
Performance Impact of Processor and Memory Heterogeneityin a Network of Machines �Mohammed Javeed Zaki, Wei Li, Micha l CierniakDepartment of Computer ScienceUniversity of RochesterAbstractIn this paper we present a summary of the issuesthat need to be dealt with to e�ectively use a heteroge-neous network of machines. We speci�cally point outthe impact of processor and memory heterogeneity onthe performance of parallel programs. Our results in-dicate that processor speeds are application dependentand we show how to use this information along withmemory constraints for e�cient scheduling.1 IntroductionNetwork based distributed computing has attracteda lot of attention lately, due to the recent advancesin high speed networks having low latency and highbandwidth, and due to the ubiquitous presence ofworkstations linked over LANs. With most of the ma-chines in a network underutilized, there has been re-search on harnessing this power in a useful way, forexample, to use the workstations to solve the so called\grand challenge" problems.A network of machines (NOM) can have hetero-geneity at various levels [3]. More speci�cally, theNOM may be heterogeneous in the processors, withprocessors of di�erent speeds; the network, with vary-ing cost of communication among pairs of processors;and the memory, with di�erent amount of availablememory on di�erent machines. There is a fourth as-pect, which is at the parallel program level, i.e., theprogram has parallel loops that have varying amountof work in each iteration.A lot of current research on heterogeneous com-puting is directed at the use of di�erent types ofparallel processors, processing components, or con-nectivity paradigms to maximize performance, cost-e�ectiveness, and/or development e�ort. For exam-�This work was supported in part by an NSF Research Ini-tiation Award (CCR-9409120) and ARPA contract F19628-94-C-0057.

ple, such research e�orts include the matching of in-dividual code segments to best-suited machines. Thisinvolves identifying the optimal processor(s) for eachtask in a heterogeneous application, i.e., �nding a setof machines to which the di�erent tasks can be as-signed, so as to minimize the overall execution time.Generalized optimal selection Theory (GOST) [11],Synthesis-of-Systems (SOS) theory [4], and strategiesbased on heuristics [8] are among the proposed solu-tions to this problem.In this paper, we assume an SPMD/Master-Slavemodel of computation, i.e., all processes essentiallyexecute the same program, but on di�erent data-sets.We further assume that all the parallelism comes fromdoall loops. When dealing with this model in a hetero-geneous NOM environment, the problem is not thatof e�cient mapping of subtasks to appropriate ma-chines suitable for that particular subtask. Since allthe tasks are similar in the SPMD model, the issueconcerns e�cient data partitioning among a set of ma-chines, taking into consideration the processor speedsand communication costs, so as to minimize the ex-ecution time of the program. The objective of thispaper is to analyze the above problem, and to pointout issues that must be taken into account for e�cientcomputation on a heterogeneous NOM.In particular, we study the performance impact ofheterogeneous processors and memory. We show byexperiments that the conventional ways of measuringprocessor speed and memory capacity are insu�cientfor a heterogeneous network of machines. We showthat normalized processor speed, which may be appli-cation dependent, gives a better estimate of proces-sor performance, and that the resident memory size,which may also be application dependent, gives a bet-ter estimate of the memory requirement. Further-more, we show how these two parameters taken to-gether inuence scheduling, and lead to better perfor-mance.The rest of the paper is organized as follows: Wediscuss the general problem of computing in heteroge-



neous environments in Section 2. Section 3 describesour research methodology. We look at the e�ect ofheterogeneous processors in Section 4, and of hetero-geneous memory in Section 5. Section 6 deals with thecombined e�ect of both processor and memory hetero-geneity on scheduling. This is followed by the conclu-sion in Section 7.2 Issues in Heterogeneous ComputingIn this section we present the issues that arise whencomputing on a heterogeneous network of machines.� Program Domain: The parallel applicationsfall into a number of categories. In the SPMDmodel all the processors apply the same algo-rithm to di�erent data points. These programsmay have regular or irregular computation andcommunication. Many problems are composed ofseveral subtasks with di�erent properties. Thesesubtasks may be parallelized individually, andmay need to be done on speci�c machines fore�cient computation. Other characteristics ofthe parallel program must be considered to de-cide whether any performance improvement canbe obtained on NOMs. For example, if the com-munication to computation ratio is large, then itmight not be worthwhile to parallelize the appli-cation. These factors become critical while con-sidering NOMs due to the other reasons cited be-low.� Machine Heterogeneity: A heterogeneous sys-tem may consists of various shared and dis-tributed memory MIMD machines, SIMD andvector machines, and sequential workstations in-terconnected by a network. For example, wemay have a multiprocessor SGI and Sun machine,and many HP, DEC, SGI and Sun workstationsconnected by a network. The network can beheterogeneous too, with di�erent machines on adepartment-wide, campus-wide, or nation-widenetwork. There may also be several networkswithin a department.� Network Latency: Network latency is one ofthe primary concerns for a heterogeneous NOM.High latency can make communication extremelyexpensive. As the number of machines in the net-work increases, high latency would restrict thescalability of the system, rendering all the par-allelism and computing power ine�ectual. It is

crucial that the latency be reduced by develop-ing high speed networks. As processors becomefaster, latency will continue to be a bottleneck.� Network Bandwidth: Bandwidth is also a bot-tleneck, especially for Ethernet LAN. Although itis easier to increase the physical bandwidth (e.g.,ATM promises a much higher bandwidth), ratherthan the latency, and despite the case that phys-ical bandwidth is reaching a higher range, theamount of application level bandwidth is a smallfraction of the available physical bandwidth [12].With di�erent interconnection networks, the net-work heterogeneity can become a signi�cant fac-tor in the parallel performance of applications.� Processor Selection: Typically a large numberof machines may be available for use, but we haveto select the optimal subset of these machineswhich will give us the minimum overall executiontime. We have to tradeo� increased computationpower versus the increased communication over-head as we increase the number of machines.� Mapping: As pointed out earlier both the pro-grams and machines have certain characteristicswhich require the subtasks to be mapped to spe-ci�c machines, to obtain the best performance.The work assigned to each processor must ex-ploit the processor characteristics, and we mustbe careful to also consider the network hetero-geneity while placing communication.� Load Balancing: Homogeneous static load bal-ancing algorithms must be adapted to work forheterogeneous NOMs. In [3] we present compile-time optimal and sub-optimal loop scheduling al-gorithms for heterogeneity. But since such sys-tems support a multiuser environment, run-timedynamic load-balancing may be required. Wehave to trade-o� the task-switching cost versusthe load-imbalance cost. There are many dy-namic load balancing schemes [13, 9, 5], but thesecannot be used for problems with subtasks of var-ious capabilities. There has been recent worklooking at non-constant switching costs in [15],but this is a static scheme. Cho and Park [1]do this for Linear Array Networks. Since NOMsare usually loosely-coupled, i.e., are connected vianon-dedicated network, there is also the issue ofexternal load on the network.� Data Coercion: Machine heterogeneity entailsdi�erent methods of data representation on di�er-



ent machines. Although this introduces the over-head of data conversion while sending messagesamong the machines, it is generally not that sig-ni�cant [7].� Di�erent parallelizations: In heterogeneousenvironments, problem decomposition and taskplacement can have dramatic e�ects on perfor-mance. While the homogeneous machine and ho-mogeneous network case is well understood forregular problems with no communication, suchas matrix multiplication, even this case poses in-teresting issues when dealing with di�erent ma-chines. For example, let's consider a homoge-neous collection of Sun SPARCstations connectedvia Ethernet, and a shared memory SGI multi-processor, which has a dedicated interconnectingbus with low latency and high bandwidth. Let usfurther consider a parallelizable loop which hasa high communication-to-computation ratio. Itmight not be worthwhile to parallelize this loopon the SPARCs due to the high latency and lowbandwidth of the Ethernet, and we might wantto simply replicate this loop on all the nodes. Onthe other hand, we may be able to get a per-formance improvement by parallelizing this loopon the SGI multiprocessor, due to its architec-tural features. The important point here is thatdepending on the underlying machine character-istics, a di�erent parallelization may be requiredfor good performance on di�erent machines. Aswe consider the heterogeneous case, the complex-ity of the problem increases substantially.� Contention E�ects: Communication on anEthernet LAN is more expensive due to high la-tency and low bandwidth. The network tra�ctends to be highly bursty on LANs. Moreover,contention for the bus becomes a critical perfor-mance factor. Any performance prediction modelfor a heterogeneous NOM must take into accountthe contention that may be caused in the network.Modeling this is a very complex task. Besidesload balancing at the machine level, we mightneed to monitor the load on the network.� Software Issues: Di�erences in the host op-erating systems, �le systems, database systems,interprocess communication, compilers and lan-guages available should be masked while dealingwith heterogeneous systems. E�cient softwaresystems are needed which automate most of thedecisions that need to be made in such environ-ments such as automating the data decomposi-

tion, distribution, synchronization and communi-cation for the applications across a wide range ofplatforms.� Memory: The amount of physical memory maybe di�erent for di�erent machines. When we wantto decide on the largest problem that can be e�-ciently performed, we must consider the availablememory on each machine. We will discuss thispoint in more detail in section 5.In this paper we will concentrate on two aspects ofheterogeneity: di�erent processor speeds and di�erentmemory capacities. Sections 4 and 5 discuss thesetwo issues, which are important for any distributedapplication running in a heterogeneous environment,and we feel that they should be addressed �rst.3 MethodologyTo gain a better understanding of these issues, westudy a suite of four parallel applications on a hetero-geneous network of workstations. This section brieydescribes the hardware and the parallel programs usedin our experiments.All the experiments were performed on a networkof Sun workstations (SPARC 1, LX, 5 and 10), inter-connected via an Ethernet LAN. Applications used Cas the source code language, and were run on dedi-cated machines, i.e., there were no other users on themachines.PVM [6] was used to parallelize the applications.PVM (Parallel Virtual Machine), is a message passingsoftware system mainly intended for network baseddistributed computing on heterogeneous serial andparallel computers. PVM supports heterogeneity atthe application, machine and network level, and sup-ports coarse grain parallelism in the application.We look at a number of applications, which includethe following:� Matrix Multiply (MxM): Multiplication of twosquare matrices.� 2D-FFT: Two dimensional Fast Fourier Transfor-mation.� Cholesky Factorization (CHO): This program�nds a lower triangular matrix L with positivediagonal elements such that A = LLT , where Ais a dense symmetric positive de�nite matrix.� Economics (ECO), a commodity trade model [10]:For a set of supply and demand markets with



given tari�s, transportation costs, supply anddemand price functions, this program �nds theamount of goods shipped between di�erent mar-kets.4 E�ect of Heterogeneous ProcessorsIn this section we will discuss how the processorheterogeneity inuences scheduling, i.e., data parti-tioning and distribution for near-optimal performanceof the program. In our approach, we summarize theheterogeneity in one parameter | normalized proces-sor speed (NPS), de�ned as the ratio of the time takento execute on the processor in consideration with re-spect to the time taken on a base processor.Knowledge of accurate processor speeds is crucialfor load balancing in a heterogeneous environment.Generally, faster machines should receive more work todo. We will show that no single approximation of pro-cessor speeds is su�cient for load balancing purposessince speeds vary from one application to another.The scheduling problem involves a tradeo� betweenthe task granularity and e�cient load balancing. Aswe increase the granularity of the parallelism or thenumber of tasks we get better load balance amongthe processors, but at the same time we increase theoverhead, which negatively impacts the performance.We should choose the right value for the granularityby considering the potential for load imbalance, com-munication cost and the inherent parallelism in theapplication. The data partitions should match theprocessor characteristics.A number of criteria have been presented to eval-uate the performance of computers. For example,the MIPS (million instructions per second), MFLOPS(million oating-point operations per second), Whet-stone, and Dhrystone ratings. Besides these, a numberof kernels and benchmarks have been proposed to testthe processor performance. In modern processors dif-ferent operations have di�erent cost, and furthermore,instruction pipelining and multiple instruction issuerender it quite hard to come up with a single �gurethat characterizes the performance. Therefore, whilethese �gures may give an indication of the processorcapabilities, reliable and consistent performance mea-sure can only be found by using the execution time ofdi�erent real applications on the machines in consid-eration.Our approach was to measure the execution timefor di�erent applications on the network of worksta-tions we have, and to take those speeds as an indica-

tion of the performance of the machine on a particularapplication.
1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

0 0.5 1 1.5 2 2.5 3

N
P

S
 w

rt
 S

P
A

R
C

st
at

io
n 

1

Data Size (MBytes)

Normalized Processor Speed: SPARC LX

MxM
CHOLESKY

2D-FFT
ECO

Figure 1: NPS: Sun SPARC LX vs. SPARC 1
2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5 3

N
P

S
 w

rt
 S

P
A

R
C

st
at

io
n 

1

Data Size (MBytes)

Normalized Procesor Speed: SPARC 10

MxM
CHOLESKY

2D-FFT
ECO

Figure 2: NPS: Sun SPARC 10 vs. SPARC 1We now summarize our experimental results toshow the performance of speci�c machines on di�er-ent applications. Figures 1 and 2 show the normalizedprocessor speeds of SPARCstation 10 and LX respec-tively. They also show the variance in the NPS as afunction of the data size. All the speeds are with re-spect to the slowest machine, i.e., the SPARC 1 work-station. We can observe that as the data size increases,there is a slight decrease in the speeds till it reaches analmost constant level. The initial variations for smalldata sizes can be attributed to caching e�ects.Our experiments indicate that machine perfor-mance varies for di�erent applications. This has



important implications when computing in heteroge-neous environments. For example, for optimal loadbalancing we might need to do a trial run of the appli-cation on the NOM, obtain the normalized processorspeeds, and then distribute work among the processorsbased on these speeds. On the other hand, we may ob-tain these ratios by doing compile-time performanceprediction. In [14], the author describes a detailed,architecture-speci�c, compile-time performance pre-diction framework. Porting to di�erent architecturesand compilers is quite involved, though possible.We must also study the e�ects of varying the datasize. This might require running the application forvarious sizes of input and storing these speeds in a ta-ble. This is certainly not feasible, therefore, we mightneed to extrapolate the speed ratios. However, forthe programs we considered, we did not observe muchvariance with di�erent data sizes.MIPS Normalized Processor Speedratio MxM CHO 2D-FFT3.5 1.5 1.7 1.8Table 1: Performance Ratios: SPARC 5 wrt SPARC 1Application MIPS NPSMxM(600) 1486.3s 1152.7sCHO(600) 99.1s 87.1s2D-FFT(512) 36.8s 32.3sTable 2: Running Time (SPARC 5 + SPARC LX)Table 1 shows the MIPS ratio and the normal-ized processor speeds for di�erent applications, for theSPARC 5 vs. LX. In table 2 we show the executiontimes obtained on a con�guration of 2 machines { aSPARC 5 and a LX. The second and third columnsshow the execution time using the MIPS ratio andNPS values to balance the work load. It is clearly seenthat the normalized processor speed should be used inscheduling, since it results in a balanced computationload and hence better performance for the application.In [3] we show how to use the NPS or other processorspeed ratios in scheduling. For all of the above appli-cations we parallelized the outermost doall loop, anddistributed its iterations based on the NPS values. Atthis stage we ignore the e�ects of communication.

5 E�ect of Heterogeneous MemoryAs pointed out earlier, heterogeneous NOMs havea large amount of computational power as well as alarge amount of combined memory. We would like toexploit the available resources by solving as large aproblem as possible. For example, solving large in-stances of numerical scienti�c applications, and otherreal world applications like weather modeling, compu-tational dynamics, and other \grand challenge" appli-cations. Obviously, the largest data size is limited bythe amount of combined memory present in the sys-tem. Several interesting issues arise when we try toe�ciently drive the system to its maximum limit.We mentioned in the last section that to obtain ef-�cient load balancing we must distribute work amongthe processors based on their normalized speeds,which are application dependent. While doing thedata distribution we must be careful so that we donot exceed the memory capacity of the machines, i.e.,we must allocate work to the machines based on boththe processor speed and available memory. We alsoneed the memory capacity to determine how large aninput size can be used for the programs.total availablemachine type memory memorySun SPARC 1 16Mb 12.5MbSun SPARC LX 32Mb 24.5MbSun SPARC 5 32Mb 24.5MbSun SPARC 10 128Mb 102MbTable 3: Memory CapacitiesOne way of determining the available memory isto use the actual physical memory values in the sys-tem. Table 3 shows the the amount of actual physi-cal memory and the amount that is available to userapplications. We can use the above values to decideon the largest problem size we can run, by calculat-ing when the total memory requirement of an appli-cation would exceed the memory capacity on a givenmachine. Our experiments show that using the to-tal memory requirement is generally not a good crite-rion for judging the largest problem size we can rune�ciently1. We therefore introduce a new parameter,Resident Memory Size (RMS), de�ned as the mini-mum number of pages of physical memory required toensure that all page fault misses are cold misses (i.e.,1see experiments in section 6.



due to the �rst reference), using a particular page re-placement algorithm. We believe that this notion givesa better indication of the largest problem size we canrun.Note that for a particular application, as we in-crease the data size we will reach a critical point be-yond which the performance of the program degradesrapidly. This critical data size cannot simply be ob-tained from the total memory requirement for the ap-plication. Usually the RMS should be a good approx-imation of this critical point.For example consider the matrixmultiplicationpro-gram, which computes C = A � B, where A, B, andC are N � N matrices. The total memory require-ment for this program is 3N2. However, notice thatall three matrices need not occupy the memory at thesame time. If we compute the C matrix, a row at atime, we need to keep only one page of C and onerow of A in memory, but we must have the whole ofmatrix B in memory. Therefore, if we calculate theresident memory size for MxM, we get the following,approximate, formula:RMS = (N2 + N ) � ElementSize=PageSize + 1The above RMS is calculated using an ideal page re-placement scheme. Using the LRU page replacementinstead, would giveRMS = (N2 + 2N )ElementSize=PageSize + 2We observe that if the resident memory size is lessthan the user available memory then our program willnot su�er from the e�ects of memory limitations. If,on the other hand, the program's RMS is larger thanthe available memory then some of the pages requiredwill not be in memory, and we will have to take apage fault. As the input data size increases, the RMSincreases, ultimately exceeding the available memory.If we attempt to run very large programs then we willcause the machines to thrash, severely degrading theperformance.We use a compile-time algorithm to approximatethe RMS. We compute the number of pages con-tributed to RMS by every array reference in a loopnest. We �rst �nd the stride vector [2] for a givenreference and then determine the outermost loop car-rying reuse. For all loops enclosed by this loop we usestrides and loop bounds to calculate the number ofreused pages.Let us illustrate the algorithm with an example.Consider the following loop nest from the matrix mul-tiply program.

for i = 1 to n dofor j = 1 to n dofor k = 1 to n doc[i, j] += a[i, k] * b[k, j]Assume row major mapping for all arrays. Thestride vectors for references to arrays a, b, and c are:va = 0@ n01 1A ; vb = 0@ 01n 1A ; vc = 0@ n10 1AFor a given reference a stride vector has one elementfor every loop enclosing this reference. An elementof a stride vector is equal to the memory stride forconsecutive iterations of the corresponding loop. Inour example, the bottom element of va is 1, whichmeans that the stride for accesses to array a in loop-kis unitary. The two other elements of va inform thatthe stride in loop-j is 0, and the stride in loop-i is n.Stride vectors are used to describe the locality ofmemory accesses. Assume that a page holds p arrayelements and that 1 < p < n. Consider the referenceto array a. We can see from the stride vector thatthere is temporal reuse carried by loop-j and spatialreuse carried by loop-k. The outermost loop carriesno reuse.For the reference to the array a, loop-j is the outer-most loop with reuse. According to our algorithm, weconsider all loops enclosed by the loop-j, that is theloop-k. This reference contributes RMSa = 1np = nppages, where 1 is the stride in loop-k and n is thenumber of iterations of that loop.Similarly for the reference to array b, loop-i is theoutermost loop carrying reuse, and we have to considerall loops enclosed by it, i.e., loop-j and loop-k. Each ofthose loops has n iterations and the strides are 1 and nrespectively. The number of pages (ignoring boundaryconditions) is RMSb = n(np ), that is the number ofiterations of loop-j multiplied by the number of pagesreferenced in loop-k.Calculation of the RMS for the reference to the ar-ray c is similar to RMSa. This time the stride in theinnermost loop is 0. Hence, RMSc = 0np = 0. Becausewe need at least one page to keep the current elementof c in memory, we take RMSc = 1.The resident memory size for all three arrays in thisexample is RMS = RMSa + RMSb + RMSc. Hence,RMS = np + n2p + 1 = n2 + np + 1The result is the same as the formula shown earlier inthis section for an ideal page replacement algorithm.



The limitation of the above algorithm is that it isvery conservative. While the RMS value obtained forregular problems should work well in practice, it willnot be a good approximation for irregular problems.6 Combined E�ect of Processor andMemory HeterogeneityIn this section we point out how to e�ciently runlarge problem instances on a particular con�gurationof the NOM. We look at the interaction of the nor-malized processor speed and the resident memory size,both of which are application dependent, and showtheir combined e�ect on scheduling.Deciding on the largest problem instance to besolved is a subtle issue. It depends on a number ofcriteria, such as how long are we willing to wait? orwhat measure of e�ciency do we desire?, etc. In thissection, we will not deal with the problem of �ndingout the largest problem instance to solve. Instead, wewill look at how we might achieve good performance,i.e., minimal execution time, for program instanceswhere the RMS value exceeds the memory availableto a user application on at least one processor in theNOM.Data Total NPS NPS+Tot MemSize Mem. Mem. Time Mem. Time1424 48.7M 28.0M 2091.5s 24.5M 2418.4sTable 4: E�ect of NPS & total memoryOur experiments indicate that using the total mem-ory requirement of the program may not be a good es-timate of the size of the program instances that we canrun. Table 4 shows the results obtained for the Ma-trix Multiplication program on a con�guration hav-ing a SPARC 5 and a SPARC LX machine. We �rstdistributed the work among the two machines propor-tional to their NPS values. This distribution causesthe total memory requirement for the SPARC 5 (givenin column 3) to exceed the user available memory (ap-proximately 24.5Mb) for it. We then redistributedthe data among the processors so that we respect thememory constraint on the SPARC 5. But this causedan increase in the execution time (see columns 4 and6), showing that we can't use the total memory re-quirement as the criterion for choosing a problem size.Table 5 shows the results obtained for MxM(2788�2788) on a con�guration of SPARC 10 and SPARC

Total Total NPSMem. RMS RMS time186.6Mb 62.3Mb 28.8Mb \1"MEM NPS+RMSRMS time RMS time12.5Mb 19902s 24.5Mb 14477sTable 5: E�ect of NPS & RMS5, using the RMS value instead of the total memoryrequirement. We �rst ran the program by distribut-ing the work based on the NPS values, but the RMSexceeded the memory on the SPARC 5, and causedthe machine to thrash, and we stopped the execu-tion. We then distributed the data so that the RMSon SPARC 5 was equal to the available memory (seeunder NPS+RMS). We also used the memory ratio ofthe machines (approx. 4:1, from table 3) to schedulethe work (see under MEM). We can clearly see thatthe execution time obtained by using both the NPSand RMS values is the best, while using just the NPSvalues we could not even run on the chosen data size.We now discuss our scheduling algorithm. We �rsttry to distribute the data among the processors pro-portional to their NPS values for the particular appli-cation in consideration. We also calculate the RMSvalue for the program. Using this RMS value and theuser available memory we determine whether we ex-ceed the memory on any processor, and redistributethe excess amount among the other processors by re-cursively applying the same technique. The sched-ule obtained in this way tries to respect the processorspeed ratios, and even when memory becomes a fac-tor, it tries to be as close to the processor speed ratiosas possible, while satisfying the memory constraints.This approach should give near-optimal performancefor a given data size.7 ConclusionIn this paper we have looked at the general issuesthat arise when computing in a heterogeneous networkof machines environment. We speci�cally looked atthe consequences of heterogeneity at the processor andmemory level.For e�cient load balancing we must distribute workproportional to the processor capabilities or speeds.We found that a reliable method to �nd out the pro-cessor performance is to do sample runs of the pro-



gram, and obtain the normalized processor speed. Thisis highly application dependent as we observed a vari-ance in the performance of the machines for di�erentapplications.Typically we would like to solve large problem in-stances, limited only by the total combined memory inthe NOM. We observed that the resident memory size,which may be application dependent, gives a good es-timate of the memory requirement of an application.Finally, we point out that for e�ciently solving largeinstances of an application, we must use both the nor-malized processor speeds and resident memory sizes, toachieve near-optimal performance.References[1] S.-Y. Cho and K. H. Park. Dynamic task as-signment in heterogeneous linear array networksfor metacomputing. Proceedings of the Hetero-geneous Computing Workshop '94, pages 66{71,April 1994.[2] M. Cierniak andW. Li. Unifying data and controltransformations for distributed shared-memorymachines. In Proceedings of PLDI '95, June 1995.Also available as Tech. Report 542, ComputerScience Dept., Univ. of Rochester.[3] M. Cierniak, W. Li, and M. J. Zaki. Loop schedul-ing for heterogeneity. Technical Report 540, Com-puter Science Dept., Univ. of Rochester, October1994.[4] J. C. DeSouza-Batista, M. M. Eshaghian, A. C.Parker, S. Prakash, and Y. C. Wu. A sub-optimal assignment of application tasks onto het-erogeneous systems. Proceedings of the Hetero-geneous Computing Workshop '94, pages 9{16,April 1994.[5] Derek L. Eager and John Zahorjan. Adaptiveguided self-scheduling. Technical Report 92-01-01, Department of Computer Science, Universityof Washington, January 1992.[6] Al Geist, Adam Beguelin, Jack Dongarra, We-icheng Jiang, Robert Manchek, and Vaidy Sun-deram. PVM 3 user's guide and reference manual.Technical Report ORNL/TM-12187, Oak RidgeNational Laboratory, Oak Ridge, Tennessee, May1993.

[7] A. S. Grimshaw, J. B. Weissman, E. A. West, andE. C. Loyot. Metasystems: An approach com-bining parallel processing and heterogeneous dis-tributed computing systems. Journal of Paralleland Distributed Computing, 21(3):257{270, 1994.[8] C. Leangsuksun and J. Potter. Designs andexperiments on heterogeneous mapping heuris-tics. Proceedings of the Heterogeneous ComputingWorkshop '94, pages 17{22, April 1994.[9] E.P. Markatos and T.J. LeBlanc. Using proces-sor a�nity in loop scheduling on shared-memorymultiprocessors. Proceedings Supercomputing '92,pages 104{113, November 1992.[10] A. Nagurney, C. F. Nicholson, and P. M. Bishop.Spatial price equilibriummodels with discrimina-tory ad valorem tari�s: formulation and compar-ative computation using variational inequalities.In Recent Advances in Spatial Equilibrium Mod-eling: Methodology and Applications. Springer-Verlag, Heidelberg, 1995. forthcoming.[11] B. Narahari, A. Youssef, and H.-A. Choi. Match-ing and scheduling in a generalized optimal se-lection theory. Proceedings of the HeterogeneousComputing Workshop '94, pages 3{8, April 1994.[12] M. Parashar, S. Hariri, A. G. Mohamed, andG. C. Fox. A requirement analysis for high perfor-mance distributed computing over LAN's. Pro-ceedings of the First International Symposium onHigh Performance Distributed Computing, pages142{151, September 1992.[13] C. D. Polychronopoulos and D. J. Kuck. Guidedself-scheduling: a practical scheduling scheme forparallel supercomputers. IEEE Transactions onComputers, C-36(12):1425{1439, December 1987.[14] Ko-Yang Wang. Precise compile-time perfor-mance prediction for superscalar-based comput-ers. In Proceedings of the ACM SIGPLAN '94Conference on Programming Language Designand Implementation, June 1994.[15] D. W. Watson, J. K. Antonio, H. J. Siegel,and M. J. Atallah. Static program decomposi-tion among machines in an SIMD/SPMD het-erogeneous environment with non-constant modeswitching cost. Proceedings of the HeterogeneousComputing Workshop '94, pages 58{65, April1994.


