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1.1 Introduction

Efficient scheduling of loops on a NOW requires finding the appropriate granularity
of tasks and partitioning them so that each processor is assigned work in propor-
tion to its performance. This load balancing assignment can be static – done at
compile-time, or it may be dynamic – done at runtime. The distribution of tasks is
further complicated if processors have differing speeds and memory resources, or due
to transient external load and non-uniform iteration execution times. While static
scheduling avoids the runtime scheduling overhead, in a multi-user environment with
load changes on the nodes, a more dynamic approach is warranted. Moreover, dif-
ferent schemes are best for different applications under varying program and system
parameters. Application-driven customized load balancing thus becomes essential
for good performance. This chapter addresses the above problem. In particular we
make the following contributions: 1) We compare different strategies for dynamic
load balancing in the presence of transient external load. We examine both global
vs. local, and centralized vs. distributed schemes. 2) We present a hybrid compile
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2 Customized Dynamic Load Balancing Chapter 1

and runtime system that automatically selects the best load balancing scheme for
a given loop/task from the repertoire of different strategies. We also automatically
transform an annotated sequential program to a parallel program with appropriate
calls to our runtime load balancing library. 3) We present experimental results to
substantiate our approach. The evaluation indicates that different strategies are
best depending on the parameters. Different phases of the same application may
also require different strategies. Our modeling is able to capture these variations
quite accurately, and thus our analysis can be used to select an appropriate load
balancing scheme for an application.

1.1.1 Related Work

We begin by looking at some existing load balancing schemes.

Static Scheduling

Compile-time static loop scheduling is efficient and introduces no additional runtime
overhead. For UMA (Uniform Memory Access) parallel machines, usually loop
iterations can be scheduled in block or cyclic fashion. For NUMA (Non-Uniform
Memory Access) parallel machines, loop scheduling must take data distribution
into account [5]. The simplest approach is the static block scheduling scheme, which
assigns equal block of iterations to each of the available processors. Static interleaved
scheme assigns iterations in a cyclic fashion.

There has been relatively little work in static scheduling for heterogeneous clus-
ters. Static scheduling algorithms for heterogeneous programs, processors, memory,
and network were proposed in [4].

Dynamic Scheduling

When the execution time of loop iterations is not predictable at compile-time, run-
time dynamic scheduling can be used at the additional runtime cost of managing
task allocation. The dynamic scheduling strategies fall under different models,
which include schemes based on predicting the future from past loads, the task
queue model, and the diffusion model.

Predicting the Future A common approach taken for load balancing on a work-
station network is to predict future performance based on past information. For
example, in data parallel C [8], loop iterations are mapped to virtual processors, and
these virtual processors are assigned to the physical processors based on past load
behavior. The approach is global distributed, where the processor’s load is given
as the average computation time per virtual processor, and load balancing involves
periodic information exchanges. Dome [1] implements a global central scheme and a
local distributed scheme. The performance metric used is the rate at which the pro-
cessors execute the dome program, and load balancing involves periodic exchanges.
Siegell [12] also presented a global centralized scheme, with periodic information
exchanges, and where the performance metric is the iterations done per second.
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The main contribution of this paper is the methodology for automatic generation
of parallel programs with dynamic load balancing. In Phish [2], a local distributed
receiver-initiated scheme is described, where the processor requesting more tasks,
called the thief, chooses a victim at random from which to steal more work. If the
current victim cannot satisfy the request, another victim is selected. CHARM [11]
implements a two-phased scheme. Initially, in the static phase, work is assigned to
the processors proportional to their speed, and inversely proportional to the load on
the processor. The dynamic phase implements a local distributed receiver-initiated
scheme. The information exchanged is the Forecasted Finish Time (FFT), i.e., the
time for the processor to finish the remaining work. If the FFT falls below a thresh-
old, the node requests a neighbor with higher FFT for more work. If the request
cannot be satisfied, another neighbor is selected.

Our approach also falls under this model. Instead of periodic exchanges of infor-
mation, we have a interrupt-based receiver-initiated scheme. Moreover, we look at
both central vs. distributed, and local vs. global approaches. In the local schemes,
instead of random selection of a processor from which to request more work, work
is exchanged among all the neighbors (the number of neighbors is selected stati-
cally). These strategies are explained in more detail in Section 1.2. [3] presents an
application-specific approach to schedule individual parallel applications. [9] pre-
sented an approach, where a user specifies homogeneous load balancers for different
tasks within a heterogeneous application. They also present a global load balancer
that handles the interactions among the different homogeneous load balancers. How-
ever, our goal is to provide compile and runtime support to automatically select the
best load balancing scheme for a given loop from a repertoire of different strategies.

Task Queue Model A host of approaches have been proposed in the literature
targeting shared memory machines. These fall under the task queue model, where
there is a logically central task queue of loop iterations. Once the processors have
finished their assigned portion, more work is obtained from this queue. The sim-
plest approach in this model is self-scheduling [13], where each processor is allocated
only one iteration at a time, which leads to high synchronization cost. In guided
self-scheduling [10], the chunk size is changed at runtime. Each processor is assigned
1/P -th of the remaining loop iterations, where P denotes the number of processors.
Although the large chunk sizes in the beginning reduce synchronization, they can
cause serious imbalances in non-uniform loops. Moreover, this scheme degenerates
to the case of self-scheduling towards the end due to small chunk sizes. A num-
ber of more elaborate schemes based on this idea are extant. For example, affinity
scheduling [7] also takes processor affinity into account while scheduling, i.e., iter-
ations using the same data are scheduled on the same processor, unless they must
be moved to balance load.

Diffusion Model Other approaches include diffusion models with all the work
initially distributed, and with work movement between adjacent processors if an
imbalance is detected between their load and their neighbor’s load. An example is
the gradient model [6] approach.
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1.2 Dynamic Load Balancing (DLB)

The goal of load balancing is to assign to each processing node work proportional
to its performance, thereby minimizing the execution time of the application. In
this section we describe our dynamic load balancing approach, and the different
strategies we chose to study our concepts.

After the initial assignment of work (the iterations of the loop) to each pro-
cessor, dynamic load balancing is done in four basic steps: monitoring processor
performance, exchanging this information between processors, calculating new dis-
tributions and making the work movement decision, and actually moving the data.
The data is moved directly between the slaves, and the load balancing decisions are
made by the load balancer.

Synchronization In our approach, a synchronization is triggered by the first pro-
cessor to finish its portion of the work. This processor then sends an interrupt to all
other active slaves, who then send their performance profiles to the load balancer.

Performance Metric We try to predict the future performance based on past
information, which depends on the past load function. We can use the whole past
history or a portion of it. Usually, the most recent window is used as an indication
of the future. The metric we use is the number of iterations done per second, since
the last synchronization point.

Work Movement Once the load balancer has all the profile information, it calcu-
lates a new distribution. If the amount of work to be moved is below a threshold,
then work is not moved, since this may indicate that the system is almost balanced,
or that only a small portion of the work remains to be done. If there is a sufficient
amount of work that needs to be moved, we invoke a profitability analysis routine.
We redistribute work as long as the potential benefit of the new assignment re-
sults in an improvement. If it is profitable to move work, then the load balancer
broadcasts the new distribution information to the processors. The work is then
redistributed among the slaves.

Data Movement and Profitability Analysis Work redistribution also entails the
movement of the data arrays which will be accessed in the iterations. There is a
trade-off between the benefits of moving work to balance load, and the cost of data
movement. Accounting for this cost/benefit is a subtle matter. The reason is that
inaccuracies in data movement cost estimation may predict a higher cost for the
work redistribution, thereby nullifying the potential benefits of moving work.

In our scheme, since we synchronize only when a processor needs more work,
cancelling work redistribution would lead to an idle processor, lowering the overall
utilization, and degrading the execution-time. We thus redistribute work as long as
the potential benefit (predicted execution time, excluding the cost of actual data
movement) of the new assignment results in at least a 10% improvement (empiri-
cally, this number worked well).
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1.2.1 Load Balancing Strategies

We chose four different strategies differing along two axes. The techniques are either
global or local, based on the information they use to make load balancing decisions,
and they are either centralized or distributed, depending on whether the load bal-
ancer is located at one master processor (which also takes part in computation), or
if the load balancer is distributed among the processors, respectively. For all the
strategies, the compiler initially distributes the iterations of the loop equally among
all the processors.
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Figure 1.1 Centralized vs. distributed strategies.

Global Strategies

In the global schemes, the load balancing decision is made using global knowledge,
i.e., all the processors take part in the synchronization, and send their performance
profiles to the load balancer. The global schemes we consider are given below.

Global Centralized DLB (GCDLB) In this scheme the load balancer is located on
a master processor (centralized). After calculating the new distribution, and prof-
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itability of work movement, the load balancer sends instructions to the processors
who have to send work to others, indicating the recipient and the amount of work
to be moved. The receiving processors just wait till they have collected the amount
of work they need.

Global Distributed DLB (GDDLB) In this scheme the load balancer is replicated
on all the processors. So, unlike GCDLB, where profile information is sent to only
the master, in GDDLB, the profile information is broadcast to every other processor.
This also eliminates the need for the load balancer to send out instructions, as that
information is available to all the processors. The receiving processors wait for work,
while the sending processors ship the data. Figure 1.1 highlights the differences
between the two strategies pictorially.

Local Strategies

In the local schemes, the processors are partitioned into different groups of size K.
This partition can be done by considering the physical proximity of the machines,
as in K-nearest neighbors scheme. The groups can also be formed in a K-block
fashion, or the group members can be selected randomly. Furthermore, the groups
can remain fixed for the duration of execution, or the membership can be changed
dynamically. We use the K-block fixed-group approach in our implementation,
where the load balancing decisions are made only within a group. If the processors
have different speeds, we can perform a static partitioning so that each group has
nearly equal aggregate computational power. The global strategies are essentially
an instance of the respective local strategies, where the group size, K, equals the
number of processors. The two local strategies we look at are:

Local Centralized DLB (LCDLB) This scheme is similar to GCDLB. The fastest
processor in a group interrupts only the other processors in that group. There is one
centralized load balancer, which asynchronously handles all the different groups.
Once it receives the profile information from one group, it send instructions for
redistribution for that group before proceeding to the other groups.

Local Distributed DLB (LDDLB) Here the load balancer is replicated on all the
processors, but profile information is broadcast only to members of the group.

1.2.2 Discussion

These four strategies lie at the four extreme points on the two axes. For example,
in the local approach, there is no exchange of work between different groups. In
the local centralized (LCDLB) version, we have only one master load balancer,
instead of having one master per group. Furthermore, in the distributed strategies
we have full replication of the load balancer. There are many conceivable points in
between, and many other hybrid strategies possible. Exploring the behavior of these
strategies is part of future work. At the present time, we believe that the extreme
points will serve to highlight the differences, and help to gain a basic understanding
of these schemes.
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Global vs. Local The advantage of the global schemes is that the work redistribu-
tion is optimal, based on information known until that point (the future is unpre-
dictable, so it’s not optimal for the whole duration). However, synchronization is
more expensive. On the other hand, in the local schemes, the work redistribution
is not optimal, resulting in slower convergence. However, the amount of communi-
cation or synchronization cost is lower. Another factor affecting the local strategies
is the difference in performance among the different groups. For example, if one
group has processors with poor performance (high load), and the other group has
very fast processors (little or no load), the latter will finish quite early and remain
idle, while the former group is overloaded. This could be remedied by providing a
mechanism for exchange of data between groups. It could also be fixed by having
dynamic group memberships, instead of having static partitions. In this chapter we
restrict our attention to the static group partition scheme only.

Centralized vs. Distributed In the centralized schemes, the central point of con-
trol could prevent the scalability of the strategy to a large number of machines.
The distributed schemes help solve this problem. However, in these schemes the
synchronization involves an all-to-all broadcast. The centralized schemes require an
all-to-one profile send, which is followed by a one-to-all instruction send. There is
also a trade-off between sequential load balancing decision making in the centralized
approach and the parallel (replicated) decision making in the distributed schemes.

1.3 DLB Modeling and Decision Process

We now present a compile and runtime modeling and decision process for choosing
among the different load balancing strategies. We begin with a discussion of the
different parameters that may influence the performance of these schemes. This is
followed by the derivation of the total cost function for each of these approaches in
terms of the different parameters. Finally, we show how this modeling is used.

1.3.1 Modeling Parameters

The various parameters which affect the modeling are presented below. These in-
clude processor parameters such as the number of processors, processor speeds and
number of neighbors; program parameters such as the data size, number of loop it-
erations, work and time per iteration and communication; network parameters such
as latency, bandwidth and topology; and finally, modeled external load parameters
such as the maximum load and duration of persistence.

Processor Parameters

These give information about the different processors available to the application.

Number of Processors We assume a fixed number of processors available for the
computation. This number is specified by the user, and is denoted as P .
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Number of Neighbors This is used for the local strategies and may be dictated
by the physical proximity of the machines, or it may be user specified. It is denoted
as K.

Processor Speeds There are a number of ways to calculate the speed of the pro-
cessor. For example, we could use the MIPS (million instructions per second),
MFLOPS (million floating-point operations per second), Whetstone, or the Dhrys-
tone ratings. In modern processors different operations have different cost, and we
would need to consider the speed of a processor in terms of the number of floating-
point operations per second, and the number of integer operations per second. We
also need to consider memory access time, and the interaction of these with different
cache and memory sizes. Multiple instruction issue and instruction pipelining would
further complicate the performance model. Therefore, while these figures may give
an indication of the processor capabilities, reliable and consistent performance mea-
sure can be found only by using the execution time of different real applications on
the machines in consideration.
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Based on our study of heterogeneous loop scheduling [4], we summarize the pro-
cessor speeds via the notion of normalized processor speed (NPS), defined as the
ratio of the time taken to execute on the processor in consideration, with respect
to the time taken on a base processor. The speed for processor i is denoted as
Si. Consider Figure 1.2, which show the processor performance of a SUN SPARC-
station LX on some common scientific kernels – Matrix Multiplication, Cholesky
Factorization, and two-dimensional Fast Fourier Transformation. The execution
time is normalized against the performance of a SUN SPARCstation 1. Our experi-
ments indicate that machine performance varies for different applications. Since the
processor speeds vary from one application to another, we approximate the speed
based on small trial application runs. On the other hand, we may obtain these by
compile-time performance prediction.
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Program Parameters

These parameters give information about the application.

Data Size This could be different for different arrays (it could also be different
for the different dimensions of the same array). This is denoted as Nad, where d
specifies the dimension, and a specifies the array name.

Number of Loop Iterations This is usually some function of the data size, and is
denoted as Ii(Nad), where i specifies the loop.

Work per Iteration The amount of work is measured in terms of the number of
basic operations per iteration, and is a function of the data size. This is denoted as
Wij(Nad), where i specifies the loop, and j specifies the iteration number.

Data Communication This specifies the communication cost due to data move-
ment caused by the load balancing process. This is a per array cost, which indicates
the number of bytes that need to be communicated per iteration. In a row or a
column distribution of the data arrays, this is simply the number of the columns
and number of rows, respectively. This is denoted as Daij(Nad), where a is the array
name, i is the loop, and j is the iteration. There is another source of communica-
tion, called intrinsic communication, which specifies the amount of communication
per iteration, which is inherent to the program, for example, communication caused
due to data dependencies. In this chapter, we consider only parallel loops, which
by definition do not have any intrinsic communication.

Time per Iteration This specifies the time it takes to execute an iteration of a
loop on the base processor. It is denoted as Tij(W), where i is the loop, and j
is the iteration. Since this time is with respect to the base processor, the time to
execute an iteration on processor k is simply Tij/Sk. This time could be obtained
by profiling, static analysis, or with the help of the programmer.

Network Parameters

These specify the properties of the interconnection network.

Network Latency This is the time it takes to send a single byte message between
processors. Although the communication latency could be different for the various
processor pairs, we assume it to be uniform, and denote it as L.

Network Bandwidth This is the number of bytes that can be transferred per
second over the network. It includes the cost of packing, receiving, and the “real”
communication time in the physical medium. We denote this as B.

Network Topology This influences the latency and bandwidth between pairs of
processors. It also has an impact on the number of neighbors (for local strategies),
and may help in reducing expensive communication while redistribution. In this
chapter, however, we assume full connectivity among the processors, with uniform
latency and bandwidth.
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External Load Modeling

To evaluate our schemes, we had to model the external load. In our approach, each
processor has an independent load function, denoted as ℓi. The two parameters for
generating the load function are:

Maximum Load This specifies the maximum amount of load per processor, and
is denoted as mℓ. In our experiments, we set mℓ = 5.

0

= Maximum Load, = Duration of Persistence

LOAD

TIME

tltltltltltl

tlml

ml

Figure 1.3 Load function.

Duration of Persistence The load value for a processor is obtained by using a
random number generator to get a value between zero and the maximum load. The
duration of persistence, denoted as tℓ, indicates the amount of time before next
load change, i.e., we simulate a discrete random load function, with a maximum
amplitude given by mℓ, and the discrete block size given by tℓ. A small value for
tℓ implies a rapidly changing load, while a large value indicates a relatively stable
load. We use ℓi(k) to denote the load on processor i during the k-th duration of
persistence. Figure 1.3 shows the load function for a processor.

1.3.2 Modeling the Strategies – Total Cost Derivation

We now present the cost model for the various strategies. The cost of a scheme can
be broken into the following categories: cost of synchronization, cost of calculating
new distribution, cost of sending instructions, and cost of data movement.

Cost of Synchronization

The synchronization involves the sending of interrupt from the fastest processor to
the other processors, who then send their performance profile to the load balancer.
This cost is specified in terms of the kind of communication required for the syn-
chronization. The cost for the different strategies is given below:
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• GCDLB : ξ = one-to-all(P ) + all-to-one(P )
• GDDLB : ξ = one-to-all(P ) + all-to-all(P 2)
• LCDLB (per group) : ξ = one-to-all(K) + all-to-one(K)
• LDDLB (per group) : ξ = one-to-all(K) + all-to-all(K2)

Cost of Distribution Calculation

This cost, denoted δ, is usually quite small. It is replicated in the distributed
strategies. The cost for the local schemes would be slightly cheaper, since each
group has only K instead of P processors. However, we ignore this effect.

Cost of Data Movement

We now present our analysis to calculate the amount of data movement and the
number of messages required to redistribute work.

Notation Let χi(j) denote the iteration distribution, and γi(j) the number of
iterations left to be done by processor i after the j-th synchronization point. Let
Γ(j) =

∑P
i=1 γi(j), and let tj denote the time of the j-th synchronization.

Effect of Discrete Load The effective speed of processor is inversely proportional to
the amount of load on it, which is given as Si/(ℓi(k)+1), where ℓi(k) ∈ {0, · · · ,mℓ}.
Since the performance metric used by the different schemes is the processor per-
formance since the last synchronization point, the processor’s performance is given
as the average effective speed over that duration. Let the (j − 1)-th synchroniza-
tion be during the a-th duration of persistence, i.e., a = ⌈tj−1/tℓ⌉. Similarly, let
b = ⌈tj/tℓ⌉. Let λi(j) denotes the effective load on processor i between the j-th
and the previous synchronization. Then the average effective speed of processor i
between two these synchronizations is given as

σi(j) =

∑b
k=a Si/(ℓi(k) + 1)

b− a+ 1
= Si/

(

b− a+ 1
∑b

k=a 1/(ℓi(k) + 1)

)

= Si/λi(j)

Total Iterations Done We now analyze the effect of the j-th synchronization. We
will first look at the case of uniform loops, i.e., where each iteration of the loop
takes the same time.

Uniform Loops We will use T for the time per iteration. At the end of the
(j − 1)-th synchronization, each processor had χi(j − 1) iterations assigned to it.
Let f denote the first processor to finish its portion of the work. Then the time
taken by processor f is given as

t = tj − tj−1 =
χf (j − 1) · T

σf (j)

The iterations left to be done on processor i is simply the old distribution minus
the iterations done in time t

γi(j) = χi(j − 1) −

⌈

t · σi(j)

T

⌉
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Using the value of t from above, we get

γi(j) = χi(j − 1) − χf (j − 1)

(

σi(j)

σf (j)

)

(1.3.1)

Non-Uniform Loops We now extend the analysis for non-uniform loops. The
time taken by processor f to finish its portion of the work is given as

t = tj − tj−1 =

χf (j−1)
∑

k=1

Tk

σf (j)

where k is in set of iterations assigned to processor f . The iterations done by
processor i in time t, denoted by ℵ ≤ χi(j − 1), is now given by the expression

ℵ
∑

k′=1

Tk′

σi(j)
≥ t

Substituting the value of t from above and moving σi(j) to the other side, we get

ℵ
∑

k′=1

Tk′ ≥

(

σi(j)

σf (j)

) χf (j−1)
∑

k=1

Tk

The iterations left to be done on processor i are then given as

γi(j) = χi(j − 1) − ℵ (1.3.2)

New Distribution The total amount of work left among all the processors is given
as Γ(j) =

∑

γi(j). We now distribute this work proportional to the average effective
speed of the processors, i.e.,

χi(j) =

(

σi(j)
∑P

k=1 σk(j)

)

· Γ(j) (1.3.3)

Recall that initially we start out with equal work distribution among all the
processors, therefore, we have

λi(0) = 1, χi(0) = I(Nad)/P, and γi(0) = χi(0), ∀i ∈ 1, · · · , P

Note that λi(0) could be proportional to initial processor speed for heterogeneous
processors or to the initial processor loads, if known beforehand. These equations,
together with equations (1.3.1), (1.3.2), and (1.3.3), give us recurrence functions
which can be solved to obtain the total iterations left to be done, and the new
distribution at each synchronization point. The termination condition occurs when
there is no more work left to be done, i.e.,

Γ(η) = 0 (1.3.4)

where η is the number of synchronization points required.
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Amount of Work Moved The amount of basic units of work (usually iterations)
moved during a synchronization is given as

α(j) =
1

2

(

P
∑

i=1

|γi(j) − χi(j)|

)

Data Movement Cost The movement of iterations entails movement of data ar-
rays. The number of messages required to move the work and data arrays, denoted
by β(j), can be calculated from the old and new distribution values. The total cost
of data movement is now given by the expression

κ(j) = β(j) · L + α(j) ·
∑

a

[Da/B] (1.3.5)

where a belongs to the set of arrays that need to be redistributed.

Cost of Sending Instructions

This cost is incurred only by the centralized schemes, since the load balancer has
to send the work and data movement instructions to the processors. The number
of instructions is the same as β(j), which is the number of messages required to
move data, since instructions are sent only to the processors which have to send
data. The cost of sending instructions is, therefore, ψ(j) = β(j)L for the centralized
schemes, and ψ(j) = 0 for the distributed schemes.

Total Cost

Global Strategies The above set of recurrence relations can be solved to obtain
the cost of data movement (see equation 1.3.5), and to calculate the number of
synchronization points (see equation 1.3.4), thereby getting the total cost of the
global strategies as

T C = η(ξ + δ) +

η
∑

j=1

[κ(j) + ψ(j)]

where ξ is the synchronization cost, η is the number of synchronizations, δ is the
redistribution calculation cost, κ(j) is the data movement cost, and ψ(j) the cost
of sending instructions for the j-th synchronization.

Local Strategies In the local centralized (LCDLB) strategy, even though the load
balancer is asynchronous, the assumption that groups can be treated independently
from the others may not be true. This is because the central load balancer goes to
another group only once it has finished calculating the redistribution and sending
instructions for the current group.
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Delay Factor This effect is modeled as a delay factor for each group, which
depends on the time for the synchronization of the different groups, and is given as

∆g(j) =

ν(j)
∑

k=1

[δ + ψk(j)]

where ν(j) is the number of groups already waiting in the queue for the central load
balancer. Note that in the local distributed scheme, the absence of a central load
balancer eliminates this effect (i.e.,∆g(j) = 0). There may still be some effect due
to overlapped synchronization communication, but we do not model this.

For the local schemes, the analyses in the previous subsections still hold, but we
have a different cost per group for each of the different categories. The total cost
per group is given as

Cg = ηg(ξ + δ) +

ηg
∑

j=1

[κg(j) + ψg(j) + ∆g(j)]

The total cost of the local strategy is simply the time taken by the last group to
finish its computation

C = MAX
⌈P/K⌉
g=1 {Cg}

1.3.3 Decision Process – Using the Model

Since all the information used by the modeling process, such as the number of
processors, processor speeds, data size, number of iterations, iteration cost, etc.,
and particularly the load function, may not be known at compile time, we propose a
hybrid compile and runtime modeling and decision process. The compiler collects all
necessary information, and may also help to generate symbolic cost functions for the
iteration cost and communication cost. The actual decision making for committing
to a scheme is deferred until runtime when we have complete information about the
system.

Initially at runtime, no strategy is chosen for the application. Work is par-
titioned equally among all the processors, and the program is run until the first
synchronization point. During this time, a significant amount of work has been
accomplished, namely, at least 1/P of the work has been done. This can be seen
by using equation 1.3.1 above, and plugging j = 1, i.e., at the first synchronization
point we have

χf (0) = I(Nad)/P

Summing over all processors, we obtain the total iterations done at the first syn-
chronization point as

P
∑

i=1

(

I(Nad)

P
·
σi(1)

σf (1)

)

>
I(Nad)

P
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At this time, we also know the load function seen on all the processors so far, and the
average effective speed of the processors. This load function, combined with all the
other parameters, can be plugged into the model to obtain quantitative information
on the behavior of the different schemes. This information is then used to commit
to the best strategy after this stage. This also suggests a more adaptive method for
selecting the scheme, where we refine our decision as more information on the load
is obtained at later points. We plan to study the adaptive load balancing strategy
selection approach as part of future work.

1.4 Compiler and Runtime Systems

In this section, we describe how our compiler automatically transforms annotated
sequential code into code that can execute in parallel, and that calls routines from
the runtime system, using the dynamic load balancing library where appropriate.

1.4.1 Runtime System

The runtime system consists of a uniform interface to the DLB library for all the
strategies, the actual decision process for choosing among the schemes using the
above model, and it consists of data movement routines to handle redistribution.
Load balancing is achieved by placing appropriate calls to the DLB library to ex-
change information and redistribute work. The compiler, however, generates code
to handle this at runtime. The compiler can also help to generate symbolic cost
functions for the iteration and communication cost.

1.4.2 Code Generation

For the source-to-source code translation from a sequential program to a parallel
program using PVM (from Oak Ridge National Labs.) for message passing, with
DLB library calls, we use the SUIF compiler from Stanford University. The input
to the compiler consists of the sequential version of the code, with annotations to
indicate the data decomposition for the shared arrays, and to indicate the loops
which have to be load balanced.

The compiler generates code for setting up the master processor (pseudo-master
in the distributed schemes, which is responsible only for the first synchronization,
initial scattering, and final gathering of arrays). This involves broadcasting initial
configuration information parameters such as the number of processors, the size of
arrays and task IDs, calls to the DLB library for the initial partitioning of shared
arrays, final collection of results and DLB statistics (such as number of redistribu-
tions, number of synchronizations, amount of work moved, etc.), and a call to the
DLB master sync() routine which handles the first synchronization, along with the
modeling and strategy selection. It also handles subsequent synchronizations for the
centralized schemes. The arrays are initially partitioned equally based on the data
distribution specification (BLOCK, CYCLIC, or WHOLE). We currently support
do-all loops only, with data distribution along one dimension (row or column).
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for i = 1, n

Z[i][j] += X[i][k] * Y[k][j] 
for k = 1, r

for j = 1, m

SEQUENTIAL CODE

DLB_init(DLB, P, K, DLB_arrayZ, DLB_arrayX, DLB_arrayY)
DLB_scatter_data(DLB)
if (master) DLB_master_sync(DLB)
else while (DLB.more_work)

for (i = DLB.start; i < DLB.end && DLB.more_work; i++)
for j = 1, m

for k = 1, r
Z[i][j] += X[i][k] * Y[k][j] 

if (DLB_slave_sync(DLB) && DLB.interrupt)
DLB_profile_send_move_work(DLB)

if (DLB.more_work)
DLB_send_interrupt(DLB);
DLB_profile_send_move_work(DLB)

DLB_gather_data(DLB);

TRANSFORMED CODE

Figure 1.4 Code generation.

The compiler must also generate code for the slave processors, which perform
the actual computation. This step includes changing the loop bounds to iterate over
the local assignment, and inserting calls to the DLB library checking for interrupts,
for sending profile information to the load balancer (protocol dependent), for data
redistribution, and, if local work stack has run out, for issuing an interrupt to
synchronize. The sequential matrix multiplication code and the code generated by
the compiler with appropriate calls to the DLB library, are highlighted in Figure 1.4.
In the figure dlb.more work is a flag which indicates whether this processor is active.
It becomes false when there are no more iterations assigned to the processor. This
may happen if there is no more work left, or if the processor is extremely slow, and
all the work migrates to the other processors. For each shared array we also have an
DLB array structure, which holds information about the arrays, such as the number
of dimensions, array size, element type, and distribution type. This structure is also
filled by the compiler, and is used by the runtime library to scatter, gather, and
redistribute data.

1.5 Experimental Results

In this section, we first present experimental evidence showing that different strate-
gies are better for different applications under varying parameters. We then present
our modeling results for the applications.

All the experiments were performed on a network of homogeneous SUN (Sparc
LX) workstations, interconnected via an Ethernet LAN (however, our model can
easily handle processor heterogeneity). Applications used C as the source code
language, and were run on dedicated machines, i.e., there were no other users on
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for i = 1, n /*parallel*/
for j = 1, m

for k = 1, r
Z[i][j] += X[i][k] * Y[k][j] 

for i = 1, n(n+1)/2 /*parallel, L1 */

for k = 1, j
A[j(j+1)/2 + k][i] = B[k]

for j = 1, n /*uniform*/

for i = 1, n(n+1)/2 /*parallel, L1 */

for k = 1, j
A[j(j+1)/2 + k][i] = B[k]

for j = i, n /*triangular*/for i = 1, n    /*parallel*/
for j = i, n

A[i] += X * B[j] * C[j-1]
2

2

MXM(Matrix Multiplication)

AC (Adjoint Convolution)

TRFD

Figure 1.5 Main computation loop(s): MXM, TRFD, and AC.

the machines. External load was simulated within our programs as described in
section 1.3. PVM (from Oak Ridge National Labs.) was used to parallelize the
applications. PVM (Parallel Virtual Machine), is a message passing software system
mainly intended for network-based distributed computing on heterogeneous serial
and parallel computers. PVM supports heterogeneity at the application, machine
and network level, and supports coarse grain parallelism in the application. The
applications we consider are given below (pseudocode is shown in Figure 1.5):

• Matrix Multiply (MXM): Multiplication of a n ∗m with a m ∗ r matrix.

• TRFD: It is part of the Perfect Benchmark suite (from University of Illinois,
Urbana-Champaign). It simulates the computational aspects of two-electron
integral transformations. We used a modified version of TRFD, in the C
programming language, which was enhanced to exploit the parallelism.

• Adjoint Convolution (AC): Convolution of two n2 length vectors.

The overhead of the DLB schemes is almost negligible, since they are receiver-
initiated, and in the absence of external load, all processors will finish work at
roughly the same time, requiring only one synchronization.

1.5.1 Network Characterization

The network characterization is done off-line. We measure the latency and band-
width for the network, and we obtain models for the different types of communica-
tion patterns. The latency obtained with PVM is 2414.5 µs, and bandwidth is 0.96
Mbytes/s. Figure 1.6 shows the experimental values (exp), and the cost function
obtained from the experimental values by simple polynomial fitting (polyfit), for
the all-to-all (AA), all-to-one (AO), and one-to-all (OA) communication patterns.

1.5.2 MXM: Matrix Multiplication

Matrix multiplication has only one computation loop nest, as shown in Figure 1.5.
We have Z = X ·Y , where X is a n×r matrix, Y is a r×m matrix, and Z is a n×m
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Figure 1.6 Communication cost.

matrix. We parallelize the outermost loop i, by distributing the rows of Z and X, and
replicating Y on the processors. Only the rows of arrayX need to be communicated
when we redistribute work. The data communication is, therefore, given as C =
NX2 = r. The work per iteration is uniform, and is given as O(n ∗m), i.e., it is
quadratic. We ran the matrix multiplication program over 4 and 16 processors.
The local strategies used two groups, i.e., with 2 neighbors on 4 processors, and 8
neighbors on 16 processors. Two sets of experiments were run with m = 400 and
different values of n and r. In the first set, we used 100 rows per processor, with
n = 400 on 4 processors, and n = 1600 on 16 processors. In the second set, we
used 200 rows per processor, with n = 800 on 4 processors, and n = 3200 on 16
processors.

Experimental Results

Figure 1.7 shows the experimental results for MXM for different data sizes on 4 and
16 processors, respectively. In the figure, the legend “(no DLB)” stands for a run of
the program in the presence of external discrete random load, but with no attempt
to balance the work, i.e., we partition the iterations in equal blocks among all the
processors, and let the program run to completion. The other bars correspond to
running the program under each of the dynamic load balancing schemes, with time
normalized against the case with no dynamic load balancing. Table 1.1 shows the
total execution time for the run without load balancing.

We observe that the global distributed (GDDLB) strategy is the best, which
is followed closely by the global centralized (GCDLB) scheme. Among the local
strategies, local distributed (LDDLB) does better than local centralized (LCDLB).
Moreover, the global schemes are better than the local schemes. We also notice that
on 16 processors the gap between the globals and locals becomes smaller. From our
earlier discussion in Section 1.2.2, local strategies incur less communication overhead
than global strategies.
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Figure 1.7 Matrix multiplication (P=4, 16).

Table 1.1 MXM: Total Execution Time Without DLB

#Processors Data Size Time (s)

4 n=400, r=400, m=400 143.7
4 n=400, r=800, m=400 428.6
4 n=800, r=400, m=400 351.0
4 n=800, r=800, m=400 722.3
16 n=1600, r=400, m=400 266.1
16 n=1600, r=800, m=400 535.9
16 n=3200, r=400, m=400 532.1
16 n=3200, r=800, m=400 1057.3

However, the redistribution is not optimal. From the results, it can be observed
that if the computation cost (work per iteration) versus the communication cost
(synchronization cost, redistribution cost) ratio is large, global strategies are fa-
vored. This tilts towards the local strategies as this ratio decreases. The factors
that influence this ratio are the work per iteration, number of iterations, and the
number of processors. More processors increase the synchronization cost and should
favor the local schemes. However, in the above experiment there is sufficient work
to outweigh this trend, and globals are still better for 16 processors. Comparing
across distributed and central schemes, the centralized master, and sequential redis-
tribution and instruction send, add sufficient overhead to the centralized schemes
to make the distributed schemes better. LCDLB incurs additional overhead due to
the delay factor (see Section 1.3.2), and also due to the context switching between
the load balancer and the computation slave (since the processor housing the load
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balancer also takes part in computation).

1.5.3 TRFD

TRFD has two main computation loops, shown in Figure 1.5, with an intervening
transpose. The two loops are load balanced independently, while the transpose is
sequentialized, i.e., after the first loop nest, all the processors send their portion of
data to the master, who then performs the transpose. This is followed by the second
loop nest. We parallelized the outermost loop of both the loop nests. There is only
one major array used in both the loops. Its size is given as [n(n+1)/2] · [n(n+1)/2],
where n is an input parameter. The loop iterations operate on different columns of
the array, which is distributed in a column block fashion among all the processors.
The data communication, D, is simply the row size. The first loop nest is uniform
with n(n+ 1)/2 iterations and work per iteration given as O(n3 + 3n2 + n), which

is linear in the array size (n3+3n2+n
(n2+n)/2 ≈ 2n+4). The second loop nest has triangular

work per iteration, given as O(n3 + (3 − r/2)n2 + (2 − r − r2/2)n + (r − r2)/2),
where r = (1+ sqrt(−7+8 ∗ i))/2, and i is the outermost loop index. We transform
this triangular loop into a uniform loop using the bitonic scheduling technique [4].

Time

N/21
Iterations

Time

1 N/2 N

Iterations

Figure 1.8 Transforming a heterogeneous loop into a homogeneous loop.

Bitonic Scheduling In a triangular loop, the work in iteration i is given as xi =
ai + b, for i = 1, . . . , n, where a and b are some constants. Let’s assume the n is
even (see [4] for the more general case). We can transform this triangular loop with
n iterations into a uniform loop with n/2 iterations. Note that the sum of the work
in iterations i and (n− i+ 1) is a constant:

xi + xn−i+1 = ai+ b+ a(n− i+ 1) + b = a(n+ 1) + 2b

We can therefore combine iterations i and (n − i + 1) into one iteration of a new
parallel loop. This new loop is homogeneous with a(n+ 1)+ 2b operations in every
iteration. Figure 1.8 illustrates this transformation.

For TRFD, we combine iterations i and n(n+ 1)/2− i+ 1 into one iteration, to
get loops with uniform iterations. The number of iterations for loop 2 is now given
as n(n + 1)/4. The work is also linear in the array size. We experimented with
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input parameter value of 30, 40, and 50, which correspond to the array size of 465,
820, 1275, respectively, and we used 4 and 16 processors, with the local strategies
using 2 groups (2 and 8 processors per group, respectively).
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Figure 1.9 TRFD (P=4, 16)

Table 1.2 TRFD: Total Execution Time Without DLB

#Processors Data Size Time (s) #Processors Data Size Time (s)

4 n=30(465) 31.4 16 n=30(465) 23.0
4 n=40(820) 111.6 16 n=40(820) 70.0
4 n=50(1275) 417.4 16 n=50(1275) 246.9

Experimental Results

Figure 1.9 shows the results for TRFD with different data sizes for 4 and 16 pro-
cessors, respectively. Table 1.2 shows the total execution time of a run of TRFD
without load balancing.

We observe that on four processors, as the data size increases we tend to shift
from local distributed (LDDLB) to global distributed (GDDLB). Since the amount
of work per iteration is small, the computation vs. communication ratio is small,
thus favoring the local distributed scheme on small data sizes. With increasing data
size, this ratio increases, and GDDLB does better. Among the centralized schemes,
the global (GCDLB) is better then the local (LCDLB). On 16 processors, however,
we find that the local distributed (LDDLB) strategy is the best, which is followed
by the global distributed (GDDLB) scheme. Among the centralized strategies also,
the local (LCDLB) does better than the global (GCDLB), since the computation
vs. communication ratio is small. Furthermore, the distributed schemes are better
than the centralized ones.
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The results shown above are for total execution time of TRFD. It is also in-
structive to consider the loops individually, as shown in Table 1.4 under the Actual
column. Loop 2 (L2) has almost double the work per iteration than in loop 1 (L1).
We see that for L1 on 4 processors, LDDLB is the best. For L2, however, since the
work per iteration is more, GDDLB tends to do better with increasing data size.
On 16 processors, LDDLB remains the best throughout for both L1 and L2.

1.5.4 AC: Adjoint Convolution

Adjoint Convolution has only one computation loop nest, shown in Figure 1.5.
We parallelize the outermost loop. All the arrays are replicated, and there is no
communication of data when we redistribute work. Therefore, D = 0. The loop nest
has triangular work per iteration, given as O(n2 − i). Using the bitonic scheduling
technique described above, we transform this into a uniform loop by combining
iteration i and n2 − i + 1 into one iteration. The resulting work per iteration is
given as O(n2 − i + n2 − (n2 − i + 1)) = O(n2 − 1). We experimented with input
values of n = 100, 150, 200, 250, on 4 and 16 processors (2 groups were used for the
local strategies).
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Figure 1.10 Adjoint convolution (P=4, 16).

Experimental Results

Figure 1.10 shows the results for AC with different data sizes for 4 and 16 processors,
respectively. Table 1.3 shows the total execution time for a run of the AC program in
the presence of external load, but without dynamic load balancing. An mentioned
above, this application has no communication due to movement of data arrays
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Table 1.3 AC: Total Execution Time Without DLB

#Processors Data Size Time (s) #Processors Data Size Time (s)

4 n=100 58.1 16 n=100 16.0
4 n=150 290.3 16 n=150 82.8
4 n=200 879.8 16 n=200 224.2
4 n=250 2163.4 16 n=250 549.7

when we redistribute work. However, communication is still required for profile and
instruction exchanges.

On four processors, at small data sizes, the local strategies are better than the
globals. This trend reverses as we increase the data size. Similar results were
obtained for 16 processors. Moreover, the distributed schemes have a slight edge
over the centralized ones.

1.5.5 Modeling Results: MXM, TRFD, and AC

Table 1.4 shows the actual order and the predicted order of performance of the dif-
ferent strategies under varying parameters for the MXM, TRFD and AC programs.
We observe that the actual experimental best and the predicted best strategy match
in most of the cases. For the cases where our prediction differs from the actual run,
the predicted scheme is usually the second best in the actual experiments. For these
cases the table shows the difference in the actual execution between the actual and
predicted best schemes in terms of the time and as a percentage. For example,
consider the row for TRFD, with P = 4 and data size n = 40(820), L2. The actual
best scheme was GDDLB, and the predicted best was LDDLB. Looking at the ac-
tual runs, we found that the total execution time of GDDLB and LDDLB was 24.2s
and 25.7s, respectively. The difference between these two schemes is thus 1.5s, or
about 6.2%. Similarly, we can observe that whenever there is a mismatch between
the actual and predicted best schemes, the actual differences in execution time is
very small, with an average difference of 2.7% and a maximum of 8.2%. Another
factor to keep in mind is that the table presents the actual best scheme averaged
over several runs. Since the differences are really small, in practice, one or the
other scheme may do better from one run to another, which makes the prediction
task extremely difficult. Moreover, the modeling discrepancy usually occurs at the
crossover points along the two axes under consideration, i.e., when a best scheme
starts to shift from a local to a global strategy (and vice versa), or from a central-
ized to a distributed strategy (and vice versa). This can be seen, for example, for
L2 of TRFD with P = 4. As the data size increases, the actual best scheme starts
to shift from a LDDLB to a GDDLB. It is well nigh impossible to predict the best
scheme with such fine-grained accuracy. As the table shows, even for these difficult
points, while our modeling doesn’t predict the best scheme, the scheme it predicts
is only slightly worse than the actual best.
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Table 1.4 MXM & TRFD: Actual vs. Predicted Best DLB Scheme

Program Parameters Actual Predicted Difference
P Data Size Best Best Time(s) % Diff
4 n=400, r=400 GDDLB GDDLB
4 n=400, r=800 GDDLB GDDLB
4 n=800, r=400 GDDLB GDDLB

MXM 4 n=800, r=800 GDDLB GDDLB
16 n=1600, r=400 GDDLB GCDLB 1.2s 0.7%
16 n=1600, r=800 GCDLB GDDLB 3.7s 1.1%
16 n=3200, r=400 GDDLB GDDLB
16 n=3200, r=800 GDDLB GDDLB
4 n=30(465), L1 LDDLB GDDLB 0.9s 8.2%
4 n=40(820), L1 LDDLB LDDLB
4 n=50(1275), L1 LDDLB LDDLB
4 n=30(465), L2 LDDLB GDDLB 0.2s 3.5%
4 n=40(820), L2 GDDLB LDDLB 1.5s 6.2%

TRFD 4 n=50(1275), L2 GDDLB GDDLB
16 n=30(465), L1 LDDLB LDDLB
16 n=40(820), L1 LDDLB LDDLB
16 n=50(1275), L1 LDDLB LDDLB
16 n=30(465), L2 LDDLB LDDLB
16 n=40(820), L2 LDDLB LDDLB
16 n=50(1275), L2 LDDLB LDDLB
4 n=100 LDDLB LDDLB
4 n=150 LDDLB GDDLB 3.6s 1.43%
4 n=200 GCDLB GDDLB 0.8s 0.1%

AC 4 n=250 GCDLB GDDLB 0.5s 0.03%
16 n=100 LDDLB LDDLB
16 n=150 GDDLB LDDLB 1.6s 2.9%
16 n=200 GDDLB GDDLB
16 n=250 GDDLB GDDLB

1.6 Summary

In this chapter, we analyzed both global and local, and centralized and distributed,
interrupt-based receiver-initiated dynamic load balancing strategies, on a network
of workstations with transient external load per processor. We showed that different
strategies are best for different applications under varying parameters such as the
number of processors, data size, iteration cost, communication cost, etc. We then
presented a modeling process to evaluate the behavior of these schemes. We showed
that our model is reasonably accurate in its predictions and can guide the decision
process effectively.
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Presenting a hybrid compile and runtime process, we showed that it is possi-
ble to customize the dynamic load balancing scheme for a program under differing
parameters. Given the host of dynamic scheduling strategies proposed in the lit-
erature, such analysis would be useful to a parallelizing compiler. To take the
complexity away from the programmer, we also automatically transform an anno-
tated sequential program to a parallel program with the appropriate calls to the
runtime dynamic load balancing library.
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