Performance Impact of Processor and Memory Heterogeneity

in a Network of Machines

*

Mohammed Javeed Zaki, Wei Li, Michal Cierniak
Department of Computer Science
University of Rochester

Abstract

In this paper we present a summary of the issues
that need to be dealt with to effectively use a heteroge-
neous network of machines. We specifically point out
the impact of processor and memory heterogeneity on
the performance of parallel programs. QOur results in-
dicate that processor speeds are application dependent
and we show how to use this information along with
memory constraints for efficient scheduling.

1 Introduction

Network based distributed computing has attracted
a lot of attention lately, due to the recent advances
in high speed networks having low latency and high
bandwidth, and due to the ubiquitous presence of
workstations linked over LANs. With most of the ma-
chines in a network underutilized, there has been re-
search on harnessing this power in a useful way, for
example, to use the workstations to solve the so called
“grand challenge” problems.

A network of machines (NOM) can have hetero-
geneity at various levels [3]. More specifically, the
NOM may be heterogeneous in the processors, with
processors of different speeds; the network, with vary-
ing cost of communication among pairs of processors;
and the memory, with different amount of available
memory on different machines. There 1s a fourth as-
pect, which is at the parallel program level, i.e.; the
program has parallel loops that have varying amount
of work in each iteration.

A lot of current research on heterogeneous com-
puting is directed at the use of different types of
parallel processors, processing components, or con-
nectivity paradigms to maximize performance, cost-
effectiveness, and/or development effort. For exam-

*This work was supported in part by an NSF Research Ini-
tiation Award (CCR-9409120) and ARPA contract F19628-94-
C-0057.

ple, such research efforts include the matching of in-
dividual code segments to best-suited machines. This
involves identifying the optimal processor(s) for each
task in a heterogeneous application, i.e., finding a set
of machines to which the different tasks can be as-
signed, so as to minimize the overall execution time.
Generalized optimal selection Theory (GOST) [11],
Synthesis-of-Systems (SOS) theory [4], and strategies
based on heuristics [8] are among the proposed solu-
tions to this problem.

In this paper, we assume an SPMD/Master-Slave
model of computation, i.e., all processes essentially
execute the same program, but on different data-sets.
We further assume that all the parallelism comes from
doall loops. When dealing with this model in a hetero-
geneous NOM environment, the problem is not that
of efficient mapping of subtasks to appropriate ma-
chines suitable for that particular subtask. Since all
the tasks are similar in the SPMD model, the issue
concerns efficient data partitioning among a set of ma-
chines, taking into consideration the processor speeds
and communication costs, so as to minimize the ex-
ecution time of the program. The objective of this
paper is to analyze the above problem, and to point
out issues that must be taken into account for efficient
computation on a heterogeneous NOM.

In particular, we study the performance impact of
heterogeneous processors and memory. We show by
experiments that the conventional ways of measuring
processor speed and memory capacity are insufficient
for a heterogeneous network of machines. We show
that normalized processor speed, which may be appli-
cation dependent, gives a better estimate of proces-
sor performance, and that the resident memory size,
which may also be application dependent, gives a bet-
ter estimate of the memory requirement. Further-
more, we show how these two parameters taken to-
gether influence scheduling, and lead to better perfor-
mance.

The rest of the paper is organized as follows: We
discuss the general problem of computing in heteroge-

neous environments in Section 2. Section 3 describes
our research methodology. We look at the effect of
heterogeneous processors in Section 4, and of hetero-
geneous memory in Section 5. Section 6 deals with the
combined effect of both processor and memory hetero-
geneity on scheduling. This is followed by the conclu-
sion in Section 7.

2 Issues in Heterogeneous Computing

In this section we present the issues that arise when
computing on a heterogeneous network of machines.

e Program Domain: The parallel applications
fall into a number of categories. In the SPMD
model all the processors apply the same algo-
rithm to different data points. These programs
may have regular or irregular computation and
communication. Many problems are composed of
several subtasks with different properties. These
subtasks may be parallelized individually, and
may need to be done on specific machines for
efficient computation. Other characteristics of
the parallel program must be considered to de-
cide whether any performance improvement can
be obtained on NOMs. For example, if the com-
munication to computation ratio is large, then it
might not be worthwhile to parallelize the appli-
cation. These factors become critical while con-
sidering NOMs due to the other reasons cited be-
low.

¢ Machine Heterogeneity: A heterogeneous sys-
tem may consists of various shared and dis-
tributed memory MIMD machines, SIMD and
vector machines, and sequential workstations in-
terconnected by a network. For example, we
may have a multiprocessor SGI and Sun machine,
and many HP, DEC, SGI and Sun workstations
connected by a network. The network can be
heterogeneous too, with different machines on a
department-wide, campus-wide, or nation-wide
network. There may also be several networks
within a department.

e Network Latency: Network latency is one of
the primary concerns for a heterogeneous NOM.
High latency can make communication extremely
expensive. As the number of machines in the net-
work increases, high latency would restrict the
scalability of the system, rendering all the par-
allelism and computing power ineffectual. It is

crucial that the latency be reduced by develop-
ing high speed networks. As processors become
faster, latency will continue to be a bottleneck.

Network Bandwidth: Bandwidth is also a bot-
tleneck, especially for Ethernet LAN. Although it
is easier to increase the physical bandwidth (e.g.,
ATM promises a much higher bandwidth), rather
than the latency, and despite the case that phys-
ical bandwidth is reaching a higher range, the
amount of application level bandwidth 1s a small
fraction of the available physical bandwidth [12].
With different interconnection networks, the net-
work heterogeneity can become a significant fac-
tor in the parallel performance of applications.

Processor Selection: Typically a large number
of machines may be available for use, but we have
to select the optimal subset of these machines
which will give us the minimum overall execution
time. We have to tradeoff increased computation
power versus the increased communication over-
head as we increase the number of machines.

Mapping: As pointed out earlier both the pro-
grams and machines have certain characteristics
which require the subtasks to be mapped to spe-
cific machines, to obtain the best performance.
The work assigned to each processor must ex-
ploit the processor characteristics, and we must
be careful to also consider the network hetero-
geneity while placing communication.

Load Balancing: Homogeneous static load bal-
ancing algorithms must be adapted to work for
heterogeneous NOMs. In [3] we present compile-
time optimal and sub-optimal loop scheduling al-
gorithms for heterogeneity. But since such sys-
tems support a multiuser environment, run-time
dynamic load-balancing may be required. We
have to trade-off the task-switching cost versus
the load-imbalance cost. There are many dy-
namic load balancing schemes [13, 9, 5], but these
cannot be used for problems with subtasks of var-
ious capabilities. There has been recent work
looking at non-constant switching costs in [15],
but this is a static scheme. Cho and Park [I]
do this for Linear Array Networks. Since NOMs
are usually loosely-coupled, 1.e., are connected via
non-dedicated network, there is also the issue of
external load on the network.

Data Coercion: Machine heterogeneity entails
different methods of data representation on differ-

ent machines. Although this introduces the over-
head of data conversion while sending messages
among the machines, it is generally not that sig-
nificant [7].

Different parallelizations: In heterogeneous
environments, problem decomposition and task
placement can have dramatic effects on perfor-
mance. While the homogeneous machine and ho-
mogeneous network case is well understood for
regular problems with no communication, such
as matrix multiplication, even this case poses in-
teresting issues when dealing with different ma-
chines. For example, let’s consider a homoge-
neous collection of Sun SPARCstations connected
via Ethernet, and a shared memory SGI multi-
processor, which has a dedicated interconnecting
bus with low latency and high bandwidth. Let us
further consider a parallelizable loop which has
a high communication-to-computation ratio. It
might not be worthwhile to parallelize this loop
on the SPARCs due to the high latency and low
bandwidth of the Ethernet, and we might want
to simply replicate this loop on all the nodes. On
the other hand, we may be able to get a per-
formance improvement by parallelizing this loop
on the SGI multiprocessor, due to its architec-
tural features. The important point here is that
depending on the underlying machine character-
istics, a different parallelization may be required
for good performance on different machines. As
we consider the heterogeneous case, the complex-
ity of the problem increases substantially.

Contention Effects: Communication on an
Ethernet LAN is more expensive due to high la-
tency and low bandwidth. The network traffic
tends to be highly bursty on LANs. Moreover,
contention for the bus becomes a critical perfor-
mance factor. Any performance prediction model
for a heterogeneous NOM must take into account
the contention that may be caused in the network.
Modeling this is a very complex task. Besides
load balancing at the machine level, we might
need to monitor the load on the network.

Software Issues: Differences in the host op-
erating systems, file systems, database systems,
interprocess communication, compilers and lan-
guages available should be masked while dealing
with heterogeneous systems. FEfficient software
systems are needed which automate most of the
decisions that need to be made in such environ-
ments such as automating the data decomposi-

tion, distribution, synchronization and communi-
cation for the applications across a wide range of
platforms.

e Memory: The amount of physical memory may
be different for different machines. When we want
to decide on the largest problem that can be effi-
ciently performed, we must consider the available
memory on each machine. We will discuss this
point in more detail in section 5.

In this paper we will concentrate on two aspects of
heterogeneity: different processor speeds and different
memory capacities. Sections 4 and 5 discuss these
two issues, which are important for any distributed
application running in a heterogeneous environment,
and we feel that they should be addressed first.

3 Methodology

To gain a better understanding of these issues, we
study a suite of four parallel applications on a hetero-
geneous network of workstations. This section briefly
describes the hardware and the parallel programs used
in our experiments.

All the experiments were performed on a network
of Sun workstations (SPARC 1, LX, 5 and 10), inter-
connected via an Ethernet LAN. Applications used C
as the source code language, and were run on dedi-
cated machines, 1.e., there were no other users on the
machines.

PVM [6] was used to parallelize the applications.
PVM (Parallel Virtual Machine), is a message passing
software system mainly intended for network based
distributed computing on heterogeneous serial and
parallel computers. PVM supports heterogeneity at
the application, machine and network level, and sup-
ports coarse grain parallelism in the application.

We look at a number of applications, which include
the following:

e Matrix Multiply (MxM): Multiplication of two
square matrices.

e 2D-FFT: Two dimensional Fast Fourier Transfor-
mation.

e Cholesky Factorization (CHO): This program
finds a lower triangular matrix L with positive
diagonal elements such that A = LLT, where A
1s a dense symmetric positive definite matrix.

e Economics (ECO), acommodity trade model [10]:
For a set of supply and demand markets with

given tariffs, transportation costs, supply and
demand price functions, this program finds the
amount of goods shipped between different mar-
kets.

4 Effect of Heterogeneous Processors

In this section we will discuss how the processor
heterogeneity influences scheduling, 1.e., data parti-
tioning and distribution for near-optimal performance
of the program. In our approach, we summarize the
heterogeneity in one parameter — normalized proces-
sor speed (NPS), defined as the ratio of the time taken
to execute on the processor in consideration with re-
spect to the time taken on a base processor.

Knowledge of accurate processor speeds is crucial
for load balancing in a heterogeneous environment.
Generally, faster machines should receive more work to
do. We will show that no single approximation of pro-
cessor speeds 1s sufficient for load balancing purposes
since speeds vary from one application to another.

The scheduling problem involves a tradeoff between
the task granularity and efficient load balancing. As
we increase the granularity of the parallelism or the
number of tasks we get better load balance among
the processors, but at the same time we increase the
overhead, which negatively impacts the performance.
We should choose the right value for the granularity
by considering the potential for load imbalance, com-
munication cost and the inherent parallelism in the
application. The data partitions should match the
processor characteristics.

A number of criteria have been presented to eval-
uate the performance of computers. For example,
the MIPS (million instructions per second), MFLOPS
(million floating-point operations per second), Whet-
stone, and Dhrystone ratings. Besides these, a number
of kernels and benchmarks have been proposed to test
the processor performance. In modern processors dif-
ferent operations have different cost, and furthermore,
instruction pipelining and multiple instruction issue
render it quite hard to come up with a single figure
that characterizes the performance. Therefore, while
these figures may give an indication of the processor
capabilities, reliable and consistent performance mea-
sure can only be found by using the execution time of
different real applications on the machines in consid-
eration.

Our approach was to measure the execution time
for different applications on the network of worksta-
tions we have, and to take those speeds as an indica-

tion of the performance of the machine on a particular
application.

Normalized Processor Speed: SPARC LX

3.2 T T T T T
MxM ——
3T CHOLESKY —— 1
- - T =
IS 28 1 ECO ~x A
s 26 7
8 0T / 1
[od / e
< 24) T - 1
& / X
wn { x
= 22 ¢ 1
2
n
= 21 e |
8 1
1.6 L L L ‘D L
0 0.5 1 15 2 25 3
Data Size (MBytes)
Figure 1: NPS: Sun SPARC LX vs. SPARC 1
Normalized Procesor Speed: SPARC 10
8 T T T T T
MxM ——
- CHOLESKY —— |
~ 2D-FFT -o--
c x
R
s 6| 1
%]
O
[od
< 5F 1
o
N e
E 4t e T . x]
n
D-
z 3|’ o]
2 1 1 1 1 1

0 0.5 1 15 2 25 3
Data Size (MBytes)

Figure 2: NPS: Sun SPARC 10 vs. SPARC 1

We now summarize our experimental results to
show the performance of specific machines on differ-
ent applications. Figures 1 and 2 show the normalized
processor speeds of SPARCstation 10 and LX respec-
tively. They also show the variance in the NPS as a
function of the data size. All the speeds are with re-
spect to the slowest machine, i.e., the SPARC 1 work-
station. We can observe that as the data size increases,
there is a slight decrease in the speeds till it reaches an
almost constant level. The initial variations for small
data sizes can be attributed to caching effects.

Our experiments indicate that machine perfor-
mance varies for different applications. This has

important implications when computing in heteroge-
neous environments. For example, for optimal load
balancing we might need to do a trial run of the appli-
cation on the NOM, obtain the normalized processor
speeds, and then distribute work among the processors
based on these speeds. On the other hand, we may ob-
tain these ratios by doing compile-time performance
prediction. In [14], the author describes a detailed,
architecture-specific, compile-time performance pre-
diction framework. Porting to different architectures
and compilers is quite involved, though possible.

We must also study the effects of varying the data
size. This might require running the application for
various sizes of input and storing these speeds in a ta-
ble. This is certainly not feasible, therefore, we might
need to extrapolate the speed ratios. However, for
the programs we considered, we did not observe much
variance with different data sizes.

MIPS | Normalized Processor Speed
ratio | MxM | CHO 2D-FFT
3.5 1.5 1.7 1.8

Table 1: Performance Ratios: SPARC 5 wrt SPARC 1

Application MIPS NPS
MxM(600) 1486.3s | 1152.7s
CHO(600) 99.1s 87.1s
2D-FFT(512) | 36.8s 32.3s

Table 2: Running Time (SPARC 5 + SPARC LX)

Table 1 shows the MIPS ratio and the normal-
1zed processor speeds for different applications, for the
SPARC 5 vs. LX. In table 2 we show the execution
times obtained on a configuration of 2 machines — a
SPARC 5 and a LX. The second and third columns
show the execution time using the MIPS ratio and
NPS values to balance the work load. It is clearly seen
that the normalized processor speed should be used in
scheduling, since it results in a balanced computation
load and hence better performance for the application.
In [3] we show how to use the NPS or other processor
speed ratios in scheduling. For all of the above appli-
cations we parallelized the outermost doall loop, and
distributed its iterations based on the NPS values. At
this stage we ignore the effects of communication.

5 Effect of Heterogeneous Memory

As pointed out earlier, heterogeneous NOMs have
a large amount of computational power as well as a
large amount of combined memory. We would like to
exploit the available resources by solving as large a
problem as possible. For example, solving large in-
stances of numerical scientific applications, and other
real world applications like weather modeling, compu-
tational dynamics, and other “grand challenge” appli-
cations. Obviously, the largest data size is limited by
the amount of combined memory present in the sys-
tem. Several interesting issues arise when we try to
efficiently drive the system to its maximum limit.

We mentioned in the last section that to obtain ef-
ficient load balancing we must distribute work among
the processors based on their normalized speeds,
which are application dependent. While doing the
data distribution we must be careful so that we do
not exceed the memory capacity of the machines, i.e.,
we must allocate work to the machines based on both
the processor speed and available memory. We also
need the memory capacity to determine how large an
input size can be used for the programs.

total available
machine type memory | memory
Sun SPARC 1 16Mb 12.5Mb
Sun SPARC LX | 32Mb 24 .5Mb
Sun SPARC 5 32Mb 24 .5Mb
Sun SPARC 10 128Mb 102Mb

Table 3: Memory Capacities

One way of determining the available memory is
to use the actual physical memory values in the sys-
tem. Table 3 shows the the amount of actual physi-
cal memory and the amount that is available to user
applications. We can use the above values to decide
on the largest problem size we can run, by calculat-
ing when the total memory requirement of an appli-
cation would exceed the memory capacity on a given
machine. Our experiments show that using the to-
tal memory requirement is generally not a good crite-
rion for judging the largest problem size we can run
efficiently’. We therefore introduce a new parameter,
Resident Memory Size (RMS), defined as the mini-
mum number of pages of physical memory required to
ensure that all page fault misses are cold misses (i.e.,

lsee experiments in section 6.

due to the first reference), using a particular page re-
placement algorithm. We believe that this notion gives
a better indication of the largest problem size we can
run.

Note that for a particular application, as we in-
crease the data size we will reach a critical point be-
yond which the performance of the program degrades
rapidly. This critical data size cannot simply be ob-
tained from the total memory requirement for the ap-
plication. Usually the RMS should be a good approx-
imation of this critical point.

For example consider the matrix multiplication pro-
gram, which computes C' = A x B, where A, B, and
C are N x N matrices. The total memory require-
ment for this program is 3N?. However, notice that
all three matrices need not occupy the memory at the
same time. If we compute the C' matrix, a row at a
time, we need to keep only one page of C' and one
row of A in memory, but we must have the whole of
matrix B in memory. Therefore, if we calculate the
resident memory size for MxM, we get the following,
approximate, formula:

RMS = (N? 4 N) * ElementSize/PageSize 4 1

The above RMS is calculated using an ideal page re-
placement scheme. Using the LRU page replacement
instead, would give

RMS = (N? 4 2N)ElementSize/PageSize + 2

We observe that if the resident memory size is less
than the user available memory then our program will
not suffer from the effects of memory limitations. If,
on the other hand, the program’s RMS is larger than
the available memory then some of the pages required
will not be in memory, and we will have to take a
page fault. As the input data size increases, the RMS
increases, ultimately exceeding the available memory.
If we attempt to run very large programs then we will
cause the machines to thrash, severely degrading the
performance.

We use a compile-time algorithm to approximate
the RMS. We compute the number of pages con-
tributed to RMS by every array reference in a loop
nest. We first find the stride vector [2] for a given
reference and then determine the outermost loop car-
rying reuse. For all loops enclosed by this loop we use
strides and loop bounds to calculate the number of
reused pages.

Let us illustrate the algorithm with an example.
Consider the following loop nest from the matrix mul-
tiply program.

for i =1 to n do
for j =1 ton do
for k =1 to n do
cli, j1 += ali, k] * blk, jl

Assume row major mapping for all arrays. The
stride vectors for references to arrays a, b, and ¢ are:

n 0 n
Vg = 0 s Vp = 1 s Ve = 1
1 n 0

For a given reference a stride vector has one element
for every loop enclosing this reference. An element
of a stride vector is equal to the memory stride for
consecutive iterations of the corresponding loop. In
our example, the bottom element of v, is 1, which
means that the stride for accesses to array a in loop-k
is unitary. The two other elements of v, inform that
the stride in loop-j is 0, and the stride in loop-1 18 n.

Stride vectors are used to describe the locality of
memory accesses. Assume that a page holds p array
elements and that 1 < p < n. Consider the reference
to array a. We can see from the stride vector that
there is temporal reuse carried by loop-j and spatial
reuse carried by loop-k. The outermost loop carries
no reuse.

For the reference to the array a, loop-j is the outer-
most loop with reuse. According to our algorithm, we
consider all loops enclosed by the loop-j, that is the
loop-k. This reference contributes RMS, = & = %
pages, where 1 1s the stride in loop-k and n 1is the
number of iterations of that loop.

Similarly for the reference to array b, loop-i is the
outermost loop carrying reuse, and we have to consider
all loops enclosed by it, i.e., loop-j and loop-k. Each of
those loops has n iterations and the strides are 1 and n
respectively. The number of pages (ignoring boundary
conditions) is RMS, = n(%), that is the number of
iterations of loop-j multiplied by the number of pages
referenced in loop-k.

Calculation of the RMS for the reference to the ar-
ray ¢ is similar to RMS,. This time the stride in the
innermost loop is 0. Hence, RMS, = 22 = (. Because
we need at least one page to keep the current element
of ¢ in memory, we take RMS, = 1.

The resident memory size for all three arrays in this

example is RMS = RMS, + RMS; + RMS... Hence,

n2+n

p

2
RMS = 24 1= +1
P P

The result 1s the same as the formula shown earlier in
this section for an ideal page replacement algorithm.

The limitation of the above algorithm is that it is
very conservative. While the RMS value obtained for
regular problems should work well in practice, it will
not be a good approximation for irregular problems.

6 Combined Effect of Processor and
Memory Heterogeneity

In this section we point out how to efficiently run
large problem instances on a particular configuration
of the NOM. We look at the interaction of the nor-
malized processor speed and the resident memory size,
both of which are application dependent, and show
their combined effect on scheduling.

Deciding on the largest problem instance to be
solved is a subtle issue. It depends on a number of
criteria, such as how long are we willing to wait? or
what measure of efficiency do we desire?, etc. In this
section, we will not deal with the problem of finding
out the largest problem instance to solve. Instead, we
will look at how we might achieve good performance,
i.e., minimal execution time, for program instances
where the RMS value exceeds the memory available
to a user application on at least one processor in the

NOM.

Data | Total NPS NPS+Tot Mem
Size Mem. | Mem. Time Mem. Time
1424 | 48.7M | 28.0M | 2091.5s | 24.5M | 2418.4s

Table 4: Effect of NPS & total memory

Our experiments indicate that using the total mem-
ory requirement of the program may not be a good es-
timate of the size of the program instances that we can
run. Table 4 shows the results obtained for the Ma-
trix Multiplication program on a configuration hav-
ing a SPARC 5 and a SPARC LX machine. We first
distributed the work among the two machines propor-
tional to their NPS values. This distribution causes
the total memory requirement for the SPARC 5 (given
in column 3) to exceed the user available memory (ap-
proximately 24.5Mb) for it. We then redistributed
the data among the processors so that we respect the
memory constraint on the SPARC 5. But this caused
an increase in the execution time (see columns 4 and
6), showing that we can’t use the total memory re-
quirement as the criterion for choosing a problem size.

Table 5 shows the results obtained for MxM (2788 x
2788) on a configuration of SPARC 10 and SPARC

Total Total NPS
Mem. RMS RMS time
186.6Mb | 62.3Mb | 28.8Mb “o0”
MEM NPS+RMS
RMS time RMS time
12.56Mb | 19902s | 24.5Mb | 14477s

Table 5: Effect of NPS & RMS

5, using the RMS value instead of the total memory
requirement. We first ran the program by distribut-
ing the work based on the NPS values, but the RMS
exceeded the memory on the SPARC 5, and caused
the machine to thrash, and we stopped the execu-
tion. We then distributed the data so that the RMS
on SPARC 5 was equal to the available memory (see
under NPS+RMS). We also used the memory ratio of
the machines (approx. 4:1, from table 3) to schedule
the work (see under MEM). We can clearly see that
the execution time obtained by using both the NPS
and RMS values is the best, while using just the NPS
values we could not even run on the chosen data size.

We now discuss our scheduling algorithm. We first
try to distribute the data among the processors pro-
portional to their NPS values for the particular appli-
cation in consideration. We also calculate the RMS
value for the program. Using this RMS value and the
user available memory we determine whether we ex-
ceed the memory on any processor, and redistribute
the excess amount among the other processors by re-
cursively applying the same technique. The sched-
ule obtained in this way tries to respect the processor
speed ratios, and even when memory becomes a fac-
tor, 1t tries to be as close to the processor speed ratios
as possible, while satisfying the memory constraints.
This approach should give near-optimal performance
for a given data size.

7 Conclusion

In this paper we have looked at the general issues
that arise when computing in a heterogeneous network
of machines environment. We specifically looked at
the consequences of heterogeneity at the processor and
memory level.

For efficient load balancing we must distribute work
proportional to the processor capabilities or speeds.
We found that a reliable method to find out the pro-
cessor performance is to do sample runs of the pro-

gram, and obtain the normalized processor speed. This
is highly application dependent as we observed a vari-
ance in the performance of the machines for different
applications.

Typically we would like to solve large problem in-
stances, limited only by the total combined memory in
the NOM. We observed that the resident memory size,
which may be application dependent, gives a good es-
timate of the memory requirement of an application.
Finally, we point out that for efficiently solving large
instances of an application, we must use both the nor-
malized processor speeds and resident memory sizes, to
achieve near-optimal performance.

References

[1] S-Y. Cho and K. H. Park. Dynamic task as-
signment in heterogeneous linear array networks
for metacomputing. Proceedings of the Hetero-

geneous Computing Workshop 94, pages 66-71,
April 1994.

[2] M. Cierniak and W. Li. Unifying data and control
transformations for distributed shared-memory
machines. In Proceedings of PLDI 95, June 1995.
Also available as Tech. Report 542, Computer
Science Dept., Univ. of Rochester.

[3] M. Cierniak, W. Li, and M. J. Zaki. Loop schedul-
ing for heterogeneity. Technical Report 540, Com-
puter Science Dept., Univ. of Rochester, October
1994.

[4] J. C. DeSouza-Batista, M. M. Eshaghian, A. C.
Parker, S. Prakash, and Y. C. Wu. A sub-
optimal assignment of application tasks onto het-
erogeneous systems. Proceedings of the Hetero-
geneous Computing Workshop 94, pages 9-16,
April 1994.

[5] Derek L. Eager and John Zahorjan. Adaptive
guided self-scheduling. Technical Report 92-01-
01, Department of Computer Science, University
of Washington, January 1992.

[6] Al Geist, Adam Beguelin, Jack Dongarra, We-
icheng Jiang, Robert Manchek, and Vaidy Sun-
deram. PVM 3 user’s guide and reference manual.
Technical Report ORNL/TM-12187, Oak Ridge
National Laboratory, Oak Ridge, Tennessee, May
1993.

[7] A.S. Grimshaw, J. B. Weissman, E. A. West, and
E. C. Loyot. Metasystems: An approach com-
bining parallel processing and heterogeneous dis-
tributed computing systems. Journal of Parallel

and Distributed Computing, 21(3):257-270, 1994.

[8] C. Leangsuksun and J. Potter. Designs and
experiments on heterogeneous mapping heuris-
tics. Proceedings of the Heterogeneous Computing

Workshop °94, pages 17-22, April 1994.

[9] E.P. Markatos and T.J. LeBlanc. Using proces-
sor affinity in loop scheduling on shared-memory
multiprocessors. Proceedings Supercomputing 92,
pages 104-113, November 1992.

[10] A. Nagurney, C. F. Nicholson, and P. M. Bishop.
Spatial price equilibrium models with discrimina-
tory ad valorem tariffs: formulation and compar-
ative computation using variational inequalities.
In Recent Advances in Spatial Equilibrium Mod-
eling: Methodology and Applications. Springer-
Verlag, Heidelberg, 1995. forthcoming.

[11] B. Narahari, A. Youssef, and H.-A. Choi. Match-
ing and scheduling in a generalized optimal se-
lection theory. Proceedings of the Heterogeneous
Computing Workshop "94, pages 3-8, April 1994.

[12] M. Parashar, S. Hariri, A. G. Mohamed, and
G. C. Fox. A requirement analysis for high perfor-
mance distributed computing over LAN’s. Pro-
ceedings of the Fuirst International Symposium on
High Performance Distributed Computing, pages
142-151, September 1992.

[13] C. D. Polychronopoulos and D. J. Kuck. Guided
self-scheduling: a practical scheduling scheme for
parallel supercomputers. IEFEE Transactions on

Computers, C-36(12):1425-1439, December 1987.

[14] Ko-Yang Wang. Precise compile-time perfor-
mance prediction for superscalar-based comput-
ers. In Proceedings of the ACM SIGPLAN 94
Conference on Programming Language Design
and Implementation, June 1994.

[15] D. W. Watson, J. K. Antonio, H. J. Siegel,
and M. J. Atallah. Static program decomposi-
tion among machines in an SIMD/SPMD het-
erogeneous environment with non-constant mode
switching cost. Proceedings of the Heterogeneous
Computing Workshop 94, pages 58-65, April
1994.

