointers) but a new set of counters.

The item intervals of the trie are allocated in the array as-
cending, in topological order. This way the bottom-up and
top-down traversal of the trie is possible with a descend-
ing rsp. ascending iteration through the array of the trie,
still only using contiguous memory reads and writes. This
order also allows the truncation of the tree to a particular
level/item: if the structure is not rebuilt but only a set of
conditional counters is calculated for an item, then the re-
cursion can proceed with a smaller sized newcounters array
and the original parents and itemstarts array.

The pseudocode for conditional aggregation and projec-
tion is shown as Algorithm 2 and 3. Some details are not
shown, for example during the aggregation phase we cal-
culate the expected size of the projected structure to allow
decision about the projection benefits and to allocate arrays
for the projected structure.



Algorithm 2 Aggregation on the compact trie data structure
cpb-aggregate(item, parents, itemstarts, counters, new-
counters, condfreqs):
Input: item is the identifier of the item to add to the cur-
rent condition; parents and itemstarts describe the current
structure of the tree; counters and newcounters hold the cur-
rent and new conditional counters of the nodes: counters is
an itemstarts[item+1] sized array, newcounters is an item-
starts[item] sized array; condfreqs will hold the new condi-
tional frequencies of the items. This is the default (dense)
aggregation algorithm.

fill newcounters and condfreqs with zeroes
for n=itemstarts[item] to itemstarts[item+1]-1 do

newcounters[parents[n]]=counters[n]
end for
for citem=item-1 downto 0 do

for n=itemstarts[citem] to itemstarts[citem+1]-1 do
newcounters[parents[n]]+=newcounters[n]
condfreqs[citem]+=newcounters[n]

end for
end for

3. Auxiliary routines and optimization: what
counts and what doesn’t

A very important observation is, that in a first and
straightforward implementation of most FIM algorithms the
library and auxiliary routines take 70-90% of the running
time. Therefore it is essential that these tasks and routines
get extra attention, especially in a FIM contest, like the
FIMI workshop, where actual running times are measured
and every millisecond counts.1

These auxiliary routines include all C/C++ library
calls, memory allocation, input/output implementation, data
structure management (including initialization, copy con-
structors, etc.). Instead of reciting some general “rule of
thumbs” we describe our implementation about these is-
sues. The most important issues are posed by those aux-
iliary routines that appear in the inner recursion, and thus
are called proportionally to the core running time.

3.1. Input/Output

The input parsing code released for FIMI’03 is a very
well written, low-level implementation, the only relevant
change we made to it is that we added a buffer of several
megabytes to the input file to avoid OS overhead.

The output routine was completely rewritten. The very
slow fprintf calls are eliminated, and replaced by proce-

1This leads to an unfortunate bias: a very good low level programmer
implementing a fairly good algorithm can spectacularly defeat a FIM ex-
pert implementing the best algorithm on a higher level.

Algorithm 3 Projection on the compact trie data structure
project(item, parents, itemstarts, newcounters, condfreqs,
newparents, newitemstarts, newnewcounters):
Input: newcounters and condfreqs as computed by the ag-
gregation algorithm; newparents and newitemstarts will
hold the projected structure; newnewcounters will hold the
values of newcounters reordered accordingly. The array
newcounters is reused during the algorithm to store the old
position to new position mapping.

newcounters[0]=0 /*node 0 is reserved for the root*/
nn=1 /*the next free node index*/
for citem=0 to item-1 do

newitemstarts[citem]=nn
for n=itemstarts[citem] to itemstarts[citem+1]-1 do

if condfreqs[citem]<min supp OR newcoun-
ters[n]==0 then

newcounters[n]=newcounters[parents[n]] /*skip
this node, the new position will be the same as
the parent’s*/

else
newnewcounters[nn]=newcounters[n]
newcounters[n]=nn /*save the position map-
ping*/
newparents[nn]=newcounters[parents[n]] /*re-
trieve new position of parent from the saved
mapping*/
nn++

end if
end for

end for
newitemstarts[item]=nn

dures customized for the simple format of FIMI. The most
important optimization is that the output routine follows the
recursive traversal of the itemset search space, and the text
format of the previously outputted itemset is reused for the
next output line. The library calls are eliminated or simpli-
fied as much as possible (for example outputting a zero-
terminated string is approximately 20% slower than out-
putting a character sequence of a known length due to the
additional strlen). This optimization is essential for the
very low support test cases, where up to gigabytes of output
strings are rendered.

The performance comparison of the different output
routines is shown on Figure 1. Output was directed to
/dev/null, the core running time is shown on line no out-
put, where no other optimization is employed but to avoid
rendering the frequent itemsets to text.
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Figure 1. Performance of output routines

3.2. Memory allocation scheme

Another, similarly important point is memory allocation.
In each recursive step (the number of which is equal to the
total number of frequent itemsets written to output, up to
tens of millions) several arrays are allocated for the condi-
tional counters and possibly the projected structure. Calling
malloc and free, or new and delete incurs a consider-
able overhead of these library functions due to their general
memory management possibilities. Thus it is essential to
reuse allocated memory.

The best approach would be to allocate these arrays for
each level of the recursion in advance, but as we do not
know the required size, and it can be upper bounded only by
the size of the full tree, we would run out of main memory.

There are two main observations that lead to our solution
to this issue. First, an allocated array can be reused for the
same array in any later recursive call. Second, as the recur-
sion proceeds into deeper levels, the required size of arrays
decreases monotonically. (This is due to projections and the
layout of the trie in the arrays, as discussed earlier.) Thus
upon exit from a recursive step we can push the memory ar-
rays on a stack of free blocks, this way the stack will contain
decreasingly sized blocks. When entering a new level of re-
cursion we check if the block on top of the stack is large
enough. If yes, we can pop the stack and proceed. Oth-
erwise we allocate a new memory block and proceed with
an unmodified stack to the next level. Thus the monotonic-
ity remains intact, only the free blocks are shifted one level
downwards into the recursion.

In each recursive call we enter the next level several
times (depending on the number of remaining items), these
require differently sized arrays for the next level of recur-
sion. It is important, that we go from the largest to the small-
est when iterating through these possibilities. This way a

larger memory block can be used for the smaller array, oth-
erwise expensive reallocation would be necessary. This was
already taken into consideration in Algorithm 1.

Another important factor is when and how to zero the al-
located/reused memory blocks. In our first implementation
all allocated memory was filled with zero before use; this
resulted in up to three times more time spent in the memory
fill procedure than the core recursion. This was eliminated
by carefully analyzing which arrays need to be filled with
zero before use. In some cases it was faster to clean up the
array after use than to fill with zero before the next use (in
the case when the array is sparsely filled and we have a list
of non-zero elements). This way the total amount of mem-
ory zeroed was reduced (database connect.dat, min supp
50%, 88 million frequent itemsets) from 54 gigabytes (!) to
915 megabytes.

This scheme is implemented as and supplemented by
several block-oriented memory allocators. An important
side effect of these allocators is, that the initial memory al-
located by the program is high (up to 100 MB) even on very
small datasets where it is not used completely. This is not
a performance issue, the OS should be able to satisfy allo-
cated but otherwise unused memory from swap space, and
this parameter may be tuned if the program has to be run on
computers with very limited amount of memory.

The effect of memory allocation scheme on running time
is shown on Figure 2.
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schemes

3.3. Projection configuration

During the conditional pattern base aggregation phase
we can easily calculate the expected size of the projected
dataset, which will be the number of nodes visited with non-
zero newcounters value.



Based on this information and the current recursion level
we do projection iff the recursion level is smaller than proj-
level, or the percentage of empty nodes exceeds projpercent,
where projlevel and projpercent are tunable parameters of
the algorithm. projlevel = 0 and projpercent = 100 means
do not do projection, projpercent = 0 means do every pro-
jection.

We must note that “projection” here means Algo-
rithm 3, which differs from the original concept of pro-
jected database/projected tree as premised in the introduc-
tion. Projection here does mean to compact the tree by
eliminating infrequent items and nodes that have zero con-
ditional frequency, but it does not reorder the items to con-
tinue further recursions with the conditionally most infre-
quent items, nor does it combine those nodes of the tree
that have the same label and the same path to the root (e.g.
their respective transactions differ only in conditionally in-
frequent items).

The effect of some projection configurations on running
time is shown on Figure 3. In the line captions the first
number is projlevel, while the second is projpercent. The
figure shows that on many databases the projection bene-
fits and projection costs are surprisingly well balanced, thus
projection adds little enhancement to the core algorithm.

4. Performance comparison

In this section we evaluate the performance of our imple-
mentation. We use publicly available databases accidents,
connect, pumsb and retail to compare the running time of
our implementation to a few competitors (including the best
performing ones) of the 1st Frequent Itemset Mining Im-
plementations Workshop, fpgrowth* [4], patricia [6], and
eclat goethals.

All of the following tests were run on a 3.0 GHz
(FSB800) Intel Pentium 4 processor (hyperthreading
disabled) with 2 gigabytes of dual-channel DDR400
main memory and Linux OS. Output was redirected to
/dev/null. The running times of different implementa-
tion on the test datasets are displayed on Figure 4.

The figures show that on dense datasets the fast traversal
routines take advantage, while on sparse datasets the perfor-
mance is still competitive.

On sparse datasets the first level of recursion dominates
the running time. To achieve better performance for these
cases a specialized data structure could be employed in
the simultaneous projection phase that adapts better to the
skewedness of sparse datasets.

The final submitted version of the implementation (as
available in the FIMI repository [1]) uses the following tun-
ing parameters:

• projlevel is set to 0 (do not do any projection automat-
ically based on the level of recursion),

• projpercent is set to 90% (project the tree if it will
shrink to at most tenth of its size),

• densepercent is set to 70%, densesize is set to 5000
(switch from sparse to dense aggregation algorithm if
there is less than 70% empty nodes, or less than 5000
nodes),

• simultprojthres to 1 million (do simultaneous projec-
tion on the first level of the recursion if the tree size
exceeds 1 million nodes).

These values can be set in the beginning of the main pro-
gram or a run-time configuration file, and should be subject
to further, extensive tuning over the parameter space, which
was beyond the possibilities and the time-frame available to
the author. Also, on different datasets different tuning pa-
rameters may give the best performance or memory usage.

5. Conclusion and further work

We described an implementation of a pattern growth-
based frequent itemset mining algorithm. We showed a
compact, memory efficient representation of an FP-tree that
supports the most important requirements of the core algo-
rithm, with a memory layout that allows fast traversal.

The implementation based on this data structure and sev-
eral further optimizations in the auxiliary routines performs
well against some of the best competitors of the 1st Frequent
Itemset Mining Implementations Workshop.

The data structure presented here can accommodate
the top-down recursion approach, thereby further reducing
memory need and computation time.
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Abstract

Nowadays basic algorithms such as Apriori and Eclat of-
ten are conceived as mere textbook examples without much
practical applicability: in practice more sophisticated al-
gorithms with better performance have to be used. We
would like to challenge that point of view by showing that
a carefully assembled implementation of Eclat outperforms
the best algorithms known in the field, at least for dense
datasets. For that we view Eclat as a basic algorithm and a
bundle of optional algorithmic features that are taken partly
from other algorithms like lcm and Apriori, partly new ones.
We evaluate the performance impact of these different fea-
tures and report about results of experiments that support
our claim of the competitiveness of Eclat.

1. Introduction

Algorithms for mining frequent itemsets often are pre-
sented in a monolithic way and labeled with a fancy name
for marketing. Careful inspection often reveals similarities
with other mining algorithms that allow the transfer from
a smart solution of a specific (detail) problem in one algo-
rithm to another one. We would like to go one step further
and view such mining algorithms as a basic algorithm and a
bundle of algorithmic features.

Basically, there are only two large families of mining al-
gorithms, Apriori [1] and Eclat [10] (counting fpgrowth [5]
in the Eclat family what might be arguable). As the basic
computation schemes of both of these algorithms are quite
simple, one might get the impression, that nowadays they
are good only as examples how mining algorithms work in
principle for textbooks, but in practice more sophisticated
algorithms have to be applied to get good performance re-
sults: for example, the four best-performing algorithms of
the FIMI-03 workshop, patricia, kdci, lcm, and fpgrowth*
(see [7, 6, 9, 8], for the implementations and [3] for a perfor-
mance evaluation of these algorithms, respectively) do use
candidate generation procedures and data structures quite

different from those usually associated with the basic algo-
rithms.

In this paper, we would like to challenge that point
of view by presenting an Eclat algorithm that for dense
datasets outperforms all its more sophisticated competitors.

We will start with a formal outline of Eclat algorithm
in section 2. In section 3 we investigate several algorith-
mic features of Eclat, partly gathered from other algorithms
as lcm, fpgrowth, and Apriori, partly new ones, review their
usefulness in Eclat and shortly discuss their possible perfor-
mance impact along with possible reasons thereof. In sec-
tion 4 we present an empirical evaluation of that impact as
well as a comparison with the competitor algorithms from
FIMI 03 mentioned above. – We will stick to Eclat. See
[2] for an excellent discussion and evaluation of different
features of Apriori.

Let us fix notations for the frequent itemset mining prob-
lem in the rest of this section. LetA be a set, calledset
of items or alphabet. Any subsetX ∈ P(A) of A is
called anitemset. Let T ⊆ P(A) be a multiset of item-
sets, calledtransaction database, and its elementsT ∈ T
calledtransactions. For a given itemsetX ∈ P(A), the set
of transactions that containX

T (X) := {T ∈ T |X ⊆ T}

is called(transaction) cover ofX in T and its cardinality

sup
T

(X) := |T (X)|

(absolute) support ofX in T . An (all) frequent item-
set mining task is specified by a datasetT and a lower
boundminsup ∈ N on support, calledminimum support ,
and asks for enumerating all itemsets with support at least
minsup, calledfrequent or (frequent) patterns.

An itemsetX is calledclosed, if

X =
⋂
T (X)

i.e., if any super-itemset ofX has lower support.



2. Basic Eclat Algorithm

Most frequent itemset mining algorithms as Apriori [1]
and Eclat [10] use a total order on the itemsA of the alpha-
bet and the itemsetsP(A) to prevent that the same itemset,
calledcandidate, is checked twice for frequency. Items or-
derings≤ are in one-to-one-correspondence withitem cod-
ings, i.e., bijective mapso : A → {1, . . . , n} via natural
ordering onN. – For itemsetsX, Y ∈ P(A) one defines
theirprefix as

prefix(X, Y ) :={{x ∈ X |x ≤ z} |maximalz ∈ X ∩ Y :
{x ∈ X |x ≤ z} = {y ∈ Y | y ≤ z}}

Any order onA uniquely determines a total order onP(A),
calledlexicographic order, by

X < Y :⇔ min(X\prefix(X, Y )) < min(Y \prefix(X, Y ))

For an itemsetX ∈ P(A) an itemsetY ∈ P(A) with
X ⊂ Y andX < Y is called anextension ofX. An ex-
tensionY of X with Y = X ∪ {y} (and thusy > max X)
is called an1-item-extension ofX. The extension rela-
tion organizes all itemsets in a tree, calledextension treeor
search tree.

Eclat starts with the empty prefix and the item-
transaction incidence matrixC∅, shortly calledincidence
matrix in the following, and stored sparsely as list of item
covers:C∅ := {(x, T ({x})) |x ∈ A}. The incidence ma-
trix is filtered to only contain frequent items by

freq(C) := {(x, Tx) | (x, Tx) ∈ C, |Tx| ≥ minsup}.

that represent frequent 1-item-extensions of the prefix. For
any prefixp ∈ P(A) and incidence matrixC of frequent 1-
item-extensions ofp one can compute the incidence matrix
Cx of 1-item-extensions ofp ∪ {x} by intersection rows:

Cx := {(y, Tx ∩ Ty) | (y, Ty) ∈ C, y > x}

where(x, Tx) ∈ C is the row representingp ∪ {x}. Cx

has to be filtered to get all frequent 1-item-extensions of
p ∪ {x} and then this procedure is recursively iterated until
the resulting incidence matrixCx is empty, signaling that
there are no further frequent 1-item-extensions of the prefix.
See alg. 1 for an exact description of the Eclat algorithm.

3. Features of Eclat

The formal description of the Eclat algorithm in the last
section allows us to point to several algorithmic features that
this algorithm may have. These sometimes are described as
implementation details, sometimes as extensions of Eclat,
and sometimes as new algorithms.

Algorithm 1 Basic Eclat algorithm.
input: alphabetA with ordering≤,

multisetT ⊆ P(A) of sets of items,
minimum support valueminsup ∈ N.

output: setF of frequent itemsets and their support counts.
F := {(∅, |T |)}.
C∅ := {(x, T ({x})) |x ∈ A}.
C ′
∅ := freq(C∅) := {(x, Tx) | (x, Tx) ∈ C∅,

|Tx| ≥ minsup}.
F := {∅}.
addFrequentSupersets(∅, C ′

∅).

function addFrequentSupersets():
input: frequent itemsetp ∈ P(A) called prefix,

incidence matrixC of frequent 1-item-extensions ofp.
output: add all frequent extensions ofp to global variable

F .
for (x, Tx) ∈ C do

q := p ∪ {x}.
Cq := {(y, Tx ∩ Ty) | (y, Ty) ∈ C, y > x}.
C ′

q := freq(Cq) := {(y, Ty) | (y, Ty) ∈ Cq,
|Ty| ≥ minsup}.

if C ′
q 6= ∅ then

addFrequentSupersets(q, C ′
q).

end if
F := F ∪ {(q, |Tx|)}.

end for

3.1. Transaction Recoding

Before the first incidence matrixC∅ is built, it is usu-
ally beneficial 1) to remove infrequent items from the trans-
actions, 2) to recode the items in the transaction database
s.t. they are sorted in a specific order, and 3) to sort the
transaction in that order. As implementations usually use
the natural order on item codes, item recoding affects the
order in which candidates are checked. There are several
recodings used in the literature and in existing implemen-
tations of Eclat and other algorithms as Apriori (see e.g.,
[2]). The most common codings are coding by increasing
frequency and coding by decreasing frequency. For Eclat
in most cases recoding items by increasing frequency turns
out to give better performance. Increasing frequency means
that the length of the rows of the (initial) incidence matrix
C∅ grows with increasing index. Let there bef1 frequent
items. As a row at indexi is usedf1 − i times at left side
(x in the formulas above) andi − 1 times at right side (y
in the formulas above) of the intersection operator, the or-
der of rows is not important from the point of view of total
usage in intersections. But assume the data is gray, i.e., the
mining task does not contain any surprising associative pat-
terns, where surprisingness of an itemsetX is defined in



terms of lift:

lift(X) :=
sup(X)
|T |

/
∏
x∈X

sup({x})
|T |

/

lift(X) = 1 means thatX is found in the data exactly
as often as expected from the frequencies of its items,
lift(X) > 1 or lift(X) < 1 means that there is an asso-
ciative or dissociative effect, i.e., it is observed more often
or less often than expected. Now, iflift ≈ 1 for all or most
patterns, as it is typically for benchmark datasets, then the
best chances we have to identify a patternX as infrequent
before we actually have counted its support, is to check its
subpattern made up from its least frequent items. And that
is exactly what recoding by increasing frequency does.

3.2. Types of Incidence Structures: Covers vs. Diff-
sets

One of the major early improvements of Eclat algorithms
has been the replacement of item covers in incidence ma-
trices by their relative complement in its superpattern, so
calleddiffsets, see [11]. Instead of keeping track ofT (q)
for a patternq, we keep track ofT (p) \ T (q) for its su-
perpatternp, i.e., q := p ∪ {x} for an itemx > max(p).
T (p)\T (q) are those transactions we loose if we extendp to
q, i.e., its additionaldefectrelative top. From an incidence
matrix C of item covers and one of the 1-item-extensions
(x, Tx) ∈ C of its prefix we can derive the incidence matrix
D of item defects of this extension by

Dx := {(y, Tx \ Ty) | (y, Ty) ∈ C, y > x}

From an incidence matrixD of item defects and one of its
1-item-extensions(x, Tx) ∈ D of its prefix we can derive
the incidence matrixDx of item defects of this extension by

Dx := {(y, Ty \ Tx) | (y, Ty) ∈ D, y > x}

If we expand first byx and then byy in the second step,
we loose transactions that not containy unless we have lost
them before as they did not containx.

Defects computed from covers may have at most size

maxdefp := |T (p)| −minsup,

those computed recursively from other defects at most size

maxdefp∪{x} := maxdefp−|Tx|

1-item-extensions exceeding that maximal defect are re-
moved by a filter step:

freq(D) := {(x, Tx) | (x, Tx) ∈ C, |Tx| ≤ maxdef}.

Computing intersections of covers or set differences
for defects are computationally equivalent complex tasks.

Thus, the usage of defects can improve performance only
by leading to smaller incidence matrices. For dense datasets
where covers overlap considerably, intersection reduces the
size of the incidence matrix only slowly, while defects cut
down considerably. On the other side, for sparse data using
defects may deteriorate the performance. – Common items
in covers also can be removed by omitting equisupport ex-
tensions (see section 3.5).

While there is an efficient transition from covers to de-
fects as given by the formula above, the reverse transition
from defects to covers seems hard to perform efficiently as
all defects on the path to the root of the search tree would
have to be accumulated.

Regardless which type of incidence matrix is used, it can
be stored as sparse matrix (i.e., as list of lists as discussed
so far) or as dense (bit)matrix (used e.g, by [2]).

A third alternative for keeping track of item-transaction
incidences is not to store item covers as a set of incident
transaction IDs per 1-item-extension, but to store all trans-
actionsT (p) that contain a given prefixp in a trie (plus
some index structure, known as frequent pattern tree and
first used in fp-growth; see [5]). Due to time restrictions,
we will not pursue this alternative further here.

3.3. Incidence Matrix Derivation

For both incidence matrices, covers and defects, two dif-
ferent ways of computing the operator that derives an inci-
dence matrix from a given incidence matrix recursively, i.e.,
intersection and set difference, respectively, can be chosen.
The straightforward way is to implement both operators as
set operators operating on the sets of transaction IDs.

Alternatively, intersection and difference of several sets
Ty, y > x of transactions by another setTx of transactions
also can be computed in parallel using the original trans-
action database by counting in IDs of matching transactions
(called occurrence deliver in [9]). To computeT ′

y := Ty∩Tx

for severaly > x one computes

∀T ∈ Tx∀y ∈ T : T ′
y := T ′

y ∪ {T}.

Similar, to computeT ′
y := Tx \ Ty for severaly > x one

computes

∀T ∈ Tx∀y 6∈ T : T ′
y := T ′

y ∪ {T}.

3.4. Initial Incidence Matrix

Basic Eclat first builds the incidence matrixC∅ of single
item covers as initial incidence matrix and then recursively
derives incidence matricesCp of covers of increasing pre-
fixesp or Dp of defects.

Obviously, one also can start withD∅, the matrix of item
cover complements. This seems only useful for very dense



datasets as it basically inverts the encoding of item occur-
rence and non-occurrence (dualization).

It seems more interesting to start already with incidence
matrices for 1-item-prefixes, i.e., not to use Eclat compu-
tation schemes for the computation of frequent pairs, but
count them directly from the transaction data. For Apri-
ori this is a standard procedure. The cover incidence ma-
trix Cx = {(y, Ty)} for an frequent itemx, i.e., Ty =
T ({x}) ∩ T ({y}), is computed as follows:

∀T ∈ T : if x ∈ T : ∀y ∈ T, y > x : Ty := Ty ∪ {T}.

The test forx ∈ T looks worse than it is in practice: if
transactions are sorted, itemsx are processed in increasing
order, and deleted from the transaction database after com-
putation ofCx, then if x is contained in a transactionT it
has to be its first item.

Similarly, a defect incidence matrixDx = {(y, Ty)} for
a frequent itemx, i.e.,Ty = T ({x})\T ({y}), can be com-
puted directly from the transaction database by

∀T ∈ T : if x ∈ T : ∀y 6∈ T, y > x : Ty := Ty ∪ {T}.

If Cx or Dx is computed directly from the transaction
database, then it has to be filtered afterwards to remove in-
frequent extensions. An additional pass overT in advance
can count pair frequencies for allx, y in parallel, so that
unnecessary creation of covers or defects of infrequent ex-
tensions can be avoided.

3.5. Omission of Equisupport Extensions

Whenever an extensionx has the same support as its pre-
fix p, it is contained in the closure

⋂
T (p) of the prefix.

That means that one can add any such equisupport extension
to any extension ofp without changing its support; thus, one
can omit to explicitly check its extensions. Equisupport ex-
tensions can be filtered out and kept in a separate listE for
the active branch: whenever an itemsetX is output, all its
2|E| supersetsX ′ ⊆ X ∪ E are also output.

Omission of equisupport extensions is extremely cheap
to implement as it can be included in the filtering step that
has to check support values anyway. For dense datasets with
many equisupport extensions, the number of candidates that
have to be checked and accordingly the runtime can be re-
duced drastically.

3.6. Interleaving Incidence Matrix Computation
and Filtering

When the intersectionTx ∩ Ty of two sets of transaction
IDs is computed, we are interested in the result of this com-
putation only if it is at least of sizeminsup, as otherwise it
is filtered out in the next step. As the sets of transactions are

sorted, intersections are computed by iterating over the lists
of transaction IDs and comparing items. Once one of the
tails of the lists to intersect is shorter thanminsup minus
the length of the intersection so far, we can stop and drop
that candidate, as it never can become frequent. – For set
difference of maximal lengthmaxdef a completely analo-
gous procedure can be used.

3.7. Omission of Final Incidence Matrix Derivation

Finally, once the incidence matrix has only two rows,
the result of the next incidence matrix derivation will be an
incidence matrix with a single row. As this is only checked
for frequency, but its items are not used any further, we can
omit to generate the list of transaction IDs and just count its
length.

3.8. IO

So far we have investigated features that are specific to
Eclat and the frequent itemset mining problem. Though
these specific algorithmic features are what should be of
primary interest, we noticed in our experiments, that of-
ten different IO mechanism dominate runtime behavior. At
least three output schemes are implemented in several of
the algorithms available: IO using C++ streams, IO using
printf , and IO using handcrafted rendering of integer
itemsets to a char buffer and writing that buffer to files using
low-level fwrite (for the latter see e.g., the implementa-
tion of lcm, [9]). Handcrafted rendering of itemsets to char
buffers is by far the fastest method; especially for low sup-
port values, when huge numbers of patterns are output, the
runtime penalty from slower output mechanisms cannot be
compensated by better mining mechanisms whatsoever.

4. Evaluation

By evaluating different features of Eclat we wanted to
answer two questions:

1. What features will make Eclat run fastest? Especially,
what is its marginal runtime improvement of each fea-
ture in a sophisticated Eclat implementation?

2. Is Eclat competitive compared with more complex al-
gorithms?

To answer the question about the runtime improvement
of the different features, we implemented a modular ver-
sion of Eclat in C++ (basically mostly plain C) that allows
the flexible inclusion or exclusion of different algorithmic
features. At the time of writing the following features are
implemented: the incidence structure types covers and diff-
sets (COV, DIFF), transaction recoding (none, decreasing,



increasing; NREC, RECDEC, RECINC), omission of eq-
uisupport extensions (NEE), interleaving incidence matrix
computation and filtering (IFILT), and omission of final in-
cidence matrix (NFIN). As initial incidence matrix alway
covers of frequent 1-itemsets (C∅) was used.

To measure the marginal runtime improvement of a fea-
ture we configured a sophisticated Eclat algorithm with
all features turned on (SOPH:= DIFF, RECINC, NEE+,
IFILT+, NFIN+) and additionally for each feature an
Eclat algorithm derived from SOPH by omitting this fea-
ture (SOPH-DIFF, SOPH-RECINC (decreasing encoding),
SOPH-REC (no recoding at all), SOPH-NEE+, SOPH-
IFILT+, SOPH-NFIN+).

We used several of the data sets and mining
tasks that have been used in the FIMI-03 workshop
([4]): accidents, chess, connect, kosarak, mushroom,
pumsb, pumsbstar, retail, T10I5N1KP5KC0.25D200K,
T20I10N1KP5KC0.25D200K, and T30I15N1KP5KC0.25-
D200K. All experiments are ran on a standard Linux box
(P4/2MHz, 1.5GB RAM, SuSE 9.0). Jobs were killed if
they run more than 1000 seconds and the corresponding dat-
apoint is missing in the charts.

A sample from the results of these experiments can
be seen in fig. 1 (the remaining charts can be found
at http://www.informatik.uni-freiburg.de/cgnm/papers/-
fimi04). One can see some common behavior across
datasets and mining tasks:

• For dense mining tasks like accidents, chess, etc.
SOPH is the best configuration.

• For sparse mining tasks like retail,
T20I10N1KP5KC0-25D200K etc. SOPH-diff is
the best configuration, i.e., using defects harms
performance here – both effects are rather distinct.

• Recoding is important and shows a huge variety w.r.t.
runtime: compare e.g., decreasing and no encoding for
connect: the natural encoding is not much worse than
decreasing encoding, but the curve for increasing en-
coding shows what harm the wrong encoding can do:
note that the natural encoding is close to optimal only
by mere chance and could be anywhere between in-
creasing and decreasing!

• Omitting equisupport extensions also shows a clear
benefit for most mining tasks, with exception for
mushroom.

• Compared with other features, the impact of the fea-
tures IFILT and NFIN is neglectible.

To answer the second question about competitiveness of
Eclat compared with more advanced frequent pattern min-
ing algorithms we have chosen the four best-performing al-
gorithms from the FIMI-03 workshop: patricia, kdci, lcm,

and fpgrowth* (see [7, 6, 9, 8], for the implementations
and [3] for a performance evaluation of these algorithms,
respectively).

Again, a sample from the results of these experiments
can be seen in fig. 2 (the remaining charts also can
be found at http://www.informatik.uni-freiburg.de/cgnm/-
papers/fimi04). For several datasets (chess, connect,
mushroom, pumsb, and – not shown – pumsbstar),
Eclat-SOPH is faster than all other algorithms. For
some datasets it is faster for high minimum support
values, but beaten by fpgrowth* when support values
get smaller (accidents, T30I15N1KP5KC0-25D200K) and
for some datasets its performance is really poor (retail,
T20I10N1KP5KC0-25D200K, and – not shown – kosarak
and T10I5N1KP5KC0.25D200K). We can draw two con-
clusions from this observations: 1) at least for dense
datasets, Eclat-SOPH is faster than all its competitors, 2)
for sparse datasets, Eclat-SOPH is not suitable. Recalling
our discussion on the potential of using defects instead of
covers and on starting with frequent 2-itemsets instead of
with frequent 1-itemsets, the latter conclusion is not very
surprising.

5. Outlook

There are at least four more features we do not have in-
vestigated yet: using tries to store the transaction covers,
the method to compute the initial incidence matrix, prun-
ing, and memory management. Our further research will
try to address questions about the impact of these features.

This update of optimization for dense datasets has to
be complemented with research in performance drivers for
sparse datasets. As can be seen from our results, Eclat
seems not suited well for that task. Though using covers
instead of defects improves performance, it still is not com-
petitive with other algorithms in the field.

Furthermore, results for dense datasets will have to be
compared with that of the next generation of mining al-
gorithms we expect as outcome of FIMI’04 and eventu-
ally new features of these algorithms have to be integrated
in Eclat. We expect both, that Eclat is clearly beaten at
FIMI’04 as well that it will be not too hard to identify the
relevant features and integrate them in Eclat.
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Figure 1. Evaluation of the marginal effect of different features of Eclat on runtime.
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Figure 2. Evaluation of Eclat-SOPH (= eclat-lst) vs. fastest algorithms of the FIMI-03 workshop.
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Abstract 
 

Frequent itemset mining (FIM) is an essential part of 
association rules mining. Its application for other data 
mining tasks has also been recognized. It has been an 
active research area and a large number of algorithms 
have been developed. In this paper, we propose another 
pattern growth algorithm which uses a more compact 
data structure named Compressed FP-Tree (CFP-Tree). 
The number of nodes in a CFP-Tree can be up to half less 
than in the corresponding FP-Tree. We also describe the 
implementation of CT-PRO which utilize the CFP-Tree 
for FIM. CT-PRO traverses the CFP-Tree bottom-up and 
generates the frequent itemsets following the pattern 
growth approach non-recursively. Experiments show that 
CT-PRO performs better than OpportuneProject, FP-
Growth, and Apriori. A further experiment is conducted 
to determine the feasible performance range of CT-PRO 
and the result shows that CT-PRO has a larger 
performance range compared to others. CT-PRO also 
performs better compared to LCM and kDCI that are 
known as the two best algorithms in FIMI Repository 
2003. 
 
1. Introduction 
 

Since its introduction in [1] the problem of efficiently 
generating frequent itemsets has been an active research 
area and a large number of algorithms have been 
developed for it; for surveys, see [2-4]. Frequent itemset 
mining (FIM) is an essential part of association rules 
mining (ARM). Since FIM is computationally expensive, 
the general performance of ARM is determined by it. The 
frequent itemset concept has also been extended for many 
other data mining tasks such as classification [5, 6], 
clustering [7], and sequential pattern discovery [8]. 

The data structures used play an important role in the 
performance of FIM algorithms. The various data 
structures used by FIM algorithms can be categorized as 
either array-based or tree-based. An example of a 
successful array-based algorithm for FIM is H-Mine [9]. It 
uses a data structure named H-struct, which is a 

combination of arrays and hyper-links. It was shown in  
[9] that H-struct works well for sparse datasets as H-Mine 
outperforms FP-Growth [10] on these datasets (note that 
both H-Mine and FP-Growth follows the same pattern 
growth method). However, the hyper-structure is not 
efficient on dense datasets and therefore H-Mine switches 
to FP-Growth for such datasets.  

FP-Growth [10] shows good performance on dense 
datasets as it uses a compact data structure named FP-
Tree. FP-Tree is a prefix tree with links between nodes 
containing the same item. A tree data structure is suitable 
for dense datasets since many transactions will share 
common prefixes so that the database could be compactly 
represented. However, for sparse datasets the tree will be 
bigger and bushier, and therefore its construction cost and 
traversal cost will be higher than array-based data 
structures. 

The strengths of H-Mine and FP-Growth were 
combined in the recent pattern growth FIM algorithm 
named OpportuneProject (OP) [11]. OP is an adaptive 
algorithm that opportunistically chooses an array-based or 
a tree-based data structure depending on the sub-database 
characteristics. 

In this paper, we describe our new data structure 
named Compressed FP-Tree (CFP-Tree) and also the 
implementation of our new FIM algorithm named CT-
PRO that was first introduced in [12]. Here we report the 
compactness of CFP-Tree with FP-Tree at several support 
levels on the various datasets generated using the 
synthetic data generator [13]. The performance of CT-
PRO is compared with Apriori [14, 15], FP-Growth [10], 
and OP [11].  

Sample datasets such as real-world BMS datasets [3] or 
UCI Machine Learning Repository datasets [16] do not 
cover the full range of densities from sparse to dense. 
Some algorithms may work well for a certain dataset but 
may not be feasible when the dimensions of the database 
change (i.e. number of transactions, number of items, 
average number of items per transaction etc.). Therefore, a 
further study has been done in this paper, to show the 
feasible performance range of the algorithms. The more 
extensive testing of the algorithms is carried out using a 
set of databases with varying number of both transactions 



and average number of items per transaction. For each 
dataset, all the algorithms are tested on supports of 10% to 
90% in increments of 10%. The experimental results are 
reported in detail. 

To show how well CT-PRO compares with algorithms 
in FIMI Repository 2003 [17], two best algorithms from 
the last workshop, LCM [18] and kDCI [19], are selected 
for comparison. The result shows that CT-PRO 
outperforms these and therefore all others. 

The structure of the rest of this paper is as follows: In 
Section 2, we introduce the CFP-Tree data structure and 
report the results of experiments in evaluating its 
compactness. In Section 3, we describe the CT-PRO 
algorithm with a running example. We discuss the 
complexity of CT-PRO algorithm in Section 4. The 
performance of the algorithm on various datasets is 
compared against other algorithms in Section 5. Section 6 
contains conclusions of our study. 

  
2. Compressed FP-Tree Data Structure 
 

In this section, a new tree-based data structure, named 
Compressed FP-Tree (CFP-Tree), is introduced. It is a 
variant of CT-Tree data structure that we introduced in 
[20] with the following major differences: items are sorted 
in descending order of their frequency (instead of 
ascending order, as in CT-Tree) and there is a link to the 
next node with the same item node (while links are not 
present in CT-Tree). The CFP-Tree is defined as follows: 
 
Definition 1 (Compressed FP-Tree or CFP-Tree). A 
Compressed FP-Tree is a prefix tree with the following 
properties: 
1. It consists of an ItemTable and a tree whose root 

represents the index of the item with the highest 
frequency and a set of subtrees as the children of the 
root. 

2. The ItemTable contains all frequent items sorted in 
descending order by their frequency. Each entry in 
the ItemTable consists of four fields, (1) index, (2) 
item-id, (3) frequency of the item, and (4) a pointer 
pointing to the root of the subtree of each frequent 
item.  

3. If I = {i1, i2, … ik} is a set of frequent items in a 
transaction, after being mapped to their index-id, 
then the transaction will be inserted into the 
Compressed FP-Tree starting from the root of a 
subtree to which i1 in the ItemTable points. 

4. The root of the Compressed FP-Tree is the level 0 of 
the tree. 

5. Each node in the Compressed FP-Tree consists of 
four fields: node-id, a pointer to the next sibling, a 
pointer to the next node with the same id, and a count 
array where each entry corresponds to the number of 

occurrences of an itemset. If C = {C0, C1,… Ck} is a 
set of counts in the count array attached to a node 
and the index of the array starts from zero, then Ci  is 
the count of a transaction with an itemset along the 
path from the node at level i to the node where Ci is 
located.                              ������� 

 
The following lemma provides the worst-case space 

complexity of a CFP-Tree.  
 

Lemma 1. Let n be the number of frequent items in the 
database for a certain support threshold.  The number of 
nodes of the CFP-Tree is bounded by 2n-1, which is half of 
the maximum for a full prefix tree.       

Rationale. If IF = {iF1, … iFn} is a set of distinct items in a 
CFP-Tree where iF1, iF2,…iFn are lexicographically 
ordered. The maximum number of nodes under subtrees 
iF1, iF2, … iFn  is 2n-1, 2n-2…20 respectively. Since the CFP-
Tree is actually the subtree iF1 then the maximum number 
of nodes of the CFP-Tree is 2n-1.               ��� 

 
Compared to FP-Tree, CFP-Tree has some important 

differences, as follows: 

1. FP-Tree stores the item id in the tree while, in CFP-
Tree, item ids are mapped to an ascending sequence 
of integers that is actually the array index in 
ItemTable.  

2. The FP-Tree is compressed by removing identical 
subtrees of a complete FP-Tree and succinctly storing 
the information from them in the remaining nodes. 
All subtrees of the root of the FP-Tree (except the 
leftmost branch) are collected together at the leftmost 
branch to form the CFP-Tree.. 

3. Each node in the FP-Tree (except the root) consists 
of three fields: item-id, count and node-link. Count 
registers the number of transactions represented by 
the portion of the path reaching this node. Node-link 
links to the next node with the same item-id. Each 
node in the CFP-Tree consists of three fields: item-id, 
count array and node-link. The count array contains 
counts for item subsets in the path from the root to 
that node. The index of the cells in the array 
corresponds to the level numbers of the nodes above. 

4. FP-Tree has a HeaderTable consisting of two fields: 
item-id and a pointer to the first node in the FP-Tree 
carrying the nodes with the same item-id. CFP-Tree 
has an ItemTable consisting of four fields: index, 
item-id, count of the item and a pointer to the root of 
the subtree of each item. The root of each subtree has 
a link to the next node with the same-item-node. Both 
HeaderTable and ItemTable store only frequent 
items.  

Figure 1 shows the FP-Tree and the CFP-Tree for a 
sample database. In this case, the FP-Tree is a complete 



tree for items 1-4. In this example, the number of nodes in 
the FP-Tree is twice that of the corresponding CFP-Tree. 
However, most datasets do not have such an extreme 
characteristic as in this example. 

Figure 2 shows the compactness of CFP-Tree 
compared to FP-Tree on several synthetic datasets at 
various support levels (the characteristics of the datasets 
are explained later in Section 5.2). CFP-Tree has a 
smaller number of nodes compared to FP-Tree in all 
cases.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
 
 

3. CT-PRO Algorithm 
 

In this section, a new method that traverses the tree in a 
bottom-up strategy, and implemented non-recursively, is 
presented. The CFP-Tree data structure is used to 
compactly represent transactions in the memory. The 
algorithm is called CT-PRO and it has three steps in it: 
finding the frequent items, constructing the CFP-Tree, and 
mining. Algorithm 1 shows the first two steps in CT-PRO. 
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Figure 2: Compactness of CFP-Tree Compared to FP-Tree on Various Synthetic Datasets at Various 
Support Levels 
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 Tid     Items   
  1     3  4  5  7  
  2     1  3  4  5  
  3     1  4  5  7 
  4     1  3  4 
  5     1  3  4 

Algorithm 1 CT-PRO Algorithm: Step 1 and Step 2 

input  Database D, Support Threshold σ 
output CFP-Tree 
 
1 begin 
2  // Step 1: Identify frequent items  
3  for each transaction t ∈ D 
4      for each item i ∈ t 
5         if i ∈ ItemTable 
6            Increment count of i 
7         else 
8            Insert i into GlobalItemTable with count = 1 
9         end if  
10      end for 
11  end for 
12  Sort GlobalItemTable in  
    frequency descending order 
13  Assign an index for each frequent item in the  
  GlobalItemTable 
14  // Step 2: Construct CFP-Tree 
15  Construct the left most branch of the tree 
16  for each transaction t ∈ D 
17   Initialize mappedTrans 
18      for each frequent item i ∈ t 
19       mappedTrans = mappedTrans ∪ GetIndex(i) 
20      end for 
21   Sort mappedTrans in ascending order of item ids 
22   InsertToCFPTree(mappedTrans) 
23  end for 
24 end 
25 Procedure InsertToCFPTree(mappedTrans) 
26  firstItem := mappedTrans[1] 
27  currNode := root of subtree pointed by  
    ItemTable[firstItem] 
28  for each subsequent item i ∈ mappedTrans 
29   if currNode has child represent i 
30    Increment count[firstItem-1] of the child node 
31   else 
32    Create child node and set its  
    count[firstItem-1] to 1 
33    Link the node to its respective node-link 
34   end if 
35  end for 
36 end 

 
Suppose the user wants to mine all frequent itemsets 

from the transaction database shown in Figure 3a with a 
support threshold of two transactions (or 40%). First, we 
need to identify frequent items by reading the database 
once (lines 3-11). The frequent items are stored in 
frequency descending order in the GlobalItemTable (line 
12). In a second pass over the database, only frequent 
items are selected from each transaction (see Figure 3b), 
mapped to their index id in GlobalItemTable on-the-fly, 
sorted in ascending order of their index id (see Figure 3c) 
and inserted into the CFP-Tree (see Figure 3d). The 

pointer in GlobalItemTable also acts as the start of the 
links to other nodes with the same item ids (indicated by 
the dashed lines in Figure 3d). For illustration, at each 
node we also show the index of the array, the transaction 
represented at each index entry and its count. In the 
implementation of CFP-Tree, however, only the second 
column that represents the count is stored.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: CFP-Tree for the Sample Dataset 
 

The mining process in CT-PRO is shown in Algorithm 
2 and illustrated by the following example. 

Example 1. Let the CFP-Tree, as shown in Figure 3d, be 
the input for the mining step in CT-PRO and suppose the 
user wants to get all the frequent itemsets with minimum 
support of two transactions (or 40%). 

Figure 4 shows the LocalCFP-Tree and 
LocalFrequentPatternTree at each step during the mining 
process. CT-PRO starts from the least frequent item 
(index: 5,  item: 7)  in  the GlobalItemTable (line 2). Item 
7 is frequent and it will be the root of the 
LocalFrequentPatternTree (line 3). Then CT-PRO creates 
a projection of all transactions ending with index 5. This 
projection is represented by a LocalCFP-Tree and only 
contains locally frequent items. Traversing the node-link 
of index 5 in the GlobalCFP-Tree identifies the local 
frequent items that occur together with it. There are three 

 Tid          Items   
  1     3  4  5  6  7  9 
  2     1  3  4  5  13 
  3     1  2  4  5  7  11 
  4     1  3  4  8 
  5     1  3  4  10 
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nodes of index 5 and the path to the root for each node is 
traversed counting the other indexes that occur together 
with index 5 (lines 13-23). In all, we have 1 (2), 2 (1), 3 
(1) and 4 (2) for index 5. As indexes 1,4 (item id: 4,5) are 
locally frequent, they are registered in the LocalItemTable 
and assigned new index ids (see Figure 4a). They also 
become the child of the LocalFrequentPatternTree’s root 
(lines 5-7). Together, the root and its children form 
frequent itemsets with length two. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4: Local CFP-Tree during Mining 
Process 

 
After local frequent items for the projection have been 

identified, the node-link in the GlobalCFP-Tree is re-
traversed and the path to the root from each node is 
revisited to get the local frequent items occurring together 
with index 5 in the transactions. These local frequent 
items are mapped to their index in the LocalItemTable on-
the-fly, sorted in ascending order of their index id and 
inserted into the LocalCFP-Tree (lines 24-33). The first 
path of index 5 returns nothing. From the second path of 
index 5, a transaction 14 (1) is inserted into the 
LocalCFP-Tree and another transaction 14 (1) from the 
third path of index 5 also is inserted. In total, there are two   

Algorithm 2 CT-PRO Algorithm: Mining Part 

input  CFP-Tree 
output Frequent Itemsets FP 
 
1 Procedure Mining 
2     for each frequent item i ∈ GlobalItemTable  
  from the least to the most frequent 
3   Initialize LocalFrequentPatternTree  
   with i as the root 
4   ConstructLocalItemTable(x) 
5   for each frequent item j ∈ LocalItemTable  
6    Attach i as a child of x 
7   end for 
8   ConstructLocalCFPTree(x) 
9   RecMine(x) 
10   Traverse the LocalFrequentPatternTree  
      to print the frequent itemsets 
11  end for 
12 end 
13 Procedure ConstructLocalItemTable(i) 
14  for each occurrence of node i in the CFP-Tree 
15   for each item j in the path to the root 
16          if j ∈ LocalItemTable 
17             Increment count of j 
18          else 
19             Insert j into LocalItemTable with count = 1 
20          end if  
21   end for 
22  end for 
23 end 
24 Procedure ConstructLocalCFPTree(i) 
25  for each occurrence of node i in the CFP-Tree 
26   Initialize mappedTrans 
27   for each frequent item j ∈ LocalItemTable  
   in the path to the root 
28       mappedTrans = mappedTrans ∪ GetIndex(j) 
29      end for 
30   Sort mappedTrans in ascending order of item ids 
31   InsertToCFPTree(mappedTrans) 
32  end for 
33 end 
34 Procedure RecMine(x)    
35  for each child i of x 
36   Set all counts in LocalItemTable to 0 
37   for each occurrence of node i in  
   the LocalCFPTree 
38    for each item j in the path to the root 
39             Increment count of j in LocalCFPTree 
40    end for 
41   end for 
42   for each frequent item k ∈ LocalItemTable  
43    Attach k as a child of i 
44   end for 
45   RecMine(i) 
46  end for 
47 end 
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occurrences of transaction 14. Indexes 1 and 4 in the 
GlobalItemTable  represent  items  4  and  5  respectively. 
The indexes of items 4 and 5 in the LocalItemTable are 1 
and 2 respectively and so the transaction 14 is inserted as 
transaction 12 in the LocalCFP-Tree. As the item index in 
the GlobalItemTable and LocalItemTable are different, 
the item id is always maintained for output purposes. 

Longer frequent itemsets, with length greater than two, 
are extracted by calling the procedure RecMine (line 9). 
For simplicity, we have described this procedure (lines 
34-47) using recursion but, in the program, it is 
implemented as a non-recursive procedure. Starting from 
the least frequent item in the LocalItemTable, (line 35), 
the node-link is traversed (lines 37-41). For each node, the 
path to the root in the LocalCFP-Tree is traversed 
counting the other items that are together with the current 
item. For example, in Figure 4a, traversing the node-link 
of node 2 will return the index 1 (2) and, since it is 
frequent, an entry is created and attached as the child of 
index 2 in the LocalFrequentPatternTree (lines 42-44). 
All frequent itemsets containing item 7 can be extracted 
by traversing the LocalFrequentPatternTree (line 10): 7 
(2), 75 (2), 754 (2), 74 (2). 

The process is continued to mine the next item in the 
GlobalItemTable in the GlobalCFP-Tree with indexes 4, 
3, 2 and finally, when the mining process reaches the root 
of the tree of Figure 3d, it outputs 4 (5).  

One major advantage of CT-PRO compared to FP-
Growth is that CT-PRO avoids the cost of creating 
conditional FP-Trees. FP-Growth needs to create a 
conditional FP-Tree at each step of its recursive mining. 
This overhead adversely affects its performance, as the 
number of conditional FP-Trees corresponds to the 
number of frequent itemsets. In CT-PRO, for each 
frequent item (not frequent itemsets), only one LocalCFP-
Tree is created and traversed non-recursively to extract all 
frequent itemsets beginning with the frequent item. 
 
4. Time Complexity 
 

In this section, the best-case and worst-case time 
complexity of CT-PRO algorithm is presented. Let I = {i1, 
i2, …., in} be the set of all n items, let transaction database 
D be {t1, t2, …, tm}, and let v be the total number of items 
in all transactions.  

 

Lemma 2. In the best-case, the cost of generating frequent 
itemsets is O(v + n). 

Proof. The best-case for the CT-PRO algorithm occurs 
when there is no frequent item. The algorithm has to read 
v items in all transactions and add the count of n items. 
The count of all n items are stored in the ItemTable and 
checked to determine whether there is any frequent item 
or not. If there is no frequent item, the process stops.      ��� 
 

Lemma 3. In the worst-case, the cost of generating 
frequent itemsets is  

(v + n)+ (v + 2n-1) + ∑
=

n

k 2

((2(n-k)–1)(2(n-k)) + 2(k-2)) = O(22n). 

Proof. The worst-case happens when all n items are 
frequent and all combinations of them are present in m 
transactions. CT-PRO has three steps: finding frequent 
items, constructing the CFP-Tree, and mining. The cost of 
finding frequent items has been provided by Lemma 2. 
The worst case for the GlobalCFP-Tree corresponds to a 
situation where all the possible paths exist. In 
constructing the GlobalCFP-Tree, all the transactions in 
the database are read (the cost is v) and inserted into the 
tree (the total number of nodes is 2n-1). For the mining 
process, for each frequent item fk where 2 ≤ k ≤ n, 2(k-2) 

nodes in the GlobalCFP-Tree are visited to construct a 
LocalCFP-Tree.   The  LocalCFP-Tree  has   (2(n-k)–1)   
paths that correspond to, at most, 2(n-k)  candidate 
itemsets. So the worst case mining cost is: 

 ∑
=

n

k 2

((2(n-k)–1)(2(n-k)) + 2(k-2)).  

Therefore, the total worst-case cost of CT-PRO is  

(v+n)+(v+2n-1)+∑
=

n

k 2

((2(n-k)–1)(2(n-k)) + 2(k-2)) = O(22n)      

 
5. Experimental Evaluation 
 

This section contains three sub-sections. In Section 5.1, 
we compare CT-PRO against other well-known algorithms 
including with Apriori [14, 15], FP-Growth [10] and 
recently proposed OpportuneProject (OP) [11] on the 
various datasets available at FIMI Repository 2003 [17]. 
In Section 5.2, we report the result of more 
comprehensive testing to determine the feasible 
performance range of the algorithms. Finally, in Section 
5.3, we compare CT-PRO with the two best algorithms in 
the FIMI Repository 2003 [17], LCM [18] and kDCI [19].  
 
5.1. Comparison with Apriori, FP-Growth and 

OpportuneProject 
 

Six real datasets are used in this experiment including 
two dense datasets: Chess and Connect4; two less dense 
datasets: Mushroom and Pumsb*; and two sparse datasets: 
BMS-WebView-1 and BMS-WebView-2. The first four 
datasets are originally taken from UCI ML Repository 
[16] and the last two datasets are donated by Blue Martini 
Software [3]. All the datasets are also available at FIMI 
Repository 2003 [17]. 

We used the implementation of Apriori created by 
Christian Borgelt [21] by enabling the use of the prefix 



tree data structure. As for FP-Growth, we used the 
executable code available from its authors [10]. However, 
for comparing the number of nodes of FP-Tree to our 
proposed data structure, we modified the source code of 
FP-Growth provided by Bart Goethals in [22]. For 
OpportuneProject (OP), we used the executable code 
available from its author, Junqiang Liu [11]. 

All the algorithm were implemented and compiled 
using MS Visual C++ 6.0. All the experiments (except 
comparisons with algorithms in the FIMI Repository 2003 
website [17]) were performed on a Pentium III PC 866 
MHz with 512 MB RAM and 110 GB Hard Disk running 
on MS Windows 2000. All the reported runtime used in 
our charts is the total execution time, the period between 
input and output. It also includes the time of constructing 
all the data structures used in all programs. 

Figure 5 shows the results of the experiment on various 
datasets. All the charts use a logarithmic scale for run time 
along the y-axis on the left of the chart. We did not plot 
the results in the chart if the runtime was more than 
10,000 seconds. For a comprehensive evaluation of the 
algorithm’s performance, rather than showing where our 
algorithm performed best at some of the support levels, all 
the algorithms were extensively tested on various datasets 
with a support level of 10% to 90% for dense datasets 
(e.g. Connect4, Chess, Pumsb*, Mushroom), a support 
level of 0.1% to 1% for the sparse dataset BMS-WebView-
1, and a support level of 0.01% to 0.1% for the sparse 
dataset BMS-WebView-2. As the average number of items 
increases and/or the support level decreases, at some 
point, every algorithm ‘hits the wall’ (i.e. takes too long to 
complete). 

CT-PRO outperforms others at all support thresholds 
on the Connect4, Chess, Mushroom and Pumsb* datasets. 
On the sparse dataset BMS-WebView-1, CT-PRO is a 
runner-up, after OP, with only small performance 
differences (0.4 seconds to 0.49 seconds at a support level 
of 0.1% and 5.18 seconds to 7.69 seconds at 0.06%). 
Below the support level of 0.06%, none of the algorithms 
could mine the BMS-WebView-1 dataset. On the sparse 
dataset BMS-WebView-2, a remarkable result is obtained. 
Apriori, which is known as a traditional FIM algorithm, 
outperforms FP-Growth at all support levels. CT-PRO is 
the fastest from a support threshold of 1% down to 0.4% 
and becomes the runner-up, after OP, at a support level of 
0.3% down to 0.1% with small performance differences. 

From these results, we can claim that, on dense 
datasets, CT-PRO generally outperforms others. On sparse 
datasets, the high cost of the tree construction reduces CT-
PRO to runner-up. However, as the gap is very small, we 
can say that CT-PRO also works well for sparse datasets. 

 
 
 

5.2. Determining the Feasible Performance 
Range 

 

As mentioned earlier, sample datasets such as real-
word BMS datasets [3] and the UCI Machine Learning 
Repository [16], which also are available at the FIMI 
Repository 2003 [17], have their own static characteristics 
and thus do not cover the full range of densities. An 
algorithm that works well for one dataset may not have the 
same degree of performance on other datasets with 
different dimensions. Dimensions, here, could be the 
number of transactions, number of items, average number 
of items per transaction, denseness or sparseness, etc. In 
this section, a more comprehensive evaluation of the 
performance of various algorithms is presented. 

We generated ten datasets using the synthetic data 
generator [13]. The first five datasets contained 100 items 
with 50,000 transactions, and an average number of items 
per transaction of 10, 25, 50, 75, and 100. The second five 
datasets contained 100 items with 100,000 transactions, 
also with an average number of items per transaction of 
10, 25, 50, 75, and 100. CT-PRO, Apriori, FP-Growth 
and OP were tested extensively on these datasets at a 
support level of 10% to 90%, in increments of 10%. 

Figure 6 shows the performance comparisons of the 
algorithms on various datasets. The dataset name shows 
its characteristics. For example, I100T100KA10 means 
there are 100 items, and 100,000 transactions with an 
average of 10 items per transaction. The experimental 
results show that the performance characteristics on 
databases of 50,000 to 100,000 transactions are quite 
similar. However, the runtime increases with the number 
of transactions. 

The Apriori algorithm is very feasible for sparse 
datasets (with an average number of items in each 
transaction of 10 and 25). Its performance is good, as it 
consistently performs better than FP-Growth at all support 
levels. Although Apriori is slower than CT-PRO and OP 
using the two sparse datasets, its runtime is still acceptable 
to the user. (It needs only 60 seconds to mine the 
I100T50KA25 dataset at the support level of 10%). 
However, on the datasets with an average number of items 
per transaction of 50, 75, and 100, Apriori performs worst 
and it can only mine down to a support level of 30%, 
50%, and 70% respectively. These results confirm that, 
for dense datasets, if the support levels used are low, 
Apriori is infeasible. 

FP-Growth performs worst at all support levels on the 
datasets with a low average number of items per 
transaction (i.e. 10 and 25). The fact that FP-Growth does 
not outperform Apriori on these two datasets shows that 
Apriori is more feasible than FP-Growth for sparse 
datasets.    However,  FP-Growth   performs  significantly 
better than Apriori for the larger average number of items 
in transactions. 



 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Both CT-PRO and OP have larger feasible 
performance ranges compared to the other algorithms. OP 
does not perform well on the sparse datasets 
I100T50KA10 and I100T100KA10. Its performance was 
even worse than Apriori on this dataset. However, it 
performs better than Apriori and FP-Growth on other 
datasets. On the datasets with an average number of items 
per transaction of 50, 75, and 100, FP-Growth, CT-PRO 
and OP can mine down to a support level of 20%, 40%, 
and 50% respectively.  

CT-PRO can be considered the best among all other 
algorithms  as  it  generally    performs    the  best  at  most 
support levels. However, as the support level gets lower, 
its performance is similar to OP. Only at a support level of 
10%, OP occasionally runs slightly faster than CT-PRO 
(e.g. at a support level of 10% on the I100T50KA25 
dataset). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.3. Comparison with Best Algorithms in the 
FIMI Repository 2003  

 
For comparison with the best algorithms in the FIMI 

Repository 2003 [17], we ported our algorithm CT-PRO 
to a Linux operating system and compared it with their 
two best algorithms: LCM [18] and kDCI [19]. We 
performed the experiments on a PC AMD Athlon XP 
2000+ 1.6 GHz, 1 GB RAM, 2 GB Swap with 40GB Hard 
Disk running Fedora Core 1. All programs were compiled 
using g++ compiler. 

Figure 7 shows the performance comparisons of 
algorithms that were submitted to FIMI 2003 on Chess 
and Connect4 datasets. The figures are taken from [17]. 
On Chess dataset, kDCI is the best at a support level of 
90% to a support level of 70%. Below that, LCM 
outperforms  others.  On  Connect4  dataset,  at  a  support  

1

10

100

1000

10 20 30 40 50 60 70
Support (%)

R
u

n
ti

m
e 

(s
) 

lo
g

ar
it

h
m

ic Pumsb* 

0.1

1

10

100

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Support (%)

R
u

n
ti

m
e 

(s
) 

lo
g

ar
it

h
m

ic BMS-WebView-1 

Figure 5: Performance Evaluation of CT-PRO Against Others on Various Datasets  
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Figure 6: Performance Evaluation on Various Synthetic Datasets  



level of 95% to a support level of 70%, kDCI is the best. 
Below that, LCM outperforms others. We can conclude 
that for higher support levels, kDCI is the best, but for 
lower support levels, LCM is the best. These best two 
algorithms are compared with CT-PRO.  

 The kDCI algorithm [19] is a multiple heuristics 
hybrid algorithm that able to adapt its behaviour during 
the execution. It is an extension of the DCI (Direct Count 
and Intersect) algorithm [23] by adding its adaptability to 
the dataset specific features. kDCI is also a resource aware 
algorithm which can decides mining strategy based on the 
hardware characteristics of the computing platform used. 
Moreover, kDCI also used counting inference strategy 
which originally proposed in [24]. 

The LCM (Linear time Closed itemset Miner) 
algorithm [18] uses the parent-child relationship defined 
on frequent itemsets. The search tree technique is adapted 
from the algorithms for generating maximal bipartite 
cliques [25, 26] based on reverse search [27, 28]. In 
enumerating all frequent itemsets, LCM uses hybrid 
techniques involving occurrence deliver or diffsets [29] 
according to the density of the database. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

 
 
 
 

Figure 7: Performance Comparisons of 
Algorithms available in the FIMI 2003 Repository 

on Chess and Connect4 Datasets [17] 
 

Figure 8 shows the performance comparisons on Chess 
and Connect4 datasets. From these results, CT-PRO 
always outperforms others at high support levels. For 
lower support levels, the performances of these three 
algorithms are similar. Since LCM and kDCI are the best 
algorithms in FIMI Repository 2003 on Chess and 
Connect4 datasets, we can conclude that CT-PRO 
outperforms all other algorithms available in FIMI 
Repository 2003 [17] on Chess and Connect4 datasets. 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Figure 8: Performance Comparisons of CT-PRO, 
LCM and kDCI on Chess and Connect4 Datasets 

 
6. Conclusions 
 

In this paper, we have described a new tree-based data 
structure named CFP-Tree that is more compact than FP-
Tree used in FP-Growth algorithm. Depending on the 
database characteristics, the number of nodes in an FP-
Tree could be up to twice as many as in the corresponding 
CFP-Tree for a given database. CFP-Tree is used in our 
new algorithm named CT-PRO for mining all frequent 
itemsets. CT-PRO divides the CFP-Tree into several 
projections represented also by CFP-Trees. Then CT-PRO 
conquers the CFP-Tree for mining all frequent itemsets in 
each projection. 

CT-PRO was explained in detail using a running 
example and the best-case and worst-case time complexity 
of the algorithm also was presented. Performance 
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comparisons of CT-PRO against other well-known 
algorithms, including Apriori [14, 15], FP-Growth [10] 
and OpportuneProject (OP) [11] also were reported. The 
results show that CT-PRO outperforms other algorithms at 
all support levels on dense datasets and also works well on 
sparse datasets. 

Extensive experiments to measure the feasible 
performance range of the algorithms are also presented in 
this paper. A synthetic data generator is used to generate 
several datasets with varying number of both transactions 
and average number of items per transaction. Then the 
best available algorithms including CT-PRO, Apriori, FP-
Growth and OP are tested on those datasets. The result 
shows that CT-PRO generally outperforms others. 

In addition, to relate our research to the last workshop 
on frequent itemset mining implementations [17], we 
selected two best algorithms (LCM and kDCI) from FIMI 
Repository 2003 and compared their performance with 
CT-PRO. It was shown that CT-PRO performed better 
than the others. 
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Abstract: For a transaction database, a frequent

itemset is an itemset included in at least a specified

number of transactions. A frequent itemset P

is maximal if P is included in no other frequent

itemset, and closed if P is included in no other

itemset included in the exactly same transactions

as P . The problems of finding these frequent

itemsets are fundamental in data mining, and

from the applications, fast implementations for

solving the problems are needed. In this paper,

we propose efficient algorithms LCM (Linear time

Closed itemset Miner), LCMfreq and LCMmax

for these problems. We show the efficiency of our

algorithms by computational experiments compared

with existing algorithms.

1 Introduction

Frequent item set mining is one of the fundamental

problems in data mining and has many applications

such as association rule mining, inductive databases,

and query expansion. From these applications, fast

implementations of frequent itemset mining problems

are needed. In this paper, we propose the second

versions of LCM, LCMfreq and LCMmax, for enu-

merating closed, all and maximal frequent itemsets.

LCM is an abbreviation of Linear time Closed item
set Miner .

In FIMI03[7], we proposed the first version of

LCM, which is for enumerating frequent closed item-

sets. LCM uses prefix preserving closure extension
(ppc extension in short), which is an extension from

a closed itemset to another closed itemset. The ex-

tension induces a search tree on the set of frequent

closed itemsets, thereby we can completely enumer-

ate closed itemsets without duplications. Generating

a ppc extension needs no previously obtained closed

itemset. Hence, the memory use of LCM does not

depend on the number of frequent closed itemsets,

even if there are many frequent closed itemsets.

The time complexity of LCM is theoretically

bounded by a linear function in the number of fre-

quent closed itemsets, while the existing algorithms

are not. We further developed algorithms for the

frequency counting, occurrence deliver and hybrid of
diffsets. They reduce the practical computation time

efficiently. Moreover, the framework of LCM is sim-

ple. Generating ppc extensions needs no sophisti-

cated data structure such as binary trees. LCM is

implemented with only arrays. Therefore, LCM is

fast, and outperforms than other algorithms for some

sparse datasets.

However, LCM does not have any routine for re-

ducing the database, while many existing algorithms

have. Thus, the performance of LCM is not good for

dense datasets with large minimum supports, which

involve many unnecessary items and transactions.

At FIMI03, we also proposed modifications of LCM,

LCMfreq and LCMmax, for enumerating all frequent

itemsets and maximal frequent itemsets. Although

they are fast for some instances, if LCM is not fast

for an instance, they are also not fast for the instance.

Existing maximal frequent itemset mining algorithms

have efficient pruning methods to reduce the number

of iterations, while LCMmax does not have. It is also

a reason of the slowness of LCMmax.

This paper proposes the second version of LCM

algorithms. We added database reduction to LCM,

so that problems of dense datasets can be solved in

short time. The second version of LCMmax includes

a pruning method, thus the computation time is re-

duced when the number of maximal frequent itemsets

is small. We further developed new algorithms for

checking the maximality of a frequent itemset and
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for taking the closure of an itemset. We compare

the performance of LCM algorithms and other algo-

rithms submitted to FIMI03 by computational exper-

iments. In many instances, LCM algorithms perform

above other algorithms.

The organization of the paper is as follows. Sec-

tion 2 introduces preliminaries. The main algorithms

and practical techniques of LCM algorithms are de-

scribed in Section 3. Section 4 shows the results of

computational experiments, and Section 5 concludes

the paper.

2 Preliminaries

Let I = {1, ..., n} be the set of items. A transaction
database on I is a set T = {t1, . . . , tm} such that each

ti is included in I. Each ti is called a transaction. We

denote by ||T || the sum of sizes of all transactions in

T , that is, the size of database T . A set P ⊆ I is

called an itemset.
For itemset P , a transaction including P is called

an occurrence of P . The denotation of P , denoted

by T (P ) is the set of the occurrences of P . |T (P )| is

called the frequency of P, and denoted by frq(P ). For

given constant θ, called a minimum support, itemset

P is frequent if frq(P ) ≥ θ. If a frequent itemset P

is included in no other frequent itemset, P is called

maximal. For any itemsets P and Q, T (P ∪ Q) =

T (P )∩T (Q) holds, and if P ⊆ Q then T (Q) ⊆ T (P ).

An itemset P is called closed if no other itemset Q

satisfies T (P ) = T (Q), P ⊆ Q.

Given set S ⊆ T of transactions, let I(S) be the set

of items common to all transactions in S, i.e., I(S) =⋂
T∈S T . Then, we define the closure of itemset P

in T , denoted by clo(P ), by I(T (P ))(=
⋂

t∈T (P ) t).

For every pair of itemsets P and Q, the following

properties hold[13, 14].

(1) If P ⊆ Q, then clo(P ) ⊆ clo(Q).

(2) If T (P ) = T (Q), then clo(P ) = clo(Q).

(3) clo(clo(P )) = clo(P ).

(4) clo(P ) is the unique smallest closed itemset

including P .

(5) A itemset P is a closed itemset if and only

if clo(P ) = P .

For itemset P and item i ∈ P , let P (i) = P ∩

{1, . . . , i} be the subset of P consisting only of el-

ements no greater than i, called the i-prefix of P .

An itemset Q is a closure extension of an itemset

P if Q = clo(P ∪ {i}) holds for some i 6∈ P . If

Q is a closure extension of P , then Q ⊃ P, and

frq(Q) < frq(P ). We call the item with the maxi-

mum index in P the tail of P , and denote by tail(P ).

3 Algorithms for Efficient Enu-

meration

In this section, we explain the techniques used in the

second versions of LCM algorithms. We explain them

one-by-one with comparing to the techniques used

by the other algorithms, in the following subsections.

The new techniques used in the second version are:

3.2. new database reduction (reduce the frequency

counting cost)

3.6. database reduction for fast checking closedness

3.8. database reduction for fast checking maximality

3.7. new pruning algorithm for backtracking-based

maximal frequent itemset mining.

The techniques also used in the first versions are:

3.4. occurrence deliver (compute frequency in

linear time)

3.5. ppc extension (generates closed itemsets with

neither memory nor duplication)

3.3. hypercube decomposition (fast enumeration by

grouping frequent itemsets by equivalence class).

The techniques used in the existing algorithms and

the first version have citations to the previous papers.

3.1 Enumerating Frequent Itemsets

Any itemset included in a frequent itemset is it-

self frequent. Thereby, the property “frequent” is

monotone. From this, we can construct any frequent

itemset from the empty set by adding items one-by-

one without passing through any infrequent itemset.

Roughly speaking, the existing algorithms are classi-

fied into two groups, and algorithms in both groups

use this property.

The first group is so called apriori or level-by-level
algorithms [1, 2]. Let Dk be the set of frequent item-

sets of size k. Apriori algorithms start with D0, that

is {∅}, and compute Dk from Dk−1 in the increasing

order of k from k = 1. Any itemset in Dk is obtained

from an itemset of Dk−1 by adding an item. Apriori

algorithms add every item to each itemset of Dk−1,

and choose frequent itemsets among them. If Dk = ∅

holds for some k, then Dk′ = ∅ holds for any k
′
> k.

Thus, apriori algorithms stop at such k. This is the

scheme of apriori algorithms.
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The other group is so called backtracking
algorithms[3, 18, 19]. Backtracking algorithm is

based on recursive calls. An iteration of a backtrack-

ing algorithm inputs a frequent itemset P , and gener-

ates itemsets by adding every items to P . Then, for

each itemset being frequent among them, the itera-

tion generates recursive calls with respect to it. To

avoid duplications, an iteration of backtracking algo-

rithms adds items with indices larger than the tail

of P . We describe the framework of backtracking

algorithms as follows.

ALGORITHM BackTracking (P :current solution)

1. Output P

2. For each e ∈ I, e > tail(P ) do

3. If P ∪ {e} is frequent then

call BackTracking (P ∪ {e})

An execution of backtracking algorithms gives a

tree structure such that the vertices of the tree are

iterations, and edges connect two iterations if one of

the iteration calls the other. If an iteration I recur-

sively calls another iteration I
′
, then we say that I

is the parent of I
′
, and I

′
is a child of I . For an iter-

ation, the itemset received from the parent is called

the current solution.

Apriori algorithms use much memory for storing

Dk in memory, while backtracking algorithms use

less memory since they keep only the current solu-

tion. Backtracking algorithms need no computation

for maintaining previously obtained itemsets, so the

computation time of backtracking algorithms is gen-

erally short. However, apriori algorithms have ad-

vantages for the frequency counting.

LCM algorithms are based on backtracking al-

gorithms, and use an efficient techniques for the

frequency counting, which are occurrence deliver

and anytime database reduction described below.

Hence, LCM algorithms compute the frequency effi-

ciently without keeping previously obtained itemsets

in memory.

3.2 Maintaining Databases

In the existing studies, database reduction is said to

be important to reduce the computation time. It is

to reduce the input database as the following rules:

1. remove each item included in less than θ transactions

2. remove each item included in all transactions

3. merge the identical transactions into one.

Database reduction performs well when the mini-

mum support is large, and many existing algorithms

use it. LCM algorithms also use database reduction.

In the existing studies, the input databases are

often stored and maintained by using FP-tree (fre-

quent pattern tree), which is a version of prefix tree

(trie) [9]. By using FP-tree, we can search specified

transactions from the datasets efficiently. FP-tree

compresses the common prefix, so we can decrease

the memory use. In addition, FP-tree can detect the

identical transactions, thus we can merge them into

one. This merge accelerates the frequency counting.

From these reasons, FP-trees are used in many algo-

rithms and implementations.

Although FP-tree has many good advantages, we

do not use it in the implementation of LCM, but use

simple arrays. The main reason is that LCM does

not have to search transactions in the database. The

main operation of LCM is tracing the transactions in

the the denotation of the current solution. Thus, we

do not need to use sophisticated data structures for

searching.

The other reason is the computation time for the

initialization. If we use a standard binary tree for

implementing FP-tree, the initialization of the in-

put database takes O(||T || + |T | log |T |) time. for

constructing FP-tree in memory. Compared to this,

LCM detects the identical transactions and stores

the database in memory within linear time of the

database size. This is because that LCM uses radix

sort for this task, which sorts the transactions in a

lexicographic order in linear time. In general, the

datasets of data mining problems have many trans-

actions, and each transaction has few items. Thus,

||T || is usually smaller than |T | log |T |, and LCM has

an advantage. The constant factors of the compu-

tation time of binary tree operations are relatively

larger than that of array operations. LCM also has

an advantage at this point. Again, we recall that

LCM never search the transactions, so each opera-

tion required by LCM can be done in constant time.

FP-tree has an advantage in reducing the memory

use. This memory reduction can also reduce the

computation time of the frequency counting. To

check the efficiency of the reduction, we checked

the reduction ratio by FP-tree for some datasets

examined in FIMI03. The result is shown in Table

1. Each cell shows the ratio of the number of items

needed to be stored by arrays and FP-tree. Usually,

the input database is reduced in each iteration,

hence we sum up the numbers over all iterations to

compute the ratio. In the results of our experiments,
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the ratio was not greater 3 in many instances. If

|I| is small, |T | is large, and the dataset has a

randomness, such as accidents, the ratio was up to 6.

Generally, a binary tree uses memory three times as

much as an array. Thus, the performance of FP-tree

seems to be not quite good rather than an array in

both memory use and computation time, for many

datasets.

3.3 Hypercube Decomposition

LCM finds a number of frequent itemsets at once for

reducing the computation time[18]. Since the item-

sets obtained at once compose a hypercube in the

itemset lattice, we call the technique hypercube de-
composition. For a frequent itemset P , let H(P )

be the set of items e satisfying e > tail(P ) and

T (P ) = T (P ∪ {e}). Then, for any Q ⊆ H(P ),

T (P ∪ Q) = T (P ) holds, and P ∪ Q is frequent.

LCMfreq uses this property. For two itemsets P and

P ∪ Q, we say that P
′

is between P and P ∪ Q if

P ⊆ P
′
⊆ P ∪ Q. In the iteration with respect to

P , we output all P
′
between P and P ∪ H(P ). This

saves about 2
|H(P )|

times of the frequency counting.

To avoid duplications, we do not generate recur-

sive calls with respect to items included in H(P ).

Instead of generating these recursive calls, we output

frequent itemsets including items of H(P ) in recur-

sive calls with respect to items not included in H(P ).

When the algorithm generates a recursive call with

respect to e 6∈ H(P ), we pass H(P ) to it. In the re-

cursive call, we output all itemsets between P ∪ {e}

and P ∪{e}∪H(P )∪H(P ∪{e}). Since any itemset

Q satisfies T (P ∪ Q ∪ H(P )) = T (P ∪ Q), the item-

sets output in the recursive calls are frequent. We

describe hypercube decomposition as follows.

ALGORITHM HypercubeDecomposition

(P :current solution, S:itemset)

S
′
:= S ∪ H(P )

Output all itemsets including P

and included in P ∪ S
′

For each item e ∈ I \ (P ∪ S
′
), e > tail(P ) do

If P ∪ {e} is frequent then

call HypercubeDecomposition (P ∪ {e}, S
′
)

End for

3.4 Frequency Counting

Generally, the most heavy part of the frequent item-

set mining is the frequency counting, which is to

count the number of transactions including a newly

generated itemset. To reduce the computation time,

existing algorithms uses down project. For an itemset

P , down project computes its denotation T (P ) by us-

ing two subsets P1 and P2 of P . If P = P1 ∪P2, then

T (P ) = T (P1)∩T (P2). Under the condition that the

items of P1 and P2 are sorted by their indices, the in-

tersection can be computed in O(|T (P1)| + |T (P2)|)

time. Down project uses this property, and computes

the denotations quickly. Moreover, if |T (P1)| < θ or

|T (P2)| < θ holds, we can see that P never be fre-

quent. It also helps to reduce the computation time.

Apriori-type algorithms accelerates the frequency

counting by finding a good pair P1 and P2 of subsets

of P , such that |T (P1)| + |T (P2)| is small, or either

P1 or P2 is infrequent. Backtracking algorithm adds

an item e to the current solution P in each itera-

tion, and compute its denotation. By using T ({e}),

the computation time for the frequency counting is

reduced to O(
∑

e>tail(P )(|T (P )| + |T ({e})|)).

The bitmap method[5] is a technique for speed-

ing up the computation of taking the intersection in

down project. It uses a bitmap image (the charac-

teristic vector) of the denotations. To take the in-

tersection, we have to take O(|T |) time with bitmap.

However, a 32bit CPU can take the intersection of

32bits at once, thus roughly speaking the computa-

tion time is reduced to 1/32. This method has a

disadvantage for sparse datasets, and is not orthog-

onal to anytime database reduction described in the

below. From the results of the experiments in FIMI

03, bitmap method seems to be not good for sparse

large datasets.

LCM algorithms use another method for the fre-

quency counting, called occurrence deliver[18, 19].

Occurrence deliver computes the denotations of P ∪

{e} for e = tail(P ) + 1, ..., |I| at once by tracing

transactions in T (P ). It use a bucket for each e to

be added, and set them to empty set at the begin-

ning. Then, for each transaction t ∈ T (P ), occur-

rence deliver inserts t to the bucket of e for each

e ∈ t, e > tail(P ). After these insertions, the bucket

of e is equal to T (P ∪ {e}). For each transaction t,

occurrence deliver takes O(|t∩ {tail(P ) + 1, ..., |I|}|)

time. Thus, the computation time is O(
∑

T∈T (P ) |T∩

{tail(P )+1, ..., |I|}|) =O(|T (P )|+
∑

e>tail(P ) |T (P ∪

{e})|). This time complexity is smaller than down

project. We describe the pseudo code of occurrence

deliver in the following.

ALGORITHM OccurrenceDeliver

(T:database, P :itemset)

1. Set Bucket[e] := ∅ for each item e > tail(P )
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dataset and chess accidents BMS-WebView2 T40I10D100K

minimum support 40% 30% 0.05% 0.1%

reduction factor

by FP-tree 2.27 6.01 1.9 1.57

reduction factor by

Hypercube decomposition 6.25 1 1.21 1

reduction factor

by apriori (best) 1.11 1.34 1.35 2.85

Table 1: Efficiency test of FP-tree, hypercube decomposition, and apriori: the reduction factor of FP-tree is

(sum of # of elements in reduced database by LCM) / ( sum of # of elements in reduced database by FP-tree),

over all iterations, the reduction ratio of hypercube decomposition is the average number of output frequent

itemsets in an iteration, and the reduction ratio of apriori is (sum of
∑

e>tail(P ) |T (P ∪ {e})|) / (sum of
∑

e>F (P ) |T (P ∪ {e})|), over all iterations.

2. For each transaction t ∈ T (P ) do

3. For each item e ∈ t, e > tail(P ) do

4. Insert t to Bucket[e]

5. End for

6. End for

7. Output Bucket[e] for all e > tail(P )

Let F (P ) be the set of items e such that e >

tail(P ) and P ∪ {e} is frequent. Apriori algorithms

have possibility to find out in short time that P ∪{e}

is infrequent, thus, in the best case, their computa-

tion time can be reduced to O(
∑

e∈F (P ) |T (P∪{e})|).

If
∑

e>tail(P ),e6∈F (P ) |T (P ∪ {e})| is large, occurrence

deliver will be slow.

To decrease
∑

e>tail(P ),e6∈F (P ) |T (P ∪ {e})|, LCM

algorithms sort indices of items e in the increasing

order of |T ({e})|. As we can see in Table 1, this

sort reduces
∑

e>tail(P ),e6∈F (P ) |T (P ∪ {e})| to 1/4 of
∑

e>tail(P ) |T (P ∪ {e})| in many cases. Since apriori

algorithms take much time to maintain previously

obtained itemsets, the possibility of speeding up by

apriori algorithms is not so large.

LCM algorithms further speeds up the frequency

counting by iteratively reducing the database. Sup-

pose that an iteration I of a backtracking algorithm

receives a frequent itemset P from its parent. Then,

in any descendant iteration of I , no item of indices

smaller than tail(P ) is added. Hence, any such item

can be removed from the database while the exe-

cution of the descendant iterations. Similarly, the

transactions not including P never include the cur-

rent solution of any descendant iteration, thus such

transactions can be removed while the execution of

the descendant iterations. Indeed, infrequent items

can be removed, and the identical transactions can

be merged.

According to this, LCM algorithms recursively re-

duce the database while the execution of recursive

calls. Before the recursive call, LCM algorithms gen-

erate a reduced database according to the above dis-

cussion, and pass it to the recursive call. We call this

technique anytime database reduction.

Anytime database reduction reduces the compu-

tation time of the iterations located at the lower

levels of the recursion tree. In the recursion tree,

many iterations are on the lower levels and few

iterations are on the upper levels. Thus, anytime

database reduction is expected to be efficient. In

our experiments, anytime database reduction works

quite well. The following table shows the efficiency

of anytime database reduction. We sum up over all

iterations the sizes of the database received from

the parent, in both cases with anytime database

reduction and without anytime database reduction.

Each cell shows the sum. The reduction ratio is large

especially if the dataset is dense and the minimum

support is large.

3.5 Prefix Preserving Closure Exten-
sion

Many existing algorithms for mining closed itemsets

are based on frequent itemset mining. That is, the

algorithms enumerate frequent itemsets, and output

those being closed. This approach is efficient when

the number of frequent itemsets and the number of

frequent closed itemsets differ not so much. How-

ever, if the difference between them is large, the algo-

rithms generate many non-closed frequent itemsets,
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dataset and connect pumsb BMS-WebView2 T40I10D100K

minimum support 50% 60% 0.1% 0.03%

Database reduction 188319235 2125460007 2280260 1704927639

Anytime database reduction 538931 7777187 521576 77371534

Reduction factor 349.4 273.2 4.3 22.0

Table 2: Accumulated number of transactions in database in all iterations

thus they will be not efficient. Many pruning meth-

ods have been developed for speeding up, however

they are not complete. Thus, the computation time

is not bounded by a linear function in the number of

frequent closed itemsets. There is a possibility of over

linear increase of computation time in the number of

output.

LCM uses prefix preserving closure extension (ppc-

extension in short) for generating closed itemsets[18,

19]. For a closed itemset P , we define the closure

tail clo tail(P ) by the item i of the minimum index

satisfying clo(P (i)) = P . clo tail(P ) is always in-

cluded in P . We say that P
′
is a ppc extension of P

if P
′
= clo(P ∪{e}) and P

′
(e−1) = P (e−1) hold for

an item e > clo tail(P ). Let P0 be the itemset satis-

fying T (P
′
) = T . Any closed itemset P

′
6= P0 is a

ppc extension of another closed itemset P , and such

P is unique for P
′
. Moreover, the frequency of P is

strictly larger than P
′
, hence ppc extension induces a

rooted tree on frequent closed itemsets. LCM starts

from P0, and finds all frequent closed itemsets in a

depth first manner by recursively generating ppc ex-

tensions. The proof of ppc extension algorithms are

described in [18, 19].

By ppc extension, the time complexity is bounded

by a linear function in the number of frequent closed

itemsets. Hence, the computation time of LCM never

be super linear in the number of frequent closed item-

sets.

3.6 Closure Operation

To enumerate closed itemsets, we have to check

whether the current solution P is a closed itemset

or not. In the existing studies, there are two meth-

ods for this task. The first method is to store in

memory previously obtained itemsets which are cur-

rently maximal among itemsets having the identical

denotation. In this method, we find frequent itemsets

one-by-one, and store them in memory with remov-

ing itemsets included in another itemset having the

identical denotation. After finding all frequent item-

sets, only closed itemsets remain in memory. We call

this storage method. The second method is to gener-

ate the closure of P . By adding to P all items e such

that frq(P ) = frq(P ∪ {e}), we can construct the

closure of P . We call the second closure operation.

LCM uses closure operations for generating ppc ex-

tensions. Similar to the frequency counting, we use

database reduction for closure operation. Suppose

that the current solution is P , the reduced database

is composed of transactions S1, ..., Sh, and each Sl is

obtained from transactions T
l
1, ..., T

l
k of the original

database. For each Sl, we define the interior inter-
section In(Sl) by

⋂
T∈{T l

1
,...,T l

k
} T . Here the closure

of P is equal to
⋂

S∈{S1,...,Sh}
In(S). Thus, by using

interior intersections, we can efficiently construct the

closure of P .

When we merge transactions to reduce the

database, interior intersections can be updated effi-

ciently, by taking the intersection of their interior in-

tersections. In the same way as the frequency count-

ing, we can remove infrequent items from the interior

intersections for more reduction. The computation

time for the closure operation in LCM depends on

the size of database, but not on the number of previ-

ously obtained itemsets. Thus, storage method has

advantages if the number of frequent closed itemsets

is small. However, for the instances with a lot of

frequent closed itemsets, which take long time to be

solved, LCM has an advantage.

3.7 Enumerating Maximal Frequent
Itemsets

Many existing algorithms for maximal frequent item-

set enumeration are based on the enumeration of fre-

quent itemsets. In breadth-first manner or depth-

first manner, they enumerate frequent itemsets and

output maximal itemsets among them. To reduce the

computation time, the algorithms prune the unnec-

essary itemsets and recursive calls.

Similar to these algorithms, LCMmax enumerates

closed itemsets by backtracking, and outputs maxi-

mal itemsets among them. It uses a pruning to cut

off unnecessary branches of the recursion. The prun-

ing is based on a re-ordering of the indices of items,

in each iteration. We explain the re-ordering in the

6



following.

Let us consider a backtracking algorithm for enu-

merating frequent itemsets. Let P be the current so-

lution of an iteration of the algorithm. Suppose that

P
′
is a maximal frequent itemset including P . LCM-

max puts new indices to items with indices larger

than tail(P ) so that any item in P
′

has an index

larger than any item not in P
′
. Note that this re-

ordering of indices has no effect to the correctness of

the algorithm.

Let e > tail(P ) be an item in P
′
, and consider the

recursive call with respect to P ∪ {e}. Any frequent

itemset P̂ found in the recursive call is included in

P
′
, since every item having an index larger than e

is included in P
′
, and the recursive call adds to P

items only of indices larger than e. From this, we

can see that by the re-ordering of indices, recursive

calls with respect to items in P
′
∩ H generates no

maximal frequent itemset other than P
′
.

According to this, an iteration of LCMmax chooses

an item e
∗
∈ H , and generates a recursive call with

respect to P ∪ {e
∗
} to obtain a maximal frequent

itemset P
′
. Then, re-orders the indices of items other

than e
∗

as the above, and generates recursive calls

with respect to each e > tail(P ) not included in P
′
∪

{e
∗
}. In this way, we save the computation time for

finding P
′
, and by finding a large itemset, increase

the efficiency of this approach. In the following, we

describe LCMmax.

ALGORITHM LCMmax (P :itemset, H :items to

be added)

1. H
′
:= the set of items e in H s.t. P ∪ {e} is frequent

2. If H
′
= ∅ then

3. If P ∪ {e} is infrequent for any e then

output P ; return

4. End if

5. End if

6. Choose an item e
∗
∈ H

′
; H

′
:= H

′
\ {e

∗
}

7. LCMmax (P ∪ {e}, H
′
)

8. P
′
:= frequent itemset of the maximum size

found in the recursive call in 7

9. For each item e ∈ H \ P
′ do

10. H
′
:= H

′
\ {e}

11. LCMmax (P ∪ {e}, H
′
)

12. End for

3.8 Checking Maximality

When LCMmax finds a frequent itemset P , it checks

the current solution is maximal or not. We call

this operation maximality check. Maximality check

is a heavy task, thus many existing algorithms avoid

it. They store in memory maximal itemsets among

previously obtained frequent itemsets, and update

them when they find a new itemset. When the al-

gorithms terminate and obtain all frequent itemsets,

only maximal frequent itemsets remain in memory.

We call this storage method. If the number of max-

imal frequent itemsets is small, storage method is

efficient. However, if the number is large, storage

method needs much memory. When a frequent item-

set is newly found, storage method checks whether

the itemset is included in some itemsets in the mem-

ory or not. If the number of frequent itemsets is large,

the operation takes long time.

To avoid the disadvantage of storage method,

LCMmax operates maximality check. LCMmax

checks the maximality by finding an item e such

that P ∪ {e} is frequent. If and only if such e ex-

ists, P is not maximal. To operate this efficiently,

we reduce the database. Let us consider an itera-

tion of LCMmax with respect to a frequent itemset

P . LCM algorithms reduce the database by anytime

database reduction for the frequency counting. Sup-

pose that the reduced database is composed of trans-

actions S1, ..., Sh, and each Sl is obtained by merg-

ing transactions T
l
1, ..., T

l
k of the original database.

Let H be the set of items to be added in the iter-

ation. Suppose that we remove all items e from H

such that P ∪ {e} is infrequent. Then, for any l,

T
l
1∩H = T

l
2∩H =, ..., = T

l
k ∩H holds. For an item e

and a transaction Sl, we define the weight w(e, Sl) by

the number of transactions in T
l
1, ..., T

l
k including e.

Here the frequency of P∪{e} is
∑

S∈{S1,...,Sh}
w(e, S).

Thus, by using the weights, we can efficiently check

the maximality, in linear time of the size of the re-

duced database.

When we merge transactions to reduce the

database, the weights can be updated easily. For each

item e, we take the sum of w(e, S) over all transac-

tions S to be merged. In the same way as frequency

counting, we can remove infrequent items from the

database for maximality checking, for more reduc-

tion.

The computation time for maximality check in

LCMmax depends on the size of database, but not

on the number of previously obtained itemsets. Thus,

storage method has advantages if the number of max-

imal frequent itemsets is small, but for the instances

with a lot of maximal frequent itemsets, which take

long time to be solved, LCMmax has an advantage.
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Figure 1: Results 1

4 Computational Experiments

In this section, we show the results of our compu-

tational experiments. We implemented our three al-

gorithms LCM, LCMfreq, and LCMmax. They are

coded by ANSI C, and complied by gcc. The exper-

iments were executed on a notebook PC, with AMD

athron XP 1600+ of 224MB memory. The perfor-

mance of LCM algorithms are compared with the

algorithms which marked good score on FIMI 03:

fpgrowth[8], afopt[11], MAFIA[5, 6], kDCI[12], and

PATRICIAMINE[16]. We note that kDCI and PA-

TRICIAMINE are only for all frequent itemset min-

ing. To reduce the time for experiments, we stop

the execution when an algorithm takes more than

10 minute. The following figures show the results.

We do not plot if the computation time is over 10

minutes, or abnormal terminations. The results are

displayed in Figure 1 and 2. In each graph, the hori-

zontal axis is the size of minimum supports, and the

virtical axis is the CPU time written in a log scale.

From the performances of implementations, the in-

stances were classified into three groups, in which the

results are similar. Due to the space limitation, we

show one instance as a representative for each group.

The first group is composed of BMS-WebView1,

BMS-WebView2, BMS-POS, T10I4D100K, kosarak,

and retail. These datasets have many items and

transactions but are sparse. We call these datasets

sparse datasets. We chosen BMS-WebView2 as the

representative.

The second group is composed of datasets taken
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Figure 2: Results 2
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from UCI-Machine Learning Repository
1
, connect,

chess, mushrooms, pumsb, and pumsb-star. These

datasets have many transactions but few items. We

call these datasets middle density datasets. As a rep-

resentative, we show the result of chess.

The third group is accidents. It is different from

any other dataset. It has huge number of transac-

tions, but few items. Transactions includes many

items, so the dataset is very dense. We call this

dataset very dense dataset.

In almost instances and minimum supports, LCM

algorithms perform well. When the minimum sup-

port is large, LCM algorithms are the fastest for all

instances, because of the fast initialization. For all

instances with any minimum support, LCM outper-

forms other closed itemset mining algorithms. This

shows the efficiency of ppc extension.

For sparse datasets, LCM algorithms are the

fastest, for any minimum support. The efficiency of

FP-tree is not large, and occurrence deliver works ef-

ficiently. The performances of afopt and fp-growth

are quite similar for these problems. They are the

second bests, and 2 to 10 times slower than LCM

algorithms. For enumerating frequent closed item-

sets, they take much time when the number of closed

itemsets is large. Although PATRICIAMINE is fast

as much as fp-groth and afopt, it abnormally ter-

minated for some instances. kDCI is slow when the

number of frequent itemsets is large. MAFIA was the

slowest for these instances, for any minimum support.

For middle density datasets, LCM is the fastest

for all instances on closed itemset mining. On all

and maximal frequent itemset mining, LCMfreq and

LCMmax are the fastest for large minimum supports,

for any dataset. For small minimum supports, for

half instances LCMfreq and LCMmax are the fastest.

For the other instances, the results are case by case:

each algorithm won in some cases.

For accidents, LCM algorithms are the fastest

when the minimum support is large. For small sup-

ports, LCM(closed) is the fastest, however LCMfreq

and LCMmax are slower than fp-growth For this

dataset, the efficiency of FP-tree is large, and the

compression ratio is up to 6. Bitmap is also efficient

from the density. Hence, the computation time for

the frequency counting is short in the execution of

existing implementations. However, by ppc exten-

sion, LCM has an advantage for closed itemset min-

ing. hence LCM(closed) is the fastest.

1http://www.ics.uci.edu/ mlearn/MLRepository.html

5 Conclusion

In this paper, we proposed a fast implementation of

LCM for enumerating frequent closed itemsets, which

is based on prefix preserving closure extension. We

further gave implementations LCMfreq and LCM-

max for enumerating all frequent itemsets and max-

imal frequent itemsets by modifying LCM. We show

by computational experiments that our implements

of LCM, LCMfreq and LCMmax perform above the

other algorithms for many datasets, especially for

sparse datasets. There is a possibility of speeding up

LCM algorithms by developing more efficient maxi-

mality checking algorithms, or developing a hybrid of

array and FP-tree like data structures.
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Abstract

We present AIM2-F , an improved implementation
of AIM-F [4] algorithm for mining frequent itemsets.
Past studies have proposed various algorithms and tech-
niques for improving the efficiency of the mining task.
We have presented AIM-F at FIMI’03, a combina-
tion of some techniques into an algorithm which uti-
lize those techniques dynamically according to the in-
put dataset. The algorithm main features include depth
first search with vertical compressed database, diffset,
parent equivalence pruning, dynamic reordering and
projection. Experimental testing suggests that AIM2-
F outperforms existing algorithm implementations on
various datasets.

1. Introduction

Finding association rules is one of the driving ap-
plications in data mining, and much research has been
done in this field [7, 3, 5]. Using the support-confidence
framework, proposed in the seminal paper of [1], the
problem is split into two parts — (a) finding frequent
itemsets, and (b) generating association rules.

Let I be a set of items. A subset X ⊆ I is called
an itemset. Let D be a transactional database, where
each transaction T ∈ D is a subset of I : T ⊆ I. For an
itemset X, support(X) is defined to be the number of
transactions T for which X ⊆ T . For a given parameter
minsupport, an itemset X is call a frequent itemset
if support(X) ≥ minsupport. The set of all frequent
itemsets is denoted by F .

We have presented AIM-F [4] for mining frequent
itemsets. The AIM-F algorithm build upon several
ideas appearing in previous work, a partial list of which
is the following: Apriori [2], Lexicographic Trees and
Depth First Search Traversal [6], Dynamic Reordering
[5], Vertical Bit Vectors [7, 3], Projection [3], Difference

sets [9], Dynamic Reordering [5], Parent Equivalence
Pruning [3, 8] and Bit-vector projection [3].

High level pseudo code for the AIM-F algorithm ap-
pears in Figure 1.

AIM-F(n : node, minsupport : integer)
(1) t = n.tail
(2) for each α in t
(3) Compute sα = support(n.head

⋃
α)

(4) if (sα = support(n.head))
(5) add α to the list of items removed by PEP
(6) remove α from t
(7) else if (sα < minsupport)
(8) remove α from t
(9) Sort items in t by sα in ascending order.
(10)While t 6= ∅
(11) Let α be the first item in t
(12) remove α from t
(13) n′.head = n.head

⋃
α

(14) n′.tail = t
(15) Report n′.head

⋃{All subsets of items
removed by PEP} as frequent itemsets

(16) AIM-F(n′)

Figure 1. AIM- F

2. Implementation Improvements

We now describe the difference between AIM-F and
AIM2-F implementations:

• Integer to String conversions - Experiments run
time analysis have shown that the conversion of
integers to strings is a major CPU consumer. To
reduce conversion time two steps are taken:

– Item name conversion - When printing an
itemset all the item names in the itemset are



Figure 2. Connect dataset: Testing AIM2- F
with and without the string conversion im-
provements

printed. In this mining task the items are
numbers, and need to be converted to strings.
Instead of creating the string every time be-
fore printing, the conversion is done once for
every item, when the item is loaded during
the dataset reading process.

– Support conversion - To print the support it
must be converted to a string. To enable fast
conversion of the support value to string, a
static lookup table from integer to string was
added. The lookup table contains the 64K
integer values above the minSupport. Every
entry in the lookup table has the string repre-
sentation of the entry attached. Every time a
support value needs to be converted to string,
it is first checked if the value appears in the
lookup table, if so, the string is taken from
the table, with a very low cost.

In figures 2 and 3 we compare the AIM2-F al-
gorithm runtime with and without the string con-
version improvement. It is clear that this improve-
ment alone contribute up to an order of magnitude
improvement. As the size of the input increases
(lower support) the contribution of the string con-
version improvements increases.

• Late F2 matrix construction - The size of the
F2 matrix is I2 where I is the number of items.
In datasets where the number of items is very
large the F2 matrix can not be constructed. The
improvement in AIM2-F is that the F2 matrix
is built only for items for which support(i) ≥

Figure 3. Chess dataset: Testing AIM2- F with
and without the string conversion improve-
ments

minSupport. This enables the construction of the
F2 for larger datasets.

• Input buffer reuse - In AIM-F the dataset load
method allocated an input buffer for every trans-
action read. Switching to a single input buffer
that is re-used for all the transactions reduced the
loading time in AIM2-F by nearly 50%. However
the loading time is usually insignificant comparing
to the overall runtime (unless the support is very
high).
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Abstract

In [4], we gave FPgrowth*, FPmax* and FPclose for
mining all, maximal and closed frequent itemsets, respec-
tively. In this short paper, we describe two approaches
for improving the main memory consumptions of FPmax*
and FPclose. Experimental results show that the two ap-
proaches successfully reduce the main memory require-
ments of the two algorithms, and that in particular one of
the approaches does not incur any practically significant
extra running time.

1. Introduction

In FIMI’03 [2], many implementations of algorithms for
mining all, maximal and closed frequent itemsets were sub-
mitted and tested independently by the organizers. The ex-
perimental results in [3] showed that our algorithms FP-
growth*, FPmax* and FPclose [4] have great performance
on most datasets, and that FPmax* and FPclose were among
the fastest implementations. Our experimental results in [7]
also showed that the three algorithms are among the algo-
rithms that consume the least amount of main memory when
running them on dense datasets.

However, we also found in [7] that FPmax* and FPclose
require much more main memory than other algorithms in
[2] especially when the datasets are sparse. This is because
the FP-trees constructed from the sparse datasets sometimes
are fairly big, and they are stored in main memory for the
entire execution of the algorithms FPmax* and FPclose.
The sizes of some auxiliary data structures for storing max-
imal and closed frequent itemsets, the MFI-trees and the
CFI-trees also always increase even though many nodes in
the trees become useless.

In this short paper, we describe two approaches for re-
ducing the main memory usages of FPmax* and FPclose.
We also give the experimental results which show that FP-
max* with either of the approaches needs less main memory
for running on both synthetic dataset and real dataset.

2. Improving the Main Memory Requirements

We first give a detailed introduction to the main memory
requirements of the two algorithm implementations in [4].
Then two approaches for improving the main memory con-
sumption are introduced. Since FPmax* and FPclose have
similar main memory requirements, here we only consider
main memory improvements in the implementation of FP-
max*.

The Basic Case

In [4], when implementing FPgrowth*, FPmax* and FP-
close, each nodeP of an FP-tree, an MFI-tree or a CFI-tree
has 4 pointers that point to its parent node, left-child node,
right-sibling node and the next node that corresponds to the
same itemname asP . The left-child node and right-sibling
node pointers are set for the tree construction. The parent
node pointer and next node pointer in an FP-tree are used
for finding the conditional pattern base of an item. In MFI-
trees and CFI-trees, they are used for maximality checking
and closedness testing.

In all algorithms, the FP-treeT∅ constructed from the
original databaseD is always stored in main memory dur-
ing the execution of the algorithms. For FPmax*, during
the recursive calls, many small FP-trees and MFI-trees will
be constructed. The biggest MFI-tree isM∅ whose size in-
creases slowly. At the end of the call of FPmax*(T∅,M∅),
M∅ stores all maximal frequent itemsets mined fromD.

We can see that the main memory requirement of FP-
max* in the basic case is at least the size ofT∅ plus the size
of M∅ which contains all maximal frequent itemsets inD.

Approach 1: Trimming the FP-trees and MFI-trees
Continuously

To see if we can reduce the main memory requirement
of FPmax*, let’s analyze FPmax* first.

Suppose during the execution of FPmax*, an FP-treeT
and its corresponding MFI-treeM are constructed. The



items inT andM arei1, i2, . . . , in in decreasing order of
their frequency. Note that the header tables ofT andM
have the same items and item order. Starting from the least
frequent itemin, FPmax* mines maximal frequent item-
sets fromT . A candidate frequent itemsetX is compared
with the maximal frequent itemsets inM . If X is max-
imal, X is inserted intoM . When processing the item
ik, FPmax* needs the frequency information that contains
only itemsi1, i2, . . . , ik−1, and the frequency information
of ik+1, . . . , in will not be used any more. In other words,
in T , only the nodes that correspond toi1, i2, . . . , ik are
useful, and the nodes corresponding toik+1, . . . , in can be
deleted fromT . If a candidate maximal frequent itemset
X is found, X must be a subset ofi1, i2, . . . , ik. Thus
in M , only the nodes corresponding toi1, i2, . . . , ik are
used for maximality checking, and the nodes correspond-
ing to ik+1, . . . , in will never be used, and therefore can be
deleted.

Based on the above analysis, we can reduce the main
memory requirement of FPmax* by continuously trimming
the FP-trees and MFI-trees. After processing an itemik, all
ik-nodes inT andM are deleted. This can be done by fol-
lowing the head of the link list fromik in the header tables
T.header andM.header. Remember that the children of a
node are organized by a right-sibling linked list. To speed
up the deletions we make this list doubly linked, i.e. each
node has pointers both to its right and left siblings.

Before calling FPmax*,T∅ has to be stored in the main
memory. By deleting all nodes that will not be used any
more, the sizes of FP-trees, especially the size ofT∅, be-
come smaller and smaller. The sizes of the MFI-trees still
increase because new nodes for new maximal frequent item-
sets are inserted, however, since obsolete nodes are also
deleted, the MFI-trees will grow more slowly. At the end
of the call of FPmax*, the sizes ofT∅ andM∅ are all zero.
We assume that the sizes of the recursively constructed FP-
trees and MFI-trees are always far smaller than the size of
the top-level treesT∅ andM∅, and that the main memory
consumption of these trees can be neglected. BesidesT∅,
the main memory also storesM∅. At the initial call of FP-
max*, the size ofM∅ is zero. ThenM∅ never reaches its
full size because of the trimming. We estimate that the av-
erage main memory requirement of FPmax* with approach
1 is the size ofT∅ plus half of the size ofM∅.

In [4], we mentioned that we can allocate a chunk of
main memory for an FP-tree, and delete all nodes in the
FP-tree at a time by deleting the chunk. Time is saved by
avoiding deleting the nodes in the FP-tree one by one. Obvi-
ously, this technique can not be used parallel with approach
1. Therefore, FPmax* with approach 1 will be slower than
the basic FPmax*, but its peak main memory requirement
will be smaller than that of the basic FPmax*.

Approach 2: Trimming the FP-trees and MFI-trees
Once

In approach 2, we use the main memory management
technique by trimming the FP-trees and MFI-trees only
once. We still assume that main memory consumption of
the recursively constructed FP-trees and MFI-trees can be
neglected, and only the FP-treeT∅ and the MFI-treeM∅ are
trimmed.

Suppose the items inT∅ andM∅ arei1, i2, . . . , in. In our
implementation, we allocate a chunk of main memory for
those nodes inT∅ andM∅ that correspond toibn/2c, . . . , in.
The size of the chunk is changeable. During the execution
of FPmax*,T∅ andM∅ are not trimmed until itemibn/2c in
T∅.header is processed. The main memory of the chunk is
freed and all notes in the chunk are deleted at that time.

In this approach, before processingibn/2c and freeing the
chunk,T∅ and a partialM∅ are stored in the main memory.
On the average, the size ofM∅ is half of the size of the full
M∅. After freeing the chunk, new nodes for new maximal
frequent itemsets are inserted and they are never trimmed.
However, considering the fact that MFI-tree structure is a
compact data structure, the new nodes are for thebn/2c
most frequent items, andM∅ already has many branches for
those nodes before trimming, we can expect that the size of
M∅ will be a little bit more than half of the size of the com-
pleteM∅. Therefore the peak main memory consumption is
a little bit more than the size ofT∅ plus half of the size of
M∅. Compared with approach 1, the FPmax* with approach
2 is faster but consumes somewhat more main memory.

3. Experimental Evaluation

We now present a comparison of the runtime and main
memory consumptions of the basic case and the two ap-
proaches. We ran the three implementations of FPmax* on
many synthetic and real datasets. The synthetic datasets are
sparse datasets, and the real datasets are all dense. Due to
the lack of space, only the results for one synthetic dataset
and one real dataset are shown here.

The synthetic datasetT20I10D200Kwas generated from
the application on the website [1]. It contains 200,000 trans-
actions and 1000 items. The real datasetpumsb*was down-
loaded from the FIMI’03 website [2]. It was produced from
census data of Public Use Microdata Sample (PUMS).

All experiments were performed on a 1GHz Pentium III
with 512 MB of memory running RedHat Linux 7.3.

Figure 1 shows the runtime and the main memory usage
of running FPmax* with the implementations of the basic
case and the two approaches on the datasetT20I10D200K.
As expected, in the runtime graph, FPmax* with approach
1 took the longest time. Its runtime is almost twice the run-
time of the basic case and approach 2. However, approach 1
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consumes the least amount of main memory. The peak main
memory of approach 1 is always less than the basic case for
about 10 megabytes, or about 15%. The speed of approach
2 is similar to that of the basic case, since approach 2 only
trims the FP-treeT∅ and the MFI-treeM∅ once. The main
memory consumption of approach 2 is similar to that of ap-
proach 1, which means the approach 2 successfully saves
main memory.
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The runtime and main memory usage of running FP-
max* on real datasetpumsb*are shown in Figure 2. The
results are similar to those results on synthetic dataset.
Datasetpumsb* is a very dense dataset, its FP-trees and
MFI-trees have very good compactness, and there are not
many nodes in the trees. Therefore, in the two graphs in
Figure 2, the differences of the runtime and main memory
consumptions for the basic case and the two approaches are
not very big.

4. Conclusions

We have analyzed the main memory requirements of
the FPmax* and FPclose implementation in [4]. Two ap-
proaches for reducing the main memory requirements of
FPmax* and FPclose are introduced. Experimental results
show that both approach 1 and approach 2 successfully de-
crease the main memory requirement of FPmax*. While the
continuous trimming of the trees in approach 1 slows down
the algorithm, the “one-time-trimming” used in approach 2
shows speed similar to the original method.

We also noticed that the PatriciaMine in [6] using Pa-
tricia trie structure to implement the FP-growth method [5]

shows great speed and less main memory requirement. We
are currently considering implementing FPmax* and FP-
close using a Patrica trie.
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1. Problem Statement and Solution

In Apriori-like algorithms, one of the most consum-
ing operation during the frequent itemset mining pro-
cess is the candidate search. At each iteration k the
whole dataset D has to be scanned, and for each trans-
action t in the database, every of its subsets of length
k is generated and searched within the candidates. If
a candidate is matched, it means that the transaction
subsumes the candidate, and therefore its support can
be incremented by one.

This search is very time demanding even if appropri-
ate data structures are used to gain a logarithmic cost.
In [3, 2] we introduced a direct count technique which
allows constant time searches for candidates of length
2. Given the set of n frequent single items, candidates
of length 2 are stored using an upper triangular matrix
n× n DC2 with ( n

2 ) cells, such that DC2(i, j) stored
the support of the 2-itemset {ij}. As shown in [1] the
direct count procedure can be extended to the third it-
eration using an n×n×n matrix DC3 with ( n

3 ) cells,
where DC3(i, j, l) is the support of the 3-itemset {ijl}.

We thus introduced such technique in the last ver-
sion of kDCI, which is level-wise hybrid algorithm.
kDCI stores the dataset with an horizontal format
to disk during the first iterations. After some itera-
tion the dataset may become small enough (thanks to
anti-monotone frequency pruning) to be stored in the
main memory in a vertical format, and after that the
algorithm goes on performing tid-lists intersections to
retrieve itemsets supports, and searches among can-
didates are not needed anymore. Usually the dataset
happens to be small enough at most at the fourth iter-
ation.

2. Experiments and Conclusion

The experiments show that the improvement given
by this optimization is sensible in some cases. The
time needed for the third iteration is halved. Note that
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Figure 1. The dataset used was T10I4D100K
with a minimum absolute support of 10.

the time spent during the firsts iteration is significant
for the global effectiveness of the algorithm on most
datasets. In fact, in the test performed, the total time
was reduced from 19 sec. to 14 sec., which means an
overall speed up of about 20%.

We acknowledge the authors C.Targa, A.Prado and
A.Plastino of [1], who showed the effectiveness of such
optimization.

References

[1] C.Targa, A.Prado, and A.Plastino. Improving direct
counting for frequent set mining. Technical report, In-
stituto de Computação, UFF RT-02/09 2003.

[2] Claudio Lucchese, Salvatore Orlando, Paolo Palmerini,
Raffaele Perego, and Fabrizio Silvestri. kdci: a multi-
strategy algorithm for mining frequent sets. In Proceed-
ings of the IEEE ICDM Workshop on Frequent Itemset
Mining Implementations, November 2003.

[3] S. Orlando, P. Palmerini, R. Perego, and F. Silvestri.
Adaptive and resource-aware mining of frequent sets. In
Proc. The 2002 IEEE International Conference on Data
Mining (ICDM02), page 338345, 2002.



Recursion Pruning for the Apriori Algorithm

Christian Borgelt

Department of Knowledge Processing and Language Engineering
School of Computer Science, Otto-von-Guericke-University of Magdeburg
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Abstract

Implementations of the well-known Apriori algorithm for
finding frequent item sets and associations rules usually rely
on a doubly recursive scheme to count the subsets of a given
transaction. This process can be accelerated if the recur-
sion is restricted to those parts of the tree structure that hold
the item set counters whose values are to be determined in
the current pass (i.e., contain a path to the currently deepest
level). In the implementation described here this is achieved
by marking the active parts every time a new level is added.

1. Introduction

The implementation of the Apriori algorithm described
in [2] uses a prefix tree to store the counters for the differ-
ent item sets. This tree is grown top-down level by level,
pruning those branches that cannot contain a frequent item
set. This tree also makes counting efficient, because it be-
comes a simple doubly recursive procedure: To process a
transaction for a node of the tree, (1) go to the child cor-
responding to the first item in the transaction and process
the rest of the transaction recursively for that child and (2)
discard the first item of the transaction and process it recur-
sively for the node itself (of course, the second recursion is
more easily implemented as a simple loop through the trans-
action). In a node on the currently added level, however, we
increment a counter instead of proceeding to a child node.
In this way on the current level all counters for item sets that
are part of a transaction are properly incremented.

2. Recursion Pruning

Since the goal of the recursive counting is to determine
the values of the counters in the currently deepest level of
the tree (the one added in the current pass through the data),

one can restrict the recursion to those nodes of the tree that
have a descendant on the currently deepest level. Visiting
other nodes is not necessary, since no changes are made to
these nodes or any of their descendants — only the nodes in
the currently deepest level of the tree are changed.

To implement this idea, which I got aware of at FIMI
2003, either from the presentation by F. Bodon [1] or from
a subsequent discussion with B. Goethals, I added markers
to each node of the prefix tree, which indicate whether the
node has a descendant on the currently deepest level. For-
tunately only one bit is necessary for such a marker, which
could be incorporated into an already existing field, so that
the memory usage is unaffected.

These markers are updated each time a new level is
added to the tree, using a recursive traversal, which marks
all nodes that have only marked children. New nodes are,
of course, unmarked, and nodes on the previously deepest
level that did not receive any children are marked to seed the
recursion. Note that the recursion can exploit the markers
set in previous passes, because a node that did not have a
descendant on the deepest level in the previous pass cannot
acquire a descendant on the currently deepest level.

Of course, the other pruning methods for the counting
process described in [2] are applied as well.

3. Experimental Results

I ran experiments on the same five data sets I al-
ready used in [2], relying on the same machine and op-
erating system, though updated to a newer version (an
AMD Athlon XP 2000+ machine with 756 MB main mem-
ory running S.u.S.E. Linux 9.1 and gcc version 3.3.3).
Strangely enough, however, the new versions of the operat-
ing system or the compiler lead to longer(!) execution times
for an identical program, an effect that seems to be a nasty
recurring feature of the S.u.S.E. Linux distribution. There-
fore the experiments were repeated with the old program
version to get comparable results.



34 35 36 37 38 39 40 41 42 43 44 45

0

1

Figure 1. Results on BMS-Webview-1
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Figure 2. Results on T10I4D100K

The results for these data sets are shown in Figures 1 to 5.
The horizontal axis shows the minimal support of an item
set (number of transactions), the vertical axis the decimal
logarithm of the execution time in seconds. Each diagram
shows as grey and black lines the time without and with
recursion pruning, respectively.

As can be seen from these figures, recursion pruning can
lead to significant improvements on some data set. (Note
that the vertical scale is logarithmic, so that the 20-40% re-
duction, which results for webview1, for example, appears
to be smaller than it actually is.) For census, chess, and
mushroom, however, the gains are negligible.

10 20 30 40 50 60 70 80 90 100
1

Figure 3. Results on census
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Figure 4. Results on chess
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Figure 5. Results on mushroom

4. Programs

The implementation of the Apriori algorithm described
in this paper (WindowsTM and LinuxTM executables as well
as the source code) can be downloaded free of charge at

http://fuzzy.cs.uni-magdeburg.de/˜borgelt/software.html

The special program version submitted to the workshop
uses the default parameter setting of this program.
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Characteristics of the dataset

This short note describes the main characteristics

of WebDocs, a huge real-life transactional dataset we

made publicly available to the Data Mining commu-

nity through the FIMI repository. We built WebDocs

from a spidered collection of web html documents. The

whole collection contains about 1.7 millions documents,

mainly written in English, and its size is about 5GB.

The transactional dataset was built from the web col-

lection in the following way. All the web documents

were preliminarly filtered by removing html tags and

the most common words (stopwords), and by applying

a stemming algorithm. Then we generated from each

document a distinct transaction containing the set of all

the distinct terms (items) appearing within the document

itself.

The resulting dataset has a size of about1; 48GB. It

contains exactly1:692:082 transactions with5:267:656

distinct items. The maximal length of a transaction is

71:472. Figure 1 plots the number of frequent item-

sets as a function of the support threshold, while Fig-

ure 2 shows a bitmap representing the horizontal dataset,

where items were sorted by their frequency. Note that to

reduce the size of the bitmap, it was obtained by eval-

uating the number of occurrences of a group of items

having subsequent Id’s in a subset of subsequent trans-

actions and assigning a level of gray proportional to such

count.
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Figure 1. Number of frequent itemsets dis-

covered in the WebDocs dataset as a func-

tion of the support threshold.

Figure 2. Bitmap representing the dataset.
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