
1

In Proceedings of the Fourth International Symposium on High Performance Distributed
Computing, August 1995

Loop Scheduling for Heterogeneity �
Michał Cierniak, Wei Li, Mohammed Javeed Zaki

Computer Science Department, University of Rochester, Rochester, NY 14627

Abstract
In this paper, we study the problem of scheduling par-

allel loops at compile-time for a heterogeneous network of
machines. We consider heterogeneity in three aspects of
parallel programming: program, processor and network.
A heterogeneous program has parallel loops with different
amount of work in each iteration; heterogeneous proces-
sors have different speeds; and a heterogeneous network
has different cost of communication between processors.

We propose a simple yet comprehensive model for use in
compiling for a network of processors, and develop com-
piler algorithms for generating optimal and sub-optimal
schedules of loops for load balancing, communication op-
timizationsand network contention. Experiments show that
a significant improvement of performance is achieved using
our techniques.

1 Introduction
With the rapid advances in the new high speed com-

puter network technologies such as ATM (Asynchronous
Transfer Mode), a network of workstations is becoming
increasingly competitive compared to expensive parallel
machines. However, it introduces heterogeneity in the vir-
tual parallel machine, since it may consist of possibly many
different types of processors. For example, we may have
many HP, SUN, or DEC workstations, and a multiprocessor
SGI machine in our network. The processors have different
speeds and obviously the communication between proces-
sors on the SGI is faster than between one processor on the
SGI and a SPARC.

The inherently dynamic nature of the configuration of
the virtual machine, depending on what machines are avail-
able at the time of running the program, makes architecture-
dependent programming almost impossible. The role of
generating an efficient parallel code must be filled by com-
pilers. In this paper, we study the problem of scheduling
parallel loops at compile-time for a heterogeneous network
of machines.

We consider heterogeneity in three aspects of parallel
programming: program, processor and network. In partic-
ular, we make the following technical contributions:� We propose a simple model for a heterogeneous net-

work of machines. It serves as a conceptual starting
point in compiling for load balancing and communica-
tion in such an environment. We consider heterogene-
ity in both the processor and the network dimensions.

We take a very different approach than the work on
stochastic models [6], which are intended to model�This work was supported in part by an NSF Research Initiation Award

and ARPA contract F19628-94-C-0057.

the performance behavior of the whole system with
possibly many jobs running at the same time in an un-
predictable way, and are, therefore, more detailed and
complicated. We develop this model in the context
of compiler code generation and optimizations. Since
compiler analysis can provide more information and
insight into the program access pattern and behavior,
the machine model can be simpler and more determin-
istic. Simplicity of the machine model is also required
so that it can be used in the compiler for deciding op-
timizations.� We develop a set of architecture-conscious compile-
time scheduling algorithms for generating optimal or
sub-optimal scheduling of loops for load balancing
and communication, for a network of heterogeneous
machines. We describe the optimal way to partition
the iterations of parallel loops on the available pro-
cessors. The parallel loops may be homogeneous or
heterogeneous, and with or without communication.

We show that for simple homogeneous loops without
communication, the straightforward way of distribut-
ing iterations according to the relative speeds of the
machines works well. However, for heterogeneous
loops, and loops with communication and contention,
new techniques must be employed to achieve good
performance.� We present experimental results to verify that these
techniques produce very good results in practice. We
show that the architecture-conscious scheduling al-
gorithms result in much better performance than the
naive architecture-oblivious scheduling approach.

Examples are drawn from a mix of synthetic and
real applications, from scientific computing and eco-
nomics modeling [9].

Compile-time static loop scheduling is efficient and in-
troduces no additional runtime overhead. For UMA (Uni-
form Memory Access) parallel machines, usually loop it-
erations can be scheduled in block or cyclic fashion [12].
For NUMA (Non-Uniform Memory Access) parallel ma-
chines, loop scheduling has to take data distributioninto ac-
count [7]. When the execution time of loop iterations is not
predictable at compile-time, runtime dynamic scheduling
can be used at the additional runtime cost of managing task
allocation. Self-scheduling [13] is the simplest approach
in which processors ask for additional work from the task
queue when they become idle. Guided self-scheduling [11]
reduces the runtime cost by allocating a block of iterations
every time. Affinity scheduling [8] is a hybrid static and

2

dynamic scheduling algorithm that takes data locality into
account.

Research in heterogeneous computing environments has
focused on homogeneous applications. The problem of
load balancing on a parallel machine with nodes of differ-
ent performance has been considered in [1], [3] and [5].
An approach for scheduling in a machine with heteroge-
neous memories has been presented in [14]. Requirements
for distributed computing over LAN’s have been analyzed
in [10].

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce our program model, which is followed
by our machine model in Section 3. In Section 4, we
consider scheduling for heterogeneous programs (on ho-
mogeneous machines). In Section 5, we look at the case of
heterogeneous processors, with the same communication
links. Section 6 deals with the case where the network
communication links are heterogeneous, i.e., there are dif-
ferent communication costs between different points in the
network. In Section 7, we extend our model to handle the
case of scheduling for load balancing while avoiding net-
work contention. The experimental results are presented
and discussed in Section 8. Finally, we conclude in Sec-
tion 9.

2 Program Model
In this paper we will look at parallel loops, that is, loops

whose iterations do not depend on one another. With the
right placement of data, a parallel loop does not require any
communication during execution, i.e., there is no data flow
between iterations of a parallel loop. However, communi-
cation may be necessary between different loops. There-
fore, there may be communication caused by each iteration
because of subsequent computation. We assume that mes-
sages are sent after the computation terminates and mes-
sages to the same destination are combined into one larger
message.

We have to address two issues — the amount of compu-
tation and the amount of communication in each iteration
of the parallel loop. We would like to generate schedules
for the loop which are optimal, both in terms of communi-
cation and computation, to achieve the best speed-up on a
network of heterogeneous machines.

2.1 Parallel loops
To create a static schedule with a good load balance, we

have to know the amount of computation in every iteration.
We consider two cases of parallel loops: homogeneous
and heterogeneous. By homogeneous loops, we mean par-
allel loops that have the same amount of computation in
each iteration. For the heterogeneous loop case, we restrict
our attention to loops where the computation is an affine
function of the loop index, which captures a large set of
real programs. We introduce a program parameter into our
model: xi — number of operations in iteration i.

For the homogeneous case, xi is constant; for the het-
erogeneous case, we assume that xi = ai + b, that is the
amount of computation is an affine function of the normal-
ized loop index.
2.2 Communication

In the above section, we considered loops without com-
munication. As mentioned earlier, by the nature of parallel
loops, there is no communication necessary between their

iterations. When we talk of communication, we mean mes-
sages that are sent at the end of the execution of the parallel
loop, because of the need to communicate data to subse-
quent loops. We assume that each iteration of the parallel
loop contributes a precisely defined amount of data to the
messages sent after the loop completes. Further, we as-
sume that the messages are being sent after all iterations
assigned to a given processor have completed, i.e., there is
only one message per processor, consisting of data from all
iterations, rather than one message per iteration.

Thus, we have the following program parameter which
denotes the amount of communication: yi — number of
bytes that have to be sent as the result of iteration i.

Communication contributed by each iteration can be
constant (the homogeneous case) — as in the example above
— or it can vary (the heterogeneous case). In the heteroge-
neous case, we assume that yi = ci+ d, that is, the amount
of communication is an affine function of the normalized
loop index.

3 Machine Model
We have been looking at a network of workstations and

parallel machines. This introduces heterogeneity at two
levels: one due to the potentially different processor speeds,
and the other due to differences in communication cost
between any two machines in the network. We want our
model to take these factors into account.

3.1 Processor Model
The multitude of machine parameters makes their use in

performance prediction very difficult. Therefore, for our
discussion, we will only consider a single parameter, ,
to describe the speed of a machine: i — time for one
operation on processor i. This synthetic parameter reflects
the average operation time in an application with a typical
operation mix.

The machines in the network can be homogeneous or
heterogeneous. In the former case, the speed of all ma-
chines is given by the same parameter, . In the heteroge-
neous case that cost can vary depending on the machine.
Therefore, we need a different value of that parameter for
every machine. We will use i to denote the speed of theith machine in the considered configuration. The number
of machines, p, is constant throughout the execution of the
application.

3.2 Network Model
For a network of workstations, we also have to consider

the cost of communication between any two machines, i.e.,
we must consider the interplay of latency and bandwidth
between point to point in the network. Furthermore, when
we talk of communication between two machines we must
consider the cost of packing (marshaling) the data, receiv-
ing the data, and the cost of the “real” communication, that
is, the time actually spent in the physical medium. We
have two parameters for each of the above three cases —
the startup time (independent of the message size), and the
actual time spent in performing the action (proportional to
the message size).

Rather than dealing with six or more parameters, we
simplify our model and consider the startup time and the
cost for the action to be the sum of the costs for all three

3

stages1, and thus have the following two parameters: �i —
startup time for a message on processor i, and �i — time
to send one byte of data on processor i.

The network of machines can be either homogeneous or
heterogeneous. In the former case, �i = � and �i = �,
for all the machines. In the latter case, these vary with the
machine.

The discussion so far assumed that messages from dif-
ferent machines can be sent at the same time. For many
machines this is not a realistic assumption. Contention in
the network adds complexity to the model. The discussion
of this, more complex, case will be deferred until Section 7.

3.3 Virtual Machine Models
Based on our discussion above we have the following

four combinations of machines and networks:
(1) Homogeneous Processors and Homogeneous Network.
(2) Heterogeneous Processors and Homogeneous Network.
(3) Homogeneous Processors and Heterogeneous Network.
(4) Heterogeneous Processors and Heterogeneous Net-
work.

For Sections 4, 5 and 6 we assume no contention in the
network. Section 7 presents a scheduling algorithm for the
case 1 above, that can be used in presence of contention.

4 Scheduling for Heterogeneous Programs
In this section we consider heterogeneous programs

(parallel loops) on parallel machines with homogeneous
processors and a homogeneous network. As discussed in
Section 3, the following machine parameters describe this
type of machines: p (number of processors in the system),
(time to execute one operation), � (communication initial-
ization time), and � (time to send one byte of a message).
As usual, n denotes the number of iterations of the loop.

As a simple introduction to loop scheduling, we first
consider homogeneous parallel loops without communi-
cation. This is the simplest case of all — it is the first
type of a loop described in Section 2.1. Every proces-
sor has the same speed, every iteration requires the same
amount of computation, and there is no communication.
With these assumptions, every processor should execute
approximately the same number of iterations. If n is a
multiple of p, every processor will have exactly the same
number of iterations: n=p. Otherwise, some processors
will execute bn=pc while others will have bn=pc + 1 iter-
ations. In this case, it is not important which processors
have one more iteration to execute. In the case of homo-
geneous loops with communication, every iteration causes
the same number of bytes to be sent. Therefore, the static
scheduling above will evenly distribute both computation
and communication.

For heterogeneous loops, again, we deal with the
communication-free case first. As discussed earlier in this
section, this type of a loop is characterized by the parame-
ter, xi = ai + b, for i = 1; : : : ; n. Rather than solving this
problem directly, we will show how to transform this loop
into a homogeneous parallel loop and use the scheduling
strategy for homogeneous loops presented above.

We first consider a special case when the number of
iterations n is a multiple of 2p. We can transform this loop
into a homogeneous parallel loop with n=2 iterations. Note

1We will consider a more complex communication model in Section 7.

that the sum of the work in iterations i and (n� i+ 1) is a
constant:xi+xn�i+1 = ai+ b+ a(n� i+ 1) + b = a(n+ 1)+ 2b
We can therefore combine iterations i and (n � i + 1)
into one iteration of a new parallel loop. This new loop
is homogeneous with a(n + 1) + 2b operations in every
iteration. As all processors execute exactly n=p iterations
of the transformed loop, there is no imbalance,

In the general case, there may be imbalance. Letr = n mod (2p). If r 6= 0, the imbalance is caused by
the remaining r iterations. We can make the imbalance
very small by choosing those r iterations to be very short
(the loop is not homogeneous). To achieve this, we take
the first r iterations if a > 0, since we have an increasing
amount of computation in this case, and the last r iterations
otherwise. Now, if r � p, then r processors get one iter-
ation each, otherwise the first r mod p processors get two
iterations (we can transform the 2(r mod p) consecutive
iterations into a homogeneous loop), the remaining proces-
sors take the longest 2p � r iterations. The schedule ob-
tained in this way is close to optimal. We call this approach
bitonic scheduling [2], since the iterations are assigned to
processors in an increasing and decreasing fashion.

We shall illustrate this optimization with the following
example. Let the number of iterations, n = 10, and the
number of processors, p = 3. Let xi = i i.e., a = 1
and b = 0. To get the optimal schedule, we first computer = 10 mod 6 = 4. Because a > 0, we take away the
first four iterations. The last 6 iterations can be perfectly
balanced with each processor getting 2 iterations. In our
case processors 1, 2, and 3 get iterations 10,5; 9,6; and 8,7,
respectively. Since r > p, we compute r mod p = 4 mod
3 = 1, and thus, the first processor gets two iterations from
the beginning, i.e., it gets iterations 1 and 2. The other two
processors can pick up the two remaining iterations. So
processor 2 and 3 get iterations 3 and 4, respectively.

We will contrast our technique with another popular
technique for load balancing. Often, iterations of heteroge-
neous loops are assigned in an interleaved fashion — using
round-robin scheduling. For our example above, with in-
terleaved scheduling, processor 1 gets iterations 1,4,7,10;
processor 2 gets iterations 2,5,8; and processor 3 gets iter-
ations 3,6,9. The completion time using our schedule, 19s,
is shorter than the completion time using interleaving, 22s.

The case with communication can be handled with a
slight modification of the above transformation. Every
iteration of the new parallel loop will cause c(n+ 1) + 2d
bytes to be sent. When 2p divides n, the homogeneous
loop obtained this way can be scheduled as described in
Section 4. When 2p does not divide n, we have to use
an approach similar to the algorithm described above. We
find r = n mod (2p). We can perfectly schedule n � r
iterations. And we choose the r iterations, such that they
are the “cheapest” in terms of the imbalance they produce,
and assign them as before. The difference is that, this time
we don’t use the sign of a to determine which iterations
are the “cheapest”. We have to use the sign of (a + �c)2 ,
because this constant determines whether the time spent
on computation and communication increases or decreases
with the iteration number.

2Recall that y = ci+ d is the communication for iteration i.

4

5 Scheduling for Heterogeneous Processors
In this section we consider parallel machines with het-

erogeneous processors and a homogeneous network. The
following machine parameters describe these types of ma-
chines: p (number of processors in the system), i (time
for processor i to execute one operation), � (communica-
tion initialization time), and � (time to send one byte of a
message). As usual, n denotes number of iterations of the
loop.

We call the straightforward way of assigning the
same amount of work to each processor the architecture-
oblivious approach, and the algorithms developed in the
following sections the architecture-conscious approach.
5.1 Homogeneous parallel loops, no communica-

tion
We create the schedules by trying to balance the com-

putation on all the processors. We note that, to evenly
distribute computation, every processor should have a frac-
tion of all the work given by the following formula:wi = 1iPpk=1

1k
To get the optimal load balance, we should assign zi =win iterations to processor i. Since zi is not necessarily

an integer number, we have to decide whether bzic or dzie
should be used. If the iteration space is large this decision
is not very critical. We break the tie in the following way.
Processor i works on iterations bPi�1k=1 zkc + 1 throughbPik=1 zkc. The schedule obtained in this way is optimal.

A similar approach, by distributing the load proportion-
ally to the relative speeds of the processors, has been used
with success in [5].
5.2 Homogeneous parallel loops, with communi-

cation
When there is communication, the algorithm in Sec-

tion 5.1 will not necessarily generate an optimal schedule.
Here we present an optimal solution. For the uniform case,xi = x and yi = y for i = 1; : : : ; n. The communica-
tion time caused by zi iterations is � + �yzi (recall that
all objects to be sent are packed into one message and sent
after the computation has completed). Hence, the total time
spent by processor i on computation and communication isti = ixzi + �+ �yzi = gizi + �
where gi = ix + �y. Note that for this to work, we
have to ensure that ix and �y are in the same units, say,
microseconds.

As in the other cases, our goal is to find a set of zi’s that
minimizes: maxpi=1 ti. If we assign a non zero amount of
work to every processor, such a minimum will yield ti = tj
for i; j = 1; : : : ; p. A set of zi’s that minimizes maxpi=1 gizi
will also minimize maxpi=1 ti, because � is constant. We
can redefine wi to be:wi = 1giPpk=1

1gk
and proceed as in Section 5.1.

5.3 Heterogeneous parallel loops
In this case, we can again first transform a heterogeneous

loop into a homogeneous loop and then apply the methods
described above. Note that, although this approach results
in a schedule which is optimal for the transformed, homo-
geneous loop, it is not necessary optimal for the original,
heterogeneous loop. The possible load imbalance is, how-
ever, very small. The work assigned to each processor is
different from the optimum by at most one iteration.

6 Scheduling for Heterogeneous Networks
In this section we consider parallel machines with het-

erogeneous processors and a heterogeneous network. The
following machine parameters describe these types of ma-
chines: p (number of processors in the system), i (time for
processor i to execute one operation), �i (communication
initialization time on processor i), and �i (time to send one
byte of a message from processor i). As usual, n denotes
the number of iterations of the loop. Loops without com-
munication are equivalent to the loops for systems with a
homogeneous network. Therefore, for these, the solutions
from Sections 5.1 and 5.3 can be applied to the case of a
heterogeneous network.

The time spent by processor i on computation and com-
munication can be calculated in the same way as in the
homogeneous case. That is, we will define the time to exe-
cute one iteration of the loop on processor i, gi = ix+�iy,
and note that time spent by processor i on computation and
communication is: ti = gizi + �i

To eliminate load imbalance caused by different com-
munication startup times, �i, we find a processor with the
largest value of�i, and we add extra iterations to processors
with shorter times.

Let �j = maxpi=1 �i. The number of extra iterations for
a given processor is:ei = ��j � �igi �

We can now use the algorithm from Section 5.2 on the
remaining (n�Ppk=1 ek) iterations to obtain z0i and assignzi = z0i + ei iterations to every processor.

The solution presented in this section is not necessarily
optimal, but the schedule found by this algorithm is very
close to the optimum. The work allocated to any proces-
sor is different by at most two iterations from the work
corresponding to the perfect load balance.

We can similarly schedule a heterogeneous loop with
communication. Details are given in [2].

7 Scheduling for Contention Avoidance
Sections 4, 5 and 6 considered a machine model which

allowed messages sent from different machines to travel
in the network at the same time — in parallel. On many
existing parallel machines, for instance on a network of
workstations using Ethernet as the interconnect, the perfor-
mance will suffer if many messages are being sent at the
same time. On such parallel multicomputers, it is desirable
to schedule a parallel program in such a way that only one
processor (workstation) sends a message at a given time.

5

We assume that the machines effectively sequentialize
all messages. That is, at any given time only one message
can be in transit in the physical medium, which is not
accessible to the other processors until the send operation
is completed. This model should be a good approximation
of many bus-based multicomputers.

Programs running on machines that sequentialize com-
munication, need a different set of optimizations. In this
section we will describe a method to minimize execution
time of a homogeneous parallel loop on a homogeneous
multicomputer.
7.1 The Model

We will extend the machine model discussed in the pre-
vious sections. The following parameters describe every
processor in the parallel machines considered in this sec-
tion:� — time to execute one operation,� �0; �0 — communication parameters for the part of

the send operation performed locally (this is the part
of communication that is not sequentialized),� �00; �00 — communication parameters for the part of
the send operation that requires access to a shared
physical medium and which is sequentialized.

As before a homogeneous parallel loop is described by
the following two parameters: x (number of operations to
be performed in one iteration), and y (length of the message
caused by a single iteration, but as in the earlier sections
messages from all iterations assigned to a given processor
are combined and sent as one larger message).

There are p processors. Processor i works on zi iter-
ations. If we assume that the message can be sent im-
mediately with no contention (without waiting for other
processors to free the shared communication medium), the
total time to execute zi iterations and broadcast a message
resulting from this iteration is:T 0i = zix + �0 + ziy�0 + �00 + ziy�00 = t0i + t00i
where t0i = zix +�0+ ziy�0, is the work that can be per-
formed locally without interference with other processors,
and t00i = �00+ ziy�00 is the part of communication that has
to be sequentialized.

In reality, every processor first performs local operations
for t0i time, and then waits until the shared medium becomes
free and sends its data in t00i time. During this t00i period,
other processors cannot send anything.

Without loss of generality, assume that processor i
broadcasts its message before processor i + 1. This is
justified, because all processor are identical and their or-
dering is arbitrary. With this assumption, we can give the
the real time that the processor i spends on computation
and communication:Ti = max(t0i; Ti�1) + t00i
where T0 = 0. This formula expresses a simple fact that a
processor cannot begin accessing the shared medium before
its computation has completed (t0i), or its predecessor has
released the communication channel (Ti�1).

7.2 Optimal Schedule
A simple-minded strategy would assign the same num-

ber of iterations to every processor — all processors have
the same speed and all iterations have the same cost. This
strategy would cause each processor, except the first one, to
wait for the communication channel. Moreover, every pro-
cessor would wait longer than its predecessor. If we define
the total execution time to be the time when the last send
completes, the execution time achieved by this strategy is
not optimal.

We show a static scheduling strategy that is optimal in
that it results in the shortest possible execution time on a
given number of processors (that is, all available processors
are used).

Theorem 1 The shortest execution time is achieved whent0i = Ti�1, for i = 2; : : : ; p.

Proof (sketch): The total time spent on the sequentialized
part of communication is the same for every schedule and
is equal to:

Ppk=1 t00k = p�00 + ny�00.
Consider a schedule such that t0i = Ti�1, for i =

2; : : : ; p. Let us call it a contention-free schedule. We
will show that any change in this schedule will increase the
execution time.

Consider a new schedule, in which processor i broad-
casts its message before processor i+1 (this can be assumed
without loss of generality, because all processors are iden-
tical). Let i be the first processor whose local time t0i differs
from the local time under the contention-free schedule.

Note that the local time t0i and the communication timet00i are related and any change in the number of iterations
assigned to i will change both times for processor i. There
are two cases:

(1) The local time under the new schedule is longer than
the local time under the contention-free schedule.

The sum of the remaining communication times (includ-
ing processor i),Ppk=i t00k, is the same as in the contention-
free schedule. In the contention-free schedule this was also
the time left to the completion of the execution. In the new
schedule, because t0i has increased, we have to start com-
munication for processor i later than in the contention-free
schedule. The total time to complete is at least the same as
that for the contention-free schedule so the execution time
will be longer.

(2) The new local time is shorter.
We are left with some extra work that processor i did in

the contention-free schedule. If all processors j, such thatj > i, have the same amount of work as they used to have
under the contention-free schedule, this extra work will be
left over. Hence, one of the remaining processors has to
perform this additional work increasing the execution time.2

We will show below, an algorithm that will find a
contention-free schedule if it exists. We can use Theo-
rem 1 to simplify the formula for the completion time of
the ith processor: Ti = t0i+ t00i . We can use this formula to
find the optimal schedule. A schedule is defined by the set
of zi, for i = 1; : : : ; p. By Theorem 1 we have t0i = Ti�1,
but we know that Ti�1 = t0i�1+t00i�1, so this equality can be

6

rewritten as: t0i = t0i�1 + t00i�1. If we expand this formula,
we get:zix+�0+ziy�0 = zi�1x+�0+zi�1y�0+�00+zi�1y�00 orwzi = vzi�1 + �00
where, w = x+y�0, v = x+y�0+y�00. We have p�1
of these equations for i = 2; : : : ; p. These p� 1 equations
together with the “exhaustiveness” equation,pXi=1

zi = n
constitute a system of p linear equations with p unknowns.8>>>><>>>>: vz1 �wz2 = ��00vz2 �wz3 = ��00

...vzp�1 �wzp = ��00z1 + z2 + : : :+ zp = n
The solution to this system of equations defines the optimal
schedule.

We have shown in [2] that the above system of equations
has a unique solution.

8 Experiments
To verify the proposed scheduling techniques, we con-

ducted experiments and measured the execution time and
the speedup of several applications. Where appropriate, we
also compare our approach with straightforward schedul-
ing. The results of our experiments are encouraging. Our
techniques show significant performance improvements
over traditional approaches.

The rest of this section is organized similarly to the
whole paper. First we compare our approach to scheduling
heterogeneous loops on homogeneous processors with the
popular round-robin load-balancing technique. We did not
run experiments for homogeneous loops on homogeneous
processors, as scheduling those is easy and well understood.
Then we give results for scheduling both homogeneous and
heterogeneous loops on heterogeneous processors. The
last part of this section gives results for our approach to
contention avoidance.

All experiments were performed on Sun workstations
(SPARCstation 1, SPARCstation LX and SPARCstation
10) connected with an Ethernet network. The Programs
were written in C and Fortran, and PVM [4] was used to
parallelize them.
8.1 Heterogeneous programs

TRIANG [2] is a program with a heterogeneous loop used
in the experiments presented in this section.

Figure 1 shows the speedups for two different paral-
lelization of TRIANG. Label bitonic marks the results
for the parallelization from Section 4. We compare our ap-
proach with the round-robin scheduling. The round-robin
technique schedules a doall loop on p processors by assign-
ing iterations 0; 0+ p; 0+ 2p; : : : to processor 0, iterations
1; 1 + p; 1 + 2p; : : : to processor 1 and so on. This ap-
proach is very popular in practice. It is very simple and
yields acceptable performance.

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

1 2 3 4 5 6 7 8

sp
ee

du
p

processors

Speedups

bitonic
round-robin

Figure 1: Speedups — TRIANG

In this experiment, we assume that the arrays are not
distributed before and after the loop nest. Therefore, our
timings include the time required to send out necessary data
to all processors and to gather results from all participating
processors. Because communication in a network of work-
stations is very expensive, the speedups are not close to the
optimum.

Figure 1 demonstrates that the bitonic schedule consis-
tently outperforms the round-robin technique.

8.2 Heterogeneous processors
We have chosen three applications to measure perfor-

mance of scheduling in a heterogeneous environment. Ma-
trix multiply and economics are examples of a homoge-
neous loop. TRIANG is an example of a heterogeneous
loop.

To find a static schedule on a network of heterogeneous
computers, we have to know the processor speeds. In our
discussion in Section 5, we used the parameter i, to de-
note time for processor i to execute one operation. This is
useful for analytical reasoning about distributed computing
systems, but does not fully capture the complexity of mod-
ern processors. Not only do the different operations have
different times, but also pipelining and multiple instruction
issue make finding a combined time for a sequence of oper-
ations very hard. Consider two of the workstations used in
our experiments: SPARCstation 1 and SPARCstation LX.
An average operation time depends on the instruction mix.
This is reflected in relative speeds of those two machines.
For matrix multiply, SPARCstation LX is 1.85 times faster
than SPARCstation 1, but for the heterogeneous loop ex-
ample, this ratio is 2.15. The difference in relative speeds
of a SPARCstation 10 and a SPARCstation 1 is even larger
for those two applications. It is 3.00 and 5.65 respectively,
for the two programs.

Therefore, a better approach to load balancing is to first
measure execution times of the sequential program that
we are about to parallelize on small data sizes on every
machine which we want to use in our heterogeneous system.
The times can be used to obtain relative speeds of those
machines for this particular application [14].

In this section we consider programs without contention.
In this case our goal is to obtain the best possible load bal-
ance using the algorithm in Section 5. We will use the
following approach to evaluate the parallelization. First

7

we will normalize the speeds of all machines in the con-
figuration relatively to the speed of one of the processors
— the base processor. Any machine can become the base
processor and it always has the normalized speed of 1. For
this experiment, our parallel machine consists of a network
of three types of workstations. We normalize the speeds
relatively to the slowest of our computers, SPARCstation
1.

We can use normalized speeds to compute a “speedup”
for a heterogeneous machine configuration. We can define
this generalized speedup to be a ratio of the uniprocessor
execution time on the base processor to the execution time
of the parallel program. We can also define the “ideal”
speedup for a particular configuration to be the sum of nor-
malized speeds of all processors in a given configuration.

Configuration ideal arch- arch-
-conscious -oblivious

1T1, 1T2 2.85 2.84 2.00
1T1, 1T3 4.00 3.74 2.05

2T1, 1T2, 1T3 6.85 6.68 4.03
1T1, 3T2, 2T3 12.55 10.26 6.12
1T1, 8T2, 1T3 18.8 18.75 10.06
10T1, 3T2, 1T3 18.55 17.22 13.92
2T1, 12T2, 1T3 26.2 23.09 15.40

15T1, 1T3 18.00 15.88 13.73

Table 1: Speedups — matrix multiply

The results for matrix multiply are given in Table 1.
The program multiplies two square matrices of the size
600� 600. The configuration column describes how many
machines of a given type were used in the experiment. Type
1 (T1) is SPARCstation 1, type 2 (T2) is SPARCstation
LX, and type 3 (T3) is SPARCstation 10. Architecture-
oblivious schedule assigns the same number of iterations to
every processor. Architecture-conscious schedule assigns
a number proportional to the processor speed.

As expected, the results show that the architecture-
conscious schedule is always better than the architecture-
oblivious one. For some configurations the difference is
not significant, for others it is very large. Intuitively, the
slowest machine’s execution time will dominate the time
for the whole program. So, the configuration with many
fast machines and few slow ones will suffer most from
architecture-oblivious scheduling. If, on the other hand, a
configuration contains mostly slow machines, architecture-
conscious scheduling will not improve the execution time
significantly.

There is one more interpretation for the sum of normal-
ized speeds. It says how many base processors would be
equivalent in speed to a particular configuration. Note that
this number can be fractional, so for example the first con-
figuration in Table 1 is equivalent to 2.85 base processors.

We can use this observation to plot the speedup as a
function of the number of processors. This approach gives
a concise visualization of the parallel performance, but we
shouldn’t overestimate its accuracy. In particular, there
may be many different configurations with the same base
processor equivalent, but their speedups may be different.

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

3 3.5 4 4.5 5 5.5 6

sp
ee

du
p

processors

Speedups - economics

architecture conscious
architecture oblivious

ideal

Figure 2: Speedups — economics

The second example of the homogeneous loop case is
a program for spatial price equilibrium modeling in eco-
nomics [9]. The program applies the methodology of the
theory of variational inequalities for formulation and com-
putation of spatial price equilibrium models with discrim-
inatory ad valorem tariffs, which is a widely-used trade
policy instrument. It provides solutions to a variety of
medium-scale and large-scale problems relevant for empir-
ical modeling of international commodity trade.

This program has a set of parallel loops. However,
parallelization of the program on a network of worksta-
tions is a non-trivial task, since communication is required
across the loops and data has to be broadcast between the
loops. Figure 2 shows the speedups obtained on a va-
riety of heterogeneous configurations of machines. The
architecture-conscious schedules consistently outperform
the architecture-oblivious schedules. In spite of the large
amount of communication in the program and the high cost
of network communication, a satisfactory parallel perfor-
mance was achieved.

8.3 Contention Avoidance
We use LFK10, a program [2] based on loop 10 from the

Livermore Fortran Kernels, to demonstrate our contention
avoidance algorithm.

4 6 7 8

number of processors

0

20

40

60

80

100

120

no
rm

ali
ze

d e
xe

cu
tio

n t
im

e

simple

contention-free

Reducing contention effects

Figure 3: Execution times — LFK10

The outermost loop is a doall loop and it is being par-
allelized. We assume, however, that for the next stage of

8

computation array must be broadcast to all processors. This
causes high level of contention in our Ethernet network. We
can use the algorithm developed in Section 7 to maximize
the speedup by minimizing contention.

Figure 3 shows the performance of two parallelizations
of the modified LFK 10 nest. We can see that for a small
number of processors contention is not a very big problem.
But as the number of processors increases, performance
of the simple parallelization deteriorates very quickly. The
contention-free schedule results in a significantly faster pro-
gram.

For this example the speedups achieved by the
contention-free schedule are not very good, which is gen-
erally true about programs with excessive communication.
We may expect that if a program exhibits contention, the
technique presented in Section 7 will improve its perfor-
mance, but the speedup will always be significantly worse
than the optimum. The reasons for using this technique,
even though it is inherently suboptimal, are:� We get a better performance than the sequential pro-

gram. If we need high performance at any cost, we
may choose to parallelize such a code even if we know
that the machine will be underutilized.� Most real applications have many phases in the pro-
gram. If most of phases can be parallelized, then it
is better for data to remain distributed. Therefore,
parallelization of code fragments that do not display
great parallelism/speedups is still necessary to main-
tain data locality and reduce communication in the
later phases, since data would have to be on a single
node if the code fragment were sequentialized.

9 Conclusions
In this paper, we studied the problem of scheduling par-

allel loops at compile-time for a heterogeneous network of
machines. We considered heterogeneity in three aspects of
parallel programming: program, processor and network.

We have proposed a simple yet comprehensive model for
a network of processors. The model was designed for use
in compiling for load balancing and communication. We
developed compiler algorithms for generating optimal and
sub-optimal schedules of loops for load balancing, com-
munication optimizations and network contention. Our ex-
periments showed that the new techniques can significantly
improve the performance of parallel loops over existing
techniques.

References
[1] A. L. Cheung and A. P. Reeves. High performance com-

puting on a cluster of workstations. Proc. of the 1st Int.
Symposium on High Performance Distributed Computing,
pages 152–160, September 1992.

[2] M. Cierniak, W. Li, and M. J. Zaki. Loop scheduling for
heterogeneity. Technical Report 540, Computer Science
Dept., Univ. of Rochester, October 1994.

[3] P. E. Crandall and M. J. Quinn. A decomposition advisory
system for heterogeneous data-parallel processing. Proc. of
the 3rd Int. Symposium on High Performance Distributed
Computing, August 1994.

[4] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang,
Robert Manchek, and Vaidy Sunderam. PVM 3 user’s guide
and reference manual. Technical Report ORNL/TM-12187,
Oak Ridge National Laboratory,Oak Ridge,Tennessee,May
1993.

[5] A. S. Grimshaw, J. B. Weissman, E. A. West, and E. C.
Loyot. Metasystems: An approach combining parallel pro-
cessing and heterogeneous distributed computing systems.
Journal of Parallel and Distributed Computing, 21(3):257–
270, 1994.

[6] Joseph L. Hammond and Peter J.P. O’Reilly. Performance
analysis of local computer networks.Addison-Wesley,1986.

[7] W. Li and K. Pingali. Access Normalization: Loop restruc-
turing for NUMA compilers. ACM Transactions on Com-
puter Systems, 11(4), November 1993. An earlier version
appeared in Proc. 5th International Conference on Architec-
tural Support for Programming Languages and Operating
Systems, October, 1992.

[8] E. P. Markatos and T. J. LeBlanc. Using processor affinity
in loop scheduling on shared-memory multiprocessors. In
Proc. Supercomputing ’92, pages 104–113, 1992.

[9] A. Nagurney, C. F. Nicholson, and P. M. Bishop. Spa-
tial price equilibrium models with discriminatory ad val-
orem tariffs: formulation and comparative computation us-
ing variational inequalities. In Recent Advances in Spa-
tial Equilibrium Modeling: Methodology and Applications.
Springer-Verlag, Heidelberg, 1995. forthcoming.

[10] M. Parashar, S. Hariri, A. G. Mohamed, and G. C. Fox. A
requirement analysis for high performance distributed com-
puting over LAN’s. Proc. of the 1st Int. Symposium on
High Performance Distributed Computing, pages 142–151,
September 1992.

[11] C. Polychronopoulos and D. Kuck. Guided self-scheduling:
a practical scheduling scheme for parallel supercomputers.
IEEE Transactions on Computers, 36:1425–39, December
1987.

[12] C. D. Polychronopoulos. Parallel Programming and Com-
pilers. Kluwer Academic Publishers, 1988.

[13] P. Tang and P.-C. Yew. Processor self-scheduling for mul-
tiple nested parallel loops. In Proc. of ’86 International
Conference On Parallel Processing, August 1986.

[14] M. J. Zaki, W. Li, and M. Cierniak. Performance impact
of processor and memory heterogeneity in a network of
machines. In Proc. of the Fourth Heterogeneous Computing
Workshop, April 1995.

