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The network embedding task is to represent a node in a network as a

low-dimensional vector while incorporating the topological and structural

information. Most existing approaches solve this problem by factorizing a

proximity matrix, either directly or implicitly. In this work, we introduce

a network embedding method from a new perspective, which leverages

Modern Hopfield Networks (MHN) for associative learning. Our network learns

associations between the content of each node and that node’s neighbors.

These associations serve as memories in the MHN. The recurrent dynamics

of the network make it possible to recover the masked node, given that

node’s neighbors. Our proposed method is evaluated on di�erent benchmark

datasets for downstream tasks such as node classification, link prediction, and

graph coarsening. The results show competitive performance compared to the

common matrix factorization techniques and deep learning based methods.
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1. Introduction

The network embedding task is to represent the node of the network as a

low-dimensional vector while retaining the topological information (usually reflected

by the first-order proximity or second-order proximity). In order to build a good

embedding, the model has to extract and store the common topological structure in

the network, and use that information to guide the embedding, so that two nodes with

similar topological structures have similar encodings. Most existing network embedding

methods do matrix factorization explicitly (such as graph Laplacian Eigenmaps

factorization; Hofmann and Buhmann, 1995) or implicitly (such as Deepwalk; Perozzi

et al., 2014). In this work, we learn the graph structure directly from the data and associate

the nodes with the learned structural prototypes stored in the network, which are also

used to create node embeddings.

Associative Memories are systems which are closely related to pattern recognition,

retrieval and storage. In a typical Associative Memory task a group of stimuli are stored

as amultidimensional memory vector.When certain subset of the stimuli is activated, the

network recalls the related stimuli stored in the same or related memories. For example,

in image datasets, pixel intensities can be associated with label of the image; when a

certain part of the image shows up, the network should be able to recall the label. The

Hopfield Network (Hopfield, 1982, 1984) is the simplest mathematical implementation

of this idea. The information about the dataset is stored as a collection of attractor

Frontiers in BigData 01 frontiersin.org

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2022.1044709
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2022.1044709&domain=pdf&date_stamp=2022-11-17
mailto:liangy7@rpi.edu
https://doi.org/10.3389/fdata.2022.1044709
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdata.2022.1044709/full
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Liang et al. 10.3389/fdata.2022.1044709

fixed points (memories) of a recurrent neural network. The

input state is iteratively updated so that it moves closer to one

of the stored memories after every iteration. The convergence

dynamics can be described using the temporal evolution of

the state vector over an energy landscape. Classical Hopfield

Networks, however, can store and successfully retrieve only

a small number of memories, which scales linearly with the

number of feature neurons in the network (Crisanti et al., 1986;

Torres et al., 2002; Hertz, 2018). Recently, Modern Hopfield

Networks (Krotov and Hopfield, 2016), also known as Dense

Associative Memories, have been proposed. This new class of

models modifies the energy function and the update rule of the

original Hopfield Network to include stronger (more sharply

peaked around memories) non-linear activation functions. This

results in a significant increase in the memory storage capacity

making it super-linear in the dimensionality of the feature space.

Later studies (Demircigil et al., 2017) extend the interaction term

of the Modern Hopfield Network, which leads to exponential

storage capacity. Additionally, (Krotov and Hopfield, 2016,

2020; Ramsauer et al., 2020) extend the Hopfield Network to

continuous states. It has also been shown that the attention

mechanism can be regarded as a special case of Hopfield

Network with a certain update rule and energy function (Krotov

and Hopfield, 2020; Ramsauer et al., 2020).

In our work, we tackle the network embedding problem

from the brand new angle of MHNs, which are recurrent

attractor networks that store information about the network in

the form of memories (fixed points of the iterative temporal

dynamics). This is a completely alternative representation

compared to the conventional methods based on feedforward

neural networks, e.g., Graph Convolutional Networks (GCNs).

Feedforward networks are regression tools that use their

parameters to draw sophisticated decision boundaries that

separate different classes of nodes. Hopfield Networks, on the

other hand, form basins of attraction around “prototypical node

classes” that resemble many individual nodes from the training

set. These prototypical nodes constitute the memory matrices,

which can be learned during training. As such, these matrices

are not just arbitrary parameters of the feedforward network, but

rather are interpretable descriptors of the attractor states (local

minima of the energy function). A good node embedding should

benefit from these summarized neighborhood patterns learned

from the data. Thus, it is very natural to use these descriptors for

constructing node embeddings.

Driven by this idea, our work proposes to view the network

embedding task as an Associative Memory problem. The

memories of theModern Hopfield Network are used as trainable

parameters that learn to store the topological information of

the network. We show how the recurrent dynamics of the

Associative Memory network can be used to predict the masked

nodes, and help us generate node embedding based on the

memories learned from the data. The main contributions of our

paper are as follows:

• We design an Associative Memory update rule and its

corresponding energy function suitable for the network

embedding task.

• We empirically show that the performance of our MHN-

based embedding for the node classification, link prediction

and graph coarsening downstream tasks is competitive with

the commonly used matrix factorization methods and deep

learning approaches.

The rest of the paper is organized as follows. We first

discuss the related work in Section 2. Our proposed model

for node embeddings based on Modern Hopfield Networks is

presented in Section 3; this includes the model description,

training and complexity. Next, in Section 4 we present a detailed

experimental evaluation of our model on two main downstream

applications: node classification and link prediction, and graph

coarsening. For the latter, we further evaluate our model on the

graph classification and block structure identification tasks. We

summarize our conclusions in Section 5. Finally, the Appendix

includes details of our energy function, as well as an ablation

study of our model for the node and link prediction tasks, and

further analysis on the graph classification task.

2. Related work

2.1. Graph or network embedding

There are mainly two types of approaches for the

homogeneous network embedding task: matrix factorization

based approaches and deep learning based approaches.

The matrix factorization based approaches factorize some

matrix which reflects the topological information of the network.

There are mainly two different directions: one is to factorize

the graph Laplacian Eigenmaps (Anderson Jr and Morley, 1985;

Hofmann and Buhmann, 1995), and the other is to factorize

the node proximity matrix (Golub and Reinsch, 1971). For a

given network G = (V ,E) with m nodes, graph Laplacian

Eigenmaps factorization lets similar node embeddings have

similar values; the high similarity nodes with very different

embeddings are heavily penalized. Different approaches utilize

different ways to create the node similarity matrix. For instance,

Hofmann and Buhmann (1995) use Euclidean distance between

the feature vectors, Anderson Jr and Morley (1985) and He

and Niyogi (2004) construct the k-nearest neighbor graph to

enhance the local connections, and Jiang et al. (2016) use an

anchor graph, which is shown to be effective at preserving the

local projection. For node proximity matrix factorization, the

goal is to minimize the loss of approximating the proximity

matrix directly. Different methods have different ways of

constructing the proximity matrix and different factorization

techniques. GraRep (Cao et al., 2015) leverages k-hop transfer

information to construct the proximity matrix and uses Singular
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Value Decomposition for the factorization. Ou et al. (2016)

use different similarity metrics for quantifying the proximity

matrix, and use generalized SVD to speed up the computation.

Yang et al. (2015) uses low-rank matrix factorization over

the Pointwise Mutual Information matrix and add context

information during the factorization. Unify LINE (Tang et al.,

2015b; Qiu et al., 2018) and PTE (Tang et al., 2015a), which

do implicit matrix factorization for different proximity matrices,

and propose different proximity matrices for small and large

window sizes. Recently, Zhu et al. (2021) proposed a unified

architecture for the general embedding process.

For the deep learning based approaches, one direction

of research is related to random walks, where the whole

network can be represented by a set of random walks starting

from random nodes in the network. A node’s neighbor

information can be reflected by the neighbor information in the

random walk sequence. Then we can get node embeddings by

embedding the random walk sequences. Inspired by word2vec

(Mikolov et al., 2013a) in the natural language processing area,

DeepWalk (Perozzi et al., 2014) utilizes the SkipGram model

to maximize the probability of seeing the neighboring nodes in

the node sequence, conditioned on the node embedding itself.

Hierarchical softmax and negative sampling (Mikolov et al.,

2013b) is used to increase themodel efficiency.Many subsequent

studies try to improve the graph diffusion process in order to

better model the representation of the network. For example,

node2vec (Grover and Leskovec, 2016) uses both the breadth

first search (BFS) and depth first research (DFS) to control

the breath and depth of the exploration. BFS helps to express

the neighbor information and DFS helps to reflect the global

information of the network. Aside from random walk based

approaches, there are other deep learning based methods such as

SDNE (Wang et al., 2016) and SAE (Tian et al., 2014) based on

autoencoders, where SDNE exploits the first-order and second-

order proximity jointly to preserve the network structure and

SAE is a sparse autoencoder network.

It is also worth noting that there are network embedding

methods that can scale to larger graphs by utilizing hierarchical

or coarseningmethods to speed up different matrix factorization

or deep learning methods (Chen et al., 2018; Liang et al., 2021).

Our goal is somewhat different—we use a new embedding

model based on Associative Memories, and further we show

that those embeddings capture relevant structural information

that can also be used to coarsen a graph, among several other

downstream tasks.

2.2. Associative memories

Associative Memories are systems which are closely related

to pattern recognition, retrieval and storage. The Hopfield

Network (Hopfield, 1982, 1984) is the simplest mathematical

implementation of this idea. The information about the dataset

is stored as a collection of attractor fixed points (memories)

of a recurrent neural network. However, the memory storage

capacity for the traditional Hopfield network is small; in a d-

dimensional space, the network can only store 0.138dmemories

(Hopfield, 1982; Amit et al., 1985; Hertz, 2018). Modern

Hopfield Networks (Krotov and Hopfield, 2016), also known as

Dense Associative Memories, modify the energy function and

the update rule of the original Hopfield Network to include

stronger (higher-order in terms of interactions) non-linear

activation functions. This results in a significant increase in

the memory storage capacity making it super-linear in the

dimensionality of the feature space. For certain choices of the

activation functions, even an exponential storage capacity is

possible (Demircigil et al., 2017). Modern Hopfield Networks

with continuous states have been formulated in a series of papers

(Krotov and Hopfield, 2016, 2020; Ramsauer et al., 2020; Krotov,

2021). It has also been shown that the attention mechanism can

be regarded as a special case of the MHN with certain choice

of the activation function (softmax) for the hidden neurons

(Krotov and Hopfield, 2020; Ramsauer et al., 2020).

3. Modern Hopfield Networks for
node embeddings

Consider a network G = (V ,E). Each node v ∈ V in the

network can be represented by its context vector, denoted by

vcontext. The context is one or more hops neighbors around

v, resulting in a m = |V| dimensional binary context vector

vcontext ∈ {0, 1}m. For node classification tasks, the desired

target node embedding can be represented as the one-hot

encoding for the node itself, which serves as the ground truth

when computing the loss. The target node embedding is also an

m-dimensional binary vector.

3.1. Iterative updating rule

Intuitively, our goal is to retrieve the target node from the

memory with the help of the input context information and

information from the previous step. The overall architecture

of our retrieval process is shown in Figure 1. As shown in the

figure, the state of the network is described by two vectors:

vcontext, which encodes the neighbors of a given node, and

v
(t)
target, which encodes the target node at time step t. Each block

has its own set of trainable weights: 9context and 8target, which

serve as memories in the Associative Memory network. At the

initial moment of time, the context information is presented to

the network, and the target node is masked. The Associative

Memory dynamics then predict the target node after several

recurrent iterations. During the iterative retrieval process, the

context vector vcontext is fixed (shown as context block in the

figure) for each step, while the target vector evolves with time.
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FIGURE 1

The overall architecture of our iterative node retrieval process.

During the retrieval stage the update rule for our network is

given by

Dsim = f (β18targetv
(t)
target + β29contextvcontext) (1)

v
(t)
update

= 8T
targetDsim (2)

v
(t+1)
target = v

(t)
target + α(v

(t)
update

− v
(t)
target) (3)

where vcontext is the input context encoding, v
(t)
target is the target

encoding at the step t. At the beginning of the retrieval dynamics

v
(0)
target is initialized as a vector of zeros. That is, our model can

be considered as a masked target node prediction model, such

that we predict the target purely from the context vector via the

system dynamics. The matrices 8target ∈ RK×m and 9context ∈

RK×m are memories stored in the network for target and context

blocks, respectively. We store K context memory patterns and

K target memory patterns, where each memory pattern is an

m-dimensional vector. Both 9context and 8target are learnable

parameters, f is the softmax function, and parameters β1 and

β2 control the temperature of the softmax. Dsim is the similarity

between the current pattern and all the patterns stored in the

network (considering both context block and target block),

v
(t)
update

is the readout from the memory for the target block. The

constant α is the update rate for each step. It is a hyperparameter

of our model, along with β1 and β2.

Intuitively, at every step our approach tries to retrieve

the correct target information v
(t+1)
update

from the memory with

the help of the context information vcontext as well as the

target information from the previous step v
(t)
target. The target

block state is gradually updated until it becomes stable. The

network architecture within each step is illustrated in Figure 2.

As illustrated, for each retrieval step, the input to the module

consists of the context block encoding the node feature

information as well as the target block, which is equal to the

state of the network from the previous iteration step. The context

block and the target block query the context memory and

the target memory, respectively. The score proportional to the

overlap of the state vector and the memory matrix is used to

retrieve the memory attentive target block, which serves as the

output of the module. The whole process can be iterated for

several time steps.

3.1.1. Stored memories as energy minima

The above network architecture is a special kind of

the continuous state and continuous time Modern Hopfield

Network (Krotov and Hopfield, 2020). It can be shown that

the network’s updating process is minimizing the following

Lyapunov energy function

E =
1

2

m
∑

i=1

(vtarget)
2
i − log

[

K
∑

µ=1

exp
(

m
∑

i=1

(8target)µi(vtarget)i

+ ǫµ

)]

where (vtarget)i stands for the i-th element of the target vector

state vtarget, (8target)µi stands for the i-th element for the µ-

th target memory, and ǫµ =
∑m

i=1(9context)µi(vcontext)i,

where (vcontext)i stands for the i-th element for the

input context vector, and (9context)µi stands for the i-

th element for the µ-th context memory. The details of

energy function derivation are shown in Appendix. The

energy monotonically decreases as the dynamics progress.

Eventually, the state of the network will converge to

the local minimum corresponding to one of the stored

memory patterns.

3.2. Training and embedding generation

In the training phase, we collect the encoding of the

target block v
(T)
target after T steps of the iterative dynamics

when the retrieval is stable, and then compute the cross

entropy loss between this target state and the actual

encoding for the target node (which is represented as a
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FIGURE 2

The architecture of our network within each step.

one hot encoded vector). This loss function is used for

training the memory matrices 9context and 8target using the

backpropagation algorithm.

In the embedding generation phase after the training is

complete, the K-dimensional embedding for each node can be

computed using the following equation

node embedding = 9contextvcontext

where vcontext ∈ R
m is the context encoding for that

node, and 9context ∈ RK×m is the memory matrix for

the context block, which has already been learned during

the training phase. Intuitively, each element of the final

embedding indicates a similarity score between the input context

vector and specific memories stored in the Dense Associative

Memory network.

3.3. Complexity analysis

The most expensive part of our approach is the matrix

multiplication 8targetv
(t)
target, where 8target ∈ RK×m and

v
(t)
target ∈ Rm×B (K is the number of memories, m is the

number of nodes and B is the batch size). The complexity

for this matrix multiplication is O(KBm). For each batch

of data, we iterate T steps. Thus, the time complexity per

epoch is O(KTm2). Since both K and T are constant, the

total time complexity is O(m2), which is the same as other

baseline methods such as LINE (Tang et al., 2015b) and SDNE

(Wang et al., 2016).

4. Experiments

In this section, we empirically evaluate the performance of

our proposed network embedding model in node classification

and link prediction downstream tasks on commonly used

benchmarks. Besides, we further demonstrate that our

embedding can be very useful for the graph coarsening task.

4.1. Node classification and link
prediction

For both of these two downstream tasks, we first generate

node embeddings in an unsupervised way by using different

baseline methods. Then we use the same classifier on top of the

learned embeddings for the evaluation. Thus, the downstream

task accuracy reflects the quality of the embeddings.

4.1.1. Datasets

We first learn unsupervised node features purely from

network structure and then report the performance of our

embeddings for multi-label classification and link prediction

downstream task on three datasets: BlogCatalog (Reza and

Huan, 2009), Protein-Protein Interactions (Oughtred et al.,

2019), and Wikipedia (Mahoney, 2011; Grover and Leskovec,

2016). BlogCatalog is a network of social relationships reflected

by a blog user, and the label is indicated by the categories

of the blogs. Protein-Protein Interactions is a network which

indicates the interactions of proteins that are experimentally
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TABLE 1 Graph statistics for the datasets.

Blogcatalog PPI Wikipedia

|V| 10,312 3,890 4,777

|E| 333,983 76,584 184,812

Categories 39 50 40

documented in humans, and the label indicates the biological

state. Wikipedia is a word co-occurrence network for the first

109 bytes of the English Wikipedia dump. There exists an edge

between words co-occurring in a 2-length window. The statistics

of the networks and the number of labels/categories for the

nodes are summarized in Table 1.

4.1.2. Baseline methods and metrics

We compare our embedding approach against DeepWalk

(Perozzi et al., 2014), node2vec (Grover and Leskovec, 2016),

LINE (Tang et al., 2015b), and PhUSION (Zhu et al., 2021),

which are commonly used approaches for learning the latent

node representations for a network. DeepWalk first represents

the network by a set of random walks starting from random

nodes in the graph, so that a node’s neighbor information can

be reflected by the neighbor information in the random walk

sequence. The node embedding is obtained by embedding the

random walk sequences using the SkipGram model (Mikolov

et al., 2013a). Node2vec is a modification of DeepWalk with

a small difference in random walks, using two parameters

to control the breadth and depth of the exploration. LINE

optimizes a carefully designed objective function that preserves

both the local and global network structures. PhUSION

proposes a unified architecture of the general embedding

process, which consists of node proximity calculation, nonlinear

transformation function, and embedding functions.

For the node classification downstream task, we follow the

procedure of previous methods, training a one-vs.-rest logistic

regression model via the LibLinear library (Fan et al., 2008)

on top of all the embeddings for the classification task. We

report the micro-f1 and macro-f1 scores based on the average

performance of 20 runs, and we also report the standard

deviation across those runs. In our experiments, the train/test

split for evaluation is 9:1. For our embedding model, we use

2,000 memories across all datasets. For baseline models we run

the publicly available codes using the default settings. All the

parameters are learned by the backpropagation algorithm.

For the link prediction downstream task, we randomly

sample 500 positive and negative node pairs, respectively, for

each dataset. The task is to predict whether or not there is

a connection between the node pairs based on their nodes’

embeddings. The probability of an edge between nodes i and j

is given by σ (hTi hj), where σ is the logistic sigmoid function.

The vectors hi and hj are the node embeddings. We plot the

Receiver Operating Characteristic (ROC) curve, and also report

the Area Under the Curve (AUC) scores for all the embedding

methods. Also, we include a heuristic method using Jaccard’s

Coefficient for comparison. The Jaccard’s Coefficient is defined

as |N(u)∩N(v)|
|N(u)∪N(v)|

for a given node pair (u, v) with the immediate

neighbor setsN(u) andN(v), respectively. We use python scikit-

learn built-in function for the ROC curve drawing and AUC

score computation.

For our graph node embedding generation, Adam optimizer

and weight decay is used during training, and learning rate

is initialized as 0.01. Parameter β1 is 1, β2 is 0.5, and update

rate α is 0.2. The hyperparameters are selected based on the

validation set.

4.1.3. Empirical evaluation

4.1.3.1. Node classification

Table 2 summarizes the results for graph node embeddings

generated by different methods on the downstream node

classification task. Our MHN based approach outperforms

DeepWalk, node2vec, LINE, and PhUSION on two out of three

datasets both for micro- and macro-f1 scores. On BlogCatalog

our method loses to DeepWalk, but still performs better than

other methods. Associative Memory network works particularly

well on the Wikipedia dataset resulting in more than 7%

improvement over DeepWalk and node2vec, and over 6%

improvement over LINE for the micro-f1 score.

4.1.3.2. Link prediction

Table 3 and Figure 3 summarize our results for the

downstream link prediction task. For every pair of nodes, the dot

product of their embedding vectors is passed through a sigmoid

function and thresholded at a certain value. Scores above the

threshold are predicted as links, and below the threshold as

absence of links.

The ROC curves are obtained as the discrimination

threshold is varied. Our Associative Memory based method

does extremely well on the link prediction task across all the

benchmark datasets. Such a strong performance is expected

from the conceptual computational design of our network. On

the one hand, nodes with similar neighborhood structure tend

to have a link connecting them. On the other hand, nodes with

similar neighborhood structure will be more likely attracted (in

the course of the Hopfield dynamics) by the same group of

memories. Thus, the core computational strategy of our model

is particularly well-suited for this task.

4.2. Graph coarsening

As large graph datasets become more common in practical

machine learning applications, computational efficiency
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TABLE 2 Average micro-f1/macro-f1 scores for multi-label classification task.

Dataset Ours DeepWalk node2vec LINE PhUSION

Blogcatalog 40.26±0.53/24.23±0.97 42.76±1.28/28.48±1.36 38.24±1.23/21.61±1.42 37.19±1.15/20.59±1.35 18.03±0.72/3.58±0.22

PPI 26.11±1.48/21.29±1.36 23.39±1.29/19.19±1.51 22.19±1.78/18.63±2.09 21.55±1.56/17.75±1.88 11.17±0.14/5.25±0.71

Wikipedia 57.62±0.98/13.84±0.73 50.56±1.38/10.19±1.11 50.13±1.68/9.73±0.85 51.21±1.81/10.31±1.02 43.82±1.71/5.51±0.59

We use 7 steps for unfolding in time during the memory retrieval pass. Our model has 2,000 hidden units (memories) for each block.

Bold value stands for the best performance for each dataset.

TABLE 3 Area under curve (AUC) scores for link prediction.

Dataset Ours DeepWalk node2vec LINE Jaccard’s coefficient PhUSION

BlogCatalog 0.92 (16%) 0.73 0.79 0.79 0.77 0.64

PPI 0.91 (3%) 0.82 0.88 0.88 0.86 0.61

Wikipedia 0.87 (17%) 0.74 0.74 0.72 0.67 0.56

Comparison with popular baselines. The number in parenthesis shows the performance gain when compared with the second best baseline.

Bold value stands for the best performance for each dataset.

FIGURE 3

The Receiver Operating Characteristic (ROC) curve for the link prediction task on BlogCatalog, PPI, and Wikipedia. Comparison with popular

baseline methods.
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becomes a new challenge we need to cope with, since most

existing graph based methods struggle to deal with graphs with

hundreds and thousands of nodes. One way to address this issue

is to sample the subgraph to train the model. Another way to

address this problem is to do graph coarsening, which aims

to produce a simpler graph with fewer nodes and edges while

preserving important properties of the original graph. Graph

coarsening is particularly useful for those graph algorithms that

cannot be trained in a batch fashion. Also, recent studies (Chen

et al., 2018; He et al., 2021; Liang et al., 2021) show that the

coarsened graph can also facilitate graph embedding. In this

section, we demonstrate that our embedding methods can be

very useful for the graph coarsening task.

4.2.1. Graph coarsening with node merging

Following the unsupervised learning algorithm described in

the previous sections, we are able to obtain the embeddings for

each node in the input graph. Here we propose a hierarchical

way to do the graph coarsening with node merging using those

learned node embeddings. The overall approach is shown in

Algorithm 1.

The pairwise node similarity matrix S ∈ Rm×m can be

obtained from the node embeddings (m is the number of nodes),

and is defined as

S(i, j) = cosine similarity (viembed, v
j
embed

)

where vi
embed

and v
j
embed

are the embeddings for nodes i and

j, respectively. We use this similarity matrix to find the most

similar pair of nodes to merge at each step.

Starting from the original graph as initial state (where

each node is in its own group), at every step, we pick

two groups with the largest similarity (p and q) to merge

(defined as maximal similarity finder(S) in Algorithm 1). The

similarity merger is defined as follows: the similarity between the

newly merged supernode and the rest of the group is defined

as the largest similarity between its group members and the

rest of the group (also known as complete link), while the

Input: Graph G = (V ,E,W), target size of

coarsened graph n, and pairwise node

similarity matrix S

Output: Graph Gc = (Vc,Ec,Wc)

Gc = G

Sc = S

while n < |Vc| do

p, q = maximal similarity finder(Sc)

Sc = similarity merger(Sc, p, q)

Gc = node merger(Gc , p, q)

end while

Algorithm 1. Graph coarsening with node merging.

similarity between other groups remain the same as at the

previous step. Next, the two groups of nodes are contracted

and the weight matrix Wc is adjusted accordingly [defined

as node merger (G, p, q) in Algorithm 1]. The weight matrix

adjustment is usually considered to be the weight accumulation

across the group, defined as:

W(p, q) =
∑

vi∈Sp,vj∈Sq

W(i, j)

Thus, the weight between the newly created supernode s and any

other group i can be obtained by

W(s, i) = W(p, i)+W(q, i)

while the weights between other groups remains the same as at

the previous step. For each loop, the whole coarsening procedure

will reduce the number of nodes of the graph by one (at each

step two groups merge into one, so the number of groups/nodes

decreases by one), and the coarsening process will continue until

the target graph size is met. Intuitively, the algorithm iteratively

merges the nodes which have similar neighborhood structure

into the same group.

We use two tasks to show the effectiveness of graph

coarsening based on our embeddings. For all the experiments,

we use the number of memories equal to the target coarsened

graph size (thus, it varies for different input graphs if the target

coarsening size is a fixed ratio of the original size, e.g., one fifth),

so as to balance the number of memories used for different

graph sizes.

4.2.2. Graph classification

Graph classification is a commonly used task for graph

related applications, and the goal is to identify the graph

label given the relevant graph information. There are many

existing graph classifiers. However, some classifiers [such as

Bruna et al., 2013; Henaff et al., 2015, which require eigenvalue

decomposition resulting in O(m3) complexity] are not scalable

for large graphs, such as those commonly used in social

networks studies and computational biology. Graph coarsening

can be used to simplify the complicated graph structure without

losing valuable information, thus helping the classifier to work

efficiently on large graph datasets.

4.2.2.1. Datasets

We evaluate our methods on commonly used graph

classification benchmarks and report the classification accuracy

on the following datasets: MUTAG (Debnath et al., 1991),

ENZYMES (Borgwardt et al., 2005), NCI109 (Wale et al., 2008),

PROTEINS (Dobson and Doig, 2003), PTC_MR (Morris et al.,

2020), TUMBLR (Morris et al., 2020), OHSU (Morris et al.,

2020), and REDDIT-BINARY (Rossi and Ahmed, 2015). Some

statistics of the graphs are summarized in Table 4.
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TABLE 4 Graph statistics for all the considered datasets.

MUTAG ENZYMES NCI109 PROTEINS PTC_MR TUMBLR OHSU REDDIT-BINARY

N 188 600 4,127 1,113 344 373 79 2,000

Avg. nodes 17.93 32.63 29.68 39.06 14.29 53.11 82.01 429.63

Avg. edges 19.79 62.14 32.13 72.82 14.69 199.78 199.66 497.75

Categories 2 6 2 2 2 2 2 2

4.2.2.2. Baseline methods and metrics

In this section we explain the baseline methods that we

compare with our proposed technique as well as the metrics for

comparison.We compare our graph coarseningmethods against

Edge Matching (EM) (Dhillon et al., 2007), Local Variation (LV)

(Loukas, 2019), METIS (Karypis and Kumar, 1998), Spectral

Clustering (SC) (Von Luxburg, 2007), HARP (Chen et al.,

2018), Multilevel Graph Coarsening (MGC), and Spectral Graph

Coarsening (SGC) (Jin et al., 2020), which are commonly used

approaches for simplifying the network architecture.

• Edge Matching (EM) gradually merges pairs of nodes

with the most heavy weight, with the weight calculated as

W(i, j)/max{d(i), d(j)}, where d(i) stands for the degree of

vertex i. The merging procedure is as follows: starting with

all the nodes as unmarked, at each step, visit each node in

random order, and for each node, if it’s unmarked, merge

it together with the neighbor which has the most heavy

weight, and mark these two nodes. If all the neighbors of

a node are marked, then mark it without any merging.

Once all the nodes are marked, one step is finished.

This process will iterate until the coarsened graph size

is met.

• Local Variation (LV) algorithm starts from a candidate

family Fl = {C1,C2, ...,Cn} where each candidate

contraction set Ci is a subset of the neighborhood of a

vertex. The algorithm selects a valid graph partition from

the candidate family (i.e., non-overlapping while covering

all the vertices). The selection is designed to minimize the

local variation cost, which captures the maximal variation

of all signals from an appropriate subspace.

• METIS is a standard graph partitioning algorithm, which

transforms the original graph sequentially to smaller

graphs, partitions the smaller graph and then projects the

partition back to the original graph while refining using a

greedy algorithm at each step.

• Spectral Clustering (SC) selects the eigenvectors

corresponding to the top-k eigenvalues, and then does

the standard K-means algorithm on top of the subspace

spanned by the top-k eigenvectors.

• MGC gradually merges pairs of nodes with the closest

distance. The distance is calculated as follows: |W(i)
d(i)

−

W(j)
d(j)

|. The algorithmmerges one pair of nodes at each time

and the process will iterate until the coarsened graph size

is met.

• SGC slightly modifies the Spectral Clustering; instead

of selecting the eigenvectors corresponding to the top-k

eigenvalues, they select eigenvectors based on the two ends

of the eigenvalues range (the first p and the last k− p).

• HARP is a novel hierarchical way to learn node

representation that works by finding a smaller graph

to approximate the global graph architecture. We use

HARP to get the node representations, and use our

merging algorithm for the coarsening steps.

• Aside from the above commonly used graph coarsening

methods, we include another baseline which uses graph

convolutional neural networks (Kipf and Welling, 2016)

to get the node representations, and uses the same node

merging algorithm at the coarsening step. We will call it

GCN for the rest of the paper.

For all the methods, we coarsen the graph until n = m/5,

i.e., the number of nodes in the coarsened graph is one fifth

compared with original graph. Following previous work (Jin

et al., 2020), we use the same graph classifier [Network Laplacian

Spectral Descriptor (NetLSD) (Tsitsulin et al., 2018) combined

with a 1-NN classifier]. We report the classification accuracy for

the coarsened graph with different coarsening methods, and the

classification performances are evaluated based on 10-fold cross

validation. We report the performance results from Jin et al.

(2020) for all other baseline methods. In addition to the graph

datasets used in their work, we include additional datasets; for

these latter (last three columns in Table 4) we ran their code

again to obtain results for SGC and MGC.

4.2.2.3. Results

Table 5 shows the performance on the graph classification

task with all the graph coarsening methods. For our method, the

hyperparameters of the memory learning are tuned to minimize

the loss of unsupervised task for each dataset. We can see

that our method is competitive compared with all the other

baseline methods across all the datasets. Our method has the

best performance on 5 out of 8 datasets and a close second best

on ENZYMES and TUMBLR. The drop in accuracy between the

original graph and the coarsened graph is small (and sometimes

the coarsened graph results in even higher accuracy).
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TABLE 5 Average graph classification accuracy for the coarsened graph.

Dataset EM LV METIS SC SGC MGC HARP GCN Our Original graph

MUTAG 78.9 79.01 77.62 80.37 80.34 81.53 81.34 71.42 83.50 86.58

Enzymes 18.92 24.68 24.79 24.40 29.19 30.89 28.67 23.87 29.92 37.32

NCI109 61.35 60.49 61.64 62.57 63.69 63.55 62.72 56.42 59.42 64.93

Proteins 63.72 62.72 63.70 64.08 64.70 65.26 63.24 62.17 66.07 66.60

PTC_MR 48.56 50.24 49.34 50.16 52.76 52.28 52.56 51.86 53.36 53.72

TUMBLR N/A N/A N/A N/A 49.05 47.45 49.57 48.72 49.34 47.82

OHSU N/A N/A N/A N/A 58.03 58.03 59.42 60.71 61.25 55.89

REDDIT-BINARY N/A N/A N/A N/A (>24 h) (>24 h) 68.56 67.72 69.83 78.42

Bold value stands for the best performance for each dataset. N/A stands for results that are not reported in the prior literature.

4.2.3. Block structure identification

In this section we use the stochastic block model of Holland

et al. (1983) to generate synthetic graphs with some group

structure, and then use different graph coarsening methods to

simplify the graph. We test whether or not the graph coarsening

methods can identify the group structure information, i.e., the

nodes within the same group in the original graph ideally should

be contracted as one single node in the coarsened graph. We

adopt this setting to directly compare with previous work (Jin

et al., 2020).

4.2.3.1. Stochastic block model

The stochastic block model is a generative model for

random graphs. The model tends to generate graphs containing

communities; subsets of nodes characterized by being connected

with one another with particular edge densities. For example,

edges may be more common within communities than

between communities. Suppose we have n communities, the

model is parameterized as A ∈ [0, 1]n×n, where A[i, j]

refers to the probability of connection between community

i and j. The matrix A is symmetric (i.e., A[i, j] = A[j, i])

and A[i, i] refers to the probability of connection within

the community.

The community is grouped based on clustering structure if

A[i, i] > A[i, j] whenever i 6= j, which is also referred as the

assortative case. On the other hand, the community is grouped

based on anti-clustering structure if A[i, i] < A[i, j] whenever

i 6= j, which is also referred as disassortative case. Our algorithm

iteratively contracts the most similar node pairs, which identifies

the clustering structure for the graph, and does the coarsening

based on the clustering structure. Our algorithm works only in

the assortative case where community is formed by clustering

structure, thus we only focus on the assortative case in the

stochastic block model.

4.2.3.2. Baseline methods and metrics

We directly compare with SGC and MGC (Jin et al., 2020),

which are considered to be the state-of-the-art coursening

methods. We study the model performance for large graphs

with thousands of nodes. We use the assortative stochastic

block model to generate graphs with different sizes and different

diagonal/off-diagonal probabilities for comparison. We evaluate

the different graph coarsening methods by measuring the

Normalized Mutual Information (NMI) (Estévez et al., 2009)

between the block suggested by the model and the ground

truth partition, since NMI is a common metric to check the

partition discrepancy. The Mutual Information (MI) between

two partitions U and V is defined as follow:

MI(U,V) =

|U|
∑

i=1

|V|
∑

j=1

|Ui ∩ Vj|

N
log

N|Ui ∩ Vj|

|Ui||Vj|

where |Ui| is the number of nodes in partition Ui, |Vj| is the

number of nodes in partition Vj, N is the total number of nodes.

NMI is a normalization of the MI score to scale the results

between 0 and 1. For our model, we keep track the two nodes

that are merged, and in this way we can get the group partition

when the coarsening is finished.

4.2.3.3. Results

Table 6 shows the performance of all the coarseningmethods

with different graph sizes and parameters. Here, we use p and

q to denote the diagonal and off-diagonal probabilities in the

stochastic block model, N and n to denote the number of nodes

in the whole graph and the number of communities or groups.

The results are averaged NMI scores for 10 runs.

The ratio between p and q can be regarded as the significance

indicator of the clustering structure in the graph. When the ratio

is very large, it means the connections within the group are

muchmore likely than inter-group connections. When this ratio

decreases the distinction betweenwithin- vs. inter- becomemore

subtle. Our method is more successful at identifying the group

clustering structure, and it clearly outperforms the conventional

methods in terms of the NMI score. On all the datasets, ranging

from 2,000 to 6,000 nodes, our method yields the best results.

Besides that, our algorithm is extremely fast compared with

the other methods. It is around 20–40 times faster than the

commonly used methods.
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TABLE 6 Average normalized mutual information for block recovery

with di�erent methods and the ground truth.

N, n p, q MGC SGC Our

N = 2, 000, n = 100
0.4, 0.01 0.47 (∼7 h) 0.89 (∼500 s) 0.99 (∼26 s)

0.5, 0.1 0.10 (∼7 h) 0.39 (∼500 s) 0.40 (∼26 s)

0.8, 0.3 0.09 (∼7 h) 0.34 (∼500 s) 0.37 (∼26 s)

N = 4, 000, n = 200
0.4, 0.01 0.26 (∼70 h) 0.90 (∼3,700 s) 0.97 (∼120 s)

0.5, 0.1 0.09 (∼70 h) 0.41 (∼3,700 s) 0.44 (∼120 s)

0.8, 0.3 0.09 (∼70 h) 0.40 (∼3,700 s) 0.44 (∼120 s)

N = 6, 000, n = 300
0.4, 0.01 N/A 0.87 (∼12,000 s) 0.88 (∼300 s)

0.5, 0.1 N/A 0.43 (∼12,000 s) 0.48 (∼300 s)

0.8, 0.3 N/A 0.40 (∼12,000 s) 0.47 (∼300 s)

The number in parenthesis shows the average running time per run. The last case for

MGC is omitted (noted as N/A) due to the running time limit (we set it as 100 h). Bold

value stands for the best performance for each dataset.

5. Conclusions

In this work we have proposed a framework for learning

node embeddings using Modern Hopfield Networks in

combination with the masked node training. The context of

each node activates a set of memory vectors that are used

for predicting the identity of the masked node. From the

theoretical perspective, our main contribution is the extension

of the results of Krotov and Hopfield (2016, 2020), Ramsauer

et al. (2020), and Krotov (2021) to the setting where each

data point (a given node in the network embedding problem)

is represented by several distinct kinds of attributes (e.g.,

context node identity, target node identity, labels, etc.).

Some of these attributes (e.g., masked node identity) can

evolve in time using the Hopfield dynamics, while others

(e.g., context) can be kept clamped to guide the dynamical

trajectory in the direction of the appropriate (for that context)

memory. The core computational strategy of Associative

Memory naturally informs the appropriate pattern completion

for the masked node and learns useful representations for

the memory vectors, which can be utilized for multiple

downstream tasks.

We have obtained strong results evaluating our framework

on the node classification and link prediction tasks.We have also

developed an Associative Memory based framework for graph

coarsening. The coarsened graphs obtained by our method

demonstrate excellent properties retaining valuable information

from the original graphs. This desirable property of our method

has been established on both natural and synthetic datasets. Our

work opens up several avenues for future work. Our current

work is based on purely structural node embeddings. It is of

interest to extend our methods to consider content (e.g., taking

into account both node and edge features) in addition to

the structural context. Other directions include developing

Hierarchical Associative Memories to capture higher-level

graph features.

Author’s note

Recently, Associative Memory has attracted lots of

attention due to the development of the Modern Hopfield

Network. In this work, we design an Associative Memory

update rule and its corresponding energy function suitable

for the network embedding task. To our knowledge, it’s

the first attempt to apply Modern Hopfield Network to

this fundamental graph learning task. We empirically

show that the performance of our MHN-based embedding

for the node classification, link prediction and graph

coarsening downstream tasks is competitive with the

commonly used matrix factorization methods and deep

learning approaches.
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